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Abstract. We prove a global compactness result for Palais-Smale sequences associated with
a class of quasi-linear elliptic equations on exterior domains.

1. Introduction and main result

Let�be a smooth domain of R
N with a bounded complement and N > p > m > 1.

The main goal of this paper is to obtain a global compactness result for the Palais-
Smale sequences of the energy functional associated with the following quasi-linear
elliptic equation

− div(Lξ (Du))− div(Mξ (u, Du))+ Ms(u, Du)+ V (x)|u|p−2u = g(u) in�,

(1.1)

where u ∈ W 1,p
0 (�) ∩ D1,m

0 (�), meant as the completion of the space
D(�) of smooth functions with compact support, with respect to the norm
‖u‖W 1,p(�)∩D1,m(�) = ‖u‖p +‖u‖m, having set ‖u‖p := ‖u‖W 1,p(�) and ‖u‖m :=
‖Du‖Lm (�). We assume that V is a continuous function on �,

lim|x |→∞ V (x) = V∞ and inf
x∈� V (x) = V0 > 0.

As known, lack of compactness may occur due to the lack of compact embeddings
for Sobolev spaces on � and since the limiting equation on R

N

− div(Lξ (Du))− div(Mξ (u, Du))+ Ms(u, Du)+ V∞|u|p−2u = g(u) in R
N ,

(1.2)
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120 C. Mercuri, M. Squassina

with u ∈ W 1,p(RN )∩ D1,m(RN ), is invariant by translations. A particular case of
(1.1) is

−�pu − div(a(u)|Du|m−2 Du)+ 1

m
a′(u)|Du|m + V (x)|u|p−2u

= |u|σ−2u in�, (1.3)

where �pu := div(|Du|p−2 Du), for a suitable function a ∈ C1(R; R
+), or the

even simpler case where a is constant, namely

−�pu −�mu + V (x)|u|p−2u = |u|σ−2u in�. (1.4)

Since the pioneering work of Benci and Cerami [3] dealing with the special case
L(ξ) = |ξ |2/2 and M(s, ξ) ≡ 0, many papers have been written on this subject, see
for instance the bibliography of [16]. Quite recently, in [16], the case L(ξ) = |ξ |p/p
and M(s, ξ) ≡ 0 was investigated. The main point in the present contribution is
the fact that we allow, under suitable assumptions, a quasi-linear term M(u, Du)
depending on the unknown u itself. The typical tools exploited in [3,16], in addition
to the point-wise convergence of the gradients, are some decomposition (splitting)
results both for the energy functional and for the equation, along a given bounded
Palais-Smale sequence (un). To this regard, the explicit dependence on u in the
term M(u, Du) requires a rather careful analysis, see e.g. [1,18] and references
therein. We also refer the reader to the works by Filippucci [12,13] as well as the
recent paper by Filippucci et al. [14] on the existence and nonexistence of large
entire solutions, covering a very general class of quasi-linear equations. We shall
handle our problem (1.1) under the growth condition

ν|ξ |m ≤ M(s, ξ) ≤ C |ξ |m, p − 1 ≤ m < p − 1 + p/N .

The restriction on m, together with the sign condition (1.9) provides, thanks to
the presence of L , the needed a priori regularity on the weak limit of (un), see
Theorems 3.2 and 3.4.

Besides the aforementioned motivations, which are of mathematical interest,
it is worth pointing out that in recent years, some works have been devoted to
quasi-linear operators with double homogeneity, which arise from several prob-
lems of Mathematical Physics. For instance, the reaction diffusion problem ut =
−div(D(u)Du) + �(x, u), where D(u) = dp|Du|p−2 + dm |Du|m−2, dp > 0 and
dm > 0, admitting a rather wide range of applications in biophysics [11], plasma
physics [19] and in the study of chemical reactions [2]. In this framework, u typi-
cally describes a concentration and div(D(u)Du) corresponds to the diffusion with
a coefficient D(u), whereas �(x, u) plays the rǒle of reaction and relates to source
and loss processes. We refer the interested reader to [6] and to the references therein.
Furthermore, a model for elementary particles proposed by Derrick [10] yields to
the study of standing wave solutionsψ(x, t) = u(x)eiωt of the following nonlinear
Schrödinger equation

iψt +�2ψ − b(x)ψ +�pψ − V (x)|ψ |p−2ψ + |ψ |σ−2ψ = 0 in R
N ,

for which we refer the reader e.g. to [4].
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Global compactness for quasi-linear problems 121

In order to state the first main result, assume N > p > m ≥ 2 and

p − 1 ≤ m < p − 1 + p/N , p < σ < p∗, (1.5)

and consider the C2 functions L : R
N → R and M : R × R

N → R such that both
the functions ξ �→ L(ξ) and ξ �→ M(s, ξ) are strictly convex and

ν|ξ |p ≤ |L(ξ)| ≤ C |ξ |p, |Lξ (ξ)| ≤ C |ξ |p−1, |Lξξ (ξ)| ≤ C |ξ |p−2, (1.6)

for all ξ ∈ R
N . Furthermore, we assume

ν|ξ |m ≤ M(s, ξ)| ≤ C |ξ |m, |Ms(s, ξ)| ≤ C |ξ |m, |Mξ (s, ξ)| ≤ C |ξ |m−1,

(1.7)

|Mss(s, ξ)| ≤ C |ξ |m, |Msξ (s, ξ)| ≤ C |ξ |m−1, |Mξξ (s, ξ)| ≤ C |ξ |m−2,

(1.8)

for all (s, ξ) ∈ R × R
N and that the sign condition (cf. [18])

Ms(s, ξ)s ≥ 0, (1.9)

holds for all (s, ξ) ∈ R×R
N . Also, G : R → R is a C2 function with G ′(s) := g(s)

and

|G ′(s)| ≤ C |s|σ−1, |G ′′(s)| ≤ C |s|σ−2, (1.10)

for all s ∈ R. We define

j (s, ξ) := L(ξ)+ M(s, ξ)− G(s), (1.11)

and on W 1,p
0 (�)∩D1,m

0 (�)with ‖u‖W 1,p(�)∩D1,m(�) = ‖u‖p+‖u‖m the functional

φ(u) :=
∫

�

j (u, Du)+
∫

�

V (x)
|u|p

p
.

Finally, on W 1,p(RN ) ∩ D1,m(RN ) with ‖u‖W 1,p(RN )∩D1,m(RN ) = ‖u‖p + ‖u‖m

we define

φ∞(u) :=
∫

RN

j (u, Du)+
∫

RN

V∞
|u|p

p
.

See Sect. 2 for some properties of the functionals φ and φ∞.
The first main global compactness type result is the following

Theorem 1.1. Assume that (1.5)–(1.11) hold and let (un) ⊂ W 1,p
0 (�) ∩ D1,m

0 (�)

be a bounded sequence such that

φ(un) → c φ′(un) → 0 in (W 1,p
0 (�) ∩ D1,m

0 (�))∗
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122 C. Mercuri, M. Squassina

Then, up to a subsequence, there exists a weak solution v0 ∈ W 1,p
0 (�)∩ D1,m

0 (�)

of

−div(Lξ (Du))− div(Mξ (u, Du))+ Ms(u, Du)+ V (x)|u|p−2u = g(u) in�,

a finite sequence {v1, . . . , vk} ⊂ W 1,p(RN ) ∩ D1,m(RN ) of weak solutions of

−div(Lξ (Du))− div(Mξ (u, Du))+ Ms(u, Du)+ V∞|u|p−2u = g(u) in R
N

and k sequences (yi
n) ⊂ R

N satisfying

|yi
n| → ∞, |yi

n − y j
n | → ∞, i �= j, as n → ∞,

‖un − v0 −
k∑

i=1

vi ((· − yi
n)‖W 1,p(RN )∩D1,m(RN ) → 0, as n → ∞,

‖un‖p
p →

k∑
i=0

‖vi‖p
p, ‖un‖m

m →
k∑

i=0

‖vi‖m
m, as n → ∞,

as well as

φ(v0)+
k∑

i=1

φ∞(vi ) = c.

Let us now come to a statement for the cases 1 < m ≤ 2 or 1 < p ≤ 2. Let us
define

L(ξ, h) := |Lξ (ξ+h)−Lξ (ξ)|
|h|p−1 , if 1 < p < 2,

G(s, t) := |G ′(s+t)−G ′(s)|
|t |σ−1 , if 1 < σ < 2,

M(s, ξ, h) := |Mξ (s,ξ+h)−Mξ (s,ξ)|
|h|m−1 , if 1 < m < 2.

If either p < 2, σ < 2 or m < 2, we shall weaken the twice differentiabil-
ity assumptions, by requiring Lξ ∈ C1(RN \ {0}), G ′ ∈ C1(R \ {0}), Mξ ∈
C1(R × (RN \ {0})), Msξ ∈ C0(R × R

N ) and Mss ∈ C0(R × R
N ). Moreover we

assume the same growth conditions for L ,M,G and their derivatives, replacing
only the growth assumptions for Lξξ ,Mξξ ,G ′′ by the following hypotheses:

sup
h �=0, ξ∈RN

L(ξ, h) < ∞, (1.12)

sup
t �=0, s∈R

G(s, t) < ∞, (1.13)

sup
h �=0, (s,ξ)∈R×RN

M(s, ξ, h) < ∞. (1.14)

Conditions (1.12)–(1.13), in some more concrete situations, follow immediately
by homogeneity of Lξ and G ′ (see, for instance, [16, Lemma 3.1]). Similarly,
(1.14) is satisfied for instance when M is of the form M(s, ξ) = a(s)μ(ξ), being
a : R → R

+ a bounded function and μ : R
N → R

+ a C1 strictly convex function
such that μξ is homogeneous of degree m − 1.
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Global compactness for quasi-linear problems 123

Theorem 1.2. Under the additional assumptions (1.12)–(1.14) in the sub-quadratic
cases, the assertion of Theorem 1.1 holds true.

As a consequence of the above results we have the following compactness criterion.

Corollary 1.3. Assume (2.1) below for some δ > 0 and μ > p. Under the hypoth-
eses of Theorem 1.1 or 1.2, if c < c∗, then (un) is relatively compact in W 1,p

0 (�)∩
D1,m

0 (�) where

c∗ := min

{
δ

μ
,
μ− p

μp
V∞

} [
min{ν, V∞}

Cg Sp,σ

] p
σ−p

,

and Sp,σ and Cg are constants such that Sp,σ ‖u‖σp ≥ ‖u‖σ
Lσ (RN )

and |g(s)| ≤
Cg|s|σ−1.

Remark 1.4. It would be interesting to get a global compactness result in the case
L = 0 and p = m, namely for the model case

− div(a(u)|Du|m−2 Du)+ 1

m
a′(u)|Du|m + V (x)|u|m−2u = |u|σ−2u in�.

(1.15)

Notice that, even assuming a′ bounded, a′(u)|Du|m is merely in L1(�) for
W 1,m

0 (�) distributional solutions. For this situation, we refer the reader to [1,18]
and to the papers by Filippucci [12,13] and Filippucci et al. [14] on existence and
nonexistence of large entire solutions in very general frameworks. In this setting, we
point out that the splitting properties are hard to formulate in a reasonable fashion.

Remark 1.5. The restriction between m and p in assumption (1.5) is no longer
needed in the case where M is independent of the first variable s, namely Ms ≡ 0.

Remark 1.6. We prove the above theorems under the a-priori boundedness assump-
tion of (un).This occurs in a quite large class of problems, as Proposition 2.2 shows.

Remark 1.7. With no additional effort, we could cover the case where an addi-
tional term W (x)|u|m−2u appears in (1.1) and the functional framework turns into
W 1,p

0 (�) ∩ W 1,m
0 (�).

In the spirit of [15], we also get the following

Corollary 1.8. Let N > p ≥ m > 1 and assume that ξ �→ L(ξ) is p-homoge-
neous, ξ �→ M(ξ) is m-homogeneous, L(ξ) ≥ p|ξ |p, M(ξ) ≥ m|ξ |m (we put
ν = 1) and set

S� := inf‖u‖Lσ (�)=1

∫

�

L(Du)

p
+ M(Du)

m
+ V (x)

p
|u|p, (1.16)

SRN := inf‖u‖Lσ (RN )=1

∫

RN

|Du|p

p
+ |u|p

p
,
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124 C. Mercuri, M. Squassina

with V (x) → 1 as |x | → ∞. Assume furthermore that

S� <

(
σ − p

σ − m

) σ−p
σ

SRN . (1.17)

Then (1.16) admits a minimizer.

Remark 1.9. We point out that, some conditions guaranteeing the nonexistence of
nontrivial solutions in the star-shaped case � = R

N can be provided. For the sake
of simplicity, assume that L is p-homogeneous and that ξ �→ M(s, ξ) is m-homo-
geneous. Then, in view of [17, Theorem 3], that holds for C1 solutions by virtue of
the results of [9], we have that (1.1) admits no nontrivial C1 solution well behaved
at infinity, namely satisfying condition (19) of [17], provided that there exists a
number a ∈ R

+ such that a.e. in R
N and for all (s, ξ) ∈ R × R

N

(N − p(a + 1))L(ξ)+ (N − m(a + 1))M(s, ξ)+ (asg(s)− N G(s))

+ (N − ap)V (x)+ x · DV (x)

p
|s|p − aMs(s, ξ)s ≥ 0,

holding, for instance, if there exists 0 ≤ a ≤ N−p
p such that

asg(s)− N G(s) ≥ 0, (N − ap)V (x)+ x · DV (x) ≥ 0, Ms(s, ξ)s ≤ 0,

for a.e. x ∈ R
N and for all (s, ξ) ∈ R×R

N . Also, in the more particular case where
g(s) = |s|σ−2s and V (x) = V∞ > 0, then the above conditions simply rephrase
into

σ ≥ p∗, Ms(s, ξ)s ≤ 0,

for every (s, ξ) ∈ R × R
N . In fact, in (1.9), we consider the opposite assumption

on Ms .

2. Some preliminary facts

It is a standard fact that, under condition (1.6) and (1.10), the functionals

u �→
∫

�

L(Du), u �→
∫

�

V (x)|u|p, u �→
∫

�

G(u)

are C1 on W 1,p
0 (�)∩ D1,m

0 (�). Analogously, although M depends explicitly on s,
the functional

M : W 1,p
0 (�) ∩ D1,m

0 (�) → R, M(u) =
∫

�

M(u, Du),
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Global compactness for quasi-linear problems 125

admits, thanks to condition (1.5), directional derivatives along any v ∈ W 1,p
0 (�)∩

D1,m
0 (�) and

M
′(u)(v) =

∫

�

Mξ (u, Du) · Dv +
∫

�

Ms(u, Du)v,

as it can be easily verified observing that p ≤ p
p−m ≤ p∗ and that, for u ∈

W 1,p
0 (�) ∩ D1,m

0 (�), by Young’s inequality, for some constant C it holds

|Mξ (u, Du) · Dv| ≤ C |Du|m + C |Dv|m ∈ L1(�),

|Ms(u, Du)v| ≤ C |Du|p + C |v| p
p−m ∈ L1(�).

Furthermore, if uk → u in W 1,p
0 (�) ∩ D1,m

0 (�) as k → ∞ then M
′(uk) →

M
′(u) in the dual space (W 1,p

0 (�) ∩ D1,m
0 (�))∗, as k → ∞. Indeed, for

‖v‖
W 1,p

0 (�)∩D1,m
0 (�)

≤ 1, we have

|M′(uk)(v)− M
′(u)(v)|

≤
∫

�

|Mξ (uk, Duk)− Mξ (u, Du)||Dv| +
∫

�

|Ms(uk, Duk)− Ms(u, Du)| |v|

≤ ‖Mξ (uk, Duk)− Mξ (u, Du)‖Lm′ ‖Dv‖Lm

+‖Ms(uk, Duk)− Ms(u, Du)‖L p/m ‖v‖L p/(p−m)

≤ ‖Mξ (uk, Duk)− Mξ (u, Du)‖Lm′ + ‖Ms(uk, Duk)− Ms(u, Du)‖L p/m .

This yields the desired convergence, using (1.7) and the Dominated Convergence
Theorem. Notice that the same argument carried out before applies either to inte-
grals defined on � or on R

N . Hence the following proposition is proved.

Proposition 2.1. In the hypotheses of Theorems 1.1 and 1.2, the functionals φ and
φ∞ are C1.

In addition to the assumptions on L ,M and g,G set in the introduction, assume
now that there exist positive numbers δ > 0 and μ > p such that

μM(s, ξ)− Ms(s, ξ)s − Mξ (s, ξ) · ξ ≥ δ|ξ |m,
μL(ξ)− Lξ (ξ) · ξ ≥ δ|ξ |p, sg(s)− μG(s) ≥ 0, (2.1)

for any s ∈ R and all ξ ∈ R
N . This hypothesis is rather well established in the

framework of quasi-linear problems (cf. [18]) and it allows an arbitrary Palais-
Smale sequence (un) to be bounded in W 1,p

0 (�) ∩ D1,m
0 (�), as shown in the

following

Proposition 2.2. Let j be as in (1.11) and assume that (1.5) holds. Let (un) ⊂
W 1,p

0 (�) ∩ D1,m
0 (�) be a sequence such that

φ(un) → c φ′(un) → 0 in (W 1,p
0 (�) ∩ D1,m

0 (�))∗

Then, if condition (2.1) holds, (un) is bounded in W 1,p
0 (�) ∩ D1,m

0 (�).
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126 C. Mercuri, M. Squassina

Proof. Let (wn) ⊂ (W 1,p
0 (�) ∩ D1,m

0 (�))∗ with wn → 0 as n → ∞ be such that

φ′(un)(v) = 〈wn, v〉, for every v ∈ W 1,p
0 (�) ∩ D1,m

0 (�). Whence, by choosing
v = un , it follows∫

�

jξ (un, Dun) · Dun +
∫

�

js(un, Dun)un +
∫

�

V (x)|un|p = 〈wn, un〉.

Combining this equation with μφ(un) = μc + o(1) as n → ∞, namely∫

�

μj (un, Dun)+ μ

p

∫

�

V (x)|un|p = μc + o(1),

recalling the definition of j , and using condition (2.1), yields

μ− p

p

∫

�

V (x)|un|p + δ

∫

�

|Dun|p + δ

∫

�

|Dun|m

≤ μc + ‖wn‖‖un‖
W 1,p

0 (�)∩D1,m
0 (�)

+ o(1),

as n → ∞, implying, due to V ≥ V0 that

‖un‖p
W 1,p(�)

+ ‖un‖m
D1,m (�)

≤ C + C‖un‖W 1,p(�) + C‖un‖D1,m (�) + o(1),

as n → ∞. The assertion then follows immediately. ��
From now on we shall always assume to handle bounded Palais-Smale

sequences, keeping in mind that condition (2.1) can guarantee the boundedness
of such sequences.

Proposition 2.3. Let j be as in (1.11) and assume that 1 < m < p < N and
p < σ < p∗. Let (un) ⊂ W 1,p

0 (�) ∩ D1,m
0 (�) bounded be such that

φ(un) → c φ′(un) → 0 in (W 1,p
0 (�) ∩ D1,m

0 (�))∗.

Then, up to a subsequence, (un) converges weakly to some u in W 1,p
0 (�)∩D1,m

0 (�),
un(x) → u(x) and Dun(x) → Du(x) for a.e. x ∈ �.

Proof. It is sufficient to justify that Dun(x) → Du(x) for a.e. x ∈ �. Given an
arbitrary bounded subdomain ω ⊂ ω ⊂ � of �, from the fact that φ′(un) → 0 in
(W 1,p

0 (�) ∩ D1,m
0 (�))∗, we can write∫

ω

a(un, Dun) · Dv = 〈wn, v〉 + 〈 fn, v〉 +
∫

ω

v dμn, for all v ∈ D(ω),

where (wn) ⊂ (W 1,p
0 (�) ∩ D1,m

0 (�))∗ is vanishing, and hence in particular wn ∈
W −1,p′

(ω), with wn → 0 in W −1,p′
(ω) as n → ∞ and we have set

a(s, ξ) := Lξ (ξ)+ Mξ (s, ξ), for all (s, ξ) ∈ R × R
N ,

fn := −V (x)|un|p−2un + g(un) ∈ W −1,p′
(ω), n ∈ N,

μn := −Ms(un, Dun) ∈ L1(ω), n ∈ N.
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Global compactness for quasi-linear problems 127

Due to the strict convexity assumptions on the maps ξ �→ L(ξ) and ξ �→ M(s, ξ)
and the growth conditions on Lξ ,Mξ ,Ms and g, all the assumptions of [7, Theorem
1] are fulfilled. Precisely,

|a(s, ξ)| ≤ |Lξ (ξ)| + |Mξ (s, ξ)| ≤ C |ξ |p−1 + C |ξ |m−1 ≤ C + C |ξ |p−1,

for a.e. x ∈ ω and all (s, ξ) ∈ R × R
N , and

fn → f, f := −V (x)|u|p−2u + g(u), strongly in W −1,p′
(ω),

μn ⇀ μ, weakly* in M(ω), since sup
n∈N

‖Ms(un, Dun)‖L1(ω) < +∞.

Then, it follows that Dun(x) → Du(x) for a.e. x ∈ ω. Finally, a simple Cantor
diagonal argument allows to recover the convergence over the whole domain �.��
Next we prove a regularity result for the solutions of equation (1.1).

Proposition 2.4. Let j be as in (1.11) and assume (1.5) and (1.9). Let u ∈
W 1,p

0 (�) ∩ D1,m
0 (�) be a solution of (1.1). Then

u ∈
⋂
q≥p

Lq(�), u ∈ L∞(�) and lim|x |→∞ u(x) = 0.

Proof. Let k, i ∈ N. Then, setting vk,i (x) := (uk(x))i with uk(x) := min{u+(x), k},
it follows that vk,i ∈ W 1,p

0 (�) ∩ D1,m
0 (�) can be used as a test function in (1.1),

yielding
∫

�

Lξ (Du) · Dvk,i +
∫

�

Mξ (u, Du) · Dvk,i

+
∫

�

Ms(u, Du)vk,i +
∫

�

V (x)|u|p−2uvk,i =
∫

�

g(u)vk,i .

Taking into account that Dvk,i is equal to iui−1 Duχ{0<u<k}, by convexity and pos-
itivity of the map ξ �→ M(s, ξ) we deduce that Mξ (u, Du) · Dvk,i ≥ 0. Moreover,
by the sign condition (1.9) it follows Ms(u, Du)vk,i ≥ 0 a.e. in�. Then, we reach

∫

�

i(uk)
i−1Lξ (Duk) · Duk +

∫

�

V (x)|u|p−2u(uk(x))
i ≤

∫

�

g(u)(uk(x))
i ,

yielding in turn, by (1.10), that for all k, i ≥ 1

νi
∫

�

(uk)
i−1|Duk |p ≤ C

∫

�

(u+(x))σ−1+i . (2.2)

If ûk := min{u−(x), k}, a similar inequality

νi
∫

�

(ûk)
i−1|Dûk |p ≤ C

∫

�

(u−(x))σ−1+i , (2.3)
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128 C. Mercuri, M. Squassina

can be obtained by using v̂k,i := −(ûk)
i as a test function in (1.1), observing that

by (1.9),

Ms(u, Du)v̂k,i = −Ms(u, Du)χ{−k<u<0}(−u)i ≥ 0,

Mξ (u, Du) · Dvk,i = i(−u)i−1χ{−k<u<0}Mξ (u, Du) · Du ≥ 0.

Once (2.2)–(2.3) are reached, the assertion follows exactly as in [20, Lemma 2, (a)
and (b)]. ��

We now recall the following version of [8, Lemma 4.2] which turns out to
be a rather useful tool in order to establish convergences in our setting. Roughly
speaking, one needs some kind of sub-criticality in the growth conditions.

Lemma 2.5. Let � ⊂ R
N and h : � × R × R

N be a Carathéodory function,
p,m > 1, μ ≥ 1, p ≤ σ ≤ p∗ and assume that, for every ε > 0 there exists
aε ∈ Lμ(�) such that

|h(x, s, ξ)| ≤ aε(x)+ ε|s|σ/μ + ε|ξ |p/μ + ε|ξ |m/μ, (2.4)

a.e. in � and for all (s, ξ) ∈ R × R
N . Assume that un → u a.e. in �, Dun → Du

a.e. in � and

(un) is bounded in W 1,p
0 (�), (un) is bounded in D1,m

0 (�).

Then h(x, un, Dun) converges to h(x, u, Du) in Lμ(�).

Proof. The proof follows as in [8, Lemma 4.2] and we shall sketch it here for
self-containedness. By Fatou’s Lemma, it immediately holds that u ∈ W 1,p

0 (�) ∩
D1,m

0 (�). Furthermore, there exists a positive constant C such that

|h(x, s1, ξ1)− h(x, s2, ξ2)|μ ≤ C(aε(x))
μ + Cεμ|s1|σ + Cεμ|s2|σ

+Cεμ|ξ1|m + Cεμ|ξ2|m + Cεμ|ξ1|p + Cεμ|ξ2|p,

a.e. in � and for all (s1, ξ1) ∈ R × R
N and (s2, ξ2) ∈ R × R

N . Then, taking into
account the boundedness of (Dun) in L p(�) ∩ Lm(�) and of (un) in Lσ (�) by
interpolation being p ≤ σ ≤ p∗, the assertion follows by applying Fatou’s Lemma
to the sequence of functions ψn : � → [0,+∞]

ψn(x) := − |h(x, un, Dun)− h(x, u, Du)|μ + C(aε(x))
μ + Cεμ|un|σ

+Cεμ|u|σ + Cεμ|Dun|m + Cεμ|Du|m + Cεμ|Dun|p + Cεμ|Du|p,

and, finally, exploiting the arbitrariness of ε. ��
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3. Proof of the result

3.1. Energy splitting

The next result allows to perform an energy splitting for the functional

J (u) =
∫

�

j (u, Du), u ∈ W 1,p
0 (�) ∩ D1,m

0 (�),

along a bounded Palais-Smale sequence (un) ⊂ W 1,p
0 (�) ∩ D1,m

0 (�). The result
is in the spirit of the classical Brezis-Lieb Lemma [5].

Lemma 3.1. Let the integrand j be as in (1.11) and

p − 1 ≤ m < p − 1 + p/N , p ≤ σ ≤ p∗.

Let (un) ⊂ W 1,p
0 (�)∩ D1,m

0 (�) with un ⇀ u, un → u a.e. in � and Dun → Du
a.e. in �. Then

lim
n→∞

∫

�

j (un − u, Dun − Du)− j (un, Dun)+ j (u, Du) = 0. (3.1)

Proof. We shall apply Lemma 2.5 to the function

h(x, s, ξ) := j (s − u(x), ξ − Du(x))− j (s, ξ),

for a.e. x ∈ � and all (s, ξ) ∈ R × R
N .

Given x ∈ �, s ∈ R and ξ ∈ R
N , consider the C1 map ϕ : [0, 1] → R defined by

setting

ϕ(t) := j (s − tu(x), ξ − t Du(x)), for all t ∈ [0, 1].
Then, for some τ ∈ [0, 1] depending upon x ∈ �, s ∈ R and ξ ∈ R

N , it holds

h(x, s, ξ) = ϕ(1)− ϕ(0) = ϕ′(τ )
= − js(s − τu(x), ξ − τDu(x))u(x)− jξ (s − τu(x), ξ − τDu(x)) · Du(x)

= −Lξ (ξ − τDu(x)) · Du(x)

−Ms(s − τu(x), ξ − τDu(x))u(x)

−Mξ (s − τu(x), ξ − τDu(x)) · Du(x)+ G ′(s − τu(x))u(x).

Hence, for a.e. x ∈ � and all (s, ξ) ∈ R × R
N , it follows that

|h(x, s, ξ)| ≤ |Lξ (ξ − τDu(x))||Du(x)| + |Ms(s − τu(x), ξ − τDu(x))||u(x)|
+|Mξ (s − τu(x), ξ − τDu(x))||Du(x)| + |G ′(s − τu(x))||u(x)|

≤ C(|ξ |p−1 + |Du(x)|p−1)|Du(x)| + C(|ξ |m + |Du(x)|m)|u(x)|
+C(|ξ |m−1 + |Du(x)|m−1)|Du(x)| + C(|s|σ−1 + |u(x)|σ−1)|u(x)|

≤ ε|ξ |p + Cε|Du(x)|p + ε|ξ |p + Cε|Du(x)|p + Cε|u(x)|p/(p−m)

+ε|ξ |m + Cε|Du(x)|m + ε|s|σ + Cε|u(x)|σ
= aε(x)+ ε|s|σ + ε|ξ |p + ε|ξ |m,
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where aε : � → R is defined a.e. by

aε(x) := Cε|Du(x)|p + Cε|Du(x)|m + Cε|u(x)|p/(p−m) + Cε|u(x)|σ .

Notice that, as p − 1 ≤ m < p − 1 + p/N it holds p ≤ p/(p − m) ≤ p∗,
yielding u ∈ L p/(p−m)(�) and in turn, aε ∈ L1(�). The assertion follows directly
by Lemma 2.5 with μ = 1. ��

We have the following splitting result

Theorem 3.2. Let the integrand j be as in (1.11) and

p − 1 ≤ m ≤ p − 1 + p/N , p < σ < p∗.

Assume that (un) ⊂ W 1,p
0 (�)∩ D1,m

0 (�) is a bounded Palais-Smale sequence for

φ at the level c ∈ R weakly convergent to some u ∈ W 1,p
0 (�) ∩ D1,m

0 (�). Then

lim
n→∞

⎛
⎝

∫

�

j (un − u, Dun − Du)+
∫

�

V∞
|un − u|p

p

⎞
⎠

= c −
∫

�

j (u, Du)−
∫

�

V (x)
|u|p

p
,

namely

lim
n→∞φ∞(un − u) = c − φ(u),

being un and u regarded as elements of W 1,p(RN )∩ D1,m(RN ) after extension to
zero out of �.

Proof. In light of Proposition 2.3, up to a subsequence, (un) converges weakly to
some function u in W 1,p

0 (�) ∩ D1,m
0 (�), un(x) → u(x) and Dun(x) → Du(x)

for a.e. x ∈ �. Also, recalling that by assumption V (x) → V∞ as |x | → ∞, we
have [5,21]

lim
n→∞

∫

�

V (x)|un − u|p − V∞|un − u|p = 0, (3.2)

lim
n→∞

∫

�

V (x)|un − u|p − V (x)|un|p + V (x)|u|p = 0. (3.3)
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Therefore, by virtue of Lemma 3.1, we conclude that

lim
n→∞φ∞(un − u) = lim

n→∞

⎛
⎝

∫

�

j (un − u, Dun − Du)+
∫

�

V∞
|un − u|p

p

⎞
⎠

= lim
n→∞

⎛
⎝

∫

�

j (un − u, Dun − Du)+
∫

�

V (x)
|un − u|p

p

⎞
⎠

= lim
n→∞

⎛
⎝

∫

�

j (un, Dun)+
∫

�

V (x)
|un|p

p

⎞
⎠

−
∫

�

j (u, Du)−
∫

�

V (x)
|u|p

p

= lim
n→∞φ(un)− φ(u) = c − φ(u),

concluding the proof. ��

Remark 3.3. In order to shed some light on the restriction (1.5) of m, it is readily
seen that it is a sufficient condition for the following local compactness property to
hold. Assume that ω is a smooth domain of R

n with finite measure. Then, if (uh)

is a bounded sequence in W 1,p
0 (ω), there exists a subsequence (uhk ) such that

ϒ(x, uhk , Duhk ) converges strongly to someϒ0 in W −1,p′
(ω),

whereϒ(x, s, ξ) = g(s)− Ms(s, ξ)−V (x)|s|p−2s. In fact, taking into account the
growth condition on g and Ms , this can be proved observing that, for every ε > 0,
there exists Cε such that

|ϒ(x, s, ξ)| ≤ Cε + ε|s| N (p−1)+p
N−p + ε|ξ |p−1+p/N ,

for a.e. x ∈ ω and all (s, ξ) ∈ R × R
N .

3.2. Equation splitting I (super-quadratic case)

We shall assume that m, p ≥ 2 and that conditions (1.7)–(1.8) hold. The following
Theorem 3.4 and the forthcoming Theorem 3.5 (see next subsection) are in the
spirit of the Brezis-Lieb Lemma [5], in a dual framework. For the particular case

M(s, ξ) = 0 and L(ξ) = |ξ |p

p
,

we refer the reader to [16].
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Theorem 3.4. Assume that (1.5)–(1.11) hold and that

p − 1 ≤ m < p − 1 + p/N , p < σ < p∗.

Assume that (un) ⊂ W 1,p
0 (�) ∩ D1,m

0 (�) is such that un ⇀ u, un → u a.e. in �,

Dun → Du a.e. in � and there is (wn) in the dual space (W 1,p
0 (�) ∩ D1,m

0 (�))∗

such that wn → 0 as n → ∞ and, for all v ∈ W 1,p
0 (�) ∩ D1,m

0 (�),
∫

�

jξ (un, Dun) · Dv +
∫

�

js(un, Dun)v +
∫

�

V (x)|un|p−2unv = 〈wn, v〉.(3.4)

Then φ′(u) = 0. Moreover, there exists a sequence (ξn) that goes to zero in
(W 1,p

0 (�) ∩ D1,m
0 (�))∗, such that

〈ξn, v〉 :=
∫

�

js(un − u, Dun − Du)v +
∫

�

jξ (un − u, Dun − Du) · Dv

−
∫

�

js(un, Dun)v −
∫

�

jξ (un, Dun) · Dv

+
∫

�

js(u, Du)v +
∫

�

jξ (u, Du) · Dv, (3.5)

for all v ∈ W 1,p
0 (�) ∩ D1,m

0 (�).

Furthermore, there exists a sequence (ζn) in (W 1,p
0 (�) ∩ D1,m

0 (�))∗ such that
∫

�

jξ (un − u, Dun − Du) · Dv +
∫

�

js(un − u, Dun − Du)v

+
∫

�

V∞|un − u|p−2(un − u)v = 〈ζn, v〉

for all v ∈ W 1,p
0 (�)∩ D1,m

0 (�) and ζn → 0 as n → ∞, namely φ′∞(un − u) → 0
as n → ∞.

Proof. Fixed some v ∈ W 1,p
0 (�) ∩ D1,m

0 (�), let us define for a.e. x ∈ � and all
(s, ξ) ∈ R × R

N ,

fv(x, s, ξ) := js(s − u(x), ξ − Du(x))v(x)

+ jξ (s − u(x), ξ − Du(x)) · Dv(x)− js(s, ξ)v(x)

− jξ (s, ξ) · Dv(x).

In order to prove 3.5 we are going to show that

lim
n→∞ sup

‖v‖
W

1,p
0 (�)∩D1,m

0 (�)
≤1

∣∣∣
∫

�

fv(x, un, Dun)− fv(x, u, Du)
∣∣∣ = 0. (3.6)
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As it can be easily checked, there holds

− fv(x, s, ξ) =
1∫

0

jss(s − τu(x), ξ − τDu(x))u(x)v(x)dτ

+
1∫

0

jsξ (s − τu(x), ξ − τDu(x)) · [Du(x)v(x)+ Dv(x)u(x)]dτ

+
1∫

0

[ jξξ (s − τu(x), ξ − τDu(x)) Du(x)] · Dv(x)dτ.

Hence, by plugging the particular form of j in the above equation yields

− fv(x, s, ξ) = a(x, s, ξ)v(x)+ b(x, s)v(x)+ c1(x, s, ξ) · Dv(x)

+ c2(x, s, ξ) · Dv(x)+ d(x, ξ) · Dv(x)

where

a(x, s, ξ) :=
1∫

0

[Mss(s − τu(x), ξ − τDu(x))u(x)

+Msξ (s − τu(x), ξ − τDu(x)) · Du(x)]dτ,

b(x, s) := −
1∫

0

G ′′(s − τu(x))u(x)dτ,

c1(x, s, ξ) :=
1∫

0

Mξs(s − τu(x), ξ − τDu(x))u(x)dτ,

c2(x, s, ξ) :=
1∫

0

Mξξ (s − τu(x), ξ − τDu(x)) Du(x)dτ,

d(x, ξ) :=
1∫

0

Lξξ (ξ − τDu(x)) Du(x)dτ.

We claim that, as n → ∞, it holds

a(·, un, Dun) → a(·, u, Du) in L(p∗)′(�),

b(·, un) → b(·, u) in Lσ
′
(�),

c1(·, un, Dun) → c1(·, u, Du) in L p′
(�),

c2(·, un, Dun) → c2(·, u, Du) in Lm′
(�),

d(·, Dun) → d(·, Du) in L p′
(�).
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Then, using Hölder’s inequality and the embeddings of W 1,p
0 (�) ∩ D1,m

0 (�) into
Lσ (�) and L p∗

(�) we obtain

sup
‖v‖

W
1,p
0 (�)∩D1,m

0 (�)
≤1

∣∣∣
∫

�

fv(x, un, Dun)− fv(x, u, Du)
∣∣∣

≤ C‖a(·, un, Dun)− a(·, u, Du)‖L(p∗)′ (�)
+ C‖b(·, un)− b(·, u)‖Lσ ′

(�)
,

+ C‖c1(·, un, Dun)− c1(·, u, Du)‖L p′
(�)
,

+ C‖c2(·, un, Dun)− c2(·, u, Du)‖Lm′
(�)
,

+ C‖d(·, Dun)− d(·, Du)‖L p′
(�)
,

yielding the desired conclusion (3.6). It remains to prove the convergences we
claimed above. For each term, we shall exploit Lemma 2.5. Since m < p−1+ p/N ,
we can set

α := m

p∗ − 1
, β := pN

pN − N + p − m N

it follows β > 0 and m < m + α < p. Young’s inequality yields in turn

y(m+α)/(p∗)′ ≤ Cym/(p∗)′ + Cy p/(p∗)′ , for all y ≥ 0.

Since β/(p∗)′ > 1 and (m + α)/(p∗)′ > 1, by the growths of Mss and Msξ , we
have

|a(x, s, ξ)| ≤ C(|ξ |m + |Du(x)|m)|u(x)| + C(|ξ |m−1 + |Du(x)|m−1)|Du(x)|
≤ ε|ξ |p/(p∗)′ + Cε|u(x)|β/(p∗)′ + Cε|Du(x)|p/(p∗)′ + ε|ξ |(m+α)/(p∗)′

+ Cε|Du(x)|(m+α)/(p∗)′

≤ ε|ξ |p/(p∗)′ + ε|ξ |m/(p∗)′ + Cε|u(x)|β/(p∗)′

+ Cε|Du(x)|p/(p∗)′ + Cε|Du(x)|m/(p∗)′ .

Furthermore,

|b(x, s)| ≤ C(|s|σ−2 + |u(x)|σ−2)|u(x)| ≤ ε|s|σ/σ ′ + Cε|u|σ/σ ′
,

|c1(x, s, ξ)| ≤ C(|ξ |m−1 + |Du(x)|m−1)|u(x)|
≤ ε|ξ |p/p′ + Cε|u(x)|p/((p−m)p′) + Cε|Du(x)|p/p′

,

|c2(x, s, ξ)| ≤ C(|ξ |m−2 + |Du(x)|m−2)|Du(x)|
≤ ε|ξ |m/m′ + Cε|Du(x)|m/m′

,

|d(x, ξ)| ≤ C(|ξ |p−2 + |Du(x)|p−2)|Du(x)| ≤ ε|ξ |p/p′ + Cε|Du(x)|p/p′
.

From the point-wise convergence of the gradients and the growth estimates of jξ , js
and g that u is a week solutions to the problem, namely for all v ∈ W 1,p

0 (�) ∩
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D1,m
0 (�)

∫

�

Lξ (Du) · Dv +
∫

�

Mξ (u, Du) · Dv +
∫

�

Ms(u, Du)v

+
∫

�

V (x)|u|p−2uv =
∫

�

g(u)v. (3.7)

To get this, recall that v ∈ L(p/m)′(�) and the sequence (Ms(un, Dun)) is bounded
in L p/m(�) and hence it converges weakly to Ms(u, Du) in L p/m(�). Thanks to
Proposition 2.4 (recall that β ≥ p if and only if m ≥ p − 2 + p/N and this is the
case since m ≥ p − 1), we have Lβ(�). Hence,

u ∈ Lσ (�) ∩ L
p

p−m (�) ∩ Lβ(�),

being p ≤ p/(p − m) < p∗ and p < σ < p∗. By the previous inequalities the
claim follows by Lemma 2.5 with the choice μ = (p∗)′, σ ′, p′,m′ and p′ respec-
tively. Let us now recall a dual version of properties (3.2)–(3.3) (cf. [21]), namely
there exist two sequences (μn) and (νn) in (W 1,p

0 (�)∩ D1,m
0 (�))∗ which converge

to zero as n → ∞ and such that∫

�

V∞|un − u|p−2(un − u)v =
∫

�

V (x)|un − u|p−2(un − u)v + 〈νn, v〉,
∫

�

V (x)|un − u|p−2(un − u)v =
∫

�

V (x)|un|p−2unv −
∫

�

V (x)|u|p−2uv

+〈μn, v〉,
for every v ∈ W 1,p

0 (�)∩ D1,m
0 (�). Whence, by collecting (3.4), (3.5), (3.6), (3.7),

we get
∫

�

jξ (un − u, Dun − Du) · Dv +
∫

�

js(un − u, Dun − Du)v

+
∫

�

V∞|un − u|p−2(un − u)v

=
∫

�

jξ (un, Dun) · Dv +
∫

�

js(un, Dun)v +
∫

�

V (x)|un|p−2unv

−
∫

�

jξ (u, Du) · Dv −
∫

�

js(u, Du)v −
∫

�

V (x)|u|p−2uv

+〈ξn + μn + νn, v〉
= 〈ζn, v〉,

where 〈ζn, v〉 := 〈wn + ξn + μn + νn, v〉 and ζn → 0 as n → ∞. This concludes
the proof. ��
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3.3. Equation splitting II (sub-quadratic case)

We assume that (1.12)–(1.14) hold.

Theorem 3.5. Assume (1.9), let the integrand j be as in (1.11) and p ≤ 2 or m ≤ 2
or σ ≤ 2,

p − 1 ≤ m < p − 1 + p/N , p < σ < p∗.

Assume that (un) ⊂ W 1,p
0 (�) ∩ D1,m

0 (�) is such that un ⇀ u, un → u a.e. in �,

Dun → Du a.e. in � and there exists (wn) in (W 1,p
0 (�) ∩ D1,m

0 (�))∗ such that

wn → 0 as n → ∞ and, for every v ∈ W 1,p
0 (�) ∩ D1,m

0 (�),
∫

�

jξ (un, Dun) · Dv +
∫

�

js(un, Dun)v +
∫

�

V (x)|un|p−2unv = 〈wn, v〉.

Then φ′(u) = 0. Moreover, there exists a sequence (ξ̂n) that goes to zero in
(W 1,p

0 (�) ∩ D1,m
0 (�))∗, such that

〈ξ̂n, v〉 :=
∫

�

js(un − u, Dun − Du)v +
∫

�

jξ (un − u, Dun − Du) · Dv

−
∫

�

js(un, Dun)v −
∫

�

jξ (un, Dun) · Dv +
∫

�

js(u, Du)v

+
∫

�

jξ (u, Du) · Dv, (3.8)

for all v ∈ W 1,p
0 (�) ∩ D1,m

0 (�).

Furthermore, there exists a sequence (ζ̂n) in W 1,p
0 (�) ∩ D1,m

0 (�) with
∫

�

jξ (un − u, Dun − Du) · Dv +
∫

�

js(un − u, Dun − Du)v

+
∫

�

V∞|un − u|p−2(un − u)v = 〈ζ̂n, v〉

for all v ∈ W 1,p
0 (�)∩ D1,m

0 (�) and ζ̂n → 0 as n → ∞, namely φ′∞(un − u) → 0
as n → ∞.

Proof. Keeping in mind the argument in proof of Theorem 3.4, here we shall be
more sketchy. For every s ∈ R and ξ ∈ R

N we plug L ,M,G into the equation

fv(x, s, ξ) = js(s − u(x), ξ − Du(x))v(x)

+ jξ (s − u(x), ξ − Du(x)) · Dv(x)− js(s, ξ)v(x)

− jξ (s, ξ) · Dv(x),
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thus obtaining

fv(x, s, ξ) = (Ms(s − u(x), ξ − Du(x))− Ms(s, ξ))v(x)

−(G ′(s − u(x))− G ′(s))v(x)
+(Mξ (s − u(x), ξ − Du(x))− Mξ (s, ξ)) · Dv(x)

+(Lξ (ξ − Du(x))− Lξ (ξ)) · Dv(x)

= a′v(x)+ b′v(x)+ c′ · Dv(x)+ d ′ · Dv(x).

We write the term Mξ (s − u(x), ξ − Du(x))− Mξ (s, ξ) in a more suitable form,
namely

c′ = Mξ (s − u(x), ξ − Du(x))− Mξ (s, ξ)

= Mξ (s − u(x), ξ − Du(x))− Mξ (s, ξ − Du(x))︸ ︷︷ ︸
c′

1(x,s,ξ)

+ Mξ (s, ξ − Du(x))− Mξ (s, ξ)︸ ︷︷ ︸
c′

2(x,s,ξ)

,

so that

fv(x, s, ξ) = a′(x, s, ξ)v(x)+ b′(x, s)v(x)+ (c′
1(x, s, ξ)+ c′

2(x, s, ξ)) · Dv(x)

+d ′(x, ξ) · Dv(x).

The term a′ admits the same growth condition of a, cf. the proof of Theorem 3.4.
Also, since

c′
1(x, s, ξ) = −

1∫

0

Mξs(s − τu(x), ξ − Du(x))u(x)dτ,

as for the term c1 in the proof of Theorem 3.4 we obtain

|c′
1(x, s, ξ)| ≤ ε|ξ |p/p′ + Cε|u(x)|p/((p−m)p′) + Cε|Du(x)|p/p′

.

On the other hand, directly from assumptions (1.12)–(1.14) we get

|b′(x, s)| ≤ C |u(x)|σ/σ ′
, |c′

2(x, s, ξ)| ≤ C |Du(x)|m/m′
,

|d ′(x, ξ)| ≤ C |Du(x)|p/p′
.

The conclusion follows then by the same argument carried out in Theorem 3.4. ��
In the spirit of [21, Lemma 8.3], we have the following

Lemma 3.6. Under the hypotheses of Theorem 1.1 or 1.2, let (yn) ⊂ R
N with

|yn| → ∞,

un(· + yn) ⇀ u in W 1,p(RN ) ∩ D1,m(RN ),

un(· + yn) → u a.e. in R
N ,
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Dun(· + yn) → Du a.e. in R
N ,

φ∞(un) → c,

φ′∞(un) → 0 in (W 1,p
0 (�) ∩ D1,m

0 (�))∗.

Then φ′∞(u) = 0 and, setting vn := un − u(· − yn), we have

φ∞(vn) → c − φ∞(u) (3.9)

φ′∞(vn) → 0 in (W 1,p
0 (�) ∩ D1,m

0 (�))∗, (3.10)

and ‖vn‖p
p = ‖un‖p

p −‖u‖p
p +o(1) and ‖vn‖m

m = ‖un‖m
m −‖u‖m

m +o(1) as n → ∞.

Proof. The energy splitting (3.9) follows by Theorem 3.2 applied with � = R
N

and the sequence (un) replaced by (un(· + yn)). Take now ϕ ∈ D(�) with
‖ϕ‖

W 1,p
0 (�)∩D1,m

0 (�)
≤ 1 and define ϕn := ϕ(· + yn). Then ϕn ∈ D(�n), where

�n = �− {yn} ⊂ � for n large. For any n ∈ N, we get

〈φ′∞(vn), ϕ〉 = 〈φ′∞(un(· + yn)− u), ϕn〉.
By the splitting argument in the proof of Theorem 3.4, it follows that

〈φ′∞(un(· + yn)− u), ϕn〉 = 〈φ′∞(un(· + yn)), ϕn〉 − 〈φ′∞(u), ϕn〉 + 〈ζn, ϕn〉,
where ζn → 0 in the dual of W 1,p

0 (�)∩ D1,m
0 (�). If we prove that u is critical for

φ∞, then the right-hand side reads as 〈φ′∞(un), ϕ〉 + 〈ζn, ϕn〉, and also the second
limit (3.10) follows. To prove that φ′∞(u) = 0 we observe that, for all ϕ in D(RN ),

〈φ′∞(un(· + yn)), ϕ〉 → 〈φ′∞(u), ϕ〉,
|〈φ′∞(un(· + yn)), ϕ〉| ≤ ‖φ′∞(un)‖∗‖ϕ‖

W 1,p
0 (�)∩D1,m

0 (�)
→ 0.

Indeed, defining ϕ̂n := ϕ(· − yn), since |yn| → ∞ as n → ∞, we have supp ϕ̂n ⊂
�, for n large enough and ‖ϕ̂n‖

W 1,p
0 (�)∩D1,m

0 (�)
= ‖ϕ‖W 1,p(RN )∩D1,m(RN ). The last

assertion follows by using Brezis-Lieb Lemma [5]. ��
We can finally come to the proof of the main results.

4. Proof of Theorems 1.1 and 1.2 completed

We follow the scheme of the proof given in [21, p. 121]. Let (un) ⊂ W 1,p
0 (�) ∩

D1,m
0 (�) be a bounded Palais-Smale sequence for φ at the level c ∈ R. Hence,

there exists a sequence (wn) in the dual of W 1,p
0 (�)∩ D1,m

0 (�) such that wn → 0

and φ(un) → c as n → ∞ and, for all v ∈ W 1,p
0 (�) ∩ D1,m

0 (�), we have
∫

�

Lξ (Dun) · Dv +
∫

�

Mξ (un, Dun) · Dv +
∫

�

Ms(un, Dun)v

+
∫

�

V (x)|un|p−2unv =
∫

�

g(un)v + 〈wn, v〉.
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Since (un) is bounded in W 1,p
0 (�) ∩ D1,m

0 (�), up to a subsequence, it converges

weakly to some function v0 ∈ W 1,p
0 (�) ∩ D1,m

0 (�) and, by virtue of Proposi-
tion 2.3, (un) and (Dun) converge to v0 and Dv0 a.e. in �, respectively. In turn
(see also the proof of Theorem 3.4) it follows∫

�

Lξ (Dv0) · Dv +
∫

�

Mξ (v0, Dv0) · Dv +
∫

�

Ms(v0, Dv0)v

+
∫

�

V (x)|v0|p−2v0v =
∫

�

g(v0)v,

for any v ∈ W 1,p
0 (�) ∩ D1,m

0 (�). By combining Theorem 3.2 and Theorem 3.4,
setting u1

n := un − v0 and, after extending by zero outside �, we get

φ∞(u1
n) → c − φ(v0), n → ∞, (4.1)∫

RN

Lξ (Du1
n) · Dv +

∫

RN

Mξ (u
1
n, Du1

n) · Dv +
∫

RN

Ms(u
1
n, Du1

n)v

+
∫

RN

V∞|u1
n|p−2u1

nv =
∫

RN

g(u1
n)v + 〈w1

n, v〉. (4.2)

where (w1
n) is a sequence in the dual of W 1,p

0 (�) ∩ D1,m
0 (�) with w1

n → 0 as
n → ∞. In turn, it follows that (u1

n) is Palais-Smale sequence for φ∞ at the energy
level c − φ(v0). In addition,

‖u1
n‖p

p=‖un‖p
p − ‖v0‖p

p + o(1), ‖u1
n‖m

m=‖un‖m
m − ‖v0‖m

m + o(1), as n→∞,

by the Brezis-Lieb Lemma [5]. Let us now define

� := lim sup
n→∞

sup
y∈RN

∫

B(y,1)

|u1
n|p.

If it is the case that � = 0, then, according to [15, Lemma I.1], (u1
n) converges to

zero in Lr (RN ) for every r ∈ (p, p∗). Then, one obtains that

lim
n→∞

∫

�

g(u1
n)u

1
n = 0,

∫

�

Ms(u
1
n, Du1

n)u
1
n ≥ 0,

where the inequality follows by the sign condition (1.9). In turn, testing equation
(4.2) with v = u1

n , by the coercivity and convexity of ξ �→ L(ξ),M(s, ξ), we have

lim sup
n→∞

⎡
⎢⎣ν

∫

RN

|Du1
n|p + ν

∫

RN

|Du1
n|m + V∞

∫

RN

|u1
n|p

⎤
⎥⎦

≤ lim sup
n→∞

⎡
⎢⎣

∫

RN

Lξ (Du1
n) · Du1

n +
∫

RN

Mξ (u
1
n, Du1

n) · Du1
n +

∫

RN

V∞|u1
n|p

⎤
⎥⎦

≤ 0,
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yielding that (u1
n) strongly converges to zero in W 1,p(RN ) ∩ D1,m(RN ), conclud-

ing the proof in this case. If, on the contrary, it holds � > 0, then, there exists
an unbounded sequence (y1

n) ⊂ R
N with

∫
B(y1

n ,1)
|u1

n|p > �/2. Whence, let us

consider v1
n := u1

n(· + y1
n), which, up to a subsequence, converges weakly and

pointwise to some v1 ∈ W 1,p(RN ) ∩ D1,m(RN ), which is nontrivial, due to the
inequality

∫
B(0,1) |v1|p ≥ �/2. Notice that, of course,

lim
n→∞φ∞(v1

n) = lim
n→∞φ∞(u1

n) = c − φ(v0).

Moreover, since |y1
n | → ∞ and � is an exterior domain, for all ϕ ∈ D(RN ) we

have ϕ(·− y1
n ) ∈ D(�) for n ∈ N large enough. Whence, in light of equation (4.2),

for every ϕ ∈ D(RN ) we get
∫

RN

Lξ (Dv
1
n) · Dϕ +

∫

RN

Mξ (v
1
n, Dv1

n) · Dϕ +
∫

RN

Ms(v
1
n, Dv1

n)ϕ

+
∫

RN

V∞|v1
n |p−2(v1

n)ϕ −
∫

RN

g(v1
n)ϕ =

∫

RN

Lξ (Du1
n) · Dϕ(· − y1

n)

+
∫

RN

Mξ (u
1
n, Du1

n) · Dϕ(· − y1
n)

+
∫

RN

Ms(u
1
n, Du1

n)ϕ(· − y1
n)+

∫

RN

V∞|u1
n|p−2(u1

n)ϕ(· − y1
n)

−
∫

RN

g(u1
n)ϕ(· − y1

n) = 〈w1
n, ϕ(· + y1

n)〉.

Defining the form 〈ŵ1
n, ϕ〉 := 〈w1

n, ϕ(·− y1
n)〉 for all ϕ ∈ D(RN ), we conclude that

∫

RN

Lξ (Dv
1
n) · Dϕ +

∫

RN

Mξ (v
1
n, Dv1

n) · Dϕ +
∫

RN

Ms(v
1
n, Dv1

n)ϕ

+
∫

RN

V∞|v1
n |p−2(v1

n)ϕ −
∫

RN

g(v1
n)ϕ = 〈ŵ1

n, ϕ〉, ∀ϕ ∈ D(RN ).

Since (ŵ1
n) converges to zero in the dual of W 1,p(RN ) ∩ D1,m(RN ), it follows by

Proposition 2.3 (with V = V∞ and � = R
N ) that the gradients Dv1

n converge
point-wise to Dv1, namely

Dv1
n(x) → Dv1(x), a.e. in R

N . (4.3)

Setting u2
n := u1

n − v1(· − y1
n), in light of (4.1)–(4.2) and (4.3), we can apply

Lemma 3.6 to the sequence (v1
n), getting

lim
n→∞φ∞(u2

n) = c − φ(v0)− φ∞(v1),

Author's personal copy



Global compactness for quasi-linear problems 141

as well as φ∞(v1) = 0 and, furthermore, for every v ∈ W 1,p
0 (�) ∩ D1,m

0 (�), we
have ∫

RN

Lξ (Du2
n) · Dv +

∫

RN

Mξ (u
2
n, Du2

n) · Dv +
∫

RN

Ms(u
2
n, Du2

n)v

+
∫

RN

V∞|u2
n|p−2u2

nv −
∫

RN

g(u2
n)v = 〈ζ 2

n , v〉,

where (ζ 2
n ) goes to zero in the dual of W 1,p

0 (�) ∩ D1,m
0 (�). In turn, (u2

n) ⊂
W 1,p(RN ) ∩ D1,m(RN ) is a Palais-Smale sequence for φ∞ at the energy level
c − φ(v0)− φ(v1). Arguing on (u2

n) as it was done for (u1
n), either u2

n goes to zero
strongly in W 1,p(RN )∩ D1,m(RN ) or we can generate a new (u3

n). By iterating the
above procedure, one obtains diverging sequences (yi

n), i = 1, . . . , k −1, solutions
vi on R

N to the limiting problem, i = 1, . . . , k − 1 and a sequence

uk
n = un − v0 − v1(· − y1

n)− v2(· − y2
n )− · · · − vk−1(· − yk−1

n ),

such that (recall again Lemma 3.6) as n → ∞
‖uk

n‖p
p = ‖un‖p

p − ‖v0‖p
p − ‖v1‖p

p − · · · − ‖vk−1‖p
p + o(1), (4.4)

‖uk
n‖m

m = ‖un‖m
m − ‖v0‖m

m − ‖v1‖m
m − · · · − ‖vk−1‖m

m + o(1),

as well as φ′∞(uk
n) → 0 in (W 1,p

0 (�) ∩ D1,m
0 (�))∗ and

φ∞(uk
n) → c − φ(v0)−

k−1∑
j=1

φ∞(v j ).

Notice that the iteration is forced to end up after a finite number k ≥ 1 of steps.
Indeed, for every nontrivial critical point v ∈ W 1,p(RN ) ∩ D1,m(RN ) of φ∞ we
have,

∫

RN

Lξ (Dv) · Dv +
∫

RN

Mξ (v, Dv) · Dv +
∫

RN

Ms(v, Dv)v

+
∫

RN

V∞|v|p =
∫

RN

g(v)v,

yielding by the sign condition, the coercivity-convexity conditions and the growth
of g,

min{ν, V∞}‖v‖p
p + ‖Dv‖m

Lm (RN )
≤ Cg‖v‖σLσ (RN )

≤ Cg Sp,σ ‖v‖σp, (4.5)

so that, due to σ > p, it holds

‖v‖p
p ≥

[
min{ν, V∞}

Cg Sp,σ

] p
σ−p =: �∞ > 0, (4.6)
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thus yielding from (4.4)

‖uk
n‖p

p ≤ ‖un‖p
p − ‖v0‖p

p − (k − 1)�∞ + o(1).

By boundedness of (un), k has to be finite. Hence uk
n → 0 strongly in W 1,p(RN )∩

D1,m(RN ) at some finite index k ∈ N. This concludes the proof. ��

5. Proof of Corollary 1.3

As a byproduct of the proof of the Theorems 1.1 and 1.2, since the p norm is
bounded away from zero on the set of nontrivial critical points of φ∞, cf. (4.5),we
can estimate φ∞ from below on that set. In order to do so, we use condition (2.1).
For any nontrivial critical point of the functional φ∞, we have (see the proof of
Proposition 2.2)

μφ∞(v) ≥ δ

∫

�

|Dv|p + μ− p

p
V∞

∫

RN

|v|p ≥ min

{
δ,
μ− p

p
V∞

}
‖v‖p

p.

An analogous argument applies to φ, yielding for any nontrivial critical point

μφ(u) ≥ δ

∫

�

|Du|p + μ− p

p
V0

∫

�

|u|p ≥ min

{
δ,
μ− p

p
V0

}
‖u‖p

p.

Now notice that, recalling (4.6) and a similar variant for the norm of the critical
points of φ in place of φ∞, setting also

e∞ := min

{
δ

μ
,
μ− p

μp
V∞

}
�∞, e0 := min

{
δ

μ
,
μ− p

μp
V0

}
�0,

�0 :=
[

min{ν, V0}
Cg Sp,σ

] p
σ−p

> 0,

from Theorems 1.1 or 1.2 we have c ≥ �e0 + ke∞ for some � ∈ {0, 1} and non-
negative integer k. Condition c < c∗ := e∞ implies necessarily k < 1, namely
k = 0. This provides the desired compactness result, using Theorems 1.1 or 1.2.

��

6. Proof of Corollary 1.8

Defining the functionals J, Q : W 1,p
0 (�) ∩ D1,m

0 (�) → R by

J (u) := 1

p

∫

�

L(Du)+ 1

m

∫

�

M(Du)+ 1

p

∫

�

V (x)|u|p, Q(u) := S�

σ

∫

�

|u|σ ,

and given a minimization sequence (un) for problem (1.16), by Ekeland’s varia-
tional principle, without loss of generality we can replace it by a new minimization
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sequence, still denoted by (un), for which there exists a sequence (λn) ⊂ R such
that for all v ∈ W 1,p

0 (�) ∩ D1,m
0 (�)

J ′(un)(v)− λn Q′(un)(v) = 〈wn, v〉, withwn → 0 in the dual of

W 1,p
0 (�) ∩ D1,m

0 (�).

Taking into account the homogeneity of L and M , choosing v = un this means
∫

�

L(Dun)+
∫

�

M(Dun)+
∫

�

V (x)|un|p − S�λn

∫

�

|un|σ = 〈wn, un〉.

Since ‖un‖Lσ (�)=1 for all n and
∫
�

L(Dun)/p + M(Dun)/m + V (x)|un|p/p →
S� as n → ∞, this means that (un) is a Palais-Smale sequence for the functional
I (u) := J (u)− λQ(u) for some λ ∈ [m, p], at an energy level

c ≤ σ − m

σ
S�. (6.1)

From Corollary 1.3 (applied with L(Du) replaced by L(Du)/p, M(u, Du) replaced
by M(Du)/m and G(s) ≡ S�

σ
λ|s|σ ), the compactness of (un) holds provided that

(in the notations of Corollary 1.3)

c < min

{
δ

μ
,
μ− p

μp
V∞

} [
min{ν, V∞}

Cg Sp,σ

] p
σ−p

.

In our case, we can take μ = σ , δ = σ−p
p , Cg = pS�, v∞ = 1, v = 1, Sp,σ =

pS
−σ/p
RN , yielding

C <
σ − p

σ
S

σ
σ−p

RN /S

p
σ−p
� .

Hence, finally, by combining this conclusion with (6.1) the compactness (and in
turn the solvability of the minimization problem) holds under condition (1.17),
concluding the proof. ��
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