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Abstract. We establish improved versions of the Hardy and Caffarelli–
Kohn–Nirenberg inequalities by replacing the standard Dirichlet energy with some
nonlocal nonconvex functionals which have been involved in estimates for the topo-
logical degree of continuous maps from a sphere into itself and characterizations
of Sobolev spaces.

1 Introduction

In many branches of mathematical physics, harmonic and stochastic analysis, the
classical Hardy inequality plays a central role. It states that, if 1 ≤ p < d ,

(d − p
p

)p
∫
Rd

|u|p
|x|p dx ≤

∫
Rd

|∇u|pdx,

for every u ∈ C1
c (Rd ) with optimal constant which, contrary to the Sobolev in-

equality, is never attained. Another class of relevant inequalities is given by the
so-called Caffarelli–Kohn–Nirenberg inequalities [14, 15]. Precisely, let
p ≥ 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R be such that

(1.1)

1
τ

+
γ

d
,

1
p

+
α

d
,

1
q

+
β

d
> 0,

1
τ

+
γ

d
= a

(1
p

+
α − 1

d

)
+ (1 − a)

(1
q

+
β

d

)
,

and, with γ = aσ + (1 − a)β,

0 ≤ α − σ
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and
α − σ ≤ 1 if

1
τ

+
γ

d
=

1
p

+
α − 1

d
.

Then, for every u ∈ C1
c (R

d ),

‖|x|γu‖Lτ(Rd ) ≤ C‖|x|α∇u‖a
Lp(Rd )‖|x|βu‖(1−a)

Lq(Rd ),

for some positive constant C independent of u. This inequality has been an object
of a large amount of improvement and extensions to more general frameworks.

In the non local case, it was shown in [18,19] that there exists C > 0, indepen-
dent of 0 < δ < 1, such that

(1.2) C
∫
Rd

|u(x)|p
|x|pδ

dx ≤ Jδ (u),

for all u ∈ C1
c (R

d ), where

Jδ (u) := (1 − δ )
∫∫

R2d

|u(x) − u(y)|p
|x − y|d+pδ

dxdy.

In light of the results of Bourgain, Brezis, and Mironescu [3, 4] and a refinement
of Davila [17], we have

lim
δ↘0

Jδ (u) = Kd,p

∫
Rd

|∇u|pdx, for u ∈ W 1,p(Rd ), Kd,p :=
1
p

∫
Sd−1

|e · σ|p dσ,

for some e ∈ Sd−1, Sd−1 being the unit sphere in Rd . This allows to recover the
classical Hardy inequality from (1.2) by letting δ ↘ 0. Various problems related
to Jδ are considered in [7, 9, 10, 12, 33, 34]. The full range of Caffarelli–Kohn–
Nirenberg inequalities and their variants were established in [30] (see [1] for partial
results in the case a = 1).

For p ≥ 1, set � a measurable set of Rd , and u ∈ L1
loc(�),

Iδ (u,�) :=
∫

�

∫
�{|u(x)−u(y)|>δ }

δ p

|x − y|d+p
dxdy.

In the case � = R
d , we simply denote Iδ (u,Rd ) by Iδ (u). The quantity Iδ with

p = d has its roots in estimates for the topological degree of continuous maps from
a sphere into itself in [5, 22]. This also appears in characterizations of Sobolev
spaces [6, 11, 12, 21, 24] and related contexts [8, 11, 12, 23, 25, 26, 28, 29]. It is
known that (see [21, Theorem 2] and [12, Proposition 1]), for p ≥ 1,

(1.3) lim
δ↘0

Iδ (u) = Kd,p

∫
Rd

|∇u|p dx, for u ∈ C1
c (R

d ) 1

1In the case p > 1, one can take u ∈ W 1,p(Rd ) in (1.3). Nevertheless, (1.3) does not hold for
u ∈ W 1,1(Rd ) in the case p = 1. An example for this is due to Ponce presented in [21].
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and, for p > 1,

(1.4) Iδ (u) ≤ Cd,p

∫
Rd

|∇u|p dx, for u ∈ W 1,p(Rd ),

for some positive constant Cd,p independent of u.
The aim of this paper is to get improved versions of the local Hardy and

Caffarelli–Kohn–Nirenberg type inequalities and their variants which involve non-
linear nonlocal nonconvex energies Iδ (u) and its related quantities. In what follows
for R > 0, BR denotes the open ball of Rd centered at the origin of radius r. Our
first main result concerning Hardy’s inequality is:

Theorem 1.1 (Improved Hardy inequality). Let d ≥ 1, p ≥ 1, 0 < r < R,
and u ∈ Lp(Rd ). We have

(i) if 1 ≤ p < d and suppu ⊂ BR, then∫
Rd

|u(x)|p
|x|p dx ≤ C(Iδ (u) + Rd−pδ p),

(ii) if p > d and supp u ⊂ Rd \ Br, then∫
Rd

|u(x)|p
|x|p dx ≤ C(Iδ (u) + rd−pδ p),

(iii) if p = d ≥ 2 and supp u ⊂ BR, then
∫
Rd\Br

|u(x)|d
|x|d lnd (2R/|x|) dx ≤ C(Iδ (u) + ln(2R/r)δd),

(iv) if p = d ≥ 2 and supp u ⊂ R
d \ Br, then

∫
BR

|u(x)|d
|x|d lnd (2|x|/r) dx ≤ C(Iδ (u) + ln(2R/r)δd),

where C denotes a positive constant depending only on p and d.

In light of (1.3), by letting δ → 0, one obtains variants of (i), (ii), (iii) and (iv)
of Theorem 1.1 where the RHS is replaced by C

∫
Rd |∇u|p dx; see Proposition 1.1

for a more general version. By (1.3) and (1.4), Theorem 1.1 provides improvement
of Hardy’s inequalities in the case p > 1.

We next discuss an improved version of Caffarelli–Kohn–Nirenberg in the case
the exponent a = 1. The more general case is considered in Theorem 3.1 (see also
Proposition 3.1). For p ≥ 1, α ∈ R, and � a measurable subset of Rd , set

Iδ (u,�, α) :=
∫

�

∫
�{|u(x)−u(y)|>δ }

δ p|x|pα

|x − y|d+p
dxdy, for u ∈ L1

loc(�).

If � = Rd , we simply denote Iδ (u,Rd , α) by Iδ (u, α). We have
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Theorem 1.2 (Improved Caffarelli–Kohn–Nirenberg inequality for a = 1).
Let d ≥ 2, 1 < p < d, τ > 0, 0 < r < R, and u ∈ Lp

loc(R
d ). Assume that

1
τ

+
γ

d
=

1
p

+
α − 1

d
and 0 ≤ α − γ ≤ 1.

We have

(i) if d − p + pα > 0 and suppu ⊂ BR, then

(∫
Rd

|x|γτ|u(x)|τ dx
)p/τ

≤ C(Iδ (u, α) + Rd−p+pαδ p),

(ii) if d − p + pα < 0 and suppu ⊂ R
d \ Br, then

(∫
Rd

|x|γτ|u(x)|τ dx
)p/τ

≤ C(Iδ (u, α) + rd−p+pαδ p),

(iii) if d − p + pα = 0, τ > 1, and supp u ⊂ BR, then

(∫
Rd\Br

|x|γτ|u(x)|τ
lnτ(2R/|x|) dx

)p/τ

≤ C(Iδ (u, α) + ln(2R/r)δp),

(iv) if d − p + pα = 0, τ > 1, and supp u ⊂ Rd \ Br, then

(∫
BR

|x|γτ|u(x)|τ
lnτ(2|x|/r) dx

)p/τ

≤ C(Iδ (u, α) + ln(2R/r)δp).

Here C denotes a positive constant independent of u, r, and R.

Remark 1.1. In contrast with Theorem 1.1, in Theorem 1.2 we assume that
1 < p < d . This assumption is required due to the use of Sobolev’s inequality
related to Iδ (u,�, 0) (see Lemmas 3.1 and 3.2).

Remark 1.2. Using the theory of maximal functions with weights due to
Muckenhoupt [20] (see also [16]), one can bound Iδ (u, α) by C

∫
Rd |x|pα|∇u|p dx

for−1/p < α < 1−1/p andget an improvement of the Caffarelli–Kohn–Nirenberg
inequality for a = 1 via Theorem 1.2 and for 0 < a < 1 and 0 ≤ α − σ ≤ 1 via
Theorem 3.1 in Section 3. The details of this fact are given in Remark 3.3 (see
also Remark 3.2 for a different approach covering a more general result).

We later prove a general version of Theorem 1.2 in Theorem 3.1, where
0 < a ≤ 1, which implies Proposition 3.1 by interpolation. As a consequence
of Theorem 3.1 (see also Remark 3.2) and Proposition 3.1, we have
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Proposition 1.1. Let p ≥ 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R be such

that
1
τ

+
γ

d
= a

(1
p

+
α − 1

d

)
+ (1 − a)

(1
q

+
β

d

)
,

and, with γ = aσ + (1 − a)β,

0 ≤ α − σ

and

α − σ ≤ 1 if
1
τ

+
γ

d
=

1
p

+
α − 1

d
.

We have, for u ∈ C1
c (Rd),

(A1) if 1/τ + γ/d > 0, then

(∫
Rd

|x|γτ|u|τ dx
)1/τ

≤ C‖|x|α∇u‖a
Lp(Rd )‖|x|βu‖(1−a)

Lq(Rd ),

(A2) if 1/τ + γ/d < 0 and supp u ⊂ R
d \ {0}, then

(∫
Rd

|x|γτ|u|τ dx
)1/τ

≤ C‖|x|α∇u‖a
Lp(Rd )‖|x|βu‖(1−a)

Lq(Rd ).

Assume in addition that α − σ ≤ 1 and τ > 1. We have
(A3) if 1/τ + γ/d = 0 and suppu ⊂ BR for some R > 0, then

(∫
Rd

|x|γτ
lnτ(2R/|x|) |u|τ dx

)1/τ

≤ C‖|x|α∇u‖a
Lp(Rd )‖|x|βu‖(1−a)

Lq(Rd ),

(A4) if 1/τ + γ/d = 0 and suppu ⊂ Rd \ Br for some r > 0, then

(∫
Rd

|x|γτ
lnτ(2|x|/r) |u|τ dx

)1/τ

≤ C‖|x|α∇u‖a
Lp(Rd )‖|x|βu‖(1−a)

Lq(Rd ).

Here C denotes a positive constant independent of u, r, and R.

Assertion (A1) is a slight improvement of the classical Caffarelli–Kohn–
Nirenberg. Indeed, in the classical setting, Assertion (A1) is established under
the additional assumptions

1/p + α/d > 0 and 1/q + β/d > 0,

as mentioned in (1.1) in the introduction. Assertion (A2) with a = 1 and τ = p was
known (see, e.g., [18]). Concerning Assertion (A3) with a = 1, this was obtained
for d = 2 in [13] and [2] and, for d ≥ 3, this was established in [2]. Assertion
(A4) with a = 1 might be known; however, we cannot find any references for it.
To our knowledge, the remaining cases seem to be new.
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Analogous versions in a bounded domain will be given in Section 4.
The ideas used in the proof of Theorems 1.1 and 1.2, and their general version

(Theorem 3.1), are as follows. On one hand, this is based on Poincaré and Sobolev
inequalities related to Iδ (u,�) (see Lemmas 2.1 and 3.1). These inequalities have
their roots in [25]. Using these inequalities, we derive the key estimate (see
Lemma 3.2 and also Lemma 2.1) for an annulus D centered at the origin and for
λ > 0,

(1.5)

(
−
∫

λD

∣∣∣∣u−−
∫

λD
u

∣∣∣∣
τ

dx
)1/τ

≤ C(λp−d Iδ (u, λD) + δ p)a/p
(

−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
q

dx
)(1−a)/q

,

for some positive constant C independent of u and λ. On the other hand, decom-
posing Rd into annuli Ak which are defined by

Ak := {x ∈ R
d : 2k ≤ |x| < 2k+1},

and applying (1.5) to each Ak, we obtain
(

−
∫

Ak

∣∣∣∣u − −
∫

Ak

u

∣∣∣∣
τ

dx
)1/τ

≤ C(2−(d−p)kIδ (u, Ak) + δ p)a/p
(

−
∫

Ak

|u|q
)(1−a)/q

,

A similar idea was used in [15]. Using (1.5) again in the cases (i) and (ii), we can
derive an appropriate estimate for

2(γτ+d)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

.

This is the novelty in comparison with the approach in [15]. Combining these two
facts, one obtains the desired inequalities. The other cases follow similarly. A
similar approach is used to establish the Caffarelli–Kohn–Nirenberg inequalities
for fractional Sobolev spaces in [30].

We nowmake some comments on themagnetic Sobolev setting. IfA : Rd → Rd

is locally bounded and u : Rd → C, we set


u(x, y) := ei(x−y)·A( x+y
2 )u(y), x, y ∈ R

d .

The following diamagnetic inequality holds:

||u(x)| − |u(y)|| ≤ |
u(x, x) − 
u(x, y)|, for a.e. x, y ∈ R
d .

In turn, by defining

IA
δ (u, α) =

∫
Rd

∫
Rd

{|
u(x,y)−
u(x,x)|>δ }

δ p|x|pα

|x − y|d+p
dxdy,
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we have, for α ∈ R,

Iδ (|u|, α) ≤ IA
δ (u, α) for all δ > 0.

Then, the assertions of Theorems 1.1 and 1.2 keep holding with IA
δ (u, 0) (resp.,

IA
δ (u, α)) on the right-hand side in place of Iδ (u) (resp., Iδ (u, α)). For the sake

of completeness, we refer the reader to [27] for some recent results about new
characterizations of classical magnetic Sobolev spaces in the terms of IA

δ (u, 0)
(see [27, 32, 35] for the ones related to Jδ ).

The paper is organized as follows. In Section 2 we prove Theorem 1.1. In
Section 3 we prove Theorem 3.1 and Proposition 3.1 which imply Theorem 1.2
and Proposition 1.1. In Section 4 we present versions of Theorems 1.1 and 3.1 in
a bounded domain �.

2 Improved Hardy’s inequality

Wefirst recall that a straightforwardvariant of [25, Theorem1] yields the following:

Lemma 2.1. Let d ≥ 1, p ≥ 1 and set

D := {x ∈ R
d : r < |x| < R}.

Then

−
∫

D

∣∣∣∣u(x) − −
∫

D
u

∣∣∣∣
p

dx ≤ Cr,R(Iδ (u,D) + δp), for all u ∈ Lp(D).

As a consequence, we have, for λ > 0,

(2.1) −
∫

λD

∣∣∣∣u(x) − −
∫

λD
u

∣∣∣∣
p

dx ≤ Cr,R(λp−d Iδ (u, λD) + δ p), for all u ∈ Lp(λD),

where λD := {λx : x ∈ D}. Here Cr,R denotes a positive constant independent of

u, δ , and λ.

The following elementary inequality will be used several times in this paper.

Lemma 2.2. Let � > 1 and τ > 1. There exists C = C(�, τ) > 0, depending
only on � and τ, such that, for all 1 < c < �,

(2.2) (|a| + |b|)τ ≤ c|a|τ +
C

(c − 1)τ−1 |b|τ, for all a, b ∈ R.
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Proof. Since (2.2) is clear in the case |b| ≥ |a| and in the case b = 0, by
rescaling and considering x = |a|/|b|, it suffices to prove, for C = C(�, τ) large
enough, that

(2.3) (x + 1)τ ≤ cxτ +
C

(c − 1)τ−1 , for all x ≥ 1.

Set
f (x) = (x + 1)τ − cxτ − C

(c − 1)τ−1 for x > 0.

We have

f ′(x) = τ(x+1)τ−1 −cτxτ−1 and f ′(x) = 0 if and only if x = x0 := (c
1

τ−1 −1)−1.

One can check that

(2.4) lim
x→+∞ f (x) = −∞, lim

x→1
f (x) < 0 if C = C(�, τ) is large enough,

and

(2.5) f (x0) = cxτ−1
0 − C

(c − 1)τ−1
.

If c
1

τ−1 > 2, then x0 < 1 and (2.3) follows from (2.4). Otherwise 1 ≤ s := c
1

τ−1 ≤ 2.
By the mean value theorem, we have

sτ−1 − 1 ≤ (s − 1) max
1≤t≤2

(τ − 1)tτ−2 for 1 ≤ s ≤ 2.

We derive from (2.5) that, with C = �[max1≤t≤2(τ − 1)tτ−2]τ−1,

f (x0) < 0.

The conclusion now follows from (2.4). �
We are now ready to give the

Proof of Theorem 1.1. Let m, n ∈ Z be such that

2n−1 ≤ R < 2n and 2m ≤ r < 2m+1.

It is clear that n − m ≥ 1. By (2.1) of Lemma 2.1, we have, for all k ∈ Z,

−
∫

Ak

∣∣∣∣u(x) − −
∫

Ak

u

∣∣∣∣
p

dx ≤ C(2−(d−p)kIδ (u, Ak) + δ p).

Here and in what follows in this proof, C denotes a positive constant independent
of k, u and δ . This implies

2−pk
∫

Ak

∣∣∣∣u(x) − −
∫

Ak

u

∣∣∣∣
p

dx ≤ C(Iδ (u, Ak) + 2(d−p)kδ p).
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It follows that

(2.6) 2−pk
∫

Ak

|u(x)|p dx ≤ C2(d−p)k

∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

+ C(Iδ (u, Ak) + 2(d−p)kδ p).

• Proof of (i). Summing (2.6) with respect to k from −∞ to n, we obtain

(2.7)
∫
Rd

|u(x)|p
|x|p dx ≤ C

n∑
k =−∞

2(d−p)k

∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

+ CIδ (u) + C2(d−p)nδ p,

since d > p. We also have, by (2.1), for k ∈ Z,∣∣∣∣−
∫

Ak

u − −
∫

Ak+1

u

∣∣∣∣ ≤ C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)1/p.

This implies ∣∣∣∣−
∫

Ak

u

∣∣∣∣ ≤
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣ + C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)1/p.

Applying Lemma 2.2, we have
∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

≤ 2d−p+1

1 + 2d−p

∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
p

+ C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p).

It follows that, with c = 2/(1 + 2d−p) < 1,

2(d−p)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

≤ c2(d−p)(k+1)
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
p

+ C(Iδ (u, Ak ∪ Ak+1) + 2(d−p)kδ p).

We derive that

(2.8)
n∑

k =−∞
2(d−p)k

∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

≤ C
n∑

k =−∞
Iδ (u, Ak ∪ Ak+1) + C2(d−p)nδ p.

A combination of (2.7) and (2.8) yields
∫
Rd

|u(x)|d
|x|d dx ≤ CIδ (u) + C2(d−p)nδ p.

The conclusion of (i) follows.
• Proof of (ii). Summing (2.6) with respect to k from m to +∞, we obtain

(2.9)
∫
Rd

|u(x)|p
|x|p dx ≤ C

+∞∑
k =m

2(d−p)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

+ CIδ (u) + C2(d−p)mδ p,

since p > d . We also have, by (2.1), for k ∈ Z,∣∣∣∣−
∫

Ak

u − −
∫

Ak+1

u

∣∣∣∣ ≤ C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)1/p.
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This implies that∣∣∣∣−
∫

Ak+1

u

∣∣∣∣ ≤
∣∣∣∣−
∫

Ak

u

∣∣∣∣ + C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)1/p.

Applying Lemma 2.2, we have
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
p

≤ 1 + 2d−p

2d−p+1

∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

+ C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p).

It follows that, with c = (1 + 2d−p)/2 < 1,

2(d−p)(k+1)
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
p

≤ c2(d−p)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

+ C(Iδ (u, Ak ∪ Ak+1) + 2(d−p)kδ p).

We derive that

(2.10)
+∞∑
k =m

2(d−p)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
p

≤ CIδ (u) + C2(d−p)mδ p.

A combination of (2.9) and (2.10) yields
∫
Rd

|u(x)|p
|x|p dx ≤ CIδ (u) + C2(d−p)mδ p.

The conclusion of (ii) follows.
• Proof of (iii). Let α > 0. Summing (2.6) with respect to k from m to n, we

obtain

(2.11)

∫
{2m<|x|<2n}

|u(x)|d
|x|d lnα+1(2R/|x|) dx

≤ C
n∑

k =m

1
(n − k + 1)α+1

∣∣∣∣−
∫

Ak

u

∣∣∣∣
d

+ CIδ (u) + C(n − m)δd .

We also have, by (2.1), for k ∈ Z,

(2.12)

∣∣∣∣−
∫

Ak

u

∣∣∣∣ ≤
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣ + C(Iδ (u, Ak ∪ Ak+1)
1/d + δ ).

By applying Lemma 2.2 with

c =
(n − k + 1)α

(n − k + 1/2)α
,

it follows from (2.12) that, for m ≤ k ≤ n,

(2.13)

1
(n − k + 1)α

∣∣∣∣−
∫

Ak

u

∣∣∣∣
d

≤ 1
(n − k + 1/2)α

∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
d

+ C(n − k + 1)d−1−α(Iδ (u, Ak ∪ Ak+1) + δ d ).
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We have, for m ≤ k ≤ n,

(2.14)
1

(n − k + 1)α
− 1

(n − k + 3/2)α
∼ 1

(n − k + 1)α+1
.

Taking α = d − 1 and combining (2.13) and (2.14) yields

(2.15)
n∑

k =m

1
(n − k + 1)d

∣∣∣∣−
∫

Ak

u

∣∣∣∣
d

≤ CIδ (u) + C(n − m)δd .

From (2.11) and (2.15), we obtain

∫
{|x|>2m }

|u(x)|d
|x|d lnd (2R/|x|) dx ≤ CIδ (u) + C(n − m)δd .

This implies the conclusion of (iii).
• Proof of (iv). Let α > 0. Summing (2.6) with respect to k from m to n, we

obtain
(2.16)∫

{2m<|x|<2n}
|u(x)|d

|x|d lnα+1(2|x|/R)
dx ≤ C

n∑
k =m

1
(k − m + 1)α+1

∣∣∣∣−
∫

Ak

u

∣∣∣∣
d

+ CIδ (u) + Cδ d .

We have, by (2.1), for k ∈ Z,

(2.17)
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣ ≤
∣∣∣∣−
∫

Ak

u

∣∣∣∣ + C(Iδ (u, Ak ∪ Ak+1)
1/d + δ ).

By applying Lemma 2.2 with

c =
(n − k + 1)α

(n − k + 1/2)α
,

it follows from (2.17) that, for m ≤ k + 1 ≤ n,

(2.18)

1
(k − m + 1)α

∣∣∣−
∫

Ak+1

u
∣∣∣d ≤ 1

(k − m + 1/2)α

∣∣∣∣−
∫

Ak

u

∣∣∣∣
d

+ C(k − m + 1)d−1−α(Iδ (u, Ak ∪ Ak+1) + δ d ).

We have, for m ≤ k + 1 ≤ n,

(2.19)
1

(k − m + 1)α
− 1

(k − m + 3/2)α
∼ 1

(k − m + 1)α+1 .

Taking α = d − 1 and combining (2.18) and (2.19) yields

(2.20)
n∑

k =m

1
(k − m + 1)d

∣∣∣∣−
∫

Ak

u

∣∣∣∣
d

≤ CIδ (u) + C(n − m)δd .
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From (2.16) and (2.20), we obtain

∫
{2m<|x|<2n}

|u(x)|d
|x|d lnd (2|x|/R)

dx ≤ CIδ (u) + C(n − m)δd .

This implies the conclusion of (iv).
The proof is complete. �

3 Improved Caffarelli–Kohn–Nirenberg inequality

In the proof of Theorem 1.2, we use the following result:

Lemma 3.1. Let 1 < p < d, � be a smooth bounded open subset of Rd , and

v ∈ Lp(�). We have

‖u‖Lp∗ (�) ≤ C�(Iδ (u)1/p + ‖u‖Lp + δ ),

where p∗ := dp/(d − p) denotes the Sobolev exponent of p.

Proof. For τ > 0, let us set

�τ := {x ∈ R
d : dist(x,�) < τ}.

Since � is smooth, by [12, Lemma 17], there exists τ > 0 small enough and an
extension U of u in �τ such that

(3.1) Iδ (U,�τ) ≤ CIδ (u,�) and ‖U‖Lp(�τ) ≤ C‖u‖Lp(�),

for 0 < δ < 1. Fix such a τ. Let ϕ ∈ C1(Rd ) such that

suppϕ ⊂ �2τ/3, ϕ = 1 in �τ/3, 0 ≤ ϕ ≤ 1 in R
d .

Define v = ϕU in Rd . We claim that

(3.2) I2δ (v) ≤ C(Iδ (u,�) + ‖u‖p
Lp(�)).

Indeed, set

f (x, y) =
δp

|x − y|d+p
1{|v(x)−v(y)|>2δ }.

We estimate I2δ (v). We have
∫∫

�×Rd
f (x, y) dxdy ≤

∫∫
�τ/3×�τ/3

f (x, y) dxdy +
∫∫

�τ×Rd

{|x−y|>τ/4}
f (x, y) dxdy,
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and, since v = 0 in �τ \ �2τ/3,∫∫
(Rd\�τ)×Rd

f (x, y) dxdy ≤
∫∫

(Rd \�τ)×(Rd \�τ)
f (x, y) dxdy

+
∫∫

�τ×Rd

{|x−y|>τ/4}
f (x, y) dxdy,

∫∫
(�τ\�)×Rd

f (x, y) dxdy ≤
∫∫

(�τ\�)×(�τ\�)
f (x, y) dxdy

+
∫∫

�τ/3×�τ/3

f (x, y) dxdy +
∫∫

�τ×Rd

{|x−y|>τ/4}
f (x, y) dxdy.

It is clear that, by (3.1),

(3.3)
∫∫

�τ/3×�τ/3

f (x, y) dx dy ≤ CIδ (u,�),

by the fact that ϕ = 0 in R
d \ �τ,

(3.4)
∫∫

(Rd \�τ)×(Rd \�τ)
f (x, y) dxdy = 0,

and, by a straightforward computation,

(3.5)
∫∫

�τ×Rd

{|x−y|>τ/4}
f (x, y) dx dy ≤ Cδp.

We have, for x, y ∈ R
d ,

v(x) − v(y) = ϕ(x)
(
U(x) − U(y)

)
+ U(y)

(
ϕ(x) − ϕ(y)

)
.

It follows that if |v(x) − v(y)| > 2δ , then either

|U(x) − U(y)| ≥ |ϕ(x)(U(x) − U(y))| > δ

or
C|U(y)||x − y| ≥ |U(y)(ϕ(x) − ϕ(y))| > δ.

We thus derive that

(3.6)

∫∫
(�τ\�)×(�τ\�)

f (x, y) dx dy ≤
∫

(�τ\�)

∫
(�τ\�)

{|U(x)−U(y)|>δ }

δ p

|x − y|d+p
dx dy

+
∫

(�τ\�)

∫
(�τ\�)

{|x−y|>Cδ/|U(y)|}

δ p

|x − y|d+p
dx dy.
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A straightforward computation yields∫
(�τ\�)

∫
(�τ\�)

{|x−y|>Cδ/|U(y)|}

δ p

|x − y|d+p
dx dy ≤

∫
�τ

dy
∫

{|x−y|>Cδ/|U(y)|}
δ p

|x − y|d+p
dx

= C
∫

�τ

|U(y)|p dy.

Using (3.1), we deduce from (3.6) that

(3.7)
∫∫

(�τ\�)×(�τ\�)
f (x, y) dx dy ≤ CIδ (u,�) + C‖u‖p

Lp(�).

A combination of (3.3), (3.4), (3.5), and (3.7) yields claim (3.2). By applying [25,
Theorem 3] and using the fact supp v ⊂ �τ, we have

(3.8) ‖v‖Lp∗ (Rd ) ≤ CI2δ (v)1/p + Cδ.

The conclusion now follows from claim (3.2). �

Remark 3.1. The assumption p > 1 is required in (3.8).

As a consequence of Lemmas 2.1 and 3.1, we obtain

Corollary 3.1. Let d ≥ 2, 1 < p < d, 0 < r < R, and λ > 0, and set

λD := {λx ∈ R
d : r < |x| < R}.

We have, for 1 ≤ q ≤ p∗,
(

−
∫

λD

∣∣∣∣u(x) − −
∫

λD
u

∣∣∣∣
q

dx
)1/q

≤ Cr,R(λp−d Iδ (u, λD) + δ p)1/p, for u ∈ Lp(λD),

where Cr,R denotes a positive constant independent of u, δ , and λ.

Here is an application of Corollary 3.1 which plays a crucial role in the proof
of Theorem 3.1 below.

Lemma 3.2. Let d ≥ 1, 1 < p < d, q ≥ 1, τ > 0, and 0 ≤ a ≤ 1 be such that

1
τ

≥ a
(1

p
− 1

d

)
+

1 − a
q

.

Let 0 < r < R, and λ > 0 and set

λD := {λx ∈ R
d : r < |x| < R}.

Then, for u ∈ L1(λD),
(

−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
τ

dx
)1/τ

≤ C(λp−d Iδ (u, λD) + δ p)a/p
(

−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
q

dx
)(1−a)/q

for some positive constant C independent of u, λ, and δ .
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Proof. Let τ, σ, t > 0, be such that

1
τ

≥ a
σ

+
1 − a

t
.

We have, by a standard interpolation inequality, that

(
−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
τ

dx
)1/τ

≤
(

−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
σ

dx
)a/σ(

−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
t

dx
)(1−a)/t

.

Applying this inequality with σ = p∗ and t = q and using Corollary 3.1, one obtains
the conclusion. �

We also have, (see [31, Theorem on page 125 and the following remarks])

Lemma 3.3 (Nirenberg’s interpolation inequality). Let d ≥ 1, p ≥ 1, q ≥ 1,

τ > 0, and 0 ≤ a ≤ 1 be such that

1
τ

≥ a
(1

p
− 1

d

)
+

1 − a
q

.

Let 0 < r < R, and let λ > 0 and set

λD := {λx ∈ R
d : r < |x| < R}.

Then, for u ∈ L1(λD),

(
−
∫

λD

∣∣∣∣u − −
∫

λD
u

∣∣∣∣
τ

dx
)1/τ

≤ C‖∇u‖a
Lp(λD)C‖u‖1−a

Lq(λD),

for some positive constant C independent of u, λ, and δ .

We prove the following more general version of Theorem 1.2:

Theorem 3.1. Let p ≥ 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R be such that

(3.9)
1
τ

+
γ

d
= a

(1
p

+
α − 1

d

)
+ (1 − a)

(1
q

+
β

d

)
,

and, with γ = aσ + (1 − a)β,

0 ≤ α − σ ≤ 1.

Set, for k ∈ Z,

(3.10) Iδ (k, u) :=

⎧⎨
⎩

Iδ (u, Ak ∪ Ak+1, α) + 2k(αp+d−p)δ p if 1 < p < d,

‖|x|α∇u‖p
Lp(Ak∪Ak+1) otherwise.

We have, for u ∈ Lp
loc(R

d ) and m, n ∈ Z with m < n,
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(i) if 1/τ + γ/d > 0 and supp u ⊂ B2n , then

(∫
Rd\B2m

|x|γτ|u|τ dx
)1/τ

≤ C
( n∑

k =m−1

Iδ (k, u)
)a/p

‖|x|βu‖(1−a)
Lq(Rd ),

(ii) if 1/τ + γ/d < 0 and supp u ⊂ R
d \ B2m , then

(∫
B2n

|x|γτ|u|τ dx
)1/τ

≤ C
( n∑

k =m−1

Iδ (k, u)
)a/p

‖|x|βu‖(1−a)
Lq(Rd ),

(iii) if 1/τ + γ/d = 0, τ > 1, and suppu ⊂ B2n , then

(∫
Rd \B2m

|x|γτ
lnτ(2n+1/|x|) |u|τ dx

)1/τ

≤ C
( n∑

k =m−1

Iδ (k, u)
)a/p

‖|x|βu‖(1−a)
Lq(Rd ),

(iv) if 1/τ + γ/d = 0, τ > 1, and suppu ⊂ R
d \ B2m , then

(∫
B2n

|x|γτ
lnτ(2n+1/|x|) |u|τ dx

)1/τ

≤ C
( n∑

k =m−1

Iδ (k, u)
)a/p

‖|x|βu‖(1−a)
Lq(Rd ).

Here C denotes a positive constant independent of u, δ , k, n, and m.

Proof. We only present the proof in the case 1 < p < d . The proof for the
other case follows similarly, however instead of using Lemma 3.2, one applies
Lemma 3.3. We now assume that 1 < p < d . Since α −σ ≥ 0, by Lemma 3.2, we
have

(3.11)
(

−
∫

Ak

∣∣∣∣u − −
∫

Ak

u

∣∣∣∣
τ

dx
)1/τ

≤ C(2−(d−p)kIδ (u, Ak) + δ p)a/p
(

−
∫

Ak

|u|q
)(1−a)/q

.

Using (3.9), we derive from (3.11) that

(3.12)

∫
Ak

|x|γτ|u|τ dx ≤C2(γτ+d)k

∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

+ C(Iδ (u, Ak, α) + 2k(αp+d−p)δ p)aτ/p‖|x|βu‖(1−a)τ
Lq(Ak ).

• Proof of (i). Summing (3.12) with respect to k from m to n, we obtain
(3.13)∫

{|x|>2m}
|x|γτ|u|τ dx ≤C

n∑
k =m

2(γτ+d)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

+ C
n∑

k =m

(Iδ (u, Ak, α) + 2k(αp+d−p)δ p)aτ/p‖|x|βu‖(1−a)τ
Lq(Ak ).
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By Lemma 3.2, we have

∣∣∣∣−
∫

Ak

u

∣∣∣∣ ≤
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣ + C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)a/p
(

−
∫

Ak∪Ak+1

|u|q
) 1−a

q

.

Applying Lemma 2.2, we derive that

∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

≤ 2γτ+d+1

1 + 2γτ+d

∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
τ

+ C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)aτ/p
(

−
∫

Ak∪Ak+1

|u|q
) (1−a)τ

q

.

It follows that, with c = 2/(1 + 2γτ+d ) < 1,

2(γτ+d)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

≤c2(γτ+d)(k+1)
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
τ

+ C(Iδ (u, Ak ∪ Ak+1, α) + 2k(αp+d−p)δ p)aτ/p‖|x|βu‖(1−a)τ
Lq(Ak∪Ak+1).

This yields

(3.14)

n∑
k =m

2(γτ+d)k
∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

≤ C
n∑

k =m

(Iδ (u, Ak ∪ Ak+1, α) + 2k(αp+d−p)δ p)aτ/p‖|x|βu‖(1−a)τ
Lq(Ak∪Ak+1).

Combining (3.13) and (3.14) yields

(3.15)

∫
{|x|>2m}

|x|γτ|u|τ dx

≤ C
n∑

k =m−1

(Iδ (u, Ak ∪ Ak+1, α) + 2k(αp+d−p)δ p)aτ/p‖|x|βu‖(1−a)τ
Lq(Ak∪Ak+1).

Applying the inequality, for s ≥ 0, t ≥ 0 with s + t ≥ 1, and for xk ≥ 0 and yk ≥ 0,

n∑
k =m

xs
ky

t
k ≤ Cs,t

( n∑
k =m

xk

)s( n∑
k =m

yk

)t

,

to s = aτ/p and t = (1 − a)τ/q, we obtain from (3.15) that

(3.16)
∫

{|x|>2m }
|x|γτ|u|τ dx ≤ C

( n∑
k =m

Iδ (k, u)
)aτ/p

‖|x|βu‖(1−a)τ
Lq(Rd )

since a/p + (1 − a)/q ≥ 1/τ thanks to the fact α − σ − 1 ≤ 0.
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• Proof of (ii). The proof is in the spirit of the proof of (ii) of Theorem 1.1.
The details are left to the reader.

• Proof of (iii). Fix ξ > 0. Summing (3.12) with respect to k from m to n, we
obtain

(3.17)

∫
{|x|>2m }

1

ln1+ξ (τ/|x|) |x|
γτ|u|τ dx

≤ C
n∑

k =m

1
(n − k + 1)1+ξ

∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

+ C
n∑

k =m

(Iδ (u, Ak, α) + 2k(αp+d−p)δ p)aτ/p‖|x|βu‖(1−a)τ
Lq(Ak ).

By Lemma 3.2, we have

∣∣∣∣−
∫

Ak

u

∣∣∣∣ ≤
∣∣∣∣−
∫

Ak+1

u

∣∣∣∣ + C(2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)a/p
(

−
∫

Ak∪Ak+1

|u|q
) 1−a

q

.

Applying Lemma 2.2 with

c =
(n − k + 1)ξ

(n − k + 1/2)ξ
,

we deduce that
(3.18)

1
(n − k + 1)ξ

∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

≤ 1
(n − k + 1/2)ξ

∣∣∣∣−
∫

Ak+1

u

∣∣∣∣
τ

+ C(n − k + 1)τ−1−ξ (2−(d−p)kIδ (u, Ak ∪ Ak+1) + δ p)aτ/p

×
(

−
∫

Ak∪Ak+1

|u|q
) (1−a)τ

q

.

Recall that, for k ≤ n and ξ > 0,

(3.19)
1

(n − k + 1)ξ
− 1

(n − k + 3/2)ξ
∼ 1

(n − k + 1)ξ+1 .

Taking ξ = τ − 1, we derive from (3.18) and (3.19) that

(3.20)
n∑

k =m

2(γτ+d)k 1
(n − k + 1)τ

∣∣∣∣−
∫

Ak

u

∣∣∣∣
τ

≤
n∑

k =m

C(Iδ (k, u))aτ/p‖|x|βu‖(1−a)τ
Lq(Ak∪Ak+1).

Combining (3.17) and (3.20), as in (3.16), we obtain

∫
{|x|>2m}

|x|γτ
lnτ(2n+1/|x|) |u|τ dx ≤ C

( n∑
k =m

Iδ (k, u)
)aτ/p

‖|x|βu‖(1−a)τ
Lq(Rd ) .
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• Proof of (iv). The proof is in the spirit of the proof of (iv) of Theorem 1.1.
The details are left to the reader.

The proof is complete. �

Remark 3.2. For p > 1, we have (see [21, Theorem 4])

Iδ (k, u) ≤ C
∫

Ak∪Ak+1

|x|pα|∇u|p dx for k ∈ Z,

for some positive constant C independent of k and u. This implies

( n∑
k =m−1

Iδ (k, u)
)1/p

≤ C‖|x|α∇u‖Lp(Rd ).

From Theorem 3.1, one obtains an improvement of Caffarelli–Kohn–Nirenberg’s
inequality for the case 0 ≤ α − σ ≤ 1 and for 1 < p < d .

Using Theorem 3.1, we can derive

Proposition 3.1. Let p ≥ 1, q ≥ 1, τ > 0, 0 < a < 1, α, β, γ ∈ R be such

that
1
τ

+
γ

d
= a

(1
p

+
α − 1

d

)
+ (1 − a)

(1
q

+
β

d

)
,

and, with γ = aσ + (1 − a)β,

α − σ > 1 and
1
τ

+
γ

d
�= 1

p
+

α − 1
d

.

We have, for u ∈ C1
c (Rd),

(i) if 1/τ + γ/d > 0, then

(∫
Rd

|x|γτ|u|τ dx
)1/τ

≤ C‖|x|α∇u‖a
Lp(Rd )‖|x|βu‖(1−a)

Lq(Rd ),

(ii) if 1/τ + γ/d < 0 and supp u ⊂ Rd \ {0}, then

( ∫
Rd

|x|γτ|u|τ dx
)1/τ ≤ C‖|x|α∇u‖a

Lp(Rd )‖|x|βu‖(1−a)
Lq(Rd ),

for some positive constant C independent of u.
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Proof. The proof is in the spirit of the approach in [15] (see also [30]). Since

1
p

+
α − 1

d
�= 1

q
+

β

d
,

by scaling, one might assume that

‖|x|α∇u‖Lp(Rd ) = 1 and ‖|x|βu‖Lq(Rd ) = 1.

Let 0 < a2 < 1 be such that

(3.21) |a2 − a| is small enough,

and set
1
τ2

=
a2

p
+

1 − a2

q
and γ2 = a2(α − 1) + (1 − a2)β.

We have

(3.22)
1
τ2

+
γ2

d
= a2

(1
p

+
α − 1

d

)
+ (1 − a2)

(1
q

+
β

d

)
.

Recall that

(3.23)
1
τ

+
γ

d
= a

(1
p

+
α − 1

d

)
+ (1 − a)

(1
q

+
β

d

)
.

Since a > 0 and α − σ > 1, it follows from (3.21) that

(3.24)
1
τ

− 1
τ2

= (a − a2)
(1
p

− 1
q

)
+

a
d

(α − σ − 1) > 0.

We first choose a2 such that

a2 < a if
1
p

+
α − 1

d
<

1
q

+
β

d
,(3.25)

a < a2 if
1
p

+
α − 1

d
>

1
q

+
β

d
.(3.26)

Using (3.21), (3.25) and (3.26), we derive from (3.22), and (3.23) that

(3.27)
1
τ

+
γ

d
<

1
τ2

+
γ2

d
and

(1
τ

+
γ

d

)( 1
τ2

+
γ2

d

)
> 0.

It follows from (3.24), (3.27), and Hölder’s inequality that

‖|x|γu‖Lτ(Rd \B1) ≤ C‖|x|γ2u‖Lτ2 (Rd ).

Applying Theorem 3.1 (see also Remark 3.2), we have

‖|x|γ2u‖Lτ2 (Rd ) ≤ C‖|x|α∇u‖a2

Lp(Rd )‖|x|βu‖(1−a2)
Lq(Rd ) ≤ C,
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which yields

(3.28) ‖|x|γu‖Lτ(Rd \B1) ≤ C.

We next choose a2 such that

a < a2 if
1
p

+
α − 1

d
<

1
q

+
β

d
,(3.29)

a2 < a if
1
p

+
α − 1

d
>

1
q

+
β

d
.(3.30)

Using (3.21), (3.29) and (3.30), we derive from (3.22) and (3.23) that

(3.31)
1
τ2

+
γ2

d
<

1
τ

+
γ

d
and

(1
τ

+
γ

d

)( 1
τ2

+
γ2

d

)
> 0.

It follows from (3.24), (3.31), and Hölder’s inequality that

‖|x|γu‖Lτ(B1) ≤ C‖|x|γ2u‖Lτ2 (Rd ).

Applying Theorem 3.1 (see also Remark 3.2), we have

‖|x|γ2u‖Lτ2 (Rd ) ≤ C‖|x|α∇u‖a2

Lp(Rd )‖|x|βu‖(1−a2)
Lq(Rd ) ≤ C,

which yields

(3.32) ‖|x|γu‖Lτ(Rd \B1) ≤ C.

The conclusion now follows from (3.28) and (3.32). �

Remark 3.3. Using the approach in the proof of [21, Theorem 2], one can
prove that, for p > 1,

(3.33) Iδ (u, α) ≤ C
∫
Rd

∫
Sd−1

|x|pα|M(σ,∇u)(x)|p dσ dx,

where

M(σ,∇u)(x) := sup
r>0

1
r

∫ r

0
|∇u(x + sσ) · σ| ds.

We claim that, for −1/p < α < 1 − 1/p, we have
(3.34)∫

Rd
|x|pα|M(σ,∇u)(x)|pdσdx ≤ C

∫
Rd

|x|pα|∇u(x) · σ|pdx, for all σ ∈ S
d−1,

for some positive constant C independent of σ and u. Then, combining (3.33) and
(3.34) yields

(3.35) Iδ (u, α) ≤ C
∫
Rd

|x|pα|∇u|p dx,
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as mentioned in Remark 1.2. For simplicity, we assume that

σ = ed = (0, . . . , 0, 1) ∈ R
d

and prove (3.34). We have, for any bounded interval (a, b) and for any x′ ∈ Rd−1,

(3.36) −
∫ b

a
(|x′| + |s|)pα ds

(
−
∫ b

a
(|x′| + |s|)−pα/(p−1) ds

)p−1

≤ C,

for some positive constantC independent of (a, b) and x′ since−1/p < α < 1−1/p.
Applying the theory of maximal functions with weights due to Muckenhoupt [20,
Corollary 4] (see also [16, Theorem 1]), which holds whenever the weight satisfies
(3.36), we obtain∫

Rd
|x|pα|M(ed ,∇u)(x)|p dx

≤ C
∫
Rd−1

∫
R

(|x′| + |xd |)pα|M(ed ,∇u)(x′, xd )|p dxd dx′

≤ C
∫
Rd−1

∫
R

(|x′| + |xd |)pα|∂xd u(x′, xd )|p dxd dx′

≤ C
∫
Rd

|x|pα|∇u|p dx.

The claim (3.34) is proved.

4 Results in bounded domains

In this section, we present some results in the spirit of Theorems 1.1 and 3.1 for a
smooth bounded domain �. As a consequence of Theorem 1.1 and the extension
argument in the proof of Lemma 3.1, we obtain

Proposition 4.1. Let d ≥ 1, 1 ≤ p ≤ d, � � BR a smooth open subset of Rd ,
and u ∈ Lp(�). We have

(i) if 1 ≤ p < d, then∫
�

|u(x)|p
|x|p dx ≤ C�(Iδ (u,�) + ‖u‖p

Lp(�) + δ p),

(ii) if p > d and supp u ⊂ �̄ \ Br, then∫
�

|u(x)|p
|x|p dx ≤ C�(Iδ (u,�) + ‖u‖p

Lp(�) + rd−pδ p),

(iii) if p = d ≥ 2, then
∫

�\Br

|u(x)|d
|x|d lnd (2R/|x|) dx ≤ C�(Iδ (u,�) + ‖u‖p

Lp(�) + ln(2R/r)δd ),



HARDY AND CAFFARELLI–KOHN–NIRENBERG INEQUALITIES 795

(iv) if p = d ≥ 2 and supp u ⊂ � \ Br, then
∫

�∩BR

|u(x)|d
|x|d lnd (2|x|/r) dx ≤ C�(Iδ (u,�) + ‖u‖p

Lp(�) + ln(2R/r)δd).

Here C� denotes a positive constant depending only on p and �.

Using Theorem 1.2, we derive

Proposition 4.2. Let d ≥ 2, 1 < p < d, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R,
0 ∈ � ⊂ BR a smooth bounded open subset of Rd , and u ∈ Lp(�) be such that

1
τ

+
γ

d
= a

(1
p

+
α − 1

d

)
+ (1 − a)

(1
q

+
β

d

)
,

and, with γ = aσ + (1 − a)β,

0 ≤ α − σ ≤ 1.

We have

(i) if 1/τ + γ/d > 0, then
(∫

�
|x|γτ|u|τ dx

)1/τ

≤ C(Iδ (u,�, α) + ‖u‖p
Lp(�) + δ p)a/p‖|x|βu‖(1−a)

Lq(�),

(ii) if 1/τ + γ/d < 0 and supp u ⊂ � \ {0}, then
(∫

�
|x|γτ|u|τ dx

)1/τ

≤ C(Iδ (u,�, α) + ‖u‖p
Lp(�) + δ p)a/p‖|x|βu‖(1−a)

Lq(�),

(iii) if 1/τ + γ/d = 0 and τ > 1, then
(∫

�\Br

|x|γτ
lnτ(2R/|x|) |u|τ dx

)1/τ

≤ C(Iδ (u,�, α) + ‖u‖p
Lp(�) + δ p ln(2R/r))a/p‖|x|βu‖(1−a)

Lq(�),

(iv) if 1/τ + γ/d = 0, τ > 1, and suppu ⊂ � \ Br, then
(∫

�

|x|γτ
lnτ(2|x|/r) |u|τ dx

)1/τ

≤ C(Iδ (u,�, α) + ‖u‖p
Lp(�) + δ p ln(2R/r))a/p‖|x|βu‖(1−a)

Lq(�) .

Here C denotes a positive constant independent of u and δ .

Proof. Let v be the extension of u in R
d as in the proof of Lemma 3.1. As in

the proof of Lemma 3.1, we have, since 0 ∈ �,

I2δ (v, α) ≤ C
(
Iδ (u,�, α) + ‖u‖Lp(�)

)
.
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We also have, since 0 ∈ �,

‖|x|βv‖Lq(Rd ) ≤ C‖|x|βu‖Lq(�).

The conclusion now follows from Theorem 3.1. �
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ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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