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1. Introduction

Let d ≥ 1, p ≥ 1, q ≥ 1, τ > 0, 0 ≤ a ≤ 1, α, β, γ ∈ R be such that

1
τ

+ γ

d
,

1
p

+ α

d
,

1
q

+ β

d
> 0

and

1
τ

+ γ

d
= a

(1
p

+ α− 1
d

)
+ (1 − a)

(1
q

+ β

d

)
.

In the case a > 0, assume in addition that, with γ = aσ + (1 − a)β,

0 ≤ α− σ

and

α− σ ≤ 1 if 1
τ

+ γ

d
= 1

p
+ α− 1

d
.

Caffarelli, Kohn, and Nirenberg [5] (see also [4]) proved the following well-known in-
equality

‖|x|γu‖Lτ (Rd) ≤ C‖|x|α∇u‖aLp(Rd)‖|x|βu‖
(1−a)
Lq(Rd) for u ∈ C1

c (Rd). (1.1)

In this paper, we extend this family of inequalities to fractional Sobolev spaces W s,p. 
In the case a = 1, τ = p, the corresponding inequality was obtained for α = 0 and γ = −s

in [7,6] and for τ = pd/(d −sp), −(d −sp)/p < α = γ < 0, and 1 < p < d/s in [1]. To our 
knowledge, a general version of such inequalities in the framework of fractional Sobolev 
spaces was not available.

For p > 1, 0 < s < 1, α, α1, α2 ∈ R with α1 + α2 = α, and Ω a measurable subset of 
R

d, set

|u|pW s,p,α(Ω) =
ˆ

Ω

ˆ

Ω

|x|α1p|y|α2p|u(x) − u(y)|p
|x− y|d+sp

dx dy ≤ +∞ for u ∈ L1(Ω).

In the case α1 = α2 = α = 0, we simply denote |u|W s,p,0(Ω) by |u|W s,p(Ω).
Let d ≥ 1, p > 1, q ≥ 1, τ > 0, 0 ≤ a ≤ 1, α, β, γ ∈ R be such that

1
τ

+ γ

d
= a

(1
p

+ α− s

d

)
+ (1 − a)

(1
q

+ β

d

)
. (1.2)

In the case a > 0, assume in addition that, with γ = aσ + (1 − a)β,



H.-M. Nguyen, M. Squassina / Journal of Functional Analysis 274 (2018) 2661–2672 2663
0 ≤ α− σ (1.3)

and

α− σ ≤ s if 1
τ

+ γ

d
= 1

p
+ α− s

d
. (1.4)

Then, we have

Theorem 1.1. Let d ≥ 1, p > 1, 0 < s < 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α1, α2, α, β, γ ∈ R

be such that α = α1 + α2, and (1.2), (1.3), and (1.4) hold. We have

i) if 1/τ + γ/d > 0, then

‖|x|γu‖Lτ (Rd) ≤ C|u|aW s,p,α(Rd)‖|x|βu‖
(1−a)
Lq(Rd) for u ∈ C1

c (Rd),

ii) if 1/τ + γ/d < 0, then

‖|x|γu‖Lτ (Rd) ≤ C|u|aW s,p,α(Rd)‖|x|βu‖
(1−a)
Lq(Rd) for u ∈ C1

c (Rd \ {0}).

Assertion ii) was established in [6] for a = 1, τ = p, α1 = α2 = 0, and γ = −s.

The proof of Theorem 1.1 is given in Section 2. Note that the conditions

1
p

+ α

d
,

1
q

+ β

d
> 0

are not required in Theorem 1.1. Without these conditions, the RHSs in the estimates 
of Theorem 1.1 are finite for u ∈ C1

c (Rd). The case 1/τ + γ/d = 0 will be considered in 
Section 3. In contrast with the mentioned results on fractional Sobolev spaces where the 
condition α1 = α2 = α/2 is used, this is not necessary in our work.

The idea of the proof is quite elementary and inspired by the work [5]. In the case 
0 ≤ α−σ ≤ s, the proof uses a variant of Gagliardo–Nirenberg’s interpolation inequality 
for fractional Sobolev spaces (Lemma 2.2) and is as follows. We decompose Rd into annuli 
Ak defined by

Ak :=
{
x ∈ R

d : 2k ≤ |x| < 2k+1},
and apply the interpolation inequality to have

(
−
ˆ

Ak

∣∣∣u− −
ˆ

Ak

u
∣∣∣τ dx)1/τ

≤ C
(
2−(d−sp)k|u|W s,p(Ak)

)a/p(
−
ˆ

Ak

|u|q
)(1−a)/q

.

Here and in what follows, we denote
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−
ˆ

D

v = 1
|D|

ˆ

D

v dx

for a measurable subset D of Rd and for v ∈ L1(D). Using again the interpolation 
inequality in a slightly different way, we can obtain appropriate estimates for the averages 
and derive the desired conclusion. This is the novelty in our approach. The proof in the 
case α−σ > s is via interpolation and has its roots in [5]. Similar ideas in this paper are 
used in [8] to obtain several improvements of (1.1) in the classical setting. In the case 
1 < p < d, α = 0, and σ > −1, one can derive (1.1) using the results in [2], [3] and [7]
(see Remark 2.3).

The paper is organized as follows. In Section 2, we present the proof of Theorem 1.1. 
In Section 3, we discuss the case 1/τ + γ/d = 0.

2. Proof of the main result

We first state a variant of Gagliardo–Nirenberg inequality for fractional Sobolev 
spaces.

Lemma 2.1. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ > 0, and 0 < a ≤ 1 be such that

1
τ

= a

(
1
p
− s

d

)
+ 1 − a

q
. (2.1)

We have

‖u‖Lτ (Rd) ≤ C|u|aW s,p(Rd)‖u‖1−a
Lq(Rd) for u ∈ C1

c (Rd),

for some positive constant C independent of u.

Proof. The result is essentially known. Here is a short proof of it. We first consider the 
case 1/p −s/d > 0. Set p∗ := pd/(d −sp). We have, by Sobolev’s inequality for fractional 
Sobolev spaces,

‖u‖Lp∗ (Rd) ≤ C|u|W s,p(Rd).

In this proof, C denotes a positive constant independent of u. Inequality (2.2) is now a 
consequence of Hölder’s inequality. We next consider the case 1/p − s/d ≤ 0. Since

1/p− s/d �= 1/q,

by a change of variables, one can assume that

|u|W s,p(Rd) = ‖u‖Lq(Rd) = 1.
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Since τ > q ≥ 1 by (2.1), it follows from John–Nirenberg’s inequality that

‖u‖Lτ (Rd) ≤ C.

The proof is complete. �
The following result is a consequence of Lemma 2.1 and is used in the proof of Theo-

rem 1.1.

Lemma 2.2. Let d ≥ 1, p > 1, 0 < s < 1, q ≥ 1, τ > 0, and 0 < a ≤ 1 be such that

1
τ
≥ a

(
1
p
− s

d

)
+ 1 − a

q
.

Let λ > 0 and 0 < r < R and set

D :=
{
x ∈ R

d : λr < |x| < λR
}
.

Then, for u ∈ C1(D̄),

⎛
⎝ −
ˆ

D

∣∣∣∣∣∣u− −
ˆ

D

u

∣∣∣∣∣∣
τ

dx

⎞
⎠

1/τ

≤ C
(
λsp−d|u|pW s,p(D)

)a/p

⎛
⎝ −
ˆ

D

|u|q dx

⎞
⎠

(1−a)/q

(2.2)

for some positive constant C independent of u and λ.

Proof. By scaling, one can assume that λ = 1. Let 0 < s′ ≤ s and τ ′ ≥ τ be such that

1
τ ′

= a
(1
p
− s′

d

)
+ 1 − a

q
.

From Lemma 2.1, we derive that
∥∥∥∥∥∥u− −

ˆ

D

u

∥∥∥∥∥∥
Lτ′ (D)

≤ C |u|aW s′,p(D) ‖u‖1−a
Lq(D).

The conclusion now follows from Jensen’s inequality and the fact |u|W s′,p(D) ≤
C |u|W s,p(D). �

We are ready to give

• Proof of Theorem 1.1 in the case α− σ ≤ s. By Lemma 2.2, we have, for k ∈ Z,

(
−
ˆ ∣∣∣u− −

ˆ
u
∣∣∣τ dx)1/τ

≤ C
(
2−(d−sp)k|u|pW s,p(Ak)

)a/p(
−
ˆ

|u|q dx
)(1−a)/q

. (2.3)

Ak Ak Ak
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Using (1.2), we derive from (2.3) that
ˆ

Ak

|x|γτ |u|τ dx ≤ C2(γτ+d)k
∣∣∣ −
ˆ

Ak

u
∣∣∣τ + C|u|aτW s,p,α(Ak)‖|x|βu‖

(1−a)τ
Lq(Ak). (2.4)

Let m, n ∈ Z be such that m ≤ n − 2. Summing (2.4) with respect to k from m to n, we 
obtain

ˆ

{2m<|x|<2n+1}

|x|γτ |u|τ dx ≤ C
n∑

k=m

2(γτ+d)k
∣∣∣ −
ˆ

Ak

u
∣∣∣τ + C

n∑
k=m

|u|aτW s,p,α(Ak)‖|x|βu‖
(1−a)τ
Lq(Ak).

(2.5)

Step 1: Proof of i). Choose n such that

suppu ⊂ B2n .

We have
∣∣∣ −
ˆ

Ak

u− −
ˆ

Ak+1

u
∣∣∣τ ≤ C

(
2−(d−sp)k|u|pW s,p(Ak∪Ak+1)

)aτ/p(
−
ˆ

Ak∪Ak+1

|u|q dx
)(1−a)τ/q

.

It follows that, with c = [(1 + 2γτ+d)/2]−1 < 1,

2(γτ+d)k
∣∣∣ −
ˆ

Ak

u
∣∣∣τ ≤ c2(γτ+d)(k+1)

∣∣∣ −
ˆ

Ak+1

u
∣∣∣τ + C|u|aτW s,p,α(Ak∪Ak+1)‖|x|

βu‖(1−a)τ
Lq(Ak∪Ak+1).

We derive that

n∑
k=m

2(γτ+d)k
∣∣∣ −
ˆ

Ak

u
∣∣∣τ ≤ C

n∑
k=m

|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1). (2.6)

Combining (2.5) and (2.6) yields

ˆ

{|x|>2m}

|x|γτ |u|τ dx ≤ C

n∑
k=m

|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1).

One has, for s ≥ 0, t ≥ 0 with s + t ≥ 1, and for xk ≥ 0 and yk ≥ 0,

n∑
k=m

xs
ky

t
k ≤

( n∑
k=m

xk

)s( n∑
k=m

yk

)t

. (2.7)

Applying this inequality with s = aτ/p and t = (1 − a)τ/q, we obtain that
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ˆ

{|x|>2m}

|x|γτ |u|τ dx ≤ C|u|aτW s,p,α(
⋃∞

k=m Ak)‖|x|βu‖
(1−a)τ
Lq(

⋃∞
k=m Ak), (2.8)

since a/p + (1 − a)/q ≥ 1/τ thanks to the fact α− σ − s ≤ 0.

Step 2: Proof of ii). Choose m such that

suppu ∩B2m = ∅.

We have

∣∣∣ −
ˆ

Ak

u− −
ˆ

Ak+1

u
∣∣∣τ ≤ C

(
2−(d−sp)k|u|pW s,p(Ak∪Ak+1)

)aτ/p(
−
ˆ

Ak∪Ak+1

|u|q
)(1−a)τ/q

.

It follows that, with c = (1 + 2γτ+d)/2 < 1,

2(γτ+d)(k+1)
∣∣∣ −
ˆ

Ak+1

u
∣∣∣τ ≤ c2(γτ+d)k

∣∣∣ −
ˆ

Ak

u
∣∣∣τ + C|u|aτW s,p,α(Ak∪Ak+1)‖|x|

βu‖(1−a)τ
Lq(Ak∪Ak+1).

We derive that

n∑
k=m

2(γτ+d)k
∣∣∣ −
ˆ

Ak

u
∣∣∣τ ≤ C

n−1∑
k=m−1

|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1). (2.9)

Combining (2.5) and (2.9) yields

ˆ

{|x|<2n+1}

|x|γτ |u|τ dx ≤ C
n−1∑

k=m−1

|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1).

As in Step 1, we derive from (2.7) that

ˆ

{|x|<2n+1}

|x|γτ |u|τ dx ≤ C|u|aτW s,p,α(
⋃n

k=−∞ Ak)‖|x|βu‖
(1−a)τ
Lq(

⋃n
k=−∞ Ak).

The proof is complete in the case α− σ ≤ s. �
We next turn to

• Proof of Theorem 1.1 in the case α− σ > s. We follows the strategy in [5]. Since

1 + α− s �= 1 + β
,

p d q d
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by scaling, one might assume that

|u|W s,p,α(Rd) = 1 and ‖u‖Lq(Rd) = 1.

It is necessary from (1.4) that 0 < a < 1. Let 0 < a1, a2 < 1 (a1, a2 are close to a and 
are chosen later) and τ1, τ2 > 0 be such that

1
τ1

= a1

p
− a1s

d
+ 1 − a1

q
if a

p
− as

d
+ 1 − a

q
> 0,

1
τ
>

1
τ1

≥ a1

p
− a1s

d
+ 1 − a1

q
if a

p
− as

d
+ 1 − a

q
≤ 0, (2.10)

and

1
τ2

= a2

p
+ 1 − a2

q
.

Set

γ1 = a1α + (1 − a1)β and γ2 = a2(α− s) + (1 − a2)β.

We have

1
τ1

+ γ1

d
≥ a1

(1
p

+ α− s

d

)
+ (1 − a1)

(1
q

+ β

d

)
(2.11)

and

1
τ2

+ γ2

d
= a2

(1
p

+ α− s

d

)
+ (1 − a2)

(1
q

+ β

d

)
. (2.12)

Recall that

1
τ

+ γ

d
= a

(1
p

+ α− s

d

)
+ (1 − a)

(1
q

+ β

d

)
. (2.13)

We now assume that

|a1 − a| and |a2 − a| are small enough, (2.14)

a1 < a < a2 if 1
p

+ α− s

d
<

1
q

+ β

d
, (2.15)

a2 < a < a1 if 1
p

+ α− s

d
>

1
q

+ β

d
. (2.16)

Using (2.14), (2.15) and (2.16), we derive from (2.11), (2.12), and (2.13) that

0 <
1 + γ2

<
1 + γ

<
1 + γ1

. (2.17)

τ2 d τ d τ1 d
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Since a > 0 and α− σ > s, it follows from (2.14) that

1
τ
− 1

τ2
= (a− a2)

(1
p
− 1

q

)
+ a

d
(α− σ − s) > 0 (2.18)

and, if ap − as
d + 1−a

q > 0,

1
τ
− 1

τ1
= (a− a1)

(1
p
− s

d
− 1

q

)
+ a

d
(α− σ) > 0. (2.19)

Since, by (2.10), (2.18), and (2.19),

1/τ > 1/τ1 and 1/τ > 1/τ2,

it follows from (2.17) and Hölder’s inequality that

‖|x|γu‖Lτ (Rd\B1) ≤ C‖|x|γ1u‖Lτ1 (Rd) and ‖|x|γu‖Lτ (B1) ≤ C‖|x|γ2u‖Lτ2 (Rd).

Applying the previous case, we have

‖|x|γ1u‖Lτ1 (Rd) ≤ C|u|a1
W s,p,α(Rd)‖|x|

βu‖(1−a1)
Lq(Rd) ≤ C

and

‖|x|γ2u‖Lτ2 (Rd) ≤ C|u|a2
W s,p,α(Rd)‖|x|

βu‖(1−a2)
Lq(Rd) ≤ C.

The conclusion follows. �
Remark 2.3. In the case 0 < p < d, one has, for 1/2 < s < 1 (see [7]),

∥∥∥∥∥∥u− −
ˆ

D

u

∥∥∥∥∥∥
Lp∗ (D)

≤ C(1 − s)1/p|u|W s,p(D).

The same proof yields, with α1 = α2 = α = 0, σ > −s, and 1/τ + γ/d > 0,

‖|x|γu‖Lτ (Rd) ≤ C(1 − s)a/p|u|aW s,p(Rd)‖|x|βu‖
(1−a)
Lq(Rd) for u ∈ C1

c (Rd).

Using the results in [2,3], one knows that

lim
s→1

(1 − s)1/p|u|W s,p(Rd) = Cd,p‖∇u‖Lp(Rd) for u ∈ C1
c (Rd).

We then derive that

‖|x|γu‖Lτ (Rd) ≤ C‖∇u‖aLp(Rd)‖|x|βu‖
(1−a)
Lq(Rd) for u ∈ C1

c (Rd).
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Remark 2.4. In the case α− σ ≤ s, the proof also shows that if 1/τ + γ/d > 0, then

‖|x|γu‖Lτ (Rd\Br) ≤ C|u|aW s,p,α(Rd\Br)‖|x|βu‖
(1−a)
Lq(Rd\Br) for u ∈ C1

c (Rd),

and if 1/τ + γ/d < 0, then

‖|x|γu‖Lτ (Br) ≤ C|u|aW s,p,α(Br)‖|x|βu‖
(1−a)
Lq(Br) for u ∈ C1

c (Rd \ {0}),

for any r > 0. In fact, the proof gives the result with r = 2j with j = m in the first 
case and j = n + 1 in the second case. However, a change of variables yields the result 
mentioned here.

3. On the limiting case 1/τ + γ/d = 0

The main result in this section is

Theorem 3.1. Let d ≥ 1, p > 1, 0 < s < 1, q ≥ 1, τ > 1, 0 < a ≤ 1, α1, α2, α, β, γ ∈ R

be such that α = α1 + α2, (1.2) holds, and

0 ≤ a− σ ≤ s.

Let u ∈ C1
c (Rd), and 0 < r < R. We have

i) if 1/τ + γ/d = 0 and suppu ⊂ BR, then

( ˆ
Rd

|x|γτ
lnτ (2R/|x|) |u|

τ dx
)1/τ

≤ C|u|aW s,p,α(Rd)‖|x|βu‖
(1−a)
Lq(Rd),

ii) if 1/τ + γ/d = 0 and suppu ∩Br = ∅, then

( ˆ
Rd

|x|γτ
lnτ (2|x|/r) |u|

τ dx
)1/τ

≤ C|u|aW s,p,α(Rd)‖|x|βu‖
(1−a)
Lq(Rd).

Proof. In this proof, we use the notations in the proof of Theorem 1.1. We only prove 
the first assertion. The second assertion follows similarly as in the spirit of the proof of 
Theorem 1.1. Fix ξ > 0. Summing (2.4) with respect to k from m to n, we obtain

ˆ

{|x|>2m}

1
ln1+ξ(τ/|x|)

|x|γτ |u|τ dx

≤ C
n∑

k=m

1
(n− k + 1)1+ξ

∣∣∣ −
ˆ

Ak

u
∣∣∣τ + C

n∑
k=m

|u|aτW s,p,α(Ak)‖|x|βu‖
(1−a)τ
Lq(Ak). (3.1)
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By Lemma 2.2, we have

∣∣∣ −
ˆ

Ak

u− −
ˆ

Ak+1

u
∣∣∣ ≤ C

(
2−(d−sp)k|u|pW s,p(Ak∪Ak+1)

)a/p(
−
ˆ

Ak∪Ak+1

|u|q
)(1−a)/q

.

Applying Lemma 3.2 below with c = (n − k + 1)ξ/(n − k + 1/2)ξ, we deduce that

1
(n− k + 1)ξ

∣∣∣ −
ˆ

Ak

u
∣∣∣τ ≤ 1

(n− k + 1/2)ξ
∣∣∣ −
ˆ

Ak+1

u
∣∣∣τ

+ C(n− k + 1)τ−1−ξ|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1). (3.2)

We have, for ξ > 0 and k ≤ n,

1
(n− k + 1)ξ − 1

(n− k + 3/2)ξ ∼ 1
(n− k + 1)ξ+1 . (3.3)

Taking ξ = τ − 1 > 0, we derive from (3.2) and (3.3) that

n∑
k=m

1
(n− k + 1)1+ξ

∣∣∣ −
ˆ

Ak

u
∣∣∣τ ≤ C

n∑
k=m

|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1). (3.4)

Combining (3.1) and (3.4), as in (2.8), we obtain

ˆ

{|x|>2m}

|x|γτ

ln1+ξ(2n+1/|x|)
|u|τ dx ≤ C

n∑
k=m

|u|aτW s,p,α(Ak∪Ak+1)‖|x|
βu‖(1−a)τ

Lq(Ak∪Ak+1).

Applying inequality (2.7) with s = aτ/p and t = (1 − a)τ/q, we derive that

ˆ

{|x|>2m}

|x|γτ

ln1+ξ(2n+1/|x|)
|u|τ dx ≤ C|u|aτW s,p,α(

⋃∞
k=m Ak)‖|x|βu‖

(1−a)τ
Lq(

⋃∞
k=m Ak).

This yields the conclusion. �
In the proof of Theorem 3.1, we used the following elementary lemma:

Lemma 3.2. Let Λ > 1 and τ > 1. There exists C = C(Λ, τ) > 0, depending only on Λ
and τ such that, for all 1 < c < Λ,

(|a| + |b|)τ ≤ c|a|τ + C

(c− 1)τ−1 |b|
τ for all a, b ∈ R.
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Remark 3.3. In Theorem 3.1, we only deal with the case τ > 1 (recall that Theorem 1.1
holds for τ > 0). Similar proof as in the one of Theorem 3.1 holds for the case τ > 0
under the condition that the constant τ for the power log is replaced by any positive 
constant (strictly) greater than 1.
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