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33405 Talence Cedex, France
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Abstract
We study a class of quasi-linear Schrödinger equations arising in the theory
of superfluid film in plasma physics. Using gauge transforms and a derivation
process we solve, under some regularity assumptions, the Cauchy problem.
Then, by means of variational methods, we study the existence, the orbital
stability and instability of standing waves which minimize some associated
energy.

Mathematics Subject Classification: 35J40; 58E05

1. Introduction and main results

Several physical situations are described by generic quasi-linear equations of the form{
iφt + �φ + φ�′(|φ|2)��(|φ|2) + f (|φ|2)φ = 0 in (0, ∞) × R

N,

φ(0, x) = a0(x) in R
N,

(1.1)

where � and f are given functions. Here i is the imaginary unit, N � 1, φ : R
N → C is a

complex valued function. For example, the particular case �(s) = √
1 + s models the self-

channelling of a high-power ultra short laser in matter (see [6, 13, 33]) whereas if �(s) = √
s,

equation (1.1) appears in dissipative quantum mechanics [15]. It is also used in plasma physics
and fluid mechanics [14, 26], in the theory of Heisenberg ferromagnets and magnons [2] and in
condensed matter theory [29]. The dynamical features are closely related to the two functions
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� and f . Only few intents have been done to develop general theories for the Cauchy problem
(see nevertheless [10, 18, 31]). In this paper we focus on the particular case �(s) = s, that is{

iφt + �φ + φ�|φ|2 + f (|φ|2)φ = 0 in (0, ∞) × R
N,

φ(0, x) = a0(x) in R
N.

(1.2)

Our first result concerns the Cauchy problem. Due to the quasi-linear term, it seems difficult
to exhibit a well-posedness result in the natural energy space

XC =
{
u ∈ H 1(RN, C) :

∫
RN

|u|2|∇|u||2 dx < ∞
}

.

The local and global well posedness of the Cauchy problem (1.1) have been studied by
Poppenberg in [31] in any dimension N � 1 and for smooth initial data, precisely
belonging to the space H∞. In [10], equation (1.1) is solved locally in the function space
L∞(0, T ; Hs+2(RN)) ∩ C([0, T ); Hs(RN)), where s = 2E(N/2) + 2 (here E(a) denotes the
integer part of a) for any initial data and smooth nonlinearities � and f such that there exists
a positive constant C� with

1 − 4σ�′2(σ ) > C��
′2(σ ), for all σ ∈ R+. (1.3)

Note that the function �(σ ) = σ does not satisfy (1.3) and, then, it is not possible to apply [10,
theorem 1.1] to problem (1.2). Before stating our result, we introduce the energy functional E
associated with (1.2), by setting

E(φ) = 1

2

∫
RN

|∇φ|2 dx +
1

4

∫
RN

|∇|φ|2|2 dx −
∫

RN

F (|φ|2) dx,

for all φ ∈ XC, where F(σ) = ∫ σ

0 f (u) du. Note that E(φ) can also be written

E(φ) = 1

2

∫
RN

|∇φ|2 dx +
∫

RN

|φ|2|∇|φ||2 dx −
∫

RN

F (|φ|2) dx.

We prove the following.

Theorem 1.1. Let N � 1, s = 2E(N/2) + 2 and assume that a0 ∈ Hs+2(RN) and
f ∈ Cs+2(R+). Then there exists a T > 0 and a unique solution to the Cauchy problem
(1.2) satisfying

φ(0, x) = a0(x),

φ ∈ L∞([0, T [; Hs+2(RN)) ∩ C([0, T [; Hs(RN)),

and the conservation laws

‖φ(t)‖2 = ‖a0‖2, (1.4)

E(φ(t)) = E(a0), (1.5)

for all t ∈ [0, T [.

The proof of theorem 1.1 follows the approach developed in [10]. It is based on energy
methods and to overcome the loss of derivatives induced by the quasi-linear term, gauge
transforms are used. We rewrite equation (1.1) as a system in (φ, φ) where z denotes the
complex conjugate of z. Then, we differentiate the resulting equation with respect to space
and time in order to linearize the quasi-linear part and we introduce a set of new unknowns
(see (2.2)). A fixed-point procedure is then applied on the linearized version. Since (1.3)
does not hold we need, with respect to [10], to modify the linearized version and to perform
different energy estimates on the Schrödinger part of the equation.
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From now on and in the rest of the paper we assume that f is a power nonlinearity
f (σ) = σ

p−1
2 for some p > 1. In this case (1.2) becomes{

iφt + �φ + φ�|φ|2 + |φ|p−1φ = 0 in (0, ∞) × R
N,

φ(0, x) = a0(x) in R
N.

(1.6)

For these power nonlinearities, motivated by the classical results of the Schrödinger equation{
iφt + �φ + |φ|p−1φ = 0 in (0, ∞) × R

N,

φ(0, x) = a0(x) in R
N,

(1.7)

we address the question of existence of standing waves. We also study the standing waves
associated with ground states, see theorem 1.3, their orbital stability or instability.

Remark 1.2. Note that if p > 1 is an odd integer or p > 4E(N/2) + 9 then f (σ) = σ
p−1

2

belongs to Cs+2(R+). Clearly it would be very interesting to derive a local Cauchy theory
without the restrictions on the smoothness of the nonlinearity f (σ) and the data a0. It seems
out of reach with the approach used to prove theorem 1.1. We also point out that, even under
smoothness assumptions, we do not say anything about possible global existence. However,
our theorem 1.5 regarding instability or theorem 1.9 dealing with stability provides some
indications in that direction.

By standing waves, we mean solutions of the form φω(t, x) = uω(x)e−iωt . Here ω > 0
is a fixed parameter and φω(t, x) satisfies problem (1.6) if and only if uω is a solution of the
equation

− �u − u�(|u|2) + ωu = |u|p−1u, in R
N. (1.8)

For reasons explained in remark 1.7, we assume throughout the paper that 1 < p <

(3N + 2)/(N − 2) if N � 3 and p > 1 if N = 1, 2. A function u ∈ XC is called a
(complex) weak solution of equation (1.8) if

	
∫

RN

(∇u · ∇φ + ∇(|u|2) · ∇(uφ) + ωuφ − |u|p−1uφ
)

dx = 0 (1.9)

for all φ ∈ C∞
0 (RN, C) (here 	(z) is the real part of z ∈ C). We say that a weak solution

of (1.8) is a ground state if it satisfies

Eω(u) = mω, (1.10)

where

mω = inf{Eω(u) : u is a nontrivial weak solution of (1.8)}.
Here, Eω is the action associated with (1.8) and reads

Eω(u) = 1

2

∫
RN

|∇u|2 dx +
1

4

∫
RN

|∇|u|2|2 dx +
ω

2

∫
RN

|u|2 dx − 1

p + 1

∫
RN

|u|p+1 dx.

We denote by Gω the set of weak solutions to (1.8) satisfying (1.10). It is easy to check that u

is a weak solution of equation (1.8) if, and only if,

E ′
ω(u)φ := lim

t→0+

Eω(u + tφ) − Eω(u)

t
= 0,

for every direction φ ∈ C∞
0 (RN, C).

Our second result establishes the existence of ground states to (1.8) and derive some
qualitative properties of the elements of Gω. Our existence result complements the ones
of [1, 12, 27, 28, 32].
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Theorem 1.3. For all ω > 0, Gω is non-void and any u ∈ Gω is of the form

u(x) = eiθ |u(x)|, x ∈ R
N,

for some θ ∈ S
1. In particular, the elements of Gω are, up to a constant complex phase, real

valued and non-negative. Furthermore any real non-negative ground state u ∈ Gω satisfies
the following properties:

(i) u > 0 in R
N ,

(ii) u is a radially symmetric decreasing function with respect to some point,
(iii) u ∈ C2(RN),
(iv) for all α ∈ N

N with |α| � 2, there exists (cα, δα) ∈ (R∗
+)

2 such that

|Dαu(x)| � Cαe−δα |x|, for all x ∈ R
N.

Moreover, in the case N = 1 there exists a unique non-negative solution to (1.8), up to
translations. In particular, there is a unique non-negative ground state to (1.8), up to
translation.

Remark 1.4.

(1) Observe that if u ∈ Gω is real and positive any v(x) = eiθu(x − y) for θ ∈ S
1 and y ∈ R

N

belongs to Gω.
(2) Except when N = 1 we do not know if there exists a unique real positive ground state, up

to translation. Regarding the existence of excited states we conjecture that, when N � 2,
there exist, at least, infinitely many radial real solutions to (1.8), as it is the case of the
semi-linear equation

− �u + ωu = |u|p−1u, in R
N (1.11)

corresponding to (1.7).
(3) The proof of theorem 1.3 uses the so-called dual approach introduced in [12] which

transforms equation (1.8) into a semi-linear one which belongs to the framework handled
in [4, 5]. We also mention that, as it is apparent from its proof, the conclusions of
theorem 1.3 hold for more general nonlinearities than power-type. Precisely when (1.8)
is replaced by

− �u − u�(|u|2) + ωu = g(u), in R
N (1.12)

and g(u) − ωu satisfies the assumptions (g0)–(g3) of [12, theorem 1.2].
(a) As pointed out to us by Selvitella [34] a boots-strap argument makes it possible to show

that any ground state actually belongs to ∩t>0H
t(RN) and, in particular, is of class C∞.

Next we establish, for p > 1 sufficiently large, a result of instability by blow-up.

Theorem 1.5. Assume that ω > 0,

3 +
4

N
< p <

3N + 2

N − 2

and that f (σ) = σ
p−1

2 ∈ Cs+2(R+). Let u ∈ XC be a ground state solution of

− �u + u�|u|2 + ωu = |u|p−1u in R
N. (1.13)

Then, for all ε > 0, there exists a0 ∈ Hs+2(RN) such that ‖a0 −u‖Hs+2(RN ) < ε and the solution
φ(t) of (1.6) with φ(0) = a0 blows up in finite time in the Hs+2(RN) norm.
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Remark 1.6. Concerning the nonlinearity f , the assumptions of theorem 1.5 hold for

p � 9 when N = 1, p = 7, 9, 11 or p � 13 if N = 2,

p = 5, 7, 9 if N = 3 and p = 5 if N = 4. (1.14)

Clearly any weakening of the smoothness assumptions in theorem 1.1 would extend the
conclusion of theorem 1.5.

To prove theorem 1.5 we assume by contradiction that the solution φ(t) exists globally
in Hs+2(RN) and we show that, actually, a blow-up behaviour must occur. For this we first
establish a virial type identity. Then, we introduce some sets which are invariant under the flow,
in the spirit of [3]. At this point we take advantage of ideas of [23]. Namely, by introducing a
constrained approach and playing between various characterizations of the ground states, we
are able to derive the blow-up result without having to solve directly a minimization problem,
in contrast to [3].

When 1 < p < 3 + 4/N , we conjecture that the ground state solutions of (1.8) are orbitally
stable. However, we do not manage to prove this result. Instead, we consider the stability
issue for the minimizers of the problem

m(c) = inf{E(u) : u ∈ X, ‖u‖2
2 = c}, (1.15)

where the energy E reads as

E(u) = 1

2

∫
RN

|∇u|2 dx +
∫

RN

|u|2|∇|u||2 dx − 1

p + 1

∫
RN

|u|p+1 dx. (1.16)

This problem is interesting for itself but also, hopefully, could be a first step towards considering
the orbital stability of ground states of (1.8) for fixed ω > 0. Indeed take any solution u to
problem (1.15), namely ‖u‖2

2 = c and E(u) = m(c). Then it is a classical fact that there
exists a parameter ω∗, depending on c and u, such that u solves equation (1.8) with ω = ω∗

(see lemma 4.6). However, to study the orbital stability of the ground states of (1.8) via the
constrained approach (as it is the case in the classical paper of Cazenave–Lions [9] on (1.11))
we need to have more information on the ground states of (1.8). In particular we need to know
that they share the same L2 norm. Except when N = 1 where we have the uniqueness of the
ground states, this information is not available to us. Now, when N = 1 we still need to know
if, when u1 and u2 are two distinct solutions to the minimization problem (1.15), then we have
ω∗

1 = ω∗
2. We do not manage to show this.

Concerning problem (1.15) we show that if p < 3 + 4/N then m(c) > −∞ for any c > 0.
In contrast, when p > 3 + 4/N , we have m(c) = −∞ for any c > 0.

Remark 1.7. The key point to show that m(c) > −∞ if 1 < p < 3 + 4/N is the use of the
following Gagliardo–Nirenberg inequality: for some K > 0 depending only on N and for any
u ∈ XC ∫

RN

|u|p+1 dx � K

(∫
RN

|u|2 dx

)1−θ (∫
RN

|u|2|∇|u||2 dx

) θN
N−2

,

with

θ = (p − 1)(N − 2)

2(N + 2)
.

When p < 3 + 4/N we have θN/(N − 2) < 1 and thus the negative term in (1.16) can
be controlled by the second one. Recall that the corresponding functional setting associated
with (1.11) is given, on H 1(RN), by

I (u) = 1

2

∫
RN

|∇u|2 dx − 1

p + 1

∫
RN

|u|p+1 dx
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and

d(c) = inf{I (u) : u ∈ H 1(RN), ‖u‖2
2 = c}.

In this case to control the negative term, and thus to ensure that d(c) > −∞, requiring that p <

1 + 4/N is necessary. These considerations show that the exponent 3 + 4/N plays for (1.8) the
role of 1 + 4/N in (1.11). The same Gagliardo–Nirenberg inequality, and the definition of XC,
also permits the range of the power to be extended to 1 < p < (3N + 2)/(N − 2). The value
(3N + 2)/(N − 2) corresponds to the classical limiting Sobolev exponent (N + 2)/(N − 2).

Remark 1.8. We recall that for (1.11) the ground states are stable for 1 < p < 1 + 4/N

and unstable for p � 1 + 4/N (see [3, 9]). Thus, in light of remark 1.7, not surprisingly the
condition p > 3 + 4/N appears in our theorem 1.5.

Denote by G(c) the set of solutions to (1.15) and observe that if u ∈ G(c), then any
v(x) = eiθu(x − y) for θ ∈ S

1 and y ∈ R
N belongs to G(c). Our result of orbital stability is

the following.

Theorem 1.9. Assume that

1 < p < 3 +
4

N
,

and let c > 0 be such that m(c) < 0. Then G(c) is non-void and, if f (σ) = σ
p−1

2 ∈ Cs+2(R+),
it is orbitally stable.

Remark 1.10. In theorem 1.9 when we say that G(c) is orbitally stable we mean the following:
for every ε > 0, there exists δ > 0 such that for any initial data a0 ∈ XC ∩ Hs+2(RN) such
that infu∈G(c) ‖a0 − u‖H 1 < δ the solution φ(t, ·) of (1.2) with initial condition a0 satisfies

sup
0<t<T0

inf
u∈G(c)

‖φ(t, ·) − u‖H 1 < ε,

where T0 > 0 is the existence time for φ given by theorem 1.1. We observe that our assumptions
permit one to treat the case p = 3 in any dimension N � 1.

The proof of theorem 1.9 relies, in an essential way, on the convergence of any real
minimizing sequences for (1.15). This convergence result being established, the proof of
orbital stability follows in a standard fashion.

Theorem 1.11. Assume that 1 < p < 3 + 4/N and c > 0 is such that m(c) < 0. Then for
any real minimizing sequence of (4.2), there exists a subsequence that is strongly converging
in X, up to a translation in R

N .

The proof of theorem 1.11 itself relies on the use of concentration-compactness arguments.
The key difficulty is to rule out a possible dichotomy. For this when one considers (1.11) it
suffices to use the fact that the nonlinearity is superlinear. Here it is essential to make use of
the autonomous feature of (1.8) as we need to use scaling properties.
We end this paper discussing the condition m(c) < 0.

Theorem 1.12. The following results hold:

(1) If 1 < p < 1 + 4/N , then m(c) < 0 for all c > 0.
(2) If 1 + 4/N � p � 3 + 4/N , then there exists c(p, N) > 0 such that

(i) If 0 < c < c(p, N) then m(c) = 0 and m(c) does not admit a minimizer.
(ii) If c > c(p, N) then m(c) < 0 and m(c) admits a minimizer. In addition, the map

(c(p, N), ∞) � λ → m(λ) is strictly decreasing.

Remark 1.13. We recall that dealing with (1.11) we have thatm(c) < 0 for any c > 0 (see [35])
if and only if 1 < p < 1 + 4/N . Theorem 1.12 reveals that the minimizing problem (1.15)
has a much richer structure.
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Notations.

(1) For a function f : R
N → R

N and 1 � j � N , we denote by ∂jf the partial derivative
with respect to the j th coordinate.

(2) M(RN) is the set of measurable functions in R
N . For any p > 1 we denote by Lp(RN)

the space of f in M(RN) such that
∫

RN |f |p dx < ∞.
(3) The norm (

∫
RN |f |p dx)1/p in Lp(RN) is denoted by ‖ · ‖p.

(4) For s ∈ N, we denote by Hs(RN) the Sobolev space of functions f in L2(RN) having
generalized partial derivatives ∂k

i f in L2(RN), for i = 1, . . . , N and 0 � k � s.
(5) The norm (

∫
RN |f |2 dx +

∫
RN |∇f |2 dx)1/2 in H 1(RN) is denoted by ‖ · ‖ and, more

generally, the norm in Hs is denoted by ‖ · ‖Hs .
(6) LN(E) denotes the Lebesgue measure of a measurable set E ⊂ R

N .
(7) For R > 0, B(0, R) is the ball in R

N centred at zero with radius R.
(8) 	(z) (respectively
(z)) denotes the real part (respectively the imaginary part) of a complex

number z.
(9) For a real number r , we denote by E(r) the integer part of r .

(10) X denotes the restriction of XC to real functions.
(11) K, K(p, N) denote various constants which are not essential in the problem and may vary

from line to line.

Organization of the paper

In section 2, we prove theorem 1.1 concerning the well-posedness result for equation (1.2).
In section 3, we establish the existence and properties of the ground states solutions of (1.8),
theorem 1.3 and we prove the instability result, theorem 1.5. In section 4, we study the
minimization problem (1.15). Assuming that m(c) < 0 we prove the existence of a minimizer
and we study under which conditions m(c) < 0 hold. Finally, in section 5, we prove
the convergence of all minimizing sequences of (1.15) and thus derive the stability result,
theorem 1.9.

2. The Cauchy problem

This section is fully devoted to the proof of theorem 1.1.
We first rewrite equation (1.2) into a system involving φ and φ in the following way:

2i

(
φt

φt

)
+ A(φ)

(
�φ

�φ

)
−

(
2φ|∇φ|2 + φf (|φ|2)
−2φ|∇φ|2 − φf (|φ|2)

)
= 0, (2.1)

where

A(φ) =
(

1 + |φ|2 φ2

−φ
2 −(1 + |φ|2)

)
.

A direct calculation shows that A(φ) is invertible and that

A−1(φ) = 1

1 + 2|φ|2 A(φ).

In order to overcome the loss of derivatives and to linearize the quadratic term involving ∇φ,
we differentiate the equation with respect to space and time variables to obtain a new system
in φ0, . . . , φN+2, where φ0 = φ and

∀1 � j � N, φj = ∂jφ, φN+1 = eg(|φ|2)φt , φN+2 = eq(|φ|2)�φ. (2.2)
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The functions g and q are used as gauge transforms and their role will be explained later. We
also set �∗ = (φj )

N
j=0 and � = (φj )

N+2
j=0 . Equation (2.1) can be rewritten as

2i

(
(φ0)t

(φ0)t

)
+ A(φ0)

(
�φ0

�φ0

)
+ F0(�

∗) = 0, (2.3)

where F0 is a smooth function depending only on �∗. Differentiating equation (2.3) with
respect to xj for j = 1, . . . , N , we obtain

2i

(
(φj )t

(φj )t

)
+ A(φ0)

(
�φj

�φj

)
+

N∑
k=1

B(φ0, φk)

(
TkjφN+2

TkjφN+2

)

+ C(φ0, φj )

(
e−q(|φ0|2)φN+2

e−q(|φ0|2)φN+2

)
+

(
F(�∗, φj )

−F(�∗, φj )

)
= 0,

where B, C and F are smooth functions of their arguments and especially

C(φ0, φj ) = ∂jA(φ0) =
(

φ0φj + φ0φj 2φ0φj

−2φ0φj −φ0φj − φ0φj

)
.

For i, j = 1, . . . , N , Tij is the following operator of order 0

Tijφ = ∂i∂j�
−1(e−q(|u0|2)φ).

We can rewrite these equations as follows:

2i

(
(φj )t

(φj )t

)
+ A(φ0)

(
�φj

�φj

)
+ Fj (�

∗, φN+2, T φN+2) = 0, (2.4)

where Fj is a smooth function of its arguments. Differentiating equation (2.3) with respect to
t , we derive

2i

(
(e−f (|φ0|2)φN+1)t

(e−f (|φ0|2)φN+1)t

)
+ C(φ0, e−f (|φ0|2)φN+1)

(
e−q(|φ0|2)φN+2

e−q(|φ0|2)φN+2

)
+ A(φ0)

(
�(e−f (|φ0|2)φN+1)

�(e−f (|φ0|2)φN+1)

)

+
N∑

k=1

B(φ0, φk)

(
∂k(e−f (|φ0|2)φN+1)

∂k(e−f (|φ0|2)φN+1)

)
+

(
F(�∗, e−f (|φ0|2)φN+1)

−F(�∗, e−f (|φ0|2)φN+1)

)
= 0,

(2.5)

which can be rewritten as

2i

(
(φN+1)t

(φN+1)t

)
+ A(φ0)

(
�φN+1

�φN+1

)
+

N∑
k=1

D(φ0, φk)

(
∂kφN+1

∂kφN+1

)
+ G(�, T φN+2) = 0, (2.6)

where D and G are smooth functions of their arguments. By applying the operator � on
equation (2.3), we obtain

2i

(
(φN+2)t

(φN+2)t

)
+ A(φ0)

(
�φN+2

�φN+2

)
+

N∑
k=1

E(φ0, φk)

(
∂kφN+2

∂kφN+2

)
+ I(�, T φN+2) = 0, (2.7)

where E and I are also smooth functions of their arguments. At this point, we need to make
more precise the matrices B, D and E since they represent the quasi-linear part of the equations.
A direct computation gives

B(φ0, φk) =
(

2φ0φk 2φ0φk

−2φ0φk −2φ0φk

)
,
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D(φ0, φk) = B(φ0, φk) − 2f ′(|φ0|2)A(φ0)

(
φ0φk + φ0φk 0
0 φ0φk + φ0φk

)
,

E(φ0, φk) = B(φ0, φk) + 2C(φ0, φk) − 2A(φ0)q
′(|φ0|2)

(
φ0φk + φ0φk 0
0 φ0φk + φ0φk

)
.

Usual energy estimates for Schrödinger equations require that the diagonal coefficients of D
and E in equations (2.6) and (2.7) are purely imaginary. Roughly speaking, this allows one to
integrate by parts the bad terms including first order derivatives of the unknown. This is why
we make use of gauge transforms g and q. Finally, in order to avoid any smallness assumption
on the initial data, we need to transform slightly equation (2.3) in the following way. We
multiply the equation by A−1(φ0) and we split the matrix in front of the time derivatives of
φ0 into

A−1(φ0) = Id +
(
A−1(φ0) − Id

)
,

where Id is the 2 × 2 identity matrix. Then recalling that ∂tφ0 = e−g(|φ0|2)φN+1, we rewrite
equation (2.3) in

2i

(
(φ0)t

(φ0)t

)
+

(
�φ0

�φ0

)
+ G0(�) = 0, (2.8)

where

G0(�) = A−1(φ0)F0(�
∗) + ie−g(|φ0|2) (

A−1(φ0) − Id
) (

φN+1

φN+1

)
.

We have then transformed equation (1.2) into the following system:

2i

(
(φ0)t

(φ0)t

)
+

(
�φ0

�φ0

)
+ G0(�) = 0, (2.9)

for j = 1, . . . , N

2i

(
(φj )t

(φj )t

)
+ A(φ0)

(
�φj

�φj

)
+ Fj (�

∗, φN+2, T φN+2) = 0, (2.10)

2i

(
(φN+1)t

(φN+1)t

)
+ A(φ0)

(
�φN+1

�φN+1

)
+

N∑
k=1

D(φ0, φk)

(
∂kφN+1

∂kφN+1

)
+ G(�, T φN+2) = 0, (2.11)

2i

(
(φN+2)t

(φN+2)t

)
+ A(φ0)

(
�φN+2

�φN+2

)
+

N∑
k=1

E(φ0, φk)

(
∂kφN+2

∂kφN+2

)
+ I(�, T φN+2) = 0. (2.12)

We now apply a fixed-point theorem to system (2.9)–(2.12). Let s be as in theorem 1.1 and
introduce the function space

XT =


� = (φj )

N+2
j=0 : φj ∈ C([0, T ]; L2(RN)) ∩ L∞(0, T ; Hs(RN)),

‖�‖XT
=

N+2∑
j=0

sup
0�t�T

‖φj (t)‖Hs(RN ) < ∞

 .

For M = (mj )
N+2
j=0 ∈ (R∗

+)
N+3 and r ∈ R

∗
+, we denote

XT (M, r) =
{

� = (φj )
N+2
j=0 ∈ XT : ∀j = 0, .., N + 2 ‖φj‖L∞(0,T ;Hs(RN )) � mj

‖(φ0)t‖
L∞(0,T ;HE( N

2 )+1
(RN ))

� r and φ0(0, x) = a0(x)

}
,
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and let 
 = (ψj )
N+2
j=0 ∈ XT (M, r). Denote 
∗ = (ψj )

N
j=0 and consider the linearized version

of system (2.9)–(2.12) as follows:

2i

(
(φ0)t

(φ0)t

)
+

(
�φ0

�φ0

)
+ G0(
) = 0, (2.13)

for j = 1, . . . , N

2i

(
(φj )t

(φj )t

)
+ A(ψ0)

(
�φj

�φj

)
+ Fj (


∗, ψN+2, T ψN+2) = 0, (2.14)

2i

(
(φN+1)t

(φN+1)t

)
+ A(ψ0)

(
�φN+1

�φN+1

)
+

N∑
k=1

D(ψ0, ψk)

(
∂kφN+1

∂kφN+1

)
+ G(
, T ψN+2) = 0, (2.15)

2i

(
(φN+2)t

(φN+2)t

)
+ A(ψ0)

(
�φN+2

�φN+2

)
+

N∑
k=1

E(ψ0, ψk)

(
∂kφN+2

∂kφN+2

)
+ I(
, T ψN+2) = 0. (2.16)

Let Z = [
L∞(0, T ; Hs(RN)) ∩ C([0, T ]; L2(RN))

]N+3
. Then the Cauchy problem (2.13)–

(2.16) with the initial condition

φ0(0, x) = a0(x), for j = 1, . . . , N, φj (0, x) = ∂ja0(x),

φN+1(0, x) = 1

2i
eg(|a0(x)|2) (−A(φ0(0))�a0(x) − F0(


∗(0))
)
,

φN+2(0, x) = eq(|a0(x)|2)�a0(x),

defines a mapping S
S : Z −→ Z


 �−→ �.

For more details on the existence result for system (2.13)–(2.16), we refer to [10, 31]. In order
to prove theorem 1.1, we have to find a time T > 0 and constants M ∈ (R∗

+)
N+3 and r ∈ R

∗
+

such that S maps the closed ball XT (M, r) into itself and is a contraction mapping under the
constraint that it acts on XT (M, r) in the norm

∑N+2
j=0 supt∈[0,T ]‖φj‖L2 . We begin with equation

(2.16) and perform an Hs-estimate. Following [10], we apply the operator (1−�)
s
2 on equation

(2.16) and multiply the resulting equation by A−1(φ0) to obtain, denoting χ = (1 −�)
s
2 φN+2,

2iA−1(ψ0)

(
(χ)t

(χ)t

)
+

(
�χ

�χ

)
+

N∑
k=1

L(ψ0, ψk, ∂kψ0)

(
∂kχ

∂kχN+2

)
+ J s

j=0(D
j
, DjφN+2, T ψN+2) = 0, (2.17)

where Dj denotes any space derivation of order less than or equal to s with respect to the j th
space coordinate. The matrix L reads

L(ψ0, ψk, ∂kψ0) = A−1(ψ0) (E(ψ0, ψk) + s∂kA(ψ0)) .

We note here that the dependence of J in φN+2 and its derivatives is affine. We are now able
to choose the gauge transform q. Recall that

E(ψ0, ψk) = B(ψ0, ψk) + 2C(ψ0, ψk) − 2A(ψ0)q
′(|ψ0|2)

(
ψ0ψk + ψ0ψk 0
0 ψ0ψk + ψ0ψk

)
,

a direct calculation shows that for j = 1, 2 (denoting by b11 and b22 the diagonal coefficients
of a 2 × 2 matrix b),

	 (
A−1(ψ0) (B(ψ0, ψk) + 2C(ψ0, ψk))

)jj = 3

1 + 2|ψ |2
(
ψ0ψk + ψ0ψk

)
.
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Then choosing

q(σ ) = 3
4 ln(1 + 2σ)

gives

	 (
A−1(ψ0)E(ψ0, ψk)

)jj = 0.

Furthermore, by differentiating equation (2.17) s times in space, we add in matrix L the term
sA−1(ψ0)∂kA(ψ0) which is not eliminated by q. As a consequence we have to use a second
gauge transform by putting κ = eb(|ψ0|2)χ solution to

2iA−1(ψ0)

(
(κ)t

(κ)t

)
+

(
�κ

�κ

)
+

N∑
k=1

M(ψ0, ψk, ∂kψ0)

(
∂kκ

∂kκN+2

)
+ Ks

j=0(D
j
, DjφN+2, T ψN+2, (ψ0)t ) = 0, (2.18)

where

M(ψ0, ψk, ∂kψ0) = L(ψ0, ψk, ∂kψ0) − 2

(
∂kb(|ψ0|2) 0

0 ∂kb(|ψ0|2)
)

.

Note that the matrix K also depends on (ψ0)t . Once again, an easy calculation shows that if
we choose b such that

b(σ ) = s

4
ln(1 + 2σ),

then for j = 1, 2

	
(

sA−1(ψ0)∂kA(ψ0) − 2

(
∂kb(|ψ0|2) 0

0 ∂kb(|ψ0|2)
))jj

= 0.

We are now able to perform the suitable energy estimate on equation (2.18). Multiplying
equation (2.18) by κ , integrating over R

N and taking the first line of the resulting system lead to

i

∫
RN

1 + |ψ0|2
1 + 2|ψ0|2 κtκ dx + i

∫
RN

ψ2
0

1 + 2|ψ0|2 κtκ dx +
∫

RN

�κκ dx

+
N∑

k=1

∫
RN

M11(ψ0, ψk, ∂kψ0)(∂kκ)κ dx +
∫

RN

M12(ψ0, ψk, ∂kψ0)(∂kκ)κ dx

+
∫

RN

Ks
j=0(D

j
, DjφN+2, T ψN+2, (ψ0)t )κ dx. (2.19)

We take the imaginary part of equation (2.19). We have



(

i

∫
RN

1 + |ψ0|2
1 + 2|ψ0|2 κtκ dx + i

∫
RN

ψ2
0

1 + 2|ψ0|2 κtκ dx

)
=

∫
RN

1 + |ψ0|2
2 + 4|ψ0|2 |κ|2t dx +

∫
RN

(
ψ2

0

4(1 + 2|ψ0|2) (κ
2)t +

ψ
2
0

4(1 + 2|ψ0|2) (κ
2)t

)
dx

= d

dt

(∫
RN

1 + |ψ0|2
2 + 4|ψ0|2 |κ|2 dx +

∫
RN

(
ψ2

0

4(1 + 2|ψ0|2)κ
2 +

ψ
2
0

4(1 + 2|ψ0|2)κ
2

)
dx

)

−
∫

RN

(
1 + |ψ0|2

2 + 4|ψ0|2
)

t

|κ|2 dx

−
∫

RN

((
ψ2

0

4(1 + 2|ψ0|2)
)

t

κ2 +

(
ψ

2
0

4(1 + 2|ψ0|2)

)
t

κ2

)
dx.
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The other terms in equation (2.19) are classical and can be treated exactly as in [10]. The
important point to notice is that since the diagonal coefficients of M are pure imaginary, one
has for k = 1, . . . , N



(∫

RN

M11(ψ0, ψk, ∂kψ0)(∂kκ)κ dx

)
=

∫
RN

Im
(
M11(ψ0, ψk, ∂kψ0)

)
∂k

|κ|2
2

dx,

= −
∫

RN

∂k

(
Im

(
M11(ψ0, ψk, ∂kψ0)

)) |κ|2
2

dx,

by integration by parts. This makes it possible to overcome the loss of derivatives of this
quasi-linear Schrödinger equation and brings the following estimate

d

dt

(∫
RN

1 + |ψ0|2
2 + 4|ψ0|2 |κ|2 dx +

∫
RN

(
ψ2

0

4(1 + 2|ψ0|2)κ
2 +

ψ
2
0

4(1 + 2|ψ0|2)κ
2

)
dx

)

� 4
∫

RN

(|ψ0|2)t |κ|2 dx + C1(M, r)‖κ‖2
2, (2.20)

where C1(M, r) is a constant depending only on M and r . To derive inequality (2.20), we
have used the fact that(

1 + |ψ0|2
2 + 4|ψ0|2

)
t

= (|ψ0|2)t
2 + 4|ψ0|2 − 4

(
1 + |ψ0|2

(2 + 4|ψ0|2)2

)
(|ψ0|2)t ,

(
ψ2

0

4(1 + 2|ψ0|2)
)

t

= (ψ2
0 )t

4(1 + 2|ψ0|2) −
(

ψ2
0

2(1 + 2|ψ0|2)2

)
(|ψ0|2)t ,

(
ψ

2
0

4(1 + 2|ψ0|2)

)
t

= (ψ
2
0)t

4(1 + 2|ψ0|2) −
(

ψ
2
0

2(1 + 2|ψ0|2)2

)
(|ψ0|2)t

and then∣∣∣∣∣
∫

RN

(
1 + |ψ0|2

2 + 4|ψ0|2
)

t

|κ|2 dx −
∫

RN

((
ψ2

0

4(1 + 2|ψ0|2)
)

t

κ2 +

(
ψ

2
0

4(1 + 2|ψ0|2)

)
t

κ2

)
dx

∣∣∣∣∣
� 4

∫
RN

(|ψ0|2)t |κ|2 dx.

Using the fact that

sup
t∈[0,T ]

‖(ψ0)t‖
H

E( N
2 )+1

(RN )
� r

and the continuous embedding HE(N
2 )+1(RN) ↪→ L∞(RN), we can find a constant C2(M, r)

such that

d

dt

(∫
RN

1 + |ψ0|2
2 + 4|ψ0|2 |κ|2 dx +

∫
RN

(
ψ2

0

4(1 + 2|ψ0|2)κ
2 +

ψ
2
0

4(1 + 2|ψ0|2)κ
2

)
dx

)
� C2(M, r)‖κ‖2

2. (2.21)
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Integrating inequality (2.21) from 0 to t gives∫
RN

1 + |ψ0(t)|2
2 + 4|ψ0(t)|2 |κ(t)|2 dx +

∫
RN

(
ψ2

0 (t)

4(1 + 2|ψ0(t)|2)κ
2(t) +

ψ
2
0(t)

4(1 + 2|ψ0(t)|2)κ
2(t)

)
dx

�
∫

RN

1 + |ψ0(0)|2
2 + 4|ψ0(0)|2 |κ(0)|2 dx

+
∫

RN

(
ψ2

0 (0)

4(1 + 2|ψ0(0)|2)κ
2(0) +

ψ
2
0(0)

4(1 + 2|ψ0(0)|2)κ
2(0)

)
dx

+ C2(M, r)

∫ t

0
‖κ(s)‖2

2 ds.

For all t ∈ [0, T ], we have

1 + |ψ0(t)|2
2 + 4|ψ0(t)|2 |κ(t)|2 +

ψ2
0 (t)

4(1 + 2|ψ0(t)|2)κ
2(t) +

ψ
2
0(t)

4(1 + 2|ψ0(t)|2)κ
2(t)

� 1

2 + 4|ψ0(t)|2 |κ(t)|2.
Denoting by

CIN+2(0) =
∫

RN

1 + |ψ0(0)|2
2 + 4|ψ0(0)|2 |κ(0)|2 dx

+
∫

RN

(
ψ2

0 (0)

4(1 + 2|ψ0(0)|2)κ
2(0) +

ψ
2
0(0)

4(1 + 2|ψ0(0)|2)κ
2(0)

)
dx,

we derive ∫
RN

1

2 + 4|ψ0(t)|2 |κ(t)|2 dx � CIN+2(0) + C2(M, r)

∫ t

0
‖κ(s)‖2

2 ds. (2.22)

Recalling that ψ0 ∈ L∞(0, T ; Hs(RN)) and the continuous embedding Hs(RN) ↪→ L∞(RN)

and denoting by Cb the best constant of this embedding, we have

‖ψ0(t)‖L∞(RN ) � Cbm0.

This provides ∫
RN

1

2 + 4|ψ0(t)|2 |κ(t)|2 dx � 1

2 + 4C2
bm

2
0

∫
RN

|κ(t)|2 dx

which gives∫
RN

|κ(t)|2 dx � (2 + 4C2
bm

2
0)

(
CIN+2(0) + C2(M, r)

∫ t

0
‖κ(s)‖2

2 ds

)
. (2.23)

Since the gauge transform b does not depend on ψ0 and for all t ∈ [0, T ], ‖ψ0(t)‖L∞(RN ) � m0,
there is a constant C(m0) depending only on m0 such that

sup
t∈[0,T ]

‖e−b(|ψ0(t)|2)‖2
L∞(RN ) � C(m0).

Recalling that κ(0) = ep(|a0|2)(1 − �)
s
2 (eq(|a0|2)�a0) and choosing mN+2 such that

m2
N+2 � 2C(m0)(2 + 4C2

bm
2
0)CIN+2(0) + 1, (2.24)

one can find a positive T such that for this choice of mN+2

sup
t∈[0,T ]

‖φN+2‖Hs(RN ) � mN+2. (2.25)



1366 M Colin et al

Note that mN+2 depends only on the initial data a0 and m0. Performing the same kind of
estimates on equations (2.16), one can find a positive T and constant mN+1 depending only on
a0 and m0 satisfying

m2
N+1 � 2C(m0)(2 + 4C2

bm
2
0)CIN+1(0) + 1, (2.26)

where

CIN+1(0) =
∫

RN

1 + |ψ0(0)|2
2 + 4|ψ0(0)|2 |ν(0)|2 dx

+
∫

RN

(
ψ2

0 (0)

4(1 + 2|ψ0(0)|2)ν
2(0) +

ψ
2
0(0)

4(1 + 2|ψ0(0)|2)ν
2(0)

)
dx

with

ν(0) = ep(|a0|2)(1 − �)
s
2 (eg(|a0|2)∂ta0),

such that

sup
t∈[0,T ]

‖φN+1‖Hs(RN ) � mN+1. (2.27)

Dealing with equation (2.14), we introduce for j = 1, . . . , N

µj (0) = (1 − �)
s
2 ∂ja0

and

CIj (0) =
∫

RN

1 + |ψ0(0)|2
2 + 4|ψ0(0)|2 |µj(0)|2 dx

+
∫

RN

(
ψ2

0 (0)

4(1 + 2|ψ0(0)|2)µ
2
j (0) +

ψ
2
0(0)

4(1 + 2|ψ0(0)|2)µ
2
j (0)

)
dx.

Choosing mj depending only on a0 and m0 such that

m2
j � 2(2 + 4C2

bm
2
0)CIj (0) + 1, (2.28)

we derive

for j = 1, . . . , N, sup
t∈[0,T ]

‖φj‖Hs(RN ) � mj . (2.29)

Treating now equation (2.13), we introduce

ξ(0) = (1 − �)
s
2 a0

and

CI0(0) =
∫

RN

|ξ(0)|2 dx.

It is crucial to remark here that equation (2.13) is not quasi-linear. As a consequence, we can
perform a classical energy estimate on it and choose the constant m0 such that

m2
0 � 2CI0(0) + 1. (2.30)

The choice of m0 depends only on the initial data a0.

Remark 2.1. If we work with equation (2.3) instead of equation (2.9) and perform the energy
estimates of equation (2.16), for example, we have to choose m0 such that

m2
0 � 2(2 + 4C2

bm
2
0)CI0(0) + 1,
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where

C̃I 0(0) =
∫

RN

1 + |ψ0(0)|2
2 + 4|ψ0(0)|2 |ξ(0)|2 dx

+
∫

RN

(
ψ2

0 (0)

4(1 + 2|ψ0(0)|2) ξ
2
(0) +

ψ
2
0(0)

4(1 + 2|ψ0(0)|2) ξ
2(0)

)
dx.

Such a choice requires of course a smallness assumption on the initial data a0.

Let us take m0 as in (2.30). Then one can also find a positive T such that

sup
t∈[0,T ]

‖φ0‖Hs(RN ) � m0. (2.31)

We refer to [10] for the technical details. Due to the structure of the space XT , it remains to
estimate (ψ0)t in HE(N/2)+1(RN). This is done directly on equation (2.13) and provides that
there exists a constant C0(M) depending only on M such that

sup
t∈[0,T ]

‖(φ0)t‖
H

E( N
2 )+1

(RN )
� C0(M). (2.32)

As a conclusion, we choose constants M , r and T as follows. We first fix m0 depending only
on a0 such that (2.30) holds. Then we take (mj ), mN+1 and mN+2 depending only on a0 and
m0 satisfying, respectively, (2.28), (2.26) and (2.24). Finally take r such that

r � C0(M)

and T sufficiently small such that

C4(M, r)T � 1
2 ,

and similar conditions to take into account the equations on φ0, φj and φN+1. For such a choice
of parameter, we have shown

S
(
XT (M, r)

) ⊂ XT (M, r).

The fact that the mapping S is a contraction for the suitable norm is very standard and we
refer once again to [10] since the proof reads exactly the same. By the contraction mapping
principle, there exists a unique solution

� = (
φ0, (φj )

N
j=0, φN+1, φN+2

)
to system (2.13)–(2.16). Furthermore, for each 0 � j � N + 2, the function φj satisfies

φj ∈ L∞(0, T ; Hs(RN)) ∩ C([0, T ]; L2(RN)).

To conclude the proof, we have to show that the solution � solves system (2.9)–(2.12) and has
the following regularity:

� ∈ (
L∞(0, T ; Hs+2(RN)) ∩ C([0, T ]; Hs(RN))

)N+3
.

This can be done exactly as in [10]. The proof of the conservation laws (1.4)–(1.5) is very
standard once we have proved that φ is regular and so we omit it. At this point the proof of
theorem 1.1 is completed.
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3. Existence of ground states and orbital instability

In this section we derive the existence, as well as some qualitative properties, of the ground
states solutions of (1.8). When p > 3 + 4/N we shall also prove that the ground states are
instable by blow-up.

We begin with the following Pohozaev-type identity.

Lemma 3.1. Any u ∈ XC solution of (1.8) satisfies P(u) = 0, where P : XC → R is the
function defined by

P(u) = N − 2

N

(
1

2

∫
RN

|∇u|2 dx +
∫

RN

|u|2|∇|u||2 dx

)
+

ω

2

∫
RN

|u|2 dx − 1

p + 1

∫
RN

|u|p+1 dx.

Proof. Since the proof only uses classical arguments, we shall just sketch it and refer to [11]
for further details. Let u ∈ XC be a solution to equation (1.8). From [27, section 6, appendix]
we learn that u ∈ L∞

loc(R
N) (the proof given there extends easily to complex valued functions).

We are then able to pursue as in [11, proposition 2.1]. Let ψ ∈ C∞
0 (RN) be such that ψ � 0,

supp(ψ) ⊂ B(0, 2) and ψ ≡ 1 on B(0, 1). For all j ∈ N
∗, we set ψj(x) = ψ(x/j). Now let

(ρn)n∈N be a sequence of even positive functions in L1(RN) with
∫

RN ρn dx = 1 such that, for
all κ ∈ Lq(RN), ρn ∗κ tends to κ in Lq(RN), as n → ∞, for all 1 � q < ∞. First, we take the
convolution of (1.8) with ρn. Then, we multiply the resulting equation by ψj x · ∇(u ∗ ρn),
integrate over R

N and consider the real part of the equality. From that point, the calculus
is standard consisting of various integrations by parts. Hence, we omit the details and we
refer the reader to [11]. In order to conclude the proof, it is sufficient to apply the Lebesgue
dominated convergence theorem. �

Proof of theorem 1.3. We shall distinguish between the cases N = 1 and N � 2, which
require a separate treatment.

• Case N � 2. We divide the proof into four steps.

Step I (existence of a solution to (1.8)). We prove the existence of a solution uω ∈ XC to (1.8)
satisfying conditions (i)–(iv) of theorem 1.3. Following the arguments of [12], we perform
a change of unknown by setting v = r−1(u), where the function r : R → R is the unique
solution to the Cauchy problem

r ′(s) = 1√
1 + 2r2(s)

, r(0) = 0. (3.1)

Here u ∈ XC is assumed to be real valued. Then, in [12] it is proved that if v ∈
H 1(RN) ∩ C2(RN) is a real solution to

− �v = 1√
1 + 2r2(v)

(|r(v)|p−1r(v) − ωr(v)
)

(3.2)

then u = r(v) ∈ XC ∩ C2(RN) and it is a real solution of (1.8). Let us set

k(v) := 1√
1 + 2r2(v)

(|r(v)|p−1r(v) − ωr(v)
) = r ′(v)

(|r(v)|p−1r(v) − ωr(v)
)
,
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and denote by Tω : H 1(RN) → R the action associated with equation (3.2), namely

Tω(v) = 1

2

∫
RN

|∇v|2 dx −
∫

RN

K(v) dx,

= 1

2

∫
RN

|∇v|2 dx − 1

p + 1

∫
RN

|r(v)|p+1 dx +
ω

2

∫
RN

|r(v)|2 dx,

where we have set K(t) = ∫ t

0 k(s)ds. Now, it is straightforward to check that k satisfies
assumptions (g0)–(g3) of [12]. Thus, from [12] (see also [4, 5]) we deduce the existence of
a ground state vω of (3.2) satisfying conditions (i)–(iv) of theorem 1.3, that is vω solves (3.2)
and minimizes the action Tω among all nontrivial solutions to (3.2). Therefore, setting
uω = r(vω), we get that uω solves (1.8) and satisfies conditions (i)–(iv) of theorem 1.3
(see [12, theorem 1.2]).

Step II (existence of a ground state to (1.8)). In this step we prove that uω minimizes the
action Eω, over the set of nontrivial solutions to the original equation (1.8). To achieve this
goal, we make the following observations. Note first that, if u = r(v) with u ∈ XC real, then
Eω(u) = Tω(v). Indeed, we have

Eω(r(v)) = 1

2

∫
RN

r ′2(v)|∇v|2 dx +
∫

RN

|r(v)|2r ′2(v)|∇|v||2 dx − 1

p + 1

∫
RN

|r(v)|p+1 dx

+
ω

2

∫
RN

|r(v)|2 dx

= 1

2

∫
RN

1

1 + 2r2(v)
|∇v|2 dx +

∫
RN

1

1 + 2r2(v)
r(v)2|∇v|2 dx

− 1

p + 1

∫
RN

|r(v)|p+1 dx +
ω

2

∫
RN

|r(v)|2 dx

= 1

2

∫
RN

|∇v|2 dx − 1

p + 1

∫
RN

|r(v)|p+1 dx +
ω

2

∫
RN

|r(v)|2 dx = Tω(v),

thanks to the Cauchy problem (3.1). Also, if u ∈ XC is a solution to (1.8) we have, in light of
lemma 3.1, that

Eω(u) = 1

N

∫
RN

|∇u|2 + 2|u|2|∇|u||2 dx. (3.3)

Once these facts have been observed, take any solution u ∈ XC to (1.8) (note that u can be a
complex valued function) and set v = r−1(|u|). Due to the well-known point-wise inequality
|∇|u(x)|| � |∇u(x)| for a.e. x ∈ R

N , it holds that∫
RN

|∇|u(x)||2 dx �
∫

RN

|∇u(x)|2 dx, (3.4)

so that Eω(|u|) � Eω(u) (note that all the other terms in the functional Eω are invariant to the
modulus). Thus, in turn, we have

Eω(u) � Eω(|u|) = Eω(r(v)) = Tω(v). (3.5)

Now, let us set

A = {
v ∈ H 1(RN) : P̃ (v) = 0

}
,

where P̃ : H 1(RN) → R is the functional defined as

P̃ (v) = (N − 2)

∫
RN

|∇v|2 dx − 2N

∫
RN

K(v) dx.
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Clearly, for any v ∈ A, we have

Tω(v) = 1

N

∫
RN

|∇v|2 dx. (3.6)

Also, as for the proof that Eω(u) = Tω(v), it is readily checked that if v = r−1(u) with u ∈ XC

real, then P̃ (v) = P(u). Finally, it is well known (see, e.g., [4, 5]) that vω satisfies

vω ∈ A, Tω(vω) = inf
v∈A

Tω(v). (3.7)

Now, if N = 2, it follows from the definition of P in lemma 3.1 that P(|u|) = 0. Thus, in
turn, P̃ (v) = 0 and, using (3.5) and (3.7), it follows that

Eω(u) � Tω(v) � Tω(vω) = Eω(uω), (3.8)

proving the desired claim. If N � 3, one of the following possibilities occurs.

(i) P(|u|) = 0. In this case inequality (3.8) holds exactly as in the case N = 2.
(ii) P(|u|) = P̃ (v) < 0. In this case there exists a number θ ∈ (0, 1) such that, setting

vθ (x) = v(x/θ), we have P̃ (vθ ) = 0. Now, since vθ ∈ A, using (3.3), (3.4), (3.6), (3.7),
it follows that

Tω(vθ ) = 1

N

∫
RN

|∇vθ |2 dx = θN−2

N

∫
RN

|∇v|2 dx

= θN−2

N

∫
RN

|∇|u||2 + 2|u|2|∇|u||2 dx

� θN−2

N

∫
RN

|∇u|2 + 2|u|2|∇|u||2 dx

= θN−2

N
NEω(u) = θN−2Eω(u) < Eω(u).

Thus, we get

Eω(u) > Tω(vθ ) � Tω(vω) = Eω(uω).

Then, in conclusion, we proved that for both the cases N = 2 and N � 3, uω ∈ XC indeed
minimizes the action Eω over the set of nontrivial solutions to (1.8).

Step III (real character of solutions). First we prove that, if u ∈ XC is a ground state solution
to (1.8), then |u| ∈ X is also a ground state. We set v = r−1(|u|). Observe that it holds

mω = Eω(u) � Eω(|u|) � Tω(v). (3.9)

In the case N = 2, we have P̃ (v) = P(|u|) = 0 and, thus, we conclude Eω(|u|) = mω by
using (3.7), (3.9) and recalling that Tω(vω) = Eω(uω) = mω. If N � 3, and P̃ (v) = P(|u|) < 0
we introduce, as before, the rescaling vθ such that P̃ (vθ ) = 0. Then, we get

Tω(vθ ) < Eω(u) = mω,

and we immediately reach a contradiction by arguing as before. Now, let u ∈ XC be a ground
state solution of (1.8) and assume that

LN({x ∈ R
N : |∇|u|(x)| < |∇u(x)|}) > 0.

Then we get

mω = 1

2

∫
RN

|∇|u||2 dx +
∫

RN

|u|2|∇|u||2 dx +
ω

2

∫
RN

|u|2 dx − 1

p + 1

∫
RN

|u|p+1 dx

<
1

2

∫
RN

|∇u|2 dx +
∫

RN

|u|2|∇|u||2 dx +
ω

2

∫
RN

|u|2 dx − 1

p + 1

∫
RN

|u|p+1 dx = mω.
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This is obviously not possible and, hence, we have |∇|u(x)|| = |∇u(x)|, for a.e. x ∈ R
N .

But this is true if, and only if, 	 u∇(
 u) = 
 u∇(	 u). Whence, if this last condition holds,
we get

ū∇u = 	 u∇(	 u) + 
 u∇(
 u), a.e. in R
N,

which implies that 	 (iū(x)∇u(x)) = 0 a.e. in R
N . This last identity immediately gives the

existence of θ ∈ S
1 such that u(x) = eiθ |u(x)|.

Step IV (properties (i)–(iv) for any real non-negative ground state). In light of some recent
achievements [7, 30], we can prove that any real ground state solution to (1.8) is radially
symmetric and radially decreasing about some point. In fact we observe first that for any
given solution u of (1.8), by [27, section 6, appendix], u ∈ L∞

loc(R
N) and in turn u ∈ C2(RN)

(cf [20]). Considering now the strictly increasing function µ : R → R such that

µ′(s) =
√

1 + 2s2, µ(0) = 0, (3.10)

it is easy to see that v = µ(u) is a solution of (3.2). Note that µ is precisely the inverse function
of the function r introduced in step II, r ◦ µ = µ ◦ r = Id. Furthermore, we claim that if
u is any given ground state of (1.8), then v = µ(u) = r−1(u) is a ground state of (3.2). In
fact, taking into account the computations in step II of the proof, for any nontrivial solution w

of (3.2), r(w) is a (nontrivial) solution of (1.8), and we have

Tω(w) = Eω(r(w)) � mω = Eω(u) = Eω(r(v)) = Tω(v),

which yields the desired conclusion. At this point the fact that any ground state solution is
radially symmetric and radially decreasing about some point is a consequence of the results
of [7] applied to equation (3.2). Here let us point out that the radial symmetry (plus radial
decrease) could have also been proved by arguing directly on equation (1.8) which, in fact,
satisfies a scaling property being the essence of the results of [7]. Now let u ∈ Gω be such that
u � 0 in R

N . Since u ∈ C2(RN) we have by the maximum principle (applies to v = µ(u))
that u > 0 on R

N . Finally using [5, lemma 2] on equation (3.2) we immediately derive the
exponential decays indicated in the statement of theorem 1.3.

• Case N = 1.

By taking advantage of the transformation of problem (1.8), via the dual approach, into the
semi-linear equation (3.2), we know that equation (1.8) admits a unique positive and even
solution (see [5, theorem 5]). Thus it just remains to prove that any solution u of (1.8) is of
the form u = eiθφ, where θ ∈ R and φ > 0 is a solution to (1.8). In fact |u| > 0, otherwise
we would get a contradiction with the identity

1

2
|u′|2 +

1

4
|(|u|2)′|2 − ω

2
|u|2 +

1

p + 1
|u|p+1 = 0.

This identity is obtained multiplying (1.8) by the conjugate of u′ and by performing standard
manipulations. Then, we can write down the solution in polar form, u = ρeiθ , where
ρ, θ ∈ C2(R). By direct computation, it holds u′′ = [

ρθ ′′+2ρ ′θ ′]eiθ i+
[
ρ ′′−ρ(θ ′)2

]
eiθ . Then,

by dropping this formula into equation (1.8), exactly as in [8, proof of theorem 8.1.7(iii)], one
immediately reaches (by comparison of real and imaginary parts) the following identity

ρθ ′′ + 2ρ ′θ ′ = 0, (3.11)

namely θ ′ = K/ρ2, for some K � 0. At this point it is sufficient to follow the argument
of [8, proof of theorem 8.1.7(iii)] to prove that K = 0 and get the desired property. Thus,
when N = 1, theorem 1.3 holds true and the set of solutions of (1.8) is essentially unique. �
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In the rest of this section we prove the instability result, theorem 1.5. We start with two
preliminary results. We define the variance V(t), by

V(t) =
∫

RN

|x|2|φ(t, x)|2 dx, t ∈ [0, ∞) (3.12)

and derive a so-called virial identity in the following lemma.

Lemma 3.2. Let φ be a solution of (1.6) on an interval I = (−t1, t1). Then,

V
′′(t) = 8Q(φ(t)), t ∈ I, (3.13)

where we have set

Q(φ) =
∫

RN

|∇φ|2 dx + (N + 2)

∫
RN

|φ|2|∇|φ||2 dx − N(p − 1)

2(p + 1)

∫
RN

|φ|p+1 dx, (3.14)

for all φ ∈ XC.

Proof. We introduce the following notations:

z = (z1, . . . , zn) ∈ C
N ; z · w =

N∑
i=1

ziwi, z, w ∈ C
N ;

φi = ∂φ

∂xi

, φ : R
N → C.

Let us first prove that

V
′(t) = 4


∫
RN

(
x · ∇φ

)
φ dx, t ∈ I. (3.15)

Multiplying equation (1.6) by 2φ and taking the imaginary parts yields

∂

∂t
|φ|2 = −2
(φ�φ) = −2∇ · (
φ∇φ). (3.16)

Now, multiplying (3.16) by |x|2, and integrating by parts in space, we get (3.15). In order to
prove (3.13), let us multiply equation (1.6) by 2x · ∇φ, integrate in space on R

N and, finally,
take the real parts yielding

0 = 2	
∫

RN

i(x · ∇φ)φt dx + 2	
∫

RN

(x · ∇φ)�φ dx

+ 2	
∫

RN

(x · ∇φ)φ�|φ|2 dx + 2	
∫

RN

(x · ∇φ)|φ|p−1φ dx.

We rewrite the last identity in the form

I = II + III, (3.17)

where

I = 2	
∫

RN

i(x · ∇φ)φt dx,

II = −2	
∫

RN

(x · ∇φ)�φ dx − 2	
∫

RN

(x · ∇φ)φ�|φ|2 dx,

III = −2	
∫

RN

(x · ∇φ)|φ|p−1φ dx.
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For the first term, recalling formula (3.15) for V
′, we have

I = 	
∫

RN

i
N∑

j=1

(
xjφjφt − xjφjφt

)
dx = 	

∫
RN

i
N∑

j=1

xj
[
(φjφ)t − (φφt )j

]
dx

= d

dt
	

∫
RN

i(x · ∇φ)φ dx + N	
∫

RN

iφφt dx

= d

dt



∫
RN

(x · ∇φ)φ dx − N

∫
RN

|∇φ|2 dx

+ N

∫
RN

|φ|2�|φ|2 dx + N

∫
RN

|φ|p+1 dx.

= 1

4

d

dt
V(t) − N

∫
RN

|∇φ|2 dx − 4N

∫
RN

|φ|2|∇|φ||2 dx + N

∫
RN

|φ|p+1 dx. (3.18)

A multiple integration by parts in formula II gives

II = (2 − N)

∫
RN

|∇φ|2 dx + 2(2 − N)

∫
RN

|φ|2|∇|φ||2 dx. (3.19)

As for the term III, we write it by components

III = −
N∑

j=1

∫
RN

xj |φ|p−1(2	φjφ) dx = −2
N∑

j=1

∫
RN

xj ∂j |φ|p+1

p + 1
dx = 2N

p + 1

∫
RN

|φ|p+1 dx.

(3.20)

Finally, recollecting (3.17), (3.18), (3.19), (3.20) and (3.15) and taking into account the
definition of Q, the proof of (3.13) is complete. �

In our next preliminary result we establish some qualitative properties of a class of L2-
invariant rescaling.

Lemma 3.3. Let ψ ∈ XC with Q(ψ) � 0 and assume that

p > 3 +
4

N
. (3.21)

Let σ > 0 and define the rescaling ψσ (x) = σN/2ψ(σx). Then there exists σ0 ∈ (0, 1] such
that the following facts hold:

(1) Q(ψσ0) = 0;
(2) σ0 = 1 if and only if Q(ψ) = 0;
(3) (∂/∂σ )Eω(ψσ ) > 0 for σ ∈ (0, σ0) and (∂/∂σ )Eω(ψσ ) < 0 for σ ∈ (σ0, ∞);
(4) σ �→ Eω(ψσ ) is concave on (σ0, ∞);
(5) (∂/∂σ )Eω(ψσ ) = Q(ψσ )/σ .

Proof. By direct computation, we have

Eω(ψσ ) = σ 2

2

∫
RN

|∇ψ |2 dx + σN+2
∫

RN

|ψ |2|∇|ψ ||2 dx

+
ω

2

∫
RN

|u|2 dx − σ
N(p−1)

2

p + 1

∫
RN

|ψ |p+1 dx,

so that, using the functional Q defined by (3.14), for all σ > 0, we get
∂

∂σ
Eω(ψσ ) = σ

∫
RN

|∇ψ |2 dx + (N + 2)σN+1
∫

RN

|ψ |2|∇|ψ ||2 dx

− N(p − 1)

2(p + 1)
σ

N(p−1)

2 −1
∫

RN

|ψ |p+1 dx = 1

σ
Q(ψσ ).
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Then, taking into account (3.21), it is readily seen that there exists σ0 ∈ (0, 1] such that

Q(ψσ0) = σ0
∂

∂σ
Eω(ψσ )|σ=σ0

= 0,

as well as (∂/∂σ )Eω(ψσ ) > 0 for σ ∈ (0, σ0) and (∂/∂σ )Eω(ψσ ) < 0 for σ ∈ (σ0, ∞).
Furthermore, writing σ = tσ0, we have

∂2

∂σ 2
Eω(ψσ ) =

∫
RN

|∇ψ |2 dx + (N + 2)(N + 1)tNσN
0

∫
RN

|ψ |2|∇|ψ ||2 dx

− N(p − 1)

2(p + 1)

(
N(p − 1)

2
− 1

)
t

N(p−1)

2 −2σ
N(p−1)

2 −2
0

∫
RN

|ψ |p+1 dx,

= tN
(

1

tN

∫
RN

|∇ψ |2 dx + (N + 2)(N + 1)σN
0

∫
RN

|ψ |2|∇|ψ ||2 dx

− N(p − 1)

2(p + 1)

(
N(p − 1)

2
− 1

)
t

Np−3N−4
2 σ

N(p−1)

2 −2
0

∫
RN

|ψ |p+1 dx

)
.

Since, of course, we have∫
RN

|∇ψ |2 dx + (N + 2)(N + 1)σN
0

∫
RN

|ψ |2|∇|ψ ||2 dx

− N(p − 1)

2(p + 1)

(
N(p − 1)

2
− 1

)
σ

N(p−1)

2 −2
0

∫
RN

|ψ |p+1 dx � 0

and t > 1, it follows that the quantity within parentheses is negative. Hence the map
σ �→ Eω(ψσ ) is concave on (σ0, ∞), concluding the proof. �

In order to establish the instability of ground states we now show in the spirit of [23] that
they enjoy two additional variational characterizations. First, we have the following.

Lemma 3.4. Assume that ω > 0 and 3 � p � (3N + 2)/(N − 2) if N � 3 and 3 � p if
N = 1, 2. Then the set of minimizers of

dω = inf{Eω(u) : Iω(u) = 0}, (3.22)

where

Iω(u) =
∫

RN

|∇φ|2 dx + ω

∫
RN

|φ|2 dx + 4
∫

RN

|φ|2|∇|φ||2 dx −
∫

RN

|φ|p+1 dx

is exactly the set of ground state Gω. In addition the value of the infimum is equal.

Proof. First we show that if u ∈ XC is a minimizer of dω then |u| ∈ X is also a minimizer of
dω. Let u ∈ XC with Iω(u) = 0. Then Eω(|u|) � Eω(u) as well as Iω(|u|) � Iω(u) = 0. In
particular and since p � 3, there exists t ∈ (0, 1] such that Iω(t |u|) = 0. Observe now that,
for all v ∈ XC such that Iω(v) = 0, it holds

Eω(v) = p − 1

2(p + 1)

∫
RN

|∇v|2 dx +
p − 3

p + 1

∫
RN

|v|2|∇|v||2 dx + ω
p − 1

2(p + 1)

∫
RN

|v|2 dx.

Thus, since p � 3, it is readily seen that

0 < Eω(t |u|) � t2Eω(u).

In particular, if u ∈ XC is a complex minimizer of dω, then we have

Eω(u) = dω = inf
Iω=0

Eω(φ) � Eω(t |u|) � t2Eω(u).

Now, recalling that Eω(u) > 0 and t � 1, we immediately get t = 1. Thus Iω(|u|) = Iω(u)

and in turn Eω(|u|) = Eω(u) proving that |u| ∈ X is also a minimizer. Obviously it is only
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possible if the set {x ∈ R
N : |∇|u|(x)| �= |∇u(x)|} has zero Lebesgue measure, which in

turn implies that u = |u|eiθ , for some θ ∈ S
1 (see, e.g., step III of the proof of theorem 1.3).

Now, when Eω is considered over X, in [27, theorem 1.1], it is established that there exists a
nontrivial solution to the minimization problem (3.22) and that this minimizer is a solution to
equation (1.8) (cf [27, lemma 2.5]). Clearly, since any minimizer is of the form u = |u|eiθ it
is also a solution to equation (1.8). Now, any element u ∈ X of Gω must satisfy Iω(u) = 0
and thus we deduce that the set of ground states Gω and the set of minimizer of (3.22) coincide
and that the values of the two infimum values are equal. �

We also have the following.

Lemma 3.5. Let us set

cω = inf{Eω(φ) : φ ∈ M}, where M = {φ ∈ X \ {0} : Q(φ) = 0, Iω(φ) � 0}.
Then cω = dω (= mω).

Proof. Let u ∈ XC be a solution to (3.22). By lemma 3.4 it is a ground state solution of (1.8)
and applying the virial identity (3.13) to a standing wave solution we immediately deduce
that Q(u) = 0. By definition Iω(u) = 0 and thus we have u ∈ M. Hence cω � dω, since
Eω(u) = dω. On the other hand, given φ ∈ M, either Iω(φ) = 0 (so that Eω(φ) � dω) or
Iω(φ) < 0. In this second case, if σ > 0 and we consider the rescaling φσ (x) = σN/2φ(σx),
we have Iω(φ1) < 0 and

lim
σ→0+

Iω(φσ ) = lim
σ→0+

(
σ 2

∫
RN

|∇φ|2 dx + ω

∫
RN

|φ|2 dx

+ 4σN+2
∫

RN

|φ|2|∇|φ||2 dx − σ
N(p−1)

2

∫
RN

|φ|p+1 dx

)
> 0.

In turn, one can find σ̂ ∈ (0, 1) such that Iω(φσ̂ ) = 0. Then, we get Eω(φσ̂ ) � dω. Since
Q(φ) = 0 and ‖φ‖2 = ‖φσ̂‖2, from lemma 3.3 we obtain Eω(φ) � Eω(φσ̂ ) � dω. Whence
Eω(φ) � dω holds true for any φ ∈ M, which yields cω � dω, proving the claim. �

Proof of theorem 1.5. Let ε > 0 be fixed and consider uσ (x) = σN/2u(σx) for the ground state
solution u. We have ‖u‖2 = ‖uσ‖2 and by the continuity of the mapping σ �→ σN/2u(σx),
it is clear that, for σ sufficiently close to 1, ‖u − uσ‖Hs+2(RN ) � ε (we recall that the ground
state u belongs to Hs+2(RN) for all s). Furthermore,

Eω(uσ ) < Eω(u), Q(uσ ) < 0, Iω(uσ ) < 0, (3.23)

provided that σ > 1 is sufficiently close to 1. The first two inequalities just follow by
lemma (3.3). Concerning the last one, it holds

Iω(uσ ) = 2Eω(uσ ) +
2

N
Q(uσ ) − 4

N

∫
RN

|uσ |2|∇uσ |2 dx − 2

N

∫
RN

|∇uσ |2 dx

� 2Eω(u) +
2

N
Q(u) − Iω(u) − 4σN+2

N

∫
RN

|u|2|∇u|2 dx − 2σ 2

N

∫
RN

|∇u|2 dx

= 4

N

∫
RN

|u|2|∇u|2 dx − 2

N

∫
RN

|∇u|2 dx

− 4σN+2

N

∫
RN

|u|2|∇u|2 dx − 2σ 2

N

∫
RN

|∇u|2 dx

= 4

N
(1 − σN+2)

∫
RN

|u|2|∇u|2 dx +
2

N
(1 − σ 2)

∫
RN

|∇u|2 dx < 0.



1376 M Colin et al

Now fixing a σ > 1 such that (3.23) holds, let us set v := uσ ∈ Hs+2(RN). Hence,

Eω(v) < Eω(u), Q(v) < 0, Iω(v) < 0. (3.24)

Assume now that φ(t) is the solution of (1.6) with initial data φ(0) = v. Then, we claim that

Eω(φ(t)) < Eω(u), Q(φ(t)) < 0, Iω(φ(t)) < 0, for all t ∈ [0, Tmax), (3.25)

Tmax ∈ (0, ∞] being the maximal existence time. First, due to the conservation of the energy
and (3.24), we get

Eω(φ(t)) = Eω(v) < Eω(u), for all t ∈ [0, Tmax).

In turn, it follows immediately that Iω(φ(t)) �= 0 for all t ∈ [0, Tmax). Hence Iω(φ(t)) < 0
for all t ∈ [0, Tmax) since it is negative for t = 0. Similarly, Q(φ(t)) �= 0 for all t ∈ [0, Tmax),
otherwise if Q(φ(t0)) = 0 for some t0 ∈ [0, Tmax), we would have φ(t0) ∈ M, yielding
Eω(φ(t0)) � Eω(u) which contradicts the first inequality of (3.25). Hence Q(φ(t)) < 0 for all
t ∈ [0, Tmax) as it is negative for t = 0, concluding the proof of (3.25).

Let now ψ = φ(t) be the solution to (1.6) at a fixed time t ∈ (0, Tmax) and let ψσ be the
usual L2-invariant rescaling. We know that Q(ψ) < 0. Hence there exists σ̃ ∈ (0, 1) such that
Q(ψσ̃ ) = 0. If Iω(ψσ̃ ) � 0 we do not change the value of σ̃ , otherwise we pick σ̂ ∈ (σ̃ , 1)

such that Iω(ψσ̂ ) = 0. In any case, one obtains Eω(ψσ̃ ) � dω and Q(ψσ̃ ) � 0. Therefore, by
lemma 3.3

Eω(v) = Eω(ψ) � Eω(ψσ̃ ) + (1 − σ̃ )
∂

∂σ
Eω(ψσ )|σ=1

= Eω(ψσ̃ ) + (1 − σ̃ )Q(ψ) > dω + Q(ψ).

Putting �0 := dω − Eω(v) > 0, concluding we have

Q(φ(t)) � −�0, for all t ∈ [0, Tmax).

Finally, assuming that Tmax = +∞ and using the virial identity of lemma 3.2, we obtain

0 < V(t) � V(0) + V
′(0)t − 4�0t

2

which yields a contradiction taking t sufficiently large. Then 0 < Tmax < +∞ and the
solution blows up in finite time. This concludes the proof. �

4. Stationary solutions with prescribed L2 norm

In this section we study the minimization problem (1.15). We prove the existence of a minimizer
when 1 < p < 3 + 4/N and m(c) < 0. We also discuss the condition m(c) < 0 and we prove
theorem 1.12. Consider the (complex) minimization problem

minimize E on ‖u‖2
2 = c, (4.1)

where c is a positive number. We have the following result.

Proposition 4.1. Let v be a solution to the minimization problem (4.1). Then

v(x) = eiθ |v(|x|)|, x ∈ R
N,

for some θ ∈ S
1. In particular, the solutions of problem (4.1) are, up to a constant complex

phase, real-valued positive and radially symmetric.
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Proof. The proof has some similarities to the final part of the proof of theorem 1.3 so we will
be brief here. Let X denote again the restriction of XC to real-valued functions. We set

σC = inf
{
E(v) : v ∈ XC, ‖v‖2

2 = c
}
, σR = inf

{
E(v) : v ∈ X, ‖v‖2

2 = c
}
.

Let us prove that σC = σR. Trivially one has σC � σR, since X ⊂ XC. Moreover, if v ∈ XC,
we see using (3.4) that E(|v|) � E(v). In particular, we conclude that σR � σC, yielding the
desired equality σC = σR. Now let v ∈ XC be a solution to σC and assume by contradiction
that the Lebesgue measure LN of the set {x ∈ R

N : |∇|v|(x)| < |∇v(x)|} is positive. Then,
of course, ‖|v|‖2

2 = ‖v‖2
2 = c, and

σR � 1

2

∫
RN

|∇|v||2 dx +
∫

RN

|v|2|∇|v||2 dx − 1

p + 1

∫
RN

|v|p+1 dx

<
1

2

∫
RN

|∇v|2 dx +
∫

RN

|v|2|∇|v||2 dx − 1

p + 1

∫
RN

|v|p+1 dx = σC,

contradicting equality σC = σR. Hence, we have |∇|v(x)|| = |∇v(x)| for a.e. x ∈ R
N and as

in the proof of theorem 1.3 this gives the existence of θ ∈ S
1 such that v = eiθ |v|. Finally the

result of radial symmetry is a direct consequence of [30, theorem 2]. �

From proposition 4.1 we deduce that it is sufficient to study the (real) minimization problem

minimize E on ‖u‖2
2 = c with u ∈ X (4.2)

for a positive number c. We set

m(c) = inf{E(u) : u ∈ X, ‖u‖2
2 = c}. (4.3)

Lemma 4.2. We have the following.

(1) Assume that 1 < p < 3 + 4/N . Then m(c) > −∞ for any c > 0. In addition if (un) ⊂ X

is any minimizing sequence for problem (4.2) then (un) is bounded in X and the sequence∫
RN

|un|2|∇un|2 dx = 1

4

∫
RN

|∇(u2
n)|2 dx (4.4)

is bounded in R.
(2) In the case p = 3 + 4/N the same conclusions hold provided that c > 0 is sufficiently

small.
(3) Assume that 3 + 4/N < p < 4N/(N − 2). Then m(c) = −∞ for any c > 0.

Proof. Note that using Hölder and Sobolev inequalities we have for

θ = (p − 1)(N − 2)

2(N + 2)

and some K > 0 depending only on N , that for any u ∈ X∫
RN

|u|p+1 dx �
(∫

RN

|u|2 dx

)1−θ (∫
RN

|u| 4N
N−2 dx

)θ

� K

(∫
RN

|u|2 dx

)1−θ (∫
RN

|u|2|∇u|2 dx

) θN
N−2

. (4.5)

Here we have used the fact that∫
RN

|u| 4N
N−2 dx =

∫
RN

|u2| 2N
N−2 dx,

∫
RN

|∇(u2)|2 dx = 4
∫

RN

|u|2|∇u|2 dx.
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From (4.5) we get that

E(u) �
∫

RN

|u|2|∇u|2 dx − 1

p + 1
Kc1−θ

(∫
RN

|u|2|∇u|2 dx

) θN
N−2

.

If we assume that p < 3 + 4/N , we see that θN/(N − 2) < 1 and thus the sequence (4.4) is
bounded in R. From (4.5) we then get that (‖un‖p+1) is bounded and thus also that (‖∇un‖2) is
bounded. This proves point (1). In the limit case p = 3 + 4/N we still reach the boundedness
result for any positive c such that Kc1−θ < p + 1, where K, θ > 0 are the numbers introduced
in the proof. Now for point (3) we fix c > 0 and take u ∈ X such that ‖u‖2

2 = c. Then,
considering the scaling,

σ �→ uσ (x) = σ
N
2 u(σx),

we get, for all σ > 0,∫
RN

|uσ |2 dx =
∫

RN

|u|2 dx = c,

∫
RN

|∇uσ |2 dx = σ 2
∫

RN

|∇u|2 dx,∫
RN

|uσ |p+1 dx = σ
N(p−1)

2

∫
RN

|u|p+1 dx,

∫
RN

|uσ |2|∇uσ |2 dx = σ (N+2)

∫
RN

|u|2|∇u|2 dx.

Thus ‖uσ‖2
2 = c for all σ > 0 and

E(uσ ) = σ 2

2

∫
RN

|∇u|2 dx + σ (N+2)

∫
RN

|u|2|∇u|2 dx − σ
N(p−1)

2

p + 1

∫
RN

|u|p+1 dx.

Now just note that in the range 3 + 4/N < p < 4N/(N − 2) the dominant term is

σ
N(p−1)

2

p + 1

∫
RN

|u|p+1 dx.

Thus E(uσ ) → −∞ as σ → +∞. This concludes the proof of (3). �

Concerning the existence of a minimizer we first show the following.

Lemma 4.3. Assume that 1 < p < 3 + 4/N . The following facts hold.

(1) If un ⇀ u in X then setting

T (u) = 1

2

∫
RN

|∇u|2 dx +
∫

RN

|u|2|∇u|2 dx,

we have

T (u) � lim inf
n→∞ T (un).

(2) For any u ∈ X there exists a Schwarz symmetric function u∗ ∈ X satisfying

T (u∗) � T (u),

∫
RN

|u∗|2 dx =
∫

RN

|u|2 dx,

∫
RN

|u∗|p+1 dx =
∫

RN

|u|p+1 dx.

(3) Let (un) ⊂ X be a minimizing sequence for (4.2) of Schwartz symmetric functions
satisfying un ⇀ u in X. Then we have

E(u) � lim inf
n→∞ E(un) = m(c). (4.6)
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Proof. Point (1) is standard. Defining j : [0, ∞) × [0, ∞) → R by j (s, ξ) = 1
2ξ 2 + s2ξ 2,

then {ξ → j (s, ξ)} is convex and thus the result follows from classical results of Ioffe (see,
e.g., [16, 17]). Concerning assertion (2) all we need is T (u∗) � T (u), which follows by
standard rearrangement inequalities. For point (3), we claim that∫

RN

|un|p+1 dx →
∫

RN

|u|p+1 dx (4.7)

as n → ∞. In fact, since (un) ⊂ X is minimizing we have, by lemma 4.2, point (1) that ∇(u2
n)

is uniformly bounded in L2(RN) and thus by the Sobolev embedding supn∈N ‖u2
n‖ 2N

N−2
< ∞,

which gives supn∈N ‖un‖ 4N
N−2

< ∞. Now, using the fact that (un) ⊂ X consists of
radial decreasing functions, from the radial lemma A.IV of [5], we deduce that (un) has
a uniform decay at infinity (with respect to both n ∈ N and |x|) and this shows, by
standard argument, that (4.7) holds. Now we conclude observing that, from point (1),
T (u) � lim infn→∞ T (un). �

We now prove the existence of a minimizer for problem (4.2).

Lemma 4.4. Assume that 1 < p < 3 + 4/N and let c > 0 be such that m(c) < 0. Then
problem (4.2) admits a minimizer which is Schwartz symmetric.

Proof. Let (un) be a minimizing sequence for (4.2). By lemma 4.3 we know that (un) ⊂ X

can be replaced by a minimizing sequence (u∗
n) ⊂ X of Schwarz symmetric functions such

that u∗
n ⇀ u∗ and

E(u∗) � lim inf
n→∞ E(u∗

n) = m(c). (4.8)

We still denote u∗ by u. To conclude we just need to prove that ‖u‖2
2 = c. Since

E(u) � m(c) < 0 necessarily u �= 0. Assume thus that 0 < ‖u‖2
2 = λ < c and consider the

scaling v(x) = u(σ− 1
N x) for σ > 1. Then ‖v‖2

2 = σλ and for σ = c/λ we have ‖v‖2
2 = c.

Now we also get that

E(v) = σ 1− 2
N

[∫
RN

1

2
|∇u|2 + |∇u|2|u|2 dx

]
− σ

p + 1

∫
RN

|u|p+1 dx.

Thus, since σ > 1 and E(u) < 0 we conclude that E(v) < E(u), which is a contradiction.
This proves that ‖u‖2

2 = c and thus (4.2) admits a minimizer. Finally, observe that, since
‖u∗

n‖p+1 → ‖u∗‖p+1 as n → ∞, necessarily ‖∇u∗
n‖2 → ‖∇u∗‖2 as n → ∞ and we deduce

that the Schwarz symmetric sequence strongly converges to u∗ ∈ X. �
We now start to discuss the condition m(c) < 0.

Lemma 4.5. We have the following.

(1) Assume that 1 < p < 1 + 4/N . Then m(c) < 0 for any c > 0.
(2) Assume that 1 + 4/N � p < 3 + 4/N . Then m(c) � 0 for any c > 0. This inequality

also holds if p = 3 + 4/N and c > 0 is small.
(3) Assume that 1 + 4/N � p < 3 + 4/N . Then there exists a c > 0, sufficiently large, such

that m(c) < 0.

Proof. For points (1) and (2) we use the scaling introduced in the proof of lemma 4.2, point (3).
When p < 1 + 4/N we see that the dominant term, as σ → 0+, is

σ
N(p−1)

2

p + 1

∫
RN

|u|p+1 dx,
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and this proves point (1). For point (2), since E(uσ ) → 0 as σ → 0+, we directly have that
m(c) � 0 for any c > 0. Now for point (3) we consider, for a fixed R > 0, the radial function
wR ∈ H 1(RN) defined by

wR(r) :=


1 if r � R,

1 + R − r if R � r � R + 1,

0 if r � R + 1.

Integrating in radial coordinates, we have∫
RN

|wR(|x|)|2 dx = CNRN + ε1(R
N−1),

where ε1(R
N−1)/RN → 0, as R → ∞. Also∫

RN

|wR(|x|)|p+1 dx = CNRN + ε2(R
N−1),

∫
RN

|∇wR(|x|)|2 dx = ε3(R
N−1),

and ∫
RN

|wR(|x|)|2|∇wR(|x|)|2 dx = ε4(R
N−1),

where εi(R
N−1)/RN → 0, as R → ∞, for any i = 2, 3, 4. Thus letting R → ∞ we have

‖wR‖2
2 → +∞ and E(wR) → −∞. This proves point (3). �

In preparation for the proof of theorem 1.12 we also show the following.

Lemma 4.6. Assume that 1 < p < 3 + 4/N and that uc ∈ X is a minimizer of (4.2) for some
c > 0. Then uc ∈ X weakly satisfies

− �uc − λcuc − uc�|uc|2 = |uc|p−1uc (4.9)

with the Lagrange multiplier λc ∈ R being strictly negative.

Proof. It is standard to show that uc ∈ X satisfies (4.9) for λc ∈ R being the associated
Lagrange multiplier, namely

E ′(uc) = λcuc. (4.10)

Now applying Pohozaev identity to (4.10) yields

1

p + 1

∫
RN

|uc|p+1 dx = N − 2

N

[
1

2

∫
RN

|∇uc|2 dx +
∫

RN

|uc|2|∇uc|2 dx

]
− λc

2

∫
RN

|uc|2 dx.

Thus, we obtain

E(uc) = 1

N

∫
RN

|∇uc|2 + 2|uc|2|∇uc|2 dx +
λc

2

∫
RN

|uc|2 dx.

Since E(uc) � 0, see lemma 4.5, we deduce that λc < 0. �

We can now give the following.

Proof of theorem 1.12. The proof of (1) is lemma 4.5, point (1). To show (2)-(i) we assume
by contradiction that there exists a sequence (cn) ⊂ R

+ with cn → 0 as n → ∞ and (un) ⊂ X

such that m(cn) is reached by un ∈ X. Then we know, from lemma 4.5, point (2), that
E(un) � 0, for all n ∈ N and using (4.5), we get∫

RN

|un|2|∇un|2 dx � K

(∫
RN

|un|2|∇un|2 dx

) θN
N−2

||un||2−2θ
2 . (4.11)
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If p = 3+4/N we have θN/(N − 2) = 1 and 2−2θ = 4/N > 0. Thus, since ||un||2 → 0, we
immediately get a contradiction from (4.11). Now if p < 3 + 4/N , we have θN/(N − 2) < 1
and thus, ∫

RN

|un|2|∇un|2 dx → 0, as n → ∞. (4.12)

Still using (4.5), we see from (4.12) that ‖un‖p+1 → 0 as n → ∞. In turn, also

‖∇un‖2 → 0, as n → ∞, (4.13)

since E(un) � 0 implies that

‖∇un‖2
2 � 2

p + 1
‖un‖p+1

p+1, for all n ∈ N.

At this point we distinguish two cases. First assume that 1 + 4/N � p � (N + 2)/(N − 2) if
N � 3, 1 + 4/N � p if N = 1, 2. By Hölder and Sobolev inequalities we have

‖un‖p+1
p+1 � K(p, N)‖∇un‖

N
2 (p−1)

2 ||un||p+1− N
2 (p−1)

2 .

Since E(un) � 0 it follows that

‖∇un‖2
2 � 2

p + 1

∫
RN

|un|p+1 dx � K(p, N)‖∇un‖
N
2 (p−1)

2 ||un||p+1− N
2 (p−1)

2 . (4.14)

If p = 1 + 4/N we have N/2(p − 1) = 2 and p + 1 − N/2(p − 1) > 0. Thus we get
directly a contradiction since ||un||2 → 0. If 1 + 4/N < p � (N + 2)/(N − 2) for N � 3 and
1 + 4/N < p for N = 1, 2 we have N/2(p − 1) > 2 and p + 1 − N

2 (p − 1) � 0. Thus there
exists a d > 0 such that ||∇un||2 � d for all n ∈ N, yielding a contradiction with (4.13).

Now we treat the remaining case (N + 2)/(N − 2) < p < 3 + 4/N with N � 3. First,
let us show that for any q � 4N/(N − 2) the sequence (un) ⊂ X belongs to Lq(RN) and it is
uniformly bounded in Lq(RN). For this we follow a Moser’s iteration argument presented in
the proof of [27, lemma 5.10]. Since un ∈ X is a minimizer for (4.2) with c = cn we know,
by lemma 4.6, that un ∈ X weakly satisfies (4.9). Namely that∫

RN

(1 + 2|un|2)∇un · ∇φ + 2un|∇un|2φ − λnunφ − |un|p−1unφ dx = 0,

where λn < 0 is the Lagrange parameter and φ ∈ C∞
0 (RN, R). By an approximation argument,

it is easily seen that we can take as test functions any function in X which satisfies∫
RN

u2|∇φ|2 dx < ∞ and
∫

RN

|∇u|2φ2 dx < ∞.

In particular, setting q0 = 4N/(N − 2), we can choose as test function, for any M > 0 and
any fixed n ∈ N, φM

n = |uM
n |q0−p−1uM

n , where uM
n = un when |un(x)| � M and uM

n = ±M

when un � ±M . We then have, since |uM
n | � |un| and |∇uM

n | � |∇un| for any n ∈ N, M > 0,
and using the fact that λn < 0, that

(q0 − p)

∫
RN

(1 + 2|uM
n |2)|uM

n |q0−p−1|∇uM
n |2 dx �

∫
RN

|un|q0 dx.

Since q0 − p > 1 we have, in particular,

2
∫

RN

|uM
n |q0−p+1|∇uM

n |2 dx �
∫

RN

|un|q0 dx.

Finally, for n ∈ N fixed, letting M → +∞ we obtain that

2
∫

RN

|un|q0−p+1|∇un|2 dx �
∫

RN

|un|q0 dx. (4.15)
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Now, note that, by Sobolev inequality,

2
∫

RN

|un|q0−p+1|∇un|2 dx = L(p, N)

∫
RN

∣∣∇|un|r
∣∣2

dx � L̃(p, N)‖ur
n‖2

2N
N−2

,

for some constants L, L̃ > 0, and where

r = q0 − p + 3

2
.

Thus (un) ⊂ L
2Nr
N−2 (RN) and since, by (4.12), (un) ⊂ Lq0(RN) is bounded, by (4.15),

(un) ⊂ L
2Nr
N−2 (RN) is also bounded. Since p < (3N + 2)/(N − 2) it follows that

2Nr

N − 2
> q0

and the Moser iteration can be continued further on. Thus, we obtain that (un) ⊂ Lq(RN) for
any q � q0 with (un) ⊂ Lq(RN) bounded. At this point, by Hölder and Sobolev inequalities
we can write

‖un‖p+1
p+1 � C(p, N)‖∇un‖α

2 ‖un‖β

(p−1)N (4.16)

with

α = 2N(p − 1) − 2(p + 1)

(p − 1)(N − 2) − 2
and β = N(p − 1)

(N − 2)(p + 1) − 2N

(p − 1)N(N − 2) − 2N
.

Now as in (4.14), using the fact that E(un) � 0, we get that

‖∇un‖2
2 � K(p, N)‖∇un‖α

2 ‖un‖β

(p−1)N .

As p > 1 we have α > 2 and since (un) ⊂ L(p−1)N (RN) is bounded we obtain again a
contradiction with (4.13). Note that, in (4.16), the coefficient (p − 1)N has no particular
meaning, we just choose it sufficiently large in order to ensure that, in turn, α > 2. This proves
point (i) since if m(c) < 0 a minimizer always exists by lemma 4.4.

For the proof of point (2)-(ii) we know from lemma 4.5, point (3), that there exists a c > 0
such that m(c) < 0. Now let d > 0 be such that m(d) < 0 and u ∈ X be an associated
minimizer. We consider the scaling v(x) = u(σ−1/Nx) used in the proof of lemma 4.4. For
σ > 1 we have ‖v‖2

2 > d and E(v) < E(u). This proves the claim. We also point out that
very likely the function {c → m(c)} is continuous for c > 0 so that also m(c(p, N)) = 0.
However we do not pursue this further. �

5. Orbital stability

In this section we prove the orbital stability result, theorem 1.9. Its proof crucially relies on
the relative compactness of any minimizing sequence as expressed by theorem 1.11.

Proof of theorem 1.11. Let (un) ⊂ X be any minimizing sequence for problem (1.15). To
prove its relative convergence, up to translation, we use Lions’s compactness-concentration
principle (cf [24, 25]), applied to the sequence

ρn(x) = u2
n(x), n ∈ N.

First we prove that the vanishing, namely

sup
y∈RN

∫
y+BR

|un|2 dx → 0 for all R > 0,
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cannot occur. By lemma 4.2, we know that

(un) ⊂ X is bounded and
∫

RN

|∇(u2
n)| dx is bounded in R. (5.1)

We apply [25, lemma I.1] to the sequence ρn. Indeed, ρn is bounded in L1(RN) and ∇ρn is
bounded in L2(RN). Then for every 1 � α � 2N/(N − 2), ρn → 0 in Lα(RN), as n goes to
∞. Taking α = p + 1/2 (this choice is valid since 1 < p < 3 + 4/N ) provides

‖ρn‖ p+1
2

= ‖un‖2
p+1 → 0 as n → ∞,

and then lim infn→∞ E(un) � 0, which contradicts the fact that m(c) < 0. Now, we claim
that there exists a subsequence unk

(that we still denote by (un)) such that either compactness
occurs or dichotomy occurs in the following sense: there exists α ∈ (0, c) such that, for all
ε > 0, there exists k0 � 1 and two sequences (u1

n), (u
2
n) bounded in X such that, for all k � k0,

‖un − (u1
n + u2

n)‖Lp+1 � δ(ε), 1 < p < 3 + 4
N

, with δ(ε) → 0 for ε → 0, (5.2)∣∣∣∣∫
RN

(u1
n)

2 dx − α

∣∣∣∣ � ε,

∣∣∣∣∫
RN

(u1
n)

2 dx − (c − α)

∣∣∣∣ � ε,

dist(supp u1
n, supp u2

n) → ∞, as n → ∞,

lim inf
k→∞

∫
RN

(|∇un|2 − |∇u1
n|2 − |∇u2

n|2) dx � 0, (5.3)

lim inf
k→∞

∫
RN

(|∇(un)
2|2 − |∇(u1

n)
2|2 − |∇(u2

n)
2|2) dx � 0. (5.4)

We point out that only inequalities (5.2) and (5.4) have to be proved, the other inequalities are
already contained in [24, lemma III.1]. Because of (5.1) and taking into account inequality (4.5)
there exists a positive constant K such that, for all n ∈ N,∫

RN

|un|p+1 dx � K

(∫
RN

|un|2 dx

)1−θ

, θ = (p − 1)(N − 2)

2(N + 2)
. (5.5)

Thus, inequality (5.2) follows from the corresponding inequality for the L2 norm given in [24,
lemma III.1]. Now inequality (5.4) can be obtained by arguing as for the proof of (5.3)
in [24]. Indeed, note that if ϕR is a given smooth cut-off function, 0 � ϕR � 1, ϕR = 1 on
B(0, R), ϕR = 0 outside B(0, 2R) and |∇ϕR| � 1/R, and vn is a sequence in X satisfying the
boundedness condition (5.5), then we have

|∇(ϕRvn)
2|2 − ϕ4

R|∇v2
n|2 = 4ϕ3

Rv2
n∇ϕR · ∇v2

n + 4ϕ2
R|∇ϕR|2v4

n

� 2ϕ3
R|∇ϕR|v4

n + 2ϕ3
R|∇ϕR||∇v2

n|2 + 4ϕ2
R|∇ϕR|2v4

n,

for all n � 1, yielding∣∣∣∣∫
RN

|∇(ϕRvn)
2|2 dx −

∫
RN

ϕ4
R|∇v2

n|2 dx

∣∣∣∣ � C

R
, for all n � 1,

for some positive constant C independent of n. This last inequality is therefore sufficient to
obtain inequality (5.4).

Now, it is standard to see that if the dichotomy property holds (with the inequalities
indicated above), then sending ε to zero, the following inequality holds true

m(c) � m(α) + m(c − α).

To conclude we now prove that instead we have, for any c1, c2 > 0 such that c1 + c2 = c,

m(c) < m(c1) + m(c2). (5.6)
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In light of [24, lemma II.1], to show that (5.6) holds, it is sufficient to prove that, for any d > 0
such that m(d) < 0,

m(λd) < λm(d), for any λ > 1. (5.7)

To prove inequality (5.7) we observe that if ud ∈ X is a minimizer of m(d), then setting
v(x) = ud(λ

− 1
N x) we have ‖v‖2

2 = λd and

E(v) = λ1− 2
N

[∫
RN

1

2
|∇ud |2 + |ud |2|∇ud |2 dx

]
− λ

∫
RN

|ud |p+1 dx

= λ

[
λ− 2

N

∫
RN

(
1

2
|∇ud |2 + |ud |2|∇ud |2 dx

)
−

∫
RN

|ud |p+1 dx

]
< λm(d).

Thus E(v) < λm(d) which lead to m(λd) < λm(d), proving the claim.

Since we ruled out both vanishing and dichotomy, we have compactness for ρn, namely
we know that there exists a sequence (yn) ⊂ R

N such that, for any ε > 0, there is R > 0 with∫
yn+BR

|un|2 dx � c − ε. (5.8)

We then denote ũn = un(· + yn) and clearly from inequality (5.8) we have ũn → ũ strongly
in L2(RN), as n → ∞. By (5.5) we then see that ũn → ũ strongly in Lp(RN). At this
point, taking into account point (1) of lemma 4.3, and since ũn ⇀ ũ in X, we get that
E(ũ) � lim inf E(ũn) = m(c). This proves that ũ ∈ X minimizes (4.2) and then, necessarily,
∇ũn → ∇u in L2(RN), as n → ∞, proving the strong convergence of ũn to ũ in X. This
concludes the proof. �

Now we can state the following proof:

Proof of theorem 1.9. First note that if (un) is a minimizing sequence for (4.2), then (|un|)
is also a minimizing sequence and is real. Then by theorem 1.11, there exists a subsequence
(|unk

|) of (|un|) and a sequence (ynk
) ⊂ R

N such that (|unk
(· − ynk

)|) converges strongly
in H 1(RN) towards u where u is real and solves (4.2). Then the result follows by standard
considerations (see, for example, [9]). �
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