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Mean value formulas are of great importance in the theory of partial differential equa-
tions: many very useful results are drawn, for instance, from the well-known equivalence
between harmonic functions and mean value properties. In the nonlocal setting of frac-
tional harmonic functions, such an equivalence still holds, and many applications are
nowadays available. The nonlinear case, corresponding to the p-Laplace operator, has
also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart
remains an open problem. In this paper, we propose a formula for the nonlocal, nonlinear
mean value kernel, by means of which we obtain an asymptotic representation formula
for harmonic functions in the viscosity sense, with respect to the fractional (variational)
p-Laplacian (for p > 2) and to other gradient-dependent nonlocal operators.

Keywords: Mean value formulas; fractional p-Laplacian; gradient-dependent operators;
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1. Introduction

One of the most famous basic facts of partial differential equations is that a smooth
function u : @ C R™ — R is harmonic (i.e. Au = 0) in an open set 2 if and only if
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it satisfies the mean value property, that is,
u(z) :][ u(y)dy, whenever B,.(x) € Q. (1.1)
B, ()

This remarkable characterization of harmonic functions provided a fertile ground
for extensive developments and applications. Additionally, such a representation
holds in some sense for harmonic functions with respect to more general differential
operators. In fact, similar properties can be obtained for quasi-linear operators such
as the p-Laplace operator A, in an asymptotic form. More precisely, a first result is
due to Manfredi et al., who proved in [29] that if p € (1, 0], a continuous function
u: Q — R is p-harmonic in Q if and only if (in the viscosity sense)

2+n][ p—2 . 2
u(z) = uydy+7(maxu+ mlnu)Jror , 1.2
(@) P+n)p, () v 2p+2n\B. @) Bee) ") 2

as the radius r of the ball vanishes. This characterization also encouraged a series
of new research, such as [30, [3I], whereas other very nice results were obtained
in sequel, see e.g., [I5] [I8] [20]. Further new and very interesting related work is
contained in [4] [14].

Notice that formula (L2) boils down to (1) for p = 2, up to a rest of order
o(r?), and that it holds true in the classical sense at those points z € € such that
wis C? around z and such that the gradient of u does not vanish at x. In the case
p = oo the formula fails in the classical sense, since |z|*/3 — |y|*/? is co-harmonic
in R? in the viscosity sense, but ([[L2) fails to hold point-wisely. If p € (1,00) and
n = 2 the characterization holds in the classical sense (see [3, 28]). Finally, the
limiting case p = 1 was investigated in 2012 in [21].

Nonlocal operators have been under scrutiny in the past decade. The interest,
not only from the purely mathematical point of view, has exponentially risen, and
it was natural to ask the questions affirmatively answered in the classical case, to
the respective fractional counterparts.

The investigation of the validity of a mean value property in the nonlocal linear
case, that is for fractional harmonic functions, provided a first positive answer. Let
s € (0,1), we define formally

2255 (g + s)

u(z) —u(z —y)
720(1 - s)

(—A)’u(x) := C(n,s) lim PEE

dyv C(”as) =
r—0 R™\ B,

The equivalence between s-harmonic functions (i.e. functions that satisfy
(—A)*u=0) and the fractional mean value property is proved in [I] (see also [9]),
with the fractional mean kernel given by

Su(x) = c(n, s)r* _uw—y)
Arule) = el [ (13)
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Here,

. Y (ﬁ '
’ e\, ([y[> —r?)*ly[" /2t

The formula ([3]) is far from being the outcome of a recent curiosity. It was intro-
duced in 1967 (up to the authors knowledge) in [25], formula (1.6.2), and was
recently fleshed out for its connection with the fractional Laplace operator. Differ-
ent applications rose from such a formula, just to name a few [2 [10, 24]. We point
out furthermore that the formula in (3] is consistent with the classical case, as
expected: as s — 17, the fractional Laplacian goes to the classical Laplacian, and
the mean value kernel goes to the classical mean value on the boundary of the ball

(see [I11 25]), that is,

lim . u(x )*]é ( )u(y)dy. (1.5)

s—1—

An asymptotic expansion can be obtained also for fractional anisotropic opera-
tors (that include the case of the fractional Laplacian), as one can observe in [I1]. In
particular, the result is that a continuous function u is s-harmonic in the viscosity
sense if and only if (3] holds in a viscosity sense up to a rest of order two, namely

u(z) = MPu(x) + o(r?) asr— 0", (1.6)

The goal of this paper is to extend the analysis of the nonlocal case to the
fractional p-Laplace operator. Namely, the fractional (variational) p-Laplacian is
the differential (in a suitable Banach space) of the convex functional

U — // )|pd dy
|xf g[S

and is formally defined as

(=AY u(r) = lim LIPu(zx),

e—0+t
Pula) u(z) — u(z — y)[P2(u(@) — u(z - y))
Fetule) /|| [y er -

Notice that this definition is consistent, up to a normalization, with the linear

operator (—A)® = (—A)3. The interested reader can appeal to [8], 16, 17, 22, 23] [32]
to find an extensive theory on the fractional p-Laplace operator and other very
useful references.

A first issue toward our goal is to identify a reasonable version of a nonlo-
cal, nolinear, mean value property. Up to the authors’ knowledge, this is the first
attempt to obtain similar properties in the nonlocal, nonlinear, case. Consequently,
on the one hand, the argument is new, so we cannot base our results on any refer-
ence. On the other hand, intuitively one can say that a formula could be reasonable
if it were consistent with the already known problems: the nonlocal case of p = 2
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(corresponding to the case of the fractional Laplacian), and the local, nonlinear
case, s = 1 (corresponding to the case of the classical p-Laplacian). The main
result that we propose is the following.

Main Result 1. Let p > 2, Q@ C R™ be an open set and let v € C(2) N L (R™)
be a non-constant function. Then

(=AY u(x) =0

P
in the viscosity sense if and only if
/ <|u(w) uix y)|) u@i) Z(w st) dy =o0.(1) asr— 07"
R\ B, [yl " (lyl* —7r2)

holds in the viscosity sense for all x € €.

This main achievement is precisely stated in Theorem[2.7l The proof of this main
theorem is based on an expansion formula for the fractional p-Laplacian for smooth
functions, that we do in Theorem 2.3], obtaining by means of Taylor expansions and
a very careful handling of the remainders, that

() — u(e — )]\ ule) - ulz — y)
/W\Br< e ) Wl (o — 2y Y

= (=A)u(z) + O@r* ) asr—0t.

It is enough then to use the viscosity setting to obtain our main result.
If we try to write the formula in this first main result in a way that reflects the
usual “u(z) equals its mean value property”, we obtain

) w@) —u@ -\ dy ]
“(“’)‘Mn\&( i) |y|n<|y|2—r2>s]

lu(z) —u(z -y \*?  ulz—y)
VR\B< ) |y|"<|y|2—r2>sdy”’”(1)]

asr — 0T, (1.7)

If we now compare formula (7)) with our desired assumptions, we notice that
for p = 2, supported by ([4]), we recover the result in (). Our candidate for
the role of the nonlocal, nonlinear, mean property gives indeed the usual formula
for the fractional s-mean value property. Looking also at the validity of (H) in
our nonlinear case, we come up with an interesting ancillary result as s — 1. In
Proposition 210, we obtain an asymptotic expansion for the (classical) variational
p-Laplace operator, and the equivalence in the viscosity sense between p-harmonic
and a p-mean value property in Theorem The expression obtained by us has
some similitudes with other formulas from the literature: compare, e.g., (2228al) with
[I5, Theorem 6.1] that has recently appeared in the literature, or to [I8, Theorem
1.1], and (2.28D) with [29] (see Remark [ZI1] for further details).
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Thus, it appears that our formula is consistent with the expressions in the
literature for s = 1, and with the case p = 2. In our opinion, such a consistency
suggests that formula (7)) is a reasonable proposal for a nonlocal, nonlinear, mean
value property.

We mention that a downside of (L) is that it does not allow to obtain a clean
“u(x) equal to its mean value property”, as customary, given the dependence of u(x)
itself, inside the integral, of the right-hand side. This “inconvenient”, nonetheless,
does not disappear in the local setting: the reader can see the already mentioned
works [I5] [18].

In the second part of the paper, we investigate a different nonlocal version of
the p-Laplace and of the infinity Laplace operators, that arise in tug-of-war games,
introduced in 5], [6]. To avoid overloading the notations, we summarize the results
on these two nonlocal operators as follows. We denote by (fA)ZS,,i the nonlocal p-
Laplace (as in [5] Sec. 4]) and by M3P* the “nonlocal p-mean kernel”. The precise
definitions of the operator, of the mean kernel and of viscosity solutions are given
in Sec. Bl The asymptotic representation formula is the content of Theorem [3.4]

Main Result 2. Let 2 C R” be an open set and let u € C'(£2) N L>°(R™). Then
(=A)p,+u(z) =0
in the viscosity sense if and only if

lim (u(z) — MSPFu(z)) = o(r®*)
r—0+
holds for all x € € in the viscosity sense.

An analogous result is stated in Theorem for the infinity Laplacian (intro-
duced in [6]) and the “infinity mean kernel”, defined, respectively, in Sec. The
same strategy for the proof as Main Result 1 is adopted for the nonlocal p and
infinity Laplacian, by coming up in Theorems [3.1] and B8 by means of Taylor
expansions, with formulas which hold for smooth functions, and then passing to
the viscosity setting.

Furthermore, we study the asymptotic properties of these gradient-dependent
operators and of the mean kernels as s — 17. As a collateral result, we are able
to obtain in Proposition Bl an expansion for the normalized p-Laplacian (and the
consequence for viscosity solutions in Theorem B.7)), which up to our knowledge,
is new in the literature. In our opinion, the behavior in the limit case s — 1~ of
the formula we propose, justifies here also our choice of the mean value property
expression.

We advise the reader interested in mean value formulas for these two gradient-
dependent operators here discussed to consult the very recent papers [13] [26].
Therein, the authors introduce asymptotic mean value formulas which do not
depend on the gradient, making them much useful in applications.

To conclude the introduction, we mention the plan of the paper. The results
relative to the fractional (variational) p-Laplace operator are the content of Sec.

2150021-5



Commun. Contemp. Math. 2022.24. Downloaded from www.worldscientific.com
by UNIVERSITY OF MILAN on 06/03/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Bucur & M. Squassina

Section [B] contains the results on the nonlocal gradient-dependent operators, while

in we insert some very simple, basic integral asymptotics.

2. The Fractional p-Laplacian
2.1. An asymptotic expansion

Let p > 2. Throughout Sec. B, we consider u to be a non-constant function. To
simplify the formula in (7)), we introduce the following notations:

SPou(x) = |u(:v) - u(w - y)| pe? dy
Drule) = /|| ( ) Wl (P =) 21

|yl
and

AEPu() = (Dp7ula)) !

ly|>r

dy.

(IU(w) —u(z —y)| )pQ u(z —y)
W PR
(2.2)
To make an analogy with the local case, we may informally say that D;*Pu plays the
“nonlocal” role of Vu(z) (see also and Proposition[29] for the limit as s — 17), and
2Py the role of a (s, p)-mean kernel. Both D:? and .#? naturally appear when
we make an asymptotic expansion for smooth functions, that we do in Theorem 231
Notice also that for p = 2, .Z*2u is given by (L8) (and D:2u(z) = c(n,s) " tr=2%).
The following remark motivates working with non-constant functions, and jus-

tifies (Z2) as a good definition.

Remark 2.1. Let u: R™ — R be such that, for some x € R" there exist z, € R™
and 7, € (0, |z — 2,|/2) such that

u(z) #u(z) Vzé€ By (2z). (2.3)
Then there exist some ¢, > 0 such that, for all r < r,, it holds that DEPu(z) > ¢,.

Notice that if u is a continuous, non-constant function, for some z € R” there
exist z; € R™ and r, € (0, |z — z,|/2) such that [23]) is accomplished.

The fact that D2Pu(x) is bounded strictly away from zero is not difficult to see,
we prove it however for completeness.

Proof. We have that
Iy =% < |y[?,

hence

_ _ p—2 _ p—2
Dirageyz [ BOSMeg [ ) gt
ly|>r |y|n+sp CB,(x) |,T - y|n+8p

by changing variables. For any r < r, /2, B, (z;) C CB,(z), thus

_ p—2
DsPu(z) > / u(z) u(ﬁ” dy = ¢z,
B, () |z —y|"teP
with ¢, positive, independent of r. O

2150021-6
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Remark 2.2. Notice that it is quite natural to assume that v is not constant and
it is similar to what is required in the local case, namely Vu(z) # 0 (see the proof
of 29, Theorem 2]).

Using the notations in ([Z.I)) and ([2.2]), we obtain the following asymptotic prop-
erty for smooth functions.

Theorem 2.3. Letn > 0,z € R" and u € C*(B,(x)) N L>(R"). Then
Dy Pu()(u(z) — A u()) = (—A)ju(z) + O@* ) (2.4)
as r — 0.

Substituting our notations, we remark that ([24) is

/ (IU(w) —u(z —y)| )p_2 we) —u(@—y)
R™\B,

lyl® ly[*([yl* —r2)°

= (—A)yu(zr) + O(r*™2%) asr — 0.

Proof. We note that the constants may change value from line to line. We fix an

arbitrary € (not necessarily small), the corresponding r := r(£) € (0,1/2) as in

(213), and some number 0 < ¢ < min{&,r}, to be taken arbitrarily small.
Starting from the definition, we have that

o ju(z) — ule — )" 2(u(@) ~ ulz —y))
Es ( ) ; /£<y<r |y|n+5p i

+/y>r u(@) —u(z —y) P> (u(z) — u(z —y)) < L L )S) dy

ly|n+oe=2) > (ly?> —r?

Y.

|u(z) —u(z —y)[P~(u(z) — u(z —y))
Jr/y>r !

Oy )

Thus, we obtain that

Ju(x) — u(z —y) P 2u(z —y)
L3Pu(x —|—/ dy
R R (MRS

o ju() — u(w — )P~
=l )/y>r !

P2 (y 2 — 12)s Y

u(@) — u(z —y)[P~2(u(z) —u(z —y))
+~/a<|y|<r I

[ Fep Y
ju(@) —u(e — )P 2(u@) —u@—y) (1 1
+/ |2 <|y|25 <|y|2r2>s>dy
o Ju(z) — u(e — )P~ o T
—ue) [ e 20+ ) 29

2150021-7
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Since u € C?(B,(z)), we can proceed as in (ZI0), and by employing (Z20) and
Z22), we get that
lim I5(r) = O(rP1=%)), (2.6)

e—0*t

(see also |22, Lemma 3.6]). Looking for an estimate on J(r), we split it into two
parts

_ u(z) — u(@ —y)P2(ul@) —wz—y)) (1 1
0= ‘/|y|>r ly|ntete=2) (IyIQS (ly* = 7’2)5) W

= 5P / |u(gc) - ’U’(x - Ty)|p_2(u(:c) — u(:c — ry))
ly|>1

MREGE

><( 1 1 )d
- Y
> (yl* = 1)

— [/ Julw) = ulw = ry)IP"(ule) — ulw — ry))
ly|>L

|y|ntsp=2)

><( 1 1 )d
- y
> (ly[* = 1)°

(@) — w(z —ry)|P"%(u(@) — u(z —ry))
i /<y<”

|y|n+s(p72)

“ (3~ ) 1@

=1 P(J(r) + Jao(1)).
We have that

u(z) —u(z — )P~ < e(ju@)P~ + ful@ —y)P7),

thus we obtain the bound

o dt 1

R0 < Clullae [ 1< 1)5.
T 1

The fact that
Jl (7’) = O(T2+Sp)
follows from (AD). For Jz, by symmetry we write

1 u(z) — u(z —ry)[P~>(u(@) — u(z —ry))
/<|y|<’7

2 |y|n+s(p—2)

X < ! ! )d
- Yy
s (lyl* —1)*

2150021-8
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1 [u(z) — (@ +ry)[P~> (u(z) — u(z +ry))
+5 n+s(p—2)
2 1<]y|<2 |y| P

" ( 1 1 )d
- Y
> (w2 =1)°

1 Ju(z) — (e = ry)P~22u(z) — ule = ry) — ule + ry)
/1<y<”—l

9 |y|n+s(p72)

X ( ! ! >d
- Y
s (lyl> —1)*

1 (lu(@) —u(z +ry)P~2 — Ju(z) —u(z —ry)|P?)
/1<|y|<2

+§ |y|n+s(p72)

1 1
X (u(z) — u(z +ry)) <|y|25 - = 1)S> dy.

We proceed using (Z19) and Z21]). For r small enough, we have that

n

™ 1 1
[ R(R)| < Cr? / pr1me =) (—( - QS)dp

1 p?=1) p
n

v 1 1
< Cr”_(”_2)(1_s)/ p <7 — ) dp
1 (P> =1)°  p*

< Opp=(P=2)(1=s) (2.7)

from ([(A.Ial), with C' depending also on 7. This yields that Jo(r) = O(r?+sr=29).
It follows that

J(r) = O(r?=2%).

Looking back at ([2.5), using this and recalling (2.6]), by sending ¢ — 0, we obtain
that

i)+ [ e ey = u(a) D) + O )

This concludes the proof of the theorem. O

It is a property of mean value kernels ., u(x) that they converge to u(x) as
r — 0% both in the local (linear and nonlinear) and in the nonlocal linear setting.
In our case, due to the presence of D Pu, we have this property when Vu(z) # 0
only for a limited range of values of p, a range depending on s and becoming larger
as § — 17. For other values of p, we were not able to obtain such a result. More
precisely, we have the following proposition.

2150021-9
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Proposition 2.4. Letn > 0 and xz € R". If u € C*(B,(x)) N L>®(R") is such that
Vu(z) # 0, and s,p are such that

it holds that
lim Z7Pu(x) = u(x).

r—0+

Proof. There is some r € (0,7/4) such that Vu(y) # 0 for all y € By,(z). Then
— —)|P—2
D3 Pu(z) > / lu(z) —u(r —y)|

Ba\B, [T (Yl —r2)0
Y
Vu(§) -

B /BQT\BT |y

for some £ € By,(x). Therefore, using (229)

dy

p—2
|y|P=2A=) (Y2 — 2oy,

D3Pu(z) > Gy V(2207972
which for p in the given range, allows to say that
lim D Pu(z) = oc.
r—0t

From Proposition [2.J] and Theorem 2.3 we obtain
lirél+(u(x) — MPPu(x)) = lim (DyPu(z) (—A)ju(z) + O %)),

r—0t

and the conclusion is settled. O

2.2. Viscosity setting

For the viscosity setting of the (s, p)-Laplacian, see the paper [27] (and also [12] 22]
132]). As a first thing, we recall the definition of viscosity solutions.

Definition 2.5. A function u € L>(R"), upper (lower) semi-continuous in Q is a
viscosity subsolution (supersolution) in € of

(=A)ju =0, and we write (—~A)ju < (>)0
if for every = € Q, any neighborhood U = U(z) C Q and any ¢ € C?(U) such that
p(x) = u(z),

o(y) > (u(y) for any y € U\{z},

¢ inU,
v = (2.9)
u in R™M\U,

(2.8)

if we let

2150021-10
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then

(=A)pv(x) < (2)0.

A viscosity solution of (—=A)Su = 0 is a (continuous) function that is both a subso-
lution and a supersolution.

We define here what we mean when we say that an asymptotic expansion holds
in the viscosity sense.

Definition 2.6. Let u € L>°(R"™) be upper (lower) semi-continuous in Q. We say
that

D Pu(x)(u(x) — A2 Pu(z)) = 0,(1) asr — 07T

holds in the viscosity sense if for any neighborhood U = U(z) C Q and any ¢ €
C?(U) such that (Z8) holds, and if we let v be defined as in (23], then both

lim inf D) Pu(z)(u(x) — A Pu(x)) >0

r—0+

and

lim sup D Pu(z) (u(z) — A Pu(x)) <0

T
r—0+
hold point-wisely.

The result for viscosity solutions is a consequence of the asymptotic expansion
for smooth functions, and goes as follows.

Theorem 2.7. Let Q@ C R™ be an open set and let u € C(2) N L°(R™). Then
(=A)yu(z) =0
in the viscosity sense if and only if

DrPu() (u(x) — APPu(x)) = 0,(1) as 7 — 0F (2.10)

holds for all x € Q in the viscosity sense.

Proof. For z € Q and any U(x) neighborhood of z, defining v as in (Z9)), we have
that v € C?(U(x)) N L>=(R"). By Theorem 2.3 we have that

D2Pv(x)(v(x) — AP Pv(x)) = (—A);v(:v) +O(r* %), (2.11)
which allows to obtain the conclusion. O

2150021-11
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2.3. Asymptotics as s — 1~

We prove here that sending s — 17, for a smooth enough function the fractional
p-Laplace operator approaches the p-Laplacian, defined as

—Apu = div(|Vul[P~2Vu). (2.12)

The result is known in the mathematical community, see [19]. We note for the
interested reader that the limit case s — 1~ for fractional problems has an extensive

history, see e.g., [7, [33].
We give here a complete proof of this result, on the one hand for the reader

convenience and on the other hand since some estimates here introduced are heavily
used throughout Sec.

Theorem 2.8. Let Q2 CR™ be an open set and let u € C*(Q) N L(R™). Then

lim (1 —s)(=A)ju(z) = —CpnApu(z),

s—1—

where Cp n, > 0 for every x € Q such that Vu(z) # 0.

Proof. Since u € C%(), for any x € Q we have that for any & > 0 there exists
r =r(&) > 0 such that

for any y € B.(z) € Q, |D*u(z) — D*u(x +y)| < é&. (2.13)

We fix an arbitrary £ (as small as we wish), the corresponding r and some number
0 < e < min{g,r}, to be taken arbitrarily small.
We notice that

(—A)pu(r) = lir% L3Pu(x) = LIPu(x) + hH(l) (L2Pu(x) — L3Pu(x)). (2.14)

For the first term in this sum, we have that

LoPu(z) = / . [u(z) — ulx — )P~ (ulx) —u(z —y) ,

ly|n e

oo
_ 1 1
< 2P 1||u||zl)/oo(]Rn)Wn/ 1Y ! Spdp
r

C r
= (n,p, ||u||Loo(Rn)) sp .
Notice that
lim (1 —s)LPu(z) = 0. (2.15)

s—1—
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An asymptotic expansion for the fractional p-Laplacian
Now, by symmetry

2<£§’pu(:v) - Ei’pu(:v)) = 2/

B, \B.

[u(a) = u@ = y) "> (u(@) — u(w )
PR

dy

_ / [u(z) — u(x —y)|P"*(u(z) — u(z — y)) dy
B, \B. |y|"+sp

u(z) — u(@ + )P~ (u(x) — u(z +y))
o e i

:/ lu(z) —u(z —y)|P*(2u(z) —u(z —y) —u(z +y)) dy
B, \B. |y|"+sp

(lu(@) — ul@ +y)P~2 — Ju(z) — u(z — y)|P~?) (u(z) —u(z +y))
o T %

=: I c(z) + Jrc(x). (2.16)

Using a Taylor expansion, there exist 6, € (0,1) such that
1
u(z) = u(@ —y) = Vu(@) -y = F{D*u(z - 3y)y, ),
1 _
u(z) —u(@ +y) = =Vu(@) -y = S(D*u(z + y)y, ).

Having that [dy/, |0y| < |y| < 7, recalling @I3), we get that |{(D?*u(z) — D?u(z —
y))y,y)| < £ly|?, hence

2u(a) ~ulx —y) ~ulax +y)
= —(Du(e)y,y) + 5 (D*u(e)y, ) — (D*ulz ~ 59)y,9))
+ 5 (UDPu(e)y, ) — (Dule + By, v)

= —(Dzu(x)y,y) + Ty, with [Ty| < §|y|2. (2.17)

Also denoting w = y/|y| € S*~! and taking the Taylor expansion for the function
f(x) = |a — xb|P~2, we obtain

u(z) —u(e —y)IP~ = [y|"~*|Vu(z) -w — %WZU(:E — dy)w, w) [P~

= V() - — (D2l w) + (D2l — b
— Do), )P
— 2V ula) - w — L (DPu(@p.w) + O
= y|P?|Vu(z) - w|P? + T, with [Tp| < Cly/P~'.  (2.18)
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Thus, we have that
u(z) —u(z —y)[P~2(2u(z) — u(z —y) — u(z +y))
= —|y’|Vu(z) - wP~*(D?u(w)w,w) + TalyP~2[Vu(z) - w[P~* + T,
with T3] < Cly[PH. (2.19)

Using this and passing to hyper-spherical coordinates, with the notations in
([218) we have that

Ie(z) = */ priTer dp/ [Vu(z) - wP~(D?u(e)w, w) dw + I, . (z) + I} (x)
€ Sn—1

p(1=s) _ op(1—s)
= %/ |Vu(z) - wP~2(D*u(r)w,w)dw
P — S §n—1

+ 1) (@) + 12 (). (2.20)

With the above notations, we have that
p(1=s) _ cp(1—s)
It < —CT—

Lolw) < e0T— =
and that

pp(A=s)+1 _ -p(1—s)+1

I? xﬁC’/ y|P=Pdy =C
() BT\BE| | =511

This means that

lim lim (1 —s)(I}(z) + I (z)) = O(2).

s—1- e—0t

Thus, we get
1
lim lim (1 —s)l..(z) = f—/ |Vu(z) - wP~2(D?*u(r)w,w) dw + O(&).
s—1— e—0t ’ P Jsn—1

Using again that |{(D?*u(z) — D?*u(z — dy))y, y)| < &|y|?, we also have that
u(e) — u(e — ) = Vu(e) -y — 5(D*u()y ) + 5 (Dule)y,v)
— (D?u(z — 8y)y, y))

— Vu(a) -y~ 5(Dulay.y) + OE)

u(e) — ule+y) = ~Vule) -y — S{D*u()y ) + 5 (Dul@)y,y)

— (D*u(z + 0y)y,y))

= —Vulz) -y = 3 (D*u(@y,0) + OE)lyl.
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Taking the second-order expansion (i.e. taking the following order of the expansion

in ([2I8), with second-order remainder) we obtain

u(z) —u(@ +y) P~ = Ju(@) — ule —y)["~?
= yl" (p = 2)(Vu(z) - w)[Vu(@) - w) P~ ((D*u(z)w, w)
+0(E) +Tu,  |Tu| < ClylP.
Thus,
(lu(@) = ul@ + )"~ = Ju(@) — u(z — y)|P?)(u(z) — u(@ +y))

= —lyl"(p — 2)|Vu(2) - )" (D*u(@)w,w) + O(F)) + T, |T5] < Cly|"*".
(2.21)

Therefore, with the notation in (Z.I0), we get that

rp(1=s) _ op(1—s)
p(l—s)

X (/S [Vu(z) - w)|P~2(D*u(z)w, w)dw + (’)(5)) + Jpe(z),  (2.22)

Jre(w) = —(p—

and
,r.p(l—s)—i-l _ Ep(l—s)—i—l

| Jre(@)] < C

p(l—s)+1
We obtain that
-2
lim lim Jy.(z)=-2—= IVau(z) - w)[P~2{D?u(z)w, w) dw + OF).
s—1— e—0t p §n—1

Summing the limits for I, .(z) and J, () we obtain

lim lim (L3Pu(x) — LPu(x))

s—1— e—0t

p—1 P—2/712 =
=P | IVu) )P D), w) do + O).

Using this and (2.I5]) into (214)), it follows that

s—1— p s—1— e—0t

lim (1 —s)(—A)Ju(z) = lim (1 —s) (ﬁi’pu(x) + lim (L2Pu(z) — Ei’pu(x)))

-1
= _p2_ |Vu(z) - w)|P~?(D*u(r)w, w) dw + O(2).
D Jsn—
Sending € to zero, we get that
lim (1 —s)(—A)u(z) = 7172;2?1|Vu(:17)|p72/ |2(z) - w|P~H(D*u(r)w, w) dw,
s

s—1— »

with z(z) = Vu(x)/|Vu(z)|. We follow here the ideas in [I9]. Let U(x) € M™*™(R)
be an orthogonal matrix, such that z(x) = U(z)e,, where e}, denotes the kth vector

n—1
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of the canonical basis of R™. Changing coordinates w’ = U(z)w we obtain

P = 2(x) - W' P HD2u() . W' dw'
zim [ e D )
- /s len - w|P~2(U(z) ' D*u(z)U(z)w, w) dw

- / [P~ (B(a)w, w) do,
Sn—l

where B(z) = U(z) ' D?u(z)U(x) € M™ " (R). Then we get that

T = Z bz_] / |wn|P*2wiw]'dw = Z bjj ((E)‘/S ) |wn|p*2w? dw
j=1 "

4,j=1
_ Y o ifj#n,
/ |wn [? 2“}]2'dw = { ;e
gn—1 vV ifj=mn,

with 7,7, two constants® for which v, /v, =p — 1, so

by symmetry. Now,

T= Y bj(@) + () — )ba Z bjj(x) + (p — 2)byn(z)
j=1
We notice that, since U(x) is orthogonal and D2u(x) is symmetric,

Z bji(x) = TrB(x) = Tr(U(z) ' D?u(x)U(x)) = Tr(D*u(z)) = Au(z)

and
bun(z) = (U(x) ' D?*u(x)U(2)en, en)
= (D*u(2)U(x)en, U(x)e,) = (D*u(x)z(x), 2(x))
= |Vu|?(D*u(x)Vu(z), Vu(z)) = Asou(z).
Therefore,

T = yp(Au(z) + (p — 2)Ascu(2)),
and this leads to

Tim (1 8)(~A)ju(z) = %}j”wu(x)w*mu(m +(p— 2)Acu(a).
aPrecisely (see [I9) Lemma 2.1])
r(y) Q) G ()

T = ) Wp:
o(2) "(2)
2 2
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Recalling (2.12) and that
Apu(@) = [Vu()["~2 (Au(z) + (p — 2)Ascu())

we conclude the proof of the lemma. O

Next, we study the asymptotic behavior of .Z? as s — 17.

Lemma 2.9. Let u € C1(Q) N L®(R"), denoting

MPu(z) = /STH1 lu(z) — u(z — rw)|P2u(z — rw)dw

x (/S lu(z) — u(z — rw)|P~2 dw) - (2.24)

it holds that

lim A u(x) = AFu(z) (2.25)
s—1—
and that
1
lim (1 —s)DyPu(z) = —/ lu(z) — u(z — rw)|[P~2 dw, (2.26)
s—1— 2rp §n—1

for all x € Q, r > 0 such that Ba.(x) C Q.

Proof. Let € € (0,1/2), to be taken arbitrarily small in the sequel. We have that

DPy(z) = / Ju(z) —u(z —y)|P~? dy

> (1te)r [Y[MTP25(|y|2 — r2)s

+/ lu(x) — u(x — y)|P~2
r<lyl<(i+eyr [YPTP2(ly[? — r2)°

— I+ I

Given that for |y| > r(1 + €) one has that |y|> — r? > e(e + 2)(1 + &) ?|y|?, we get

1+¢e?)s >
IS,E < ( & oo (R / 7175pd
IR = So ey Gl e’ P

(1+¢e%)° [(A+e)r]™

~or v Cnpllullzosen 2.27
Py RN PR (227)

and it follows that
lim (1—s)I;° =0.
s—1—
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On the other hand, integrating by parts we have that

(I+e)r _ _ p—2
e :/ </ IU(lx) 1;(17 . pw)2| dp>dw
sn-1 \Jr prep=2s(p? — r2)s

- 1= Ju(a) — u@ = po)2 |
Sn—l

1—s p1+sp—2s (p + T‘)S dw

. /T“*E" (p—r)'~d (|u<x> —u(z — pw>|p-2) dp]

1 — s dp p1+sp72s(p + T)S

B O (G TR SRS
or | T—s [T+ =@+l

) /T“*E”" (p—r)'~* d <|u<x>u<xpw>|“) dp].

1—s dp p1+sp—2s(p+T>s

Notice that

(+e)r () _ p)1=s _ _ p—2 2—s
/ (p : ) d <|u(x) u@ = po)| ) dp‘ < Cmax{rﬂp,rlfsp}—gi ;

— 5 dp p1+5p725(p+ 7,)5 1 s
hence
(14e)r — )= g _ _ p—2
lim (1—5)/ / (p=r) ™ d (|u) %(x po)l dp| dw = O(e).
s—1- sn—1 | Jp 1—s dp pltsp=2s(p+ r)s
Moreover,
1—s _ —(1 p—2
1) [ ) ule et
s—1- gno1 1—s [(14e)r]itsp=2s[(2 + &)r]*
1
_ —u(z — (1 P=2 (.
(14+ep-1(2+e)rr /Snfl fulw) —ule = 1+ e)rw) “
Finally,
lim lim (1-8)[5° = L lu(z) — u(z — rw)|P2dw
e—0t s—1— 2 2rp §n—1

and one gets (2.26)). In exactly the same fashion, one proves that

o (1) /|y|>r(|U(x)U(xy)|)p2 ue—y)

i R MR
L lu(z) — u(z — rw)|P2u(z — rw)dw
2rp §n—1
and ([Z23) can be concluded. m|
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Using the notations from Lemma 2.9 we obtain some equivalent asymptotic
expansions for the (classical) p-Laplacian.

Proposition 2.10. Let u € C?(Q), then the following equivalent expansions hold:

/BB u(z) = u(z — )P (u(z) — u(z - y)) dH" 7 (y) = —cnpr” Apu(z) + o(r7),

T (2.282)

(|VulP=2 + O(r) (u(x) — APu(z)) = —cppriApu(z) + o(r?) (2.28b)
for all x € Q, r > 0 such that Ba,(z) C Q.

Proof. We use (219), 221)) and (223]) with a Peano remainder, to obtain that

/Snil lu(z) — u(z — rw) P2 (u(z) — u(z — rw)) dw
__p;lrp wx) - wlP~2(D%u(r)w. wdw + ofrP
2 /SHW() [P D*u(x)w, w)dw + o(r")

N ”p%pl)lv'uwp”(m(w) +(p — 2)Accu(@)) + o(r?)

_ 7,,,p’yP(p — 1)A
2p

From this, (2.28al) immediately follows with a change of variables. Thus, using the
notations in the (2.:24]),

(/s, fue) = ulw —ro)l”* dW) (u(x) — M2u(@))

pu() +o(r).

= e =) rP Apu(x) + o(rP).
Proving in the same way by (ZI8) that
/S 1 lu(z) — u(z — rw)|[P~? dw = P2 /S 1 |Vau(x) - wP~2 dw + o(rP~?),
and recalling that
/S ) [Vu(z) - wP~2 dw = Cy | Vu(x)[P~2, (2.29)

we obtain

(IVu(@)[P~? + o (D) (u(@) — AP u(@)) = ~Enpr* Apu() + o),

with
Gy = we—1) _(p-1)Fp-3)
’ PCn.p 2p(p+n—2)
This concludes the proof of the proposition. O
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Remark 2.11. We compare our result in the local setting to the existing literature,
pointing out that our expansion is obtained for p > 2. The formula ([2:28a]) is indeed
the same as Theorem 6.1 in the recent paper [I5] (we point out that therein the case
p € (1,2) is also studied). Furthermore, the expansion (2Z.28al) has some similitudes
to [I8, Theorem 1.1] (where instead, the so-called normalized p-Laplacian
ANu=Au+ (p—2)Asu (2.30)

is used). Indeed, the expansion therein obtained for n = 2, which we rewrite for our
purposes (compare the normalized p-Laplacian with (Z12))), says that

[ 1vu@l () - ute - )y

r

I,
S0, rescaling,

IW(w)Ip‘2/B (u(z) — ulx —ry))dy = —cpr? Apu(z) + o(r”),

p—2

Vau(z) dy(—cpr?Apu(z) + o(r?)),

[Vu(z)|

where the last line holds up to renaming the constant. On the other hand, our
expansion differs from the one given in [29], again given for the normalized p-
Laplacian. Rewritten for the p-Laplace as in (ZI2]), the very nice formula in [29]
gives that

|Vu|p_2(u(:v) - Mpu(x)) = _Ep,nr2Apu($) + 0(T2)»
with

~ 2+n][ p—2 .
Myu(x) = u(y) dy + — | max u(y) + min u(y
pu() P+ /B, (2) ®) 2(p+n) (Bru) ) B, (x) )

and
1

EAPIPEND
The statement ([2.28H)), even though it appears weaker, still allows us to conclude
that in the viscosity sense, at points = € R™ for which the test functions v(x) satisfy
Vu(z) # 0, if u satisfies the mean value property, then Aju(x) = 0.

More precisely, we state the result for viscosity solutions (which follows from
the asymptotic expansion for smooth functions).

Theorem 2.12. Let Q@ C R™ be an open set and let uw € C(2) N L>°(R™). Then
(=A)pu(r) =0
in the viscosity sense if and only if
lim+(u(x) — MPu(z)) = o(r?) asr— 0
r—0

holds for all x € € in the viscosity sense.
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3. Gradient-Dependent Operators
3.1. The “nonlocal” p-Laplacian

In this section, we are interested in a nonlocal version of the p-Laplace operator,
that arises in tug-of-war games, and that was introduced in [5].

This operator is the nonlocal version of the p-Laplacian given in a non-divergence
form, and deprived of the |Vu|P=2 factor (namely, the normalized p-Laplacian
defined in 230)). So, for p € (1, +00), the (normalized) p-Laplace operator when
Vu # 0 is defined as

Aﬁfu = Aﬁ{iu = Au+ (p — 2)|Vu|">(D*uVu, Vu).
By convention, when Vu = 0, as in [5],

Aﬁ’@u = Au+ (p— 2)£s;1p (D*u€,€)
c n—1

and

Aﬁlu = Au+(p—2) inf (D?u¢f).
’ gesn—t
Let s € (1/2,1) and p € [2,+00). In the nonlocal setting, we have the following
definition given in [5 Sec. 4].
When Vu(z) = 0 we define

(A ula) = 1 “up /n 2u(x) —ulz +y) — u(z — y)X[cp,u (% -5) dy

Qp gesn—1 ly|t2s

, 2u(z) —u(z +y) —u(z —y) (y >
—A)’ _u(x):= — inf / c = - &) dy.
(FA)-ule) ap eesn-1 Jpn ly|nt2s Mewtl {7 €)W

(—A)pu(z)
2u(x) — u(x —u(x —
= (*A);S),i = aip/n (@) (|y|+nf2)s ( y)X[c,,,u (% . z(x)) dy
with
~ Vu(zx)
)= R

Here, ¢, o, are positive constants.
We remark that the case p € (1,2) is defined with the kernel X[O,c,,](ﬁ - z(x))
for some ¢, > 0, and can be treated in the same way.
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In particular, for p € [2,4+00) we consider

1
Qp = 5 / (w- 62)2)([6?,1] (w-er)dw,
gn—1

) (3.1)
ﬁp = 5 /Snil(w . 61)2)([0?,1] (w . el)dw — Qy,
and
Bp _
¢p such that — =p—2. (3.2)
Qp

With these constants, if u € C%(R™) N L>°(R™), then
: s _ AN
Sl_l}r{{(l —s)Aju(z) = A u(r),
as proved in [l Secs. 4.2.1 and 4.2.2].

We define now a (s, p)-mean kernel for the nonlocal p-Laplacian. For any r > 0
and u € L (R™), when Vu(z) = 0, we define

R Cy o128 ulz+y) +ulz—y y
MP () i= —£2— sup /c ( )+ ul >X[cp,1] ol &) dy,
B,

2 gesna ly[™(ly[]*> —r2)
and
Cg B 2s _
MEP—y(z) = 2B LA / u(z ‘tly) ‘5“(952 Sy)X[cp,ll (i .§> dy,
2 eesmep, lyl(lylP—7?) |
with
-1
Csp+ = CsVp,+  With yp 4 1= ( sup / Xlep,1] (w- §)dw> )
¢esn—1 Jgn—1
respectively
-1
Cs.p— = CsYp.— ith ~, _ := inf . -&)d .
Dy CsYp,— WItDL 7p, <£€1S§1n1/§n1 Xep.1) (@ - &) W>

When Vu(z) # 0, let
M2Pu(x) : = MSPFu(x)

C, %8 uler +vy)+u(z —
_ Cop / @ty tu@—y) (i . Z(;C)) dy.
CB, |y

2 ly["(ly|* —r?)°
Vu(x)

z2(x) = =—+

[Vu(a)]”

%) dp -1
Csp = CsYp, With ¢, := </ 7) ,
! ? vopp? 1)

1
Yp i = (/ Xlep,1] (w- el)dw) .
§n—1

b1t holds that ¢(s) = 28inms

™

whereP
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We have the next asymptotic expansion for smooth functions.
Theorem 3.1. Let n > 0,z € R" and let u € C*(B,(x)) N L>=(R"). Then
u(z) = Mf’p"iu(:z:) + ¢(n, s,p)r%(fA);iu(:r) —+ O(Tz)

asr — 0.

Proof. We prove the result for Vu(x) # 0 (the proof goes the same for Vu(x) = 0).
We fix some € > 0, and there exists 0 < r = r(¢) € (0,1/2) such that 2I3) is
satisfied. Passing to spherical coordinates we have that

dy Y
C. 7’25/ — X0 (—z:z:)
P TP =) el [y #)

B CS (02 —1)s c w-z(x)) dw
’p/l p(p? —1)° Jous N o] (W 2(2))

= Cy / 7/ ¢ w-ep)dw =1,
L o 1) Jea M p1) (@ €1)

where the last line follows after a rotation (one takes U € .#"*™(R) an orthogonal
matrix such that U~!(z)z(z) = e; and changes variables).
It follows that for any r > 0,

Cy pr% 2u(z) —u(z+y) —ulx —y) y
u(e) - Mpru() = =5 [ Nty (- 2(2) ) dy.
2 Jen, [yl ([y[2 — r2)? AN
Therefore, we have that
s Cy pou,r28 s Cy ,r2s
u(e)  MpPu(a) = S0 () - o
2u(z) —u(r +y) —ulz—y) ( y )
Xiep1) | 77 - 2(2) | dy
/T |y|n+2s oI\ Tyl (@)
N Cys pr?® / 2u(z) —u(z+y) —ulz —y)
2 CB, |y|n+2s
ly[** ) ( Y )
X | =1 X . z(x) ) dy
() e (72
Cs,pozp?"25

= 2O (CAyu(a) — I+ J,

2
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and

2

ngﬁA&mM)u@+W)U@W)Q|Ws)—0

|y|n+25

ey (540 ) o

ly[2 —1)s

2

Y Cs,p/
X | = z(x) | dy +
(=) s 52 [

Csp 2u(z) — u(z +ry) —u(z —ry) ly[**
= n+2s -1 X[cp,l]
Bn\B1 |y| (

lyl> —1)°

2u(z) —u(z + ry) —u(z —ry)

n
s

|y|n+2s

) <% - 1) Xiex1] <|Z_| - z(w>) dy

=JM+ J2
‘We obtain that

p2s

C
2 n,s,p
21 Al 52 [

(

p?—1

o dp p2s
<05p/ pL+2s ((p2_1)sl ’

and using (A.TH), that

)s_1>én1M%ﬂﬁwz@de

J? = O(r*t?).

We have that

Cs

Jp—1I, = —2£
’ 2

2u(z) —u(z +ry) —ulz —ry) Y s
Juve e (o)

B /Bn 2ur(:17) — u(:z:|;L|:f2)s u(z — Ty)ch,u < Y oo )> dy]

which, by 2I7) and (ATal), gives

lyl

JE— 1. =0@r?).

It follows that
u(x) — M Pu(x) =

for r — 07, hence the conclusion.

Cspap 28
2
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An asymptotic expansion for the fractional p-Laplacian
We recall the viscosity setting introduced in [5].

Definition 3.2. A function u € L>(R"), upper (lower) semi-continuous in (2 is a
viscosity subsolution (supersolution) in € of

(=A), cu=0, and we write (—=A)7 yu < (>)0

if for every = € Q, any neighborhood U = U(z) C  and any ¢ € C?(U) such that

23) holds if we let v as in (2.9)
(=A)p,+0(x) < (2)0.

A viscosity solution of (—=A)S ;u = 0 is a (continuous) function that is both a
subsolution and a supersolution.

Furthermore, we define an asymptotic expansion in the viscosity sense.

Definition 3.3. Let u € L°°(R™) upper (lower) semi-continuous in 2. We say that

lim (u(x) — M Pu(z)) = o(r)

r—0+

holds in the viscosity sense if for any neighborhood U = U(z) C Q and any ¢ €
C?(U) such that ([Z8) holds, and if we let v be defined as in (2.3), then both

_ AP
limint U0 ZMPule)
r—0+ res
and
— M
lim sup u(@) 5 7 Pu(z) <0
r—0t res

hold point-wisely.

The result for viscosity solutions, which is a direct consequence of Theorem [3.1]
applied to the test function v, goes as follows.

Theorem 3.4. Let Q C R™ be an open set and let u € C(2) N L°(R™). Then
(=A)p,culz) =0
in the viscosity sense if and only if

T (u(w) = MePEu(z)) = ofr)

holds for all x € § in the viscosity sense.
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We study also the limit case as s — 17 of this version of the (s, p)-mean kernel.
We state the result only in the case Vu(x) # 0, remarking that an analog result
holds for M 3P+ with the suitable MP-*.

Proposition 3.5. Let Q C R" be an open set and u € C*(Q) N L>°(R™). For any
r > 0 small denoting

MPu(z) := VEP /8& (u(z+y) —ulz—1y)) Xlep,1] (% . z(ac)) dy

it holds that
lim M Pu(z) = MPu(x), (3.3)

s—1—

for every x € Q,r > 0 such that Ba,(x) C €.

Proof. We have that

C, u(z 4+ ry) + u(x — ry) ( Yy )
MPu(x) = ’p/ ¢ — - z(x) | dy.
V=5 Jop, ™ Q= Xty 7))

Let € > 0 be fixed (to be taken arbitrarily small). Then

/B u(@ +ry) +ule —ry) Xfep1] (i : Z(SU)) dy

ly[*(Jyl* = 1)* lyl

< 2llullze@n /°° dt
Tp 1ge H(E7 = 1)%
which from Proposition [A] gives that

[ Je(2)] =

lim Cs,J-(z) = 0.

s—1—

On the other hand, we have that

u(z +ry) +u(x —ry) ( y )
I.(x :/ Xfe — - z(x) | dy
@ = s WP et Jy #®)

) /SM </11+a u(x + T[p)L(Up)QJr—ul()f — Tpw) dp) X (- 2(x)) dw

and integrating by parts, that
/HE u(z + rpw) + u(z — rpw)
1 p(p* — 1)

_ =% u(z +r(1+e)w) +u(r — r(l +e)w)
1—s (I+e)(2+¢)®

dp

- I2(z)

with

) /* (-1 d <u<x+rpw> e — rpw)) "

1—s dp plp+1)°
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We notice that

2—s
12(z)] < O=

— 1757

hence we get

lim Cs,I2(x) = O(e).

s—1—

Therefore, we obtain

. s,p _ 'Vp _
Sl_l}r{lﬁ M>Pu(x) = T oe+o /Snil(u(x +rw) + u(r — rw))

X X[ep1)(w - 2(2))dy + O(e),
and [B3) follows by sending ¢ — 0. |

We obtain furthermore an expansion for the normalized p-Laplacian, as follows.

Proposition 3.6. If u € C?(9), then
u(x) — MPu(z) = —Cpr2A£/u(w) + o(r?).

Proof. Using the Taylor expansion in (ZI7) with a Peano remainder, we have that
u(z) — MPu(z) = ’Y2_p/ (2u(z) — u(x — rw) — u(z + rw)) Xiep1] (w-z(z))dw
gn—l

2
As in [B Secs. 4.2.1 and 4.2.2], it holds that

_ / (D*u(@)w,w))Xe, 1) (@ - 2(z))dw + o(r?).
S"71

/S (D*u()w, ) X[e, 1) (@ - 2(2)) dw = 20,8 u(w),

and the conclusion immediately follows. O

An analog result holds for the suitable M,%’*i, and the same we can say about
the following theorem in the viscosity setting (which follows from the asymptotic
expansion for smooth functions).

Theorem 3.7. Let Q C R™ be an open set and let u € C(2) N L°(R™). Then

in the viscosity sense if and only if

Tliréh(u(:z:) — MPu(z)) = o(r?) asr — 0"

holds for all x € § in the viscosity sense.
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3.2. The infinity fractional Laplacian

In this section, we deal with the infinity fractional Laplacian, arising in a nonlocal
tug-of-war game, as introduced in [6]. Therein, the authors deal with viscosity
solutions of a Dirichlet monotone problem and a monotone double obstacle problem,
providing a comparison principle on compact sets and Holder regularity of solutions.

The infinity Laplacian in the non-divergence form is defined by omitting the
term |Vul|?, precisely when Vu(z) = 0,

Ao u(z) = sup (D*u(x),€), A _u(z):= inf (D*u(x)E,E),
gesn—1 gesn—t

and formally

Ao yu(z) + Ao —u(z)

Au(z) == 5 ,

whereas when Vu(z) # 0,

Vu(zx)

Aoou(r) = Doo su(z) = (D?u(w) 2(2), 2(x)),  where 2(z) = V()|

The definition in the fractional case is well posed for s € (1/2,1), given in [6l
Definition 1.1]. Let s € (4,1). The infinity fractional Laplacian is defined in the
following way:

o If Vu(z) # 0 then

(A (o) = /Ooo 2u(z) —u(z + p;l(i)s) —u(xr — pz(x))dp, (3.4)
where z(z) = ‘gzgzg‘ e snL.
e If Vu(xz) =0 then
(—A)S u(x):= sup inf ~ 2u(@) —ule+ pw) —ulz — p) dp. (3.5)

wesn—1¢esn1 Jo plt2s
There exist “infinity harmonic functions”: it is proved in [6] that the function
C(z) = Alz —zo)** ' + B
satisfies

(=A)S u(x) =0 for any x # xg.

We denote

2u(z) — u(x + pw) —ulz — p¢
o [ 2=,
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and for r > 0

Miu(e, Q)= et [~ HELEV G0,

r (p2 - TQ)Sp

/OO dp -1 _ sin7s
vopp2=1)

with

Cs 1=

N =

We define the operators
o if Vu(z) #0

() = Mz, 2(w), 2(0), - with 2(z) =

o if Vu(z) =0

MEPu(z) = sup inf MPu(z,w, ().
wesn—1¢esn 1

We obtain the asymptotic mean value property for smooth functions, as follows.
Theorem 3.8. Let n > 0,2 € R" and let u € C*(B,(x)) N L>=(R"). Then
u(x) = Au(x) + c(s)r** (—A)S u(z) + O(r?)
asr — 0%,

Proof. We have that
> 2u(zr) — u(r + pw) — u(z — p¢)

u(x) — Miu(z,w, :CST'2S/ "
( ) ( C) , p(p2 _ ,,,2)5 14
hence
u(x) = Miu(z,w, )
= ¢ | Lu(z,w,¢) = / s :sz) —ulz Q)
B p
2u(z) —u(z + rpw) — u(x — rpl) ( 2 )
' —-1)d
CB; p1+25 (p2 — 1)25 P
=: ¢4 (TZSEU(I,L«J, Q) - I+ Jr)-
Then
J. = 2u(x) — u(z + rpw) — u(z — rp¢) 28 Ay
r — p1+2s (p2 — 1)23 _ P
BITL\B1
2U(SU) _U($+pr) —u(x_rpg> ( pgs )
! —1])d
CBn p1+25 (p2 — 1)25 0
= Jy+J7

<
<
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We proceed as in the proof of Theorem [B.1], using also (2.IT) and Proposition [AT]
and obtain that

J2=0@*) and J' -1, = O(r?).

This concludes the proof of the theorem. |

The main result of this section, which follows from Theorem B.8] is stated next.

Theorem 3.9. Let Q@ C R™ be an open set and let u € C(2) N L>®°(R™). The
asymptotic erpansion

u(z) = Mu(z) +o(r**) asr—0 (3.6)
holds for all x € Q) in the viscosity sense if and only if
(—A)%u(z) =0

in the viscosity sense.

We investigate also the limit case s — 17.

Proposition 3.10. Let Q C R™ be an open set and u € C*(Q) N L>=(R™). Then
lim A u(z) = A u(x)

s—1—
%(u(w +rz(x)) + u(z —rz(z))) when Vu(x) # 0,
1 ( sup u(z+rw)+ inf wu(x— rC)) when Vu(z) =0,
2 \wesn-1 ¢esn—1

for every x € Q,r > 0 such that Ba,(x) C .

Proof. For some ¢ > 0 small enough, we have that

Mou,w,¢) = s (/12 u(z + r(ppu;)jl’t;g —rpQ) dp

e (a4 rpw) + ulz — rp()
+/1 W -1pp

= I} + 12 (3.7)
Using Proposition [Al we get that
lim eIl =0.
Integrating by parts in 12, we have

/1+5 u(z + rpw) el u(z +r(1 + e)w) - g2=s
1

=1 T U=s)c+2)0+e)| = 1-5
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thus
9 8175 8275
_ B - .
L - T erargetrid+ew) fulr—rll+e)0) < O7—
We get that
1

lim ¢, 72 = (u(z+r(l+e)y)+ulx—r(l+e)z)) + Ce.

s—1- (e +2)(e+1)

Sending € — 0 we get the conclusion. O

For completeness, we show the following, already known, result.

Proposition 3.11. Let u € C*(Q2)NL>(R™). For all x € Q for which |Vu(x)| # 0
it holds that

lim (1 —s)(—A) u(x) = —Asu(x).

s—1—
Proof. Since u € C?(Q) we have that for any £ > 0 there exists r = r(£) > 0 such
that (2I3) holds. We prove the result for Vu(z) # 0 (the other case can be proved
in the same way). We have that

(A = /Or 2u(z) —u (x + ppzl(f2)s) —u(z— pz(z)) dp

+/OO 2u(z) —u(z + p2(2)) —u(z — pz(z)) dp=1I, + J,.

1
p +2s

We have that
T_2S
|| < Cllul| Lo

5s and Slir{lﬁ(l —s)J, = 0.

On the other hand, using (2I7) we have that

' D2 e 2—2s
I, = _/0 { u(a:)z;:z:), 2@ e = _<D2u(x)z(:c),z(x)>2z"1 —
with
lim (1 —s)I7 = O(&).
s—1—
The conclusion follows by sending & — 0. .

We mention that the mean value property for the infinity Laplacian is settled
in [29]. For the sake of completeness, we however write the very simple expansion
for the infinity Laplacian.

Proposition 3.12. If u € C%(Q), then

u(z) — Mu(z) = —cr*Asou(z) + o(r?).
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An immediate consequence is the following theorem in the viscosity setting.

Theorem 3.13. Let Q C R™ be an open set and let uw € C(2) N L>°(R™). Then
(—A)sou(z) =0
in the viscosity sense if and only if

Tl_i)I(I)l+(u($) — Mu(z)) = o(r?) asr — 0"

holds for all x € € in the viscosity sense.
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Appendix A. Useful Asymptotics

We insert in this Appendix some asymptotic results, that we use along the paper.

Proposition A.1. Let s € (0,1). For r small enough the following hold:
v 1 1
t|——————5|dt=0(1 Al
[ a-m)u-oo (A

/; % <% - 1) dt = O(r%). (A.1b)

© gt
lim (1 — S - A2
Jim (1 =) /1+r 12— 1)° (4.2)

Furthermore,

Proof. To prove (ATa), integrating, we have that

1

[ (@) s ()

1 2s
= 5O+ .

In a similar way, we get (AJa). To obtain (AIL), we notice that since § < r <1,
with a Taylor expansion we have

1 ! 1
@*1—5;4’0 t_2 y
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and the conclusion is reached by integrating. Furthermore,

J

[e%e} 2 e} _ .l—s
dt g — / dt dtJr/ dt gt < el —rt=s) s
1)® )? 2 1

. t(t? — 14r t(t? —1 t2—1)s  — 1—5 s
Multiplying by (1 — s) and taking the limit, we get (A.2]). O
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