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1. Introduction

This paper presents an asymptotic mean value property for harmonic functions for a class of anisotropic 
nonlocal operators. To introduce the argument, we notice that as known from elementary PDEs facts, a C2

function u : Ω ⊂ R
n → R is harmonic in Ω (i.e. it holds that Δu = 0 in Ω) if and only if it satisfies the 

mean value property, that is
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u(x) = −
ˆ

Br(x)

u(y)dy, whenever Br(x) ⊂ Ω.

As a matter of fact, this condition can be relaxed to a pointwise formulation by saying that u ∈ C2(Ω)
satisfies Δu(x) = 0 at a point x ∈ Ω if and only if

u(x) = −
ˆ

Br(x)

u(y)dy + o(r2), as r → 0. (1.1)

This asymptotic formula holds true also in the viscosity sense for any continuous function. A similar property 
can be proved for quasi-linear elliptic operators such as the p-Laplace operator −Δpu in the asymptotic 
form, as the radius r of the ball vanishes. More precisely, Manfredi, Parviainen and Rossi proved in [20]
that, if p ∈ (1, ∞], a continuous function u : Ω ⊂ R

n → R is p-harmonic in Ω in viscosity sense if and only if

ϕ(x) ≥ (≤) p− 2
2p + 2n

(
max
Br(x)

ϕ + min
Br(x)

ϕ
)

+ 2 + n

p + n
−
ˆ

Br(x)

ϕ(y)dy + o(r2), (1.2)

for any ϕ ∈ C2 such that u − ϕ has a strict minimum (strict maximum for ≤) at x ∈ Ω at the zero 
level. Notice that formula (1.2) reduces to (1.1) for p = 2. Formula (1.2) holds in the classical sense for 
smooth functions, at those points x ∈ Ω such that ∇u(x) 	= 0. On the other hand, the case p = ∞ offers a 
counterxample for the validity of (1.2) in the classical sense, since the function |x|4/3−|y|4/3 is ∞-harmonic 
in R2 in the viscosity sense but (1.2) fails to hold pointwisely. If p ∈ (1, ∞) and n = 2 Arroyo and Llorente [4]
(see also [18]) proved that the characterization holds in the classical sense. The limit case p = 1 was finally 
investigated in [16].

Since the local (linear and nonlinear) case is well understood, it is natural to wonder about the validity 
of some kind of asymptotic mean value property in the nonlocal case. As a first approach, we want to 
investigate this type of property for a nonlocal, linear, anisotropic operator, defined as

Lu(x) =
∞̂

0

dρ

ˆ

Sn−1

da(ω)δ(u, x, ρω)
ρ1+2s , (1.3)

where

δ(u, x, y) := 2u(x) − u(x− y) − u(x + y).

Here, a is a non-negative measure on Sn−1, finite i.e.

ˆ

Sn−1

da ≤ Λ (1.4)

for some real number Λ > 0. We refer to this type of measure as spectral measure, as it is common in 
the literature. We notice that when the measure a is absolutely continuous with respect to the Lebesgue 
measure, i.e. when

da(ω) = a(ω)dH n−1(ω)
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for a suitable, non-negative function a ∈ L1(Sn−1), the operator can be represented (using polar coordinates) 
as

Lu(x) =
ˆ

Rn

δ(u, x, y)a
(

y

|y|

)
dy

|y|n+2s . (1.5)

Moreover, if a ≡ 1 then the formula gets more familiar, as we obtain the well-known fractional Laplace 
operator (see, e.g. [10,12,26] and other references therein).

We remark also that the operator L is pointwise defined in an open set Ω ⊂ R
n when, for instance, 

u ∈ C2s+ε(Ω) ∩ L∞(Rn). (Here, C2s+ε(Ω) denotes C0,2s+ε(Ω) or C1,2s+ε−1(Ω) for a small ε > 0, when 
2s + ε < 1, respectively when 2s + ε ≥ 1.)

As a matter of fact, the operator (1.3) has been widely studied in the literature, being L the generator of 
any stable, symmetric Levy process. In particular, regularity issues for harmonic functions of L have been 
studied in papers like [5–7,15,27] (check also other numerous references therein). There, some additional 
condition are required to the measure, in order to assure regularity. A typical assumption when L is of the 
form (1.5) is

0 < c ≤ a(y) ≤ C in S
n−1,

or less restrictively

a(y) ≥ c > 0 in a subset of positive measure Σ ⊂ S
n−1.

Furthermore, for instance in [5] the measure needs not to be absolutely continuous with respect to the 
Lebesgue measure. In [23,24], the optimal regularity is proved for general operators of the form (1.3), with 
the “ellipticity” assumption

inf
ω∈Sn−1

ˆ

Sn−1

|ω · ω|2s da(ω) ≥ λ > 0 (1.6)

for some real number λ. We note that the assumptions (1.6) are satisfied by any stable operator with 
the spectral measure which is n-dimensional (that is, when the measure is not supported on any proper 
hyperplane of Rn). We will discuss some details related to this ellipticity requirement in Section 4 and in 
Remark 5.2.

In this paper, for (1.3) and (1.4), we will adopt a potential theory approach, by using a “mean kernel”, 
and provide a necessary and sufficient condition for a function to be harmonic for L, in the viscosity sense. 
To be more precise, we denote for some r > 0

M s
r u(x) := c(n, s, a)r2s

∞̂

r

dρ

ˆ

Sn−1

da(ω)u(x + ρω) + u(x− ρω)
(ρ2 − r2)sρ ,

with

c(n, s, a) := sin πs

π

⎛
⎝ ˆ

Sn−1

da

⎞
⎠

−1

.

The following is the main result of the paper.
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Theorem 1.1. Let Ω ⊂ R
n be an open set and u ∈ L∞(Rn). The asymptotic expansion

u(x) = M s
r u(x) + O(r2), as r → 0 (1.7)

holds for all x ∈ Ω in the viscosity sense if and only if

Lu(x) = 0

in the viscosity sense.

We point out here the paper [13], where the author studies a general type of nonlocal operators defined by 
means of mean value kernels. Furthermore, the readers can check [1,9,17] or the very nice recent monograph
[14] and other references therein, for details on the mean kernel and the mean value property for the 
fractional Laplacian.

As further results, we provide some asymptotics for s ↗ 1 of the operator L and of the mean value M s
r . 

We also prove a Bourgain–Brezis–Mironescu type of formula, for a nonlocal norm related to the operator L. 
In fact, as s ↗ 1, we obtain the “integer”, local counterpart of the objects under study.

This paper is organized as follows: in the next section we introduce some notations and some preliminary 
results. Section 3 deals with the viscosity setting and with the proof of Theorem 1.1. In Section 4 we make 
some remarks about the weak setting. In the last Section 5 we study the asymptotic behavior as s ↗ 1 of 
our fractional operators and prove a Bourgain–Brezis–Mironescu type of formula.

2. Preliminary results and notations

Notations
We use the following notations throughout this paper.

• For some r > 0 and any x ∈ R
n

Br(x) := {y ∈ R
n
∣∣ |x− y| < r}, Br := Br(0).

S
n−1 = ∂B1.

• For any x > 0, the Gamma function is (see [3], Chapter 6):

Γ(x) =
∞̂

0

tx−1e−t dt.

• For any x, y > 0, the Beta function is (see [3], Chapter 6):

β(x, y) =
∞̂

0

tx−1

(t + 1)x+y
dt.

We remark as a first thing the following integral identity.

Lemma 2.1. For any r > 0

2 sin πs

π
r2s

∞̂

r

dρ

(ρ2 − r2)sρ = 1.
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Proof. Changing coordinates, we get that

r2s
∞̂

r

dρ

(ρ2 − r2)sρ = 1
2

∞̂

0

dt

ts(t + 1) = β(1 − s, s)
2 = π

2 sin(πs) ,

where we have used formulas 6.2.2 and 6.1.17 in [3]. �
We obtain the asymptotic mean value property for smooth functions, as follows.

Theorem 2.2. Let u ∈ C2(Ω) ∩ L∞(Rn). Then

u(x) = M s
r u(x) + c(n, s, a)r2sLu(x) + O(r2)

as r → 0.

Proof. We fix x ∈ Ω and δ > 0 such that B2δ(x) ⊂ Ω. For any 0 < r < δ, by Lemma 2.1 we have that

u(x) − M s
r u(x) = c(n, s, a)r2s

∞̂

r

dρ

ˆ

Sn−1

da(ω) 2u(x)
(ρ2 − r2)sρ − M s

r u(x)

= c(n, s, a)r2s
∞̂

r

dρ

ˆ

Sn−1

da(ω) δ(u, x, ρω)
(ρ2 − r2)sρ

= c(n, s, a)
∞̂

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
(ρ2 − 1)sρ .

Notice that 1 < δ/r, so we write

u(x) − M s
r u(x)

c(n, s, a) =
∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
(ρ2 − 1)sρ +

δ
rˆ

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
(ρ2 − 1)sρ

=: I1 + I2.

(2.1)

We have that

I1 =
∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

1(
1 − 1

ρ2

)s .

Denote by

t := 1
ρ
∈
(
0, r

δ

)

and for r small enough with a Taylor expansion we have that

(1 − t2)−s = 1 + st2 + o(t2).

So
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I1 =
∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s + s

∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ3+2s

+
∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)o
(
ρ−3−2s) .

Notice that ∣∣∣∣∣∣∣
∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ3+2s

∣∣∣∣∣∣∣ ≤ 4‖u‖L∞(Rn)

ˆ

Sn−1

da

∞̂

δ
r

dρ

ρ3+2s

≤ 2Λ‖u‖L∞(Rn)
r2+2sδ−2−2s

1 − s
.

It follows that

I1 =
∞̂

δ
r

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s + O(r2+2s).

On the other hand we write

I2 =

δ
rˆ

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

+

δ
rˆ

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

(
ρ2s

(ρ2 − 1)s − 1
)
.

Then putting together I1 and I2 into (2.1) we have that

u(x) − M s
r u(x)

c(n, s, a) =
∞̂

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

+

δ
rˆ

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

(
ρ2s

(ρ2 − 1)s − 1
)

+ O(r2+2s)

=
∞̂

0

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

+

δ
rˆ

1

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s

(
ρ2s

(ρ2 − 1)s − 1
)

−
1ˆ

0

dρ

ˆ

Sn−1

da(ω)δ(u, x, rρω)
ρ1+2s + O(r2+2s)

=: r2sLu(x) + J + O(r2+2s).

(2.2)
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Recalling that u ∈ C2(Ω), both for ρ ∈ (1, δ/r) and for ρ ∈ (0, 1) we have that

|δ(u, x, rρω)| ≤ r2ρ2‖u‖C2(Bδ(x)).

We thus obtain

|J | ≤ ‖u‖C2(Ω)r
2
ˆ

Sn−1

da(ω)
( δ

rˆ

1

dρ ρ1−2s
(

ρ2s

(ρ2 − 1)s − 1
)

+
1ˆ

0

dρ ρ1−2s
)

=C
r2(1 + O(r2s))

2(1 − s) .

The last line follows since
ˆ

ρ1−2s
(

ρ2s

(ρ2 − 1)s − 1
)

dρ = −ρ2−2s − (ρ2 − 1)1−s

2 − 2s .

Hence in (2.2) we finally get that

u(x) − M s
r u(x) = c(n, s, a)r2sLu(x) + O(r2).

This concludes the proof of the theorem. �
3. Viscosity setting

We begin by giving the definitions for the viscosity setting. First of all (as in [11]), we define the notion 
of viscosity solution.

Definition 3.1. A function u ∈ L∞(Rn), lower (upper) semi-continuous in Ω is a viscosity supersolution 
(subsolution) to

Lu = 0, and we write Lu ≥ (≤) 0

if for every x ∈ Ω, any neighborhood U = U(x) ⊂ Ω and any ϕ ∈ C2(U) such that

ϕ(x) = u(x)

ϕ(y) < (>)u(y), for any y ∈ U \ {x},

if we let

v =
{
ϕ, in U

u, in R
n \ U

(3.1)

then

Lv(x) ≥ (≤) 0.

A viscosity solution of Lu = 0 is a (continuous) function that is both a subsolution and a supersolution.
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Definition 3.2. A function u ∈ L∞(Rn), lower (upper) semi-continuous in Ω, verifies for any x ∈ Ω

u(x) = M s
r u(x) + O(r2)

as r → 0, in a viscosity sense, if for any neighborhood U = U(x) ⊂ Ω and any ϕ ∈ C2(U) such that

ϕ(x) = u(x)

ϕ(y) < (>)u(y), for any y ∈ U \ {x},

if we let

v =
{
ϕ, in U

u, in R
n \ U

then

v(x) ≥ (≤) M s
r v(x) + O(r2). (3.2)

We can now prove the main theorem of this paper.

Proof of Theorem 1.1. Let x ∈ Ω and any R > 0 be such that BR(x) ⊂ Ω. Let ϕ ∈ C2(BR(x)) be such that

ϕ(x) = u(x)

ϕ(y) < u(y), for any y ∈ BR(x) \ {x}.

We let v be defined as in (3.1), hence v ∈ C2(BR(x)) ∩ L∞(Rn). By Theorem 2.2 we have that

v(x) = M s
r v(x) + c(n, s, a)r2sLv(x) + O(r2). (3.3)

We prove at first that if u satisfies (1.7) in the viscosity sense given by Definition 3.2 then u is a supersolution 
of Lu(x) = 0 in the viscosity sense. Since

v(x) ≥ M s
r v(x) + O(r2)

dividing by r2s in (3.3) and sending r → 0, it follows that

Lv(x) ≥ 0.

At the same manner, one proves that u is a subsolution of Lu(x) = 0 in the viscosity sense.
In order to prove the other implication, if u is a supersolution, one has from (3.3) that

lim sup
r→0

v(x) − M s
r v(x)

r2s ≥ 0,

hence (3.2). In the same way, one gets the conclusion when u is a subsolution. �
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4. Some remarks about the weak setting

In this section we consider the weak setting, and in particular provide the condition for a weak solution 
to be a pointwise, and a viscosity solution.2 In this sense, Theorem 1.1 applies also to weak solutions. We 
consider here Ω to be an open bounded set, with C2 boundary.

Let us now define the following norms, semi-norms and spaces:

[u]H1
a(Rn) :=

⎛
⎝ ˆ

Rn

dx

ˆ

Sn−1

da(ω) (∇u(x) · ω)2
⎞
⎠

1
2

, ‖u‖H1
a(Rn) := [u]H1

a(Rn) + ‖u‖L2(Rn),

H1
a(Rn) :=

{
u ∈ L2(Rn)

∣∣ [u]H1
a(Rn) < +∞

}
, H1

a,0(Rn) := C∞
c (Rn)

‖·‖H1
a(Rn) ,

and

[u]Hs
a(Rn) :=

⎛
⎝ ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω) (u(x) − u(x + ρω))2

|ρ|1+2s

⎞
⎠

1
2

.

Taking into account that

‖v‖ :=

⎛
⎝ ˆ

Sn−1

(v · ω)2da(ω)

⎞
⎠

1
2

, v ∈ R
n,

is a norm in Rn, it is readily seen that H1
a(Rn) is a Banach space.

We take the operator L that satisfies the ellipticity assumption (1.6) and we consider weak solutions of 
the equation

Lu = 0 in Ω.

In particular, we take u ∈ L∞(Rn) of finite energy, i.e. such that

[u]Hs
a(Rn) < ∞, (4.1)

and look for critical points of the energy

E(u) := 1
4

ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω) (u(x) − u(x + ρω))2

|ρ|1+2s .

Then for any ϕ ∈ C∞
c (Ω), we compute formally

E ′(u)[ϕ] = 1
2

ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)
(ϕ(x) − ϕ(x + ρω)

)
|ρ|1+2s .

So we say that u ∈ L∞(Rn) of finite energy is a weak solution of

Lu = 0 in Ω

2 The equivalence between weak and viscosity solutions for the fractional Laplace operator is addressed for instance, in [25]. See 
also [21] for the variational analysis of nonlocal problems driven by fractional operators.
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if and only if

E ′(u)[ϕ] = 0, ∀ϕ ∈ C∞
c (Ω). (4.2)

Remark 4.1. Let us justify the fact that if u ∈ L∞(Rn) ∩C2(Ω), of finite energy satisfies (4.2), then Lu = 0
in Ω pointwisely. We have that

E ′(u)[ϕ] = 1
2

ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)
ϕ(x)

|ρ|1+2s

− 1
2

ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)
ϕ(x + ρω)

|ρ|1+2s

= 1
2

ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
2u(x) − u(x + ρω) − u(x− ρω)

)
ϕ(x)

|ρ|1+2s

=
ˆ

Rn

dxLu(x)ϕ(x),

where we have used the change of variable y = x + ρω and the symmetry in ρ. So indeed E ′(u)[ϕ] = 0
for any ϕ ∈ C∞

c (Ω) implies that Lu = 0 almost everywhere in Ω. Furthermore, proceeding as in [26, 
Proposition 2.1.4] we have that Lu is continuous in Ω, hence Lu = 0 pointwise in Ω.

The following is the main result of this section.

Theorem 4.2. Let u ∈ L∞(Rn) of finite energy be a weak solution of

Lu = 0 in Ω.

Then for any Ω′ ⊂⊂ Ω we have that u ∈ C(Ω′) is a viscosity solution of

Lu = 0 in Ω′.

Proof. First of all notice that thanks to [23, Theorem 1.1, a)] we have that u ∈ C(Ω′). Using the approach 
in Theorem [25, Theorem 1], we do the following. We consider a sequence of mollifiers of u, more precisely 
we take ϕ ∈ C∞

c (Ω′) and

ϕε(x) = 1
εn

ϕ
(x
ε

)
, uε(x) = u ∗ ϕε(x) =

ˆ

Rn

u(x− y)ϕε(y) dy.

The basic properties of mollifiers give us that

uε ∈ C∞(Rn)

uε −−−−→
ε→0

u a.e. in R
n

uε −−−−→
ε→0

u locally uniformly in Ω′.

(4.3)

Furthermore we have that (for ε small enough) in the weak sense

Luε = 0 in Ω′. (4.4)
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Indeed for any ψ ∈ C∞
c (Ω′), using Fubini we get that

E ′(uε)[ψ] =
ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
uε(x) − uε(x + ρω)

)(
ψ(x) − ψ(x + ρω)

)
|ρ|1+2s

=
ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)ψ(x) − ψ(x + ρω)
|ρ|1+2s

ˆ

Rn

dz
(
u(z) − u(z + ρω)

)
ϕε(x− z)

=
ˆ

Rn

dz

ˆ

R

dρ

ˆ

Sn−1

da(ω)u(z) − u(z + ρω)
|ρ|1+2s

ˆ

Rn

dx
(
ψ(x) − ψ(x + ρω)

)
ϕε(x− z)

=
ˆ

Rn

dz

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
u(z) − u(z + ρω)

)(
ψε(z) − ψε(z + ρω)

)
|ρ|1+2s

= E ′(u)[ψε],

where

ψε(z) =
ˆ

Rn

ψ(x)ϕε(x− z) dx.

Notice that (for ε small) ψε ∈ C∞
c (Ω). Since u is a weak solution of Lu = 0 in Ω, the claim (4.4) follows. 

Recalling that uε is smooth in Ω′, we know that Luε(x) is well defined for any x ∈ Ω′. According to 
Remark 4.1 we get that pointwise in Ω′

Luε(x) = 0.

Taking v that touches uε at x0 ∈ Ω′ from below (as defined in (3.1)), i.e. uε(x0) = v(x0), with v − uε ≤ 0
in Rn we get that

Lv(x0) =
∞̂

0

dρ

ˆ

Sn−1

da(ω)2v(x0) − v(x0 + ρω) − v(x0 − ρω)
|ρ|1+2s ≥ Luε(x0) = 0.

This proves that uε is a supersolution. In the same way, one can prove that uε is a subsolution, thus

Luε = 0

also in the viscosity sense. It is enough now to observe that the operator L satisfies the first two conditions 
of [11, Definition 3.1] (one can prove the second item as in [26, Proposition 2.1.4]). Taking into account 
(4.3), we can use [11, Corollary 4.6] to conclude that

Lu = 0

in Ω′ in the viscosity sense. �
Also, we notice that if one takes u ∈ L∞(Rn) ∩Cα(Rn) for some α > 0 such that α+2s is not an integer, 

according to [23, Theorem 1.1, b)] we get that u ∈ Cα+2s(Ω′) for any Ω′ ⊂⊂ Ω. As remarked in [23], one 
cannot remove the hypothesis that u ∈ Cα(Rn), in order to obtain the C2s+α regularity of u. So, in this 
way, a weak solution of Lu = 0 in Ω is a both viscosity and pointwise solution in Ω′.
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5. Asymptotics as s ↗ 1

In this section we provide some asymptotic properties on the operator L, the mean value defined by 
M s

r and the semi-norm in (4.1). We study their limit behavior as s approaches the upper value 1. Indeed, 
re-normalizing (multiplying by (1 − s)) and sending s ↗ 1, we obtain the local counterpart of the operators 
under study. It is interesting in our opinion, from this point of view, to understand what is the influence of 
the non symmetric measure da in the limit, with respect to having the dH n−1 measure on the hypersphere.

We begin by showing the following.

Proposition 5.1. Let u ∈ C2(Ω) ∩ L∞(Rn). Then for all x ∈ Ω

lim
s↗1

(1 − s)Lu(x) = −1
2

n∑
i,j=1

⎛
⎝ ˆ

Sn−1

da(ω)ωiωj

⎞
⎠ ∂2

iju(x).

Proof. We fix x ∈ Ω. By a Taylor expansion, we have that for every ρ > 0 (such that Bρ(x) ⊂ Ω) and every 
ω ∈ S

n−1, there exists h := h(ρ, ω), h := h(ρ, ω) ∈ [0, ρ] such that

δ(u, x, ρω) = −ρ2

2 〈D2u(x + hω)ω, ω〉 − ρ2

2 〈D2u(x− hω)ω, ω〉.

Since u ∈ C2(Ω), we have that for any ε > 0 there exists r := r(ε) > 0 such that∣∣∣〈(D2u(x + hω) −D2u(x))ω, ω
〉∣∣∣ ≤ ∣∣∣D2u(x + hω) −D2u(x)

∣∣∣|ω|2 < ε,

whenever |h| = |hω| ≤ ρ < r.
(5.1)

Fixing an arbitrary ε and taking the corresponding r := r(ε), we write

Lu(x) =
rˆ

0

dρ

ˆ

Sn−1

da(ω)δ(u, xρω)
ρ1+2s +

∞̂

r

dρ

ˆ

Sn−1

da(ω)δ(u, xρω)
ρ1+2s

= − 1
2

rˆ

0

dρ

ˆ

Sn−1

da(ω)ρ1−2s〈D2u(x + hω)ω, ω
〉

− 1
2

rˆ

0

dρ

ˆ

Sn−1

da(ω)ρ1−2s〈D2u(x− hω)ω, ω
〉

+
∞̂

r

dρ

ˆ

Sn−1

da(ω)δ(u, xρω)
ρ1+2s

= :
(
−1

2

)(
I1
r,s + I2

r,s

)
+ Jr,s.

Now notice that

I1
r,s =

rˆ

0

dρ

ˆ

Sn−1

da(ω)
〈(

D2u(x + hω) −D2u(x)
)
ω, ω

〉
ρ1−2s

+
rˆ
dρ

ˆ
da(ω)〈D2u(x)ω, ω〉ρ1−2s.
0 Sn−1
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By using (5.1) we notice that

∣∣∣∣∣∣
rˆ

0

dρ

ˆ

Sn−1

da(ω)
〈(

D2u(x + hω) −D2u(x)
)
ω, ω

〉
ρ1−2s

∣∣∣∣∣∣ ≤
rˆ

0

dρ

ˆ

Sn−1

da(ω)ερ1−2s

≤ εΛ r2−2s

2(1 − s) .

On the other hand, we get that

rˆ

0

dρ

ˆ

Sn−1

da(ω)〈D2u(x)ω, ω〉ρ1−2s =
n∑

i,j=1
∂2
iju(x)

rˆ

0

dρ ρ1−2s
ˆ

Sn−1

da(ω)ωiωj

= r2−2s

2(1 − s)

n∑
i,j=1

∂2
iju(x)

ˆ

Sn−1

da(ω)ωiωj

= r2−2s

2(1 − s)

n∑
i,j=1

mij∂
2
iju(x),

(5.2)

using the notation

mij =
ˆ

Sn−1

ωiωjda(ω).

Multiplying by (1 − s), letting s ↗ 1 we get that

lim
s↗1

(1 − s)I1
r,s = 1

2

n∑
i,j=1

mij∂
2
iju(x) + O(ε).

In the same way, one gets the same limit for I2
r,s. Notice also that for s close to 1 (hence when for instance 

s > 1/2)

|Jr,s| ≤
2r−2s‖u‖L∞(Rn)Λ

s
.

Thus we obtain

lim
s↗1

(1 − s)Jr,s = 0.

Using the arbitrariness of ε, it follows that

lim
s↗1

(1 − s)Lu(x) = −1
2

n∑
i,j=1

mij∂
2
iju(x)

hence the conclusion. �
The interested reader can check also Section 3 (and the Appendix U) in [2] for the asymptotics as s → 1

of another (general) type of nonlocal operator.
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Remark 5.2. Notice that the matrix associated to the local operator, given by the constant coefficients

mi,j =
ˆ

Sn−1

da(ω)ωiωj i, j = 1, . . . , n

is symmetric. Then that the local operator that we have obtained, i.e.

Iu := −1
2

n∑
i,j=1

mij∂
2
iju(x)

is the classical Laplacian, up to a change of coordinates, provided that the matrix is also positive definite. 
In fact, in order to have this, one should ask that

inf
ω∈Sn−1

ˆ

Sn−1

|ω · ω|2 ≥ λ > 0. (5.3)

In that case, indeed for any ω ∈ S
n−1 we have that

n∑
i,j=1

ωiωj

ˆ

Sn−1

da(ω)ωiωj =
n∑

i,j=1

ˆ

Sn−1

da(ω)ωiωiωjωj =
ˆ

Sn−1

da(ω)|ω · ω|2.

Notice that (5.3) is true if the ellipticity assumption (1.6) holds, uniformly in s.

Furthermore, we have the next result.

Proposition 5.3. Let u ∈ C1(Ω) ∩ L∞(Rn). For all x ∈ Ω and any r > 0 with B2r(x) ⊂ Ω

lim
s↗1

M s
r u(x) = 1

2

⎛
⎝ ˆ

Sn−1

da

⎞
⎠

−1 ˆ

Sn−1

da(ω) (u(x− rω) + u(x + rω)) .

Proof. We fix ε ∈ (0, 1), which we will take arbitrarily small in the sequel. We have that

M s
r u(x)

c(n, s, a) = r2s
∞̂

r

dρ

ˆ

Sn−1

da(ω)u(x + ρω) + u(x− ρω)
(ρ2 − r2)sρ

=
∞̂

1

dρ

ˆ

Sn−1

da(ω)u(x + rρω) + u(x− rρω)
(ρ2 − 1)sρ

=
∞̂

1+ε

dρ

ˆ

Sn−1

da(ω)u(x + rρω) + u(x− rρω)
(ρ2 − 1)sρ

+
1+εˆ

1

dρ

ˆ

Sn−1

da(ω)u(x + rρω) + u(x− rρω)
(ρ2 − 1)sρ

=: I1 + I2.

(5.4)

Now
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|I1| ≤
2ˆ

1+ε

dρ

ˆ

Sn−1

da(ω) |u(x + rρω) + u(x− rρω)|
(ρ2 − 1)sρ

+
∞̂

2

dρ

ˆ

Sn−1

da(ω) |u(x + rρω) + u(x− rρω)|
(ρ2 − 1)sρ

≤ 2‖u‖C(B2r(x))

ˆ

Sn−1

da

2ˆ

1+ε

dρ

(ρ− 1)s(ρ + 1)sρ

+ 2‖u‖L∞(Rn)

ˆ

Sn−1

da

∞̂

2

dρ

(ρ2 − 1)sρ

≤
2Λ‖u‖C(B2r(x))

(1 + ε)(2 + ε)s

2ˆ

1+ε

dρ

(ρ− 1)s + 4Λ‖u‖L∞(Rn)

∞̂

2

dρ

ρ1+2s

≤
2Λ‖u‖C(B2r(x))(1 − ε1−s)

1 − s
+

4Λ‖u‖L∞(Rn)

s
.

Notice that since

lim
s↗1

c(n, s, a)
1 − s

=

⎛
⎝ ˆ

Sn−1

da

⎞
⎠

−1

we obtain

lim
s→1

c(n, s, a)I1 = 0.

On the other hand, integrating by parts, we get that

1+εˆ

1

dρ
u(x− rρω)
(ρ2 − 1)sρ = ε1−su (x− r(1 + ε)ω)

(1 − s)(ε + 2)s(1 + ε) − 1
1 − s

1+εˆ

1

dρ(ρ− 1)1−s d

dρ

u(x− rρω)
(ρ + 1)sρ .

We have that
∣∣∣∣ ddρ u(x− rρω)

(ρ + 1)sρ

∣∣∣∣ ≤ c(r)‖u‖C1(B2r(x)),

hence
∣∣∣∣∣∣

1+εˆ

1

dρ
u(x− rρω)
(ρ2 − 1)sρ − ε1−su (x− r(1 + ε)ω)

(1 − s)(ε + 2)s(1 + ε)

∣∣∣∣∣∣ ≤
ε2−s

1 − s
c(r)‖u‖C1(B2r(x)).

In the same way, we get that

∣∣∣∣∣∣
1+εˆ

dρ
u(x + rρω)
(ρ2 − 1)sρ − ε1−su (x + r(1 + ε)ω)

(1 − s)(ε + 2)s(1 + ε)

∣∣∣∣∣∣ ≤
ε2−s

1 − s
c(r)‖u‖C1(B2r(x)).
1
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It follows that

∣∣∣∣I2−
ε1−s

(1 − s)(ε + 2)s(1 + ε)

ˆ

Sn−1

da(ω)
(
u (x− r(1 + ε)ω) + u (x + r(1 + ε)ω)

)∣∣∣∣
≤ ε2−s

1 − s
c(r)Λ‖u‖C1(B2r(x)).

Multiplying by c(n, s, a) and sending s ↗ 1 we get that

lim
s↗1

c(n, s, a)I2 =
(´

Sn−1 da
)−1

(ε + 2)(ε + 1)

ˆ

Sn−1

da(ω)
(
u(x− r(1 + ε)ω) + u(x + r(1 + ε)ω)

)
+ O(ε).

For ε → 0 we get that

lim
s↗1

c(n, s, a)I2 = 1
2

⎛
⎝ ˆ

Sn−1

da

⎞
⎠

−1 ˆ

Sn−1

da(ω)
(
u(x− rω) + u(x + rω)

)
.

So putting together the limits involving I1, I2 into (5.4) we obtain the conclusion. �
We use now the norms introduced at the beginning of Section 4. We have the next inequality.

Proposition 5.4. Let u ∈ H1
a(Rn). Then there exists C > 0 independent of s ∈ (1/2, 1) with

(1 − s)[u]2Hs
a(Rn) ≤ C‖u‖2

H1
a(Rn).

Proof. We have that

ˆ

Rn

dx

ˆ

Sn−1

da(ω) (u(x) − u(x + ρω))2 ≤ ρ2[u]2H1
a(Rn).

Indeed, for all ρ ∈ R, we have

ˆ

Rn

dx

ˆ

Sn−1

da(ω) (u(x) − u(x + ρω))2 ≤ ρ2
ˆ

Rn

dx

ˆ

Sn−1

da(ω)

⎛
⎝ 1ˆ

0

∇u(x + tρω) · ω dt

⎞
⎠

2

≤ ρ2
ˆ

Rn

dx

ˆ

Sn−1

da(ω)
1ˆ

0

dt (∇u(x + tρω) · ω)2

≤ ρ2
1ˆ

0

dt

ˆ

Rn

dx

ˆ

Sn−1

da(ω) (∇u(x + tρω) · ω)2

= ρ2[u]2H1
a(Rn).

Therefore
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(1 − s)‖u‖2
Hs

a(Rn) ≤ 2(1 − s)[u]2H1
a(Rn)

1ˆ

0

ρ1−2s dρ

+ (1 − s)
∞̂

1

dρρ−1−2s
ˆ

Rn

dx

ˆ

Sn−1

da(ω)(u(x) − u(x + ρω))2

+ (1 − s)
∞̂

1

dρρ−1−2s
ˆ

Rn

dx

ˆ

Sn−1

da(ω)(u(x) − u(x− ρω))2

≤ C([u]2H1
a(Rn) + ‖u‖2

L2(Rn)),

for some positive constant C. �
In what follows, we prove a Bourgain–Brezis–Mironescu type property [8] for anisotropic norms. A dif-

ferent type of anisotropicity in the formula was recently investigated in [22] and in [19].

Proposition 5.5 (BBM type formula). Let u ∈ H1
a,0(Rn). Then, we have the formula

lim
s→1

(1 − s)[u]2Hs
a(Rn) = [u]2H1

a(Rn). (5.5)

Proof. We prove (5.5) first for any u ∈ C1
c (Rn). We write

ˆ

Rn

dx

ˆ

R

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)2
ρ1+2s

=
ˆ

Rn

dx

∞̂

0

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)2
ρ1+2s

+
ˆ

Rn

dx

∞̂

0

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x− ρω)

)2
ρ1+2s .

(5.6)

Since u ∈ C1 by the mean value theorem, there exist h := h(ρ, ω), h := h(ρ, ω) ∈ [0, ρ] such that

u(x + ρω) − u(x) = ρω · ∇u(x + hω) and

u(x− ρω) − u(x) = − ρω · ∇u(x + hω).

Furthermore, for any ε > 0 there exists r := r(ε) > 0 such that

|∇u(x + hω) −∇u(x)| < ε whenever |h| = |hω| < ρ < r. (5.7)

We fix ε > 0 (to be taken arbitrarily small in the sequel) and consider the correspondent r := r(ε). We then 
write
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ˆ

Rn

dx

∞̂

0

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)2
ρ1+2s

=
ˆ

Rn

dx

rˆ

0

dρ

ˆ

Sn−1

da(ω)ρ1−2s(∇u(x + hω) · ω
)2

+
ˆ

Rn

dx

∞̂

r

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)2
ρ1+2s

=: I1
r,s + I2

r,s.

Notice that

I1
r,s =

ˆ

Rn

dx

rˆ

0

dρρ1−2s
ˆ

Sn−1

da(ω)
(
∇u(x + hω) · ω

)2 − (
∇u(x) · ω

)2

+
ˆ

Rn

dx

rˆ

0

dρρ1−2s
ˆ

Sn−1

da(ω)
(
∇u(x) · ω

)2
= J1

r,s + J2
r,s.

From (5.7), we have that
∣∣∣(∇u(x + hω) · ω

)2 − (
∇u(x) · ω

)2∣∣∣
≤

∣∣∣ (∇u(x + hω) −∇u(x)
)
· ω

∣∣∣ ∣∣∣ (∇u(x + hω) −∇u(x)
)
· ω

∣∣∣ ≤ 2ε‖u‖C1(Rn).

Therefore, for some compact set K ⊂ R
n independent of ε, there holds

∣∣J1
r,s

∣∣ ≤ εΛ‖u‖C1(Rn)
r2−2s

2(1 − s) |K|.

Also

J2
r,s = r2−2s

2(1 − s)

ˆ

Rn

dx

ˆ

Sn−1

da(ω)(∇u(x) · ω)2.

It follows that

lim
s→1

(1 − s)I1
r,s = 1

2

ˆ

Rn

dx

ˆ

Sn−1

da(ω)(∇u(x) · ω)2 + O(ε).

Furthermore we get that

∣∣I2
r,s

∣∣ ≤ 2‖u‖2
L2(Rn)Λ

∞̂

r

ρ−1−2s dρ =
r2s‖u‖2

L2(Rn)Λ
s

,

hence

lim(1 − s)I2
r,s = 0.
s→1
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We finally get that

lim
s→1

(1 − s)
ˆ

Rn

dx

∞̂

0

dρ

ˆ

Sn−1

da(ω)
(
u(x) − u(x + ρω)

)2
ρ1+2s = 1

2

ˆ

Sn−1

da(ω)(∇u(x) · ω)2 + O(ε).

We obtain the same limit for the second term in (5.6) and get (5.5) for u ∈ C1
c (Rn) by sending ε → 0. Let 

now u ∈ H1
a,0(Rn). There exists {uj}j ∈ C∞

c (Rn) such that

‖u− uj‖H1
a(Rn) → 0 as j → ∞.

Then, according to Proposition 5.4 we have that

(1 − s)
(
[u]Hs

a(Rn) − [uj ]Hs
a(Rn)

)2 ≤ (1 − s)[u− uj ]2Hs
a(Rn) ≤ C‖u− uj‖2

H1
a(Rn) → 0 as j → 0.

The conclusion (5.5) for u ∈ H1
a,0(Rn) immediately follows. �

Remark 5.6. If da = dH n−1, the left-hand side of the formula in Proposition 5.5 boils down to

lim
s→1

(1 − s)
ˆ

Rn

dx

∞̂

0

dρ

ˆ

Sn−1

dH n−1(ω)
(
u(x) − u(x + ρω)

)2
|ρ|1+2s ,

while the right-hand side to

1
2

ˆ

Rn

dx

ˆ

Sn−1

dH n−1(ω)(ω · ∇u(x))2 = Qn,2

2

ˆ

Ω

|∇u(x)|2dx

where

Qn,2 =
ˆ

Sn−1

|σ · ω|2dH n−1(ω)

for some σ ∈ S
n−1. This is consistent with the usual Brezis–Bourgain–Mironescu formula (see [8]).
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