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1. Introduction and Main Results

We consider existence of solutions for the following class of equations

(−∆)
s
2 u+ V (x)u = K(x)f(u) + λ|u|2∗

s−2u in R
N . (1.1)

Here λ ≥ 0 is a parameter, s ∈ (0, 2), 2∗s = 2N/(N − s), N > s, (−∆)
s
2 is fractional

Laplacian V,K are positive functions and f is a continuous function with quasi-
critical growth. Recently, a great attention has been focused on the study of non-
linear problems involving fractional Laplacian, in view of real-world applications.
For instance, this type of operators arise in thin obstacle problems, optimization,
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finance, phase transitions, stratified materials, anomalous diffusion, crystal dislo-
cation, soft thin films, semipermeable membranes, flame propagation, conservation
laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, mul-
tiple scattering, minimal surfaces, materials science and water waves, see [22]. The
fractional Laplacian (−∆)

s
2 with s ∈ (0, 2) of a function φ : RN → R is defined by

F((−∆)
s
2φ)(ξ) = |ξ|sF(φ)(ξ), for s ∈ (0, 2),

where F is the Fourier transform. We are going explore problem (1.1) with zero
mass potential, that is when V (x) → 0, as |x| → ∞. This class was studied by
several researchers in the local case s = 2, e.g., in [1, 2, 4, 7, 8, 10, 11, 24, 28]
and reference therein, where the main feature is to impose restrictions on V,K

to get some compact embedding into a weighted Lp space. Recently Alves and
Souto, in [3], in addition to improving all the former restrictions on the potentials,
handled subcritical nonlinearities f which do not satisfy the so-called Ambrosetti–
Rabinowitz condition, namely,

(AR) there exists ϑ ∈ (2, 2∗s) with 0 < ϑF (s) ≤ sf(s) for all s > 0,

F (s) =
∫ s

0

f(t)dt.

Conditions weaker than (AR) were used, first time, in [20, 25, 28, 27, 30]. In all the
above cited papers, the nonlinearity f had subcritical growth, that is, in addition
to λ = 0, the growth of f in comparable with sp with p < (N + 2)/(N − 2),
for N ≥ 3. In the case s ∈ (0, 2), nonlocal case, we say that f has a subcritical
growth, if the growth of f in s is comparable with sp for p < (N + s)/(N − s),
with N > s. In this situation, we would like to mention two works, one by Chang
and Wang [19], where the authors recovered the Berestycki and Lions [11] results
by improving Strauss compactness result [35], and a paper by Secchi [31] where the
existence of ground state solutions is established. Motivated by the papers above,
we are going to study the nonlocal case, with nonlinearities involving a critical
growth and a subcritical perturbation f . Elliptic problems with critical growth,
after the pioneering works by Brezis and Nirenberg [14] have had many progresses
in several directions. We would like to mention [5, 29, 39] and the references therein,
in local case. For nonlocal case, in bounded domain, we cite [9, 15, 23, 26, 32,
37] and references therein, while in whole space was studied recently in [34] for
non-vanishing potential. Recently, Caffarelli and Silvestre [16] developed a local
interpretation of the fractional Laplacian given in R

N by considering a Neumann
type operator in the extended domain R

N+1
+ defined by {(x, t) ∈ RN+1 : t > 0}. A

similar extension, for nonlocal problems on bounded domain with the zero Dirichlet
boundary condition, was established, for instance, by Cabrè and Tan in [15], Tan
[38], Capella et al. [17], Brändle et al. [13]. It is worth noticing that, in a bounded
domain, the Fourier definition of the fractional Laplacian and its local Caffarelli–
Silvestre interpretation do not agree, see the discussion developed [33] for more
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details. For u ∈ Hs/2(RN ), the solution w ∈ Xs(RN+1
+ ) of{−div(y1−s∇w) = 0 in R
N+1
+ ,

w = u on RN × {0} (1.2)

is called s-harmonic extension w = Es(u) of u and it is proved in [16] (see also [13])
that

lim
y→0+

y1−s ∂w

∂y
(x, y) = − 1

ks
(−∆)

s
2u(x),

where

ks =
21−sΓ

(
1 − s

2

)
Γ
(s

2

) .

Here the spaces Xs(RN+1
+ ) and Hs/2(RN ) are defined as the completion of

C∞
0 (RN+1

+ ) and C∞
0 (RN ), under the norms (which actually do coincide, see [13,

Lemma A.2])

‖w‖Xs :=

(∫
R

N+1
+

ksy
1−s|∇w|2dxdy

)1/2

,

‖u‖
H

s
2

:=
(∫

RN

|2πξ|s|F(u(ξ))|2dξ
)1/2

=
(∫

RN

|(−∆)
s
2u|2dx

)1/2

.

Our problem (1.1) will be studied in the half-space, namely,

−div(y1−s∇w) = 0 in R

N+1
+ ,

−ks
∂w

∂ν
= −V (x)u +K(x)f(u) + λ|u|2∗

s−2u on RN × {0},
(1.3)

where
∂w

∂ν
= lim

y→0+
y1−s ∂w

∂y
(x, y).

We are looking for a positive solution in the Hilbert space E defined by

E =
{
w ∈ Xs(RN+1

+ ) :
∫

RN

V (x)w(x, 0)2dx <∞
}

endowed with norm

‖w‖ :=

(∫
R

N+1
+

ksy
1−s|∇w|2dxdy +

∫
RN

V (x)w(x, 0)2dx

)1/2

.

Consider the Euler–Lagrange functional associated to (1.3) given by

Jλ(w) :=
1
2
‖w‖2 −

∫
RN

K(x)F (w(x, 0))dx − λ

2∗s

∫
RN

w+(x, 0)2
∗
s dx (1.4)
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which is C1 with Gâteaux derivative

J ′
λ(w)v =

∫
R

N+1
+

ksy
1−s∇w · ∇vdxdy +

∫
RN

V (x)w(x, 0)v(x, 0)dx

−
∫

RN

K(x)f(w(x, 0))v(x, 0)dx − λ

∫
RN

w+(x, 0)2
∗
s−1v(x, 0)dx,

for all w, v ∈ E. (1.5)

We now formulate assumptions for V,K, f in problem (1.1).

• Assumptions on V and K.

(I) (sign of V and K): V,K are continuous, V,K > 0 on RN and K ∈
L∞(RN );

(II) (decay of K): If {An} is a sequence of Borel sets of RN with |An| ≤ R

for some R > 0,

lim
r→∞

∫
An∩Bc

r(0)

K(x)dx = 0, uniformly with respect to n ∈ N; (1.6)

(III) (interrelation between V and K): either
K

V
∈ L∞(RN ) (1.7)

or there exists p ∈ (2, 2∗s) such that

lim
|x|→∞

K(x)
V (x)γ

= 0, γ =
ps−N(p− 2)

2s
∈ (0, 1). (1.8)

• Assumptions on f .

(f1) (behavior at zero): f : R → R+ is continuous with f = 0 on R−. If (1.7)
holds, then

lim sup
s→0+

f(s)
s

= 0.

If condition (1.8) holds, we assume

lim sup
s→0+

f(s)
sp−1

< +∞.

(f2) (quasi-critical growth): If (1.7) holds, then

lim sup
s→+∞

f(s)
s2

∗
s−1

= 0.

If condition (1.8) holds, we assume

lim sup
s→+∞

F (s)
sp

< +∞.

(f3) (super-quadraticity): f(s)
s is non-decreasing in R+, and

lim sup
s→+∞

F (s)
s2

= +∞.
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(f3)′ (super-quadraticity): f(s)
s is non-decreasing in R+ and there exist C0 > 0

and q ∈ (2, 2∗s) with

F (s) ≥ C0s
q, for all s ∈ R

+.

The following are the main results of the paper.

Theorem 1.1. Assume (I)–(III), (f1)–(f3) and λ = 0. Then (1.1) admits a positive
solution u ∈ E.

Theorem 1.2. Assume (I)–(III), (f1)–(f2)–(f3)′, (AR), λ = 1 and that one of the
following holds :

(1) N > 2s,
(2) N = 2s,
(3) s < N < 2s and q > N

N−s ,

(4) s < N < 2s and q < N
N−s , with C0 large enough.

Then (1.1) admits a positive solution u ∈ E.

Throughout the paper, unless explicitly stated, the symbol C will always denote
a generic positive constant, which may vary from line to line.

2. Preliminary Results

Consider the weighted Banach space:

Lp
K =

{
u : R

N → R measurable and
∫

RN

K(x)|u|pdx <∞
}
,

‖ · ‖Lp
K

=
(∫

RN

K(x)|u|pdx
)1/p

.

The first result, on compact injections for E, follows by adapting the arguments
in [3].

Proposition 2.1 (Compactness). The following facts hold :

(1) E is compactly embedded into Lq
K for all q ∈ (2, 2∗s), provided that (1.7) holds;

(2) E is compactly embedded into Lp
K provided that (1.8) holds;

(3) If wn ⇀ w in E, then up to a subsequence,

lim
n

∫
RN

K(x)F (wn(x, 0))dx =
∫

RN

K(x)F (w(x, 0))dx;

(4) If wn ⇀ w in E, then up to a subsequence,

lim
n

∫
RN

K(x)wn(x, 0)f(wn(x, 0))dx =
∫

RN

K(x)w(x, 0)f(w(x, 0))dx;

(5) If wn ⇀ w in E, then, up to a subsequence, for any v ∈ E,

lim
n

∫
RN

w+
n (x, 0)2

∗
s−1v(x, 0)dx =

∫
RN

w+(x, 0)2
∗
s−1v(x, 0)dx.
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(6) If wn ⇀ w in E, then up to a subsequence, for any v ∈ E,

lim
n

∫
RN

K(x)f(wn(x, 0))v(x, 0)dx =
∫

RN

K(x)f(w(x, 0))v(x, 0)dx.

Proof. Assume that condition (1.7) holds, let q ∈ (2, 2∗s) and let us prove assertion
(1). Let ε > 0. Then, there exist 0 < s0(ε) < s1(ε), a positive constant C(ε) and
C0 depending only on V and K, such that

K(x)|s|q ≤ εC0(V (x)|s|2 + |s|2∗
s )

+C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|2
∗
s , for all s ∈ R. (2.1)

Therefore we obtain, for every w ∈ E and r > 0,∫
B+c

r (0)∩{y=0}
K(x)|w(x, 0)|qdx

≤ εQ(w) + C(ε)s1(ε)2
∗
s

∫
Aε∩(B+c

r (0)∩{y=0})
K(x)dx, (2.2)

where we have set

Q(w) := C0

∫
RN

(V (x)|w(x, 0)|2 + |w(x, 0)|2∗
s )dx,

Aε := {x ∈ R
N : s0(ε) ≤ |w(x, 0)| ≤ s1(ε)}.

(2.3)

If (wn) ⊂ E is such that wn ⇀ w weakly in E for some w ∈ E, there exists M > 0
with∫

R
N+1
+

ksy
1−s|∇wn|2dxdy +

∫
RN

V (x)|wn(x, 0)|2dx ≤M, for all n ∈ N,

∫
RN

|wn(x, 0)|2∗
s dx ≤M, for all n ∈ N,

(2.4)

so that Q(wn) is bounded in R. On the other hand, if An
ε = {s0(ε) ≤ |wn(x, 0)| ≤

s1(ε)}, we get

s0(ε)2
∗
s |An

ε | ≤
∫

An
ε

|wn(x, 0)|2∗
s dx ≤

∫
RN

|wn(x, 0)|2∗
s dx ≤M, for all n ∈ N.

which implies that supn∈N |An
ε | < +∞. Then, in light of (1.6), there exists r(ε) > 0

such that ∫
An

ε ∩(B+c

r(ε)(0)∩{y=0})
K(x)dx <

ε

C(ε)s1(ε)2
∗
s
, for all n ∈ N. (2.5)

Whence, invoking (2.2), we get∫
B+c

r(ε)(0)∩{y=0}
K(x)|wn(x, 0)|qdx ≤ (2C0M + 1)ε. (2.6)
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By the fractional compact embedding [13], we have

lim
n→∞

∫
B+

r(ε)(0)∩{y=0}
K(x)|wn(x, 0)|qdx =

∫
B+

r(ε)(0)∩{y=0}
K(x)|w(x, 0)|qdx.

(2.7)

Combining (2.6) and (2.7), yields

lim
n

∫
RN∩{y=0}

K(x)|wn(x, 0)|qdx =
∫

RN∩{y=0}
K(x)|w(x, 0)|qdx,

which concludes the proof of (1).
Assume now that condition (1.8) holds and let us prove assertion (2). By a

direct calculation, for any x ∈ RN and s ≥ 0, if γ ∈ (0, 1) is the constant introduced
in (1.8), we get

V (x)s2−p + s2
∗
s−p ≥ ω(p, s)V (x)γ , ω(p, s) =

(
2∗s − 2
2∗s − p

)(
p− 2
2∗s − p

) 2−p
2∗s−2

.

Let ε > 0. Combining this inequality with (1.8), there exists r(ε) > 0 such that

K(x)|s|p ≤ ε(V (x)|s|2 + |s|2∗
s ), for all s ∈ R and |x| ≥ r(ε). (2.8)

Then, for all w ∈ E, we conclude∫
B+c

r(ε)(0)∩{y=0}
K(x)|w(x, 0)|pdx

≤ ε

∫
B+c

r(ε)(0)∩{y=0}
(V (x)|w(x, 0)|2 + |w(x, 0)|2∗

s )dx.

If (wn) ⊂ E and wn ⇀ w weakly in E, there exists M > 0 such that (2.4) holds.
Whence, for a suitable radius r(ε) > 0 there holds∫

B+c

r(ε)(0)∩{y=0}
K(x)|wn(x, 0)|pdx ≤ 2εM, for all n ∈ N. (2.9)

Since p ∈ (2, 2∗s), by the fractional compact embedding we have

lim
n

∫
B+

r(ε)(0)∩{y=0}
K(x)|wn(x, 0)|pdx =

∫
B+

r(ε)(0)∩{y=0}
K(x)|w(x, 0)|pdx.

(2.10)

Combining (2.9) and (2.10), we get

lim
n

∫
RN∩{y=0}

K(x)|wn(x, 0)|pdx =
∫

RN∩{y=0}
K(x)|w(x, 0)|pdx,

which concludes the proof of assertion (2).
Let us now turn to the proof of (3) and (4) under assumption (1.7). From (f1)–

(f3), fixed q ∈ (2, 2∗s) and given ε > 0, there exist 0 < s0(ε) < s1(ε), C(ε) > 0 and
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C0 depending only upon V and K, with

|K(x)F (s)| ≤ εC0(V (x)|s|2 + |s|2∗
s )

+C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, for all s ∈ R, (2.11)

|K(x)f(s)s| ≤ εC0(V (x)|s|2 + |s|2∗
s )

+C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, for all s ∈ R. (2.12)

Notice that, by (1.6), arguing as for the proof of (1), there exists r(ε) > 0 such that∫
An

ε ∩B+c

r(ε)(0)∩{y=0}
K(x)dx ≤ ε

C(ε)s1(ε)q
, for all n ∈ N. (2.13)

Let {wn} ∈ E be bounded. Combining the above inequality with (2.4), (2.11)
and (2.12), we have∫

B+c

r(ε)(0)∩{y=0}
K(x)F (wn(x, 0))dx ≤ (2C0M + 1)ε, for all n ∈ N, (2.14)

∫
B+c

r(ε)(0)∩{y=0}
K(x)f(wn(x, 0))wn(x, 0)dx ≤ (2C0M + 1)ε, for all n ∈ N.

(2.15)

Since (wn(x, 0)) is bounded in L2∗
s (RN ), by Strauss lemma [11, Theorem A.I p. 338],

we infer

lim
n

∫
B+

r(ε)(0)∩{y=0}
K(x)F (wn(x, 0))dx =

∫
B+

r(ε)(0)∩{y=0}
K(x)F (w(x, 0))dx,

lim
n

∫
B+

r(ε)(0)∩{y=0}
K(x)f(wn(x, 0))wn(x, 0)dx

=
∫

B+
r(ε)(0)∩{y=0}

K(x)f(w(x, 0)w(x, 0))dx.

Combining these limits with (2.14) and (2.15) we conclude the proof.
Let us now turn to the proof of (3) and (4) under assumption (1.8). Let ε > 0.

We learned that there exists r(ε) > 0 such that (2.8) holds, yielding

K(x)|F (s)| ≤ ε(V (x)|F (s)||s|2−p + |F (s)||s|2∗
s−p), for all s ∈ R and |x| ≥ r(ε),

K(x)f(s)s ≤ ε(V (x)f(s)s|s|2−p + f(s)s|s|2∗
s−p), for all s ∈ R+ and |x| ≥ r(ε).

From (f1) and (f2), there exist 0 < s0(ε) < s1(ε) satisfying

K(x)|F (s)| ≤ ε(V (x)|s|2 + |s|2∗
s ), for all s ∈ Iε and |x| ≥ r(ε),

K(x)f(s)s ≤ ε(V (x)|s|2 + |s|2∗
s ), for all s ∈ Iε ∩ R

+ and |x| ≥ r(ε),

1550063-8
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where Iε = {|s| < s0(ε) or |s| > s1(ε)}. Then, we have∫
B+c

r(ε)(0)∩{y=0}
K(x)F (wn(x, 0)dx

≤ εQ(wn) + C(ε)
∫

An
ε ∩(B+c

r(ε)(0)∩{y=0})
K(x)dx, (2.16)

∫
B+c

r(ε)(0)∩{y=0}
K(x)f(wn(x, 0)wn(x, 0)dx

≤ εQ(wn) + C(ε)
∫

An
ε ∩(B+c

r(ε)(0)∩{y=0})
K(x)dx, (2.17)

where

C(ε) = max
{

max
[s0(ε),s1(ε)]

|F (s)|, max
[s0(ε),s1(ε)]

|f(s)s|
}
.

Arguing as for the proof of (1), we have∣∣∣∣∣
∫

(B+c

r(ε)(0)∩{y=0})
K(x)F (wn(x, 0))dx

∣∣∣∣∣ ≤ (2M + 1)ε, for all n ∈ N,

∣∣∣∣∣
∫

(B+c

r(ε)(0)∩{y=0})
K(x)f(wn(x, 0))wn(x, 0)dx

∣∣∣∣∣ ≤ (2M + 1)ε, for all n ∈ N.

Invoking again Strauss lemma, by the above inequalities, conclusions (3) and (4)
follow. To prove (5), it is enough to observe that w+

n (x, 0)2
∗
s−1 ⇀ w+(x, 0)2

∗
s−1

weakly in (L2∗
s )′. Finally, let us prove (6). If (1.7) holds, then the sequence

(
√
K(x)f(wn(x, 0))χ{|wn(x,0)|≤1}) is bounded in L2(RN ) being

|
√
K(x)f(wn(x, 0))χ{|wn(x,0)|≤1}|2 ≤ CV (x)|wn(x, 0)|2.

This, by pointwise convergence, yields for every ϕ ∈ L2(RN )

lim
k

∫
RN

√
K(x)f(wn(x, 0))χ{|wn(x,0)|≤1}ϕ(x)dx

=
∫

RN

√
K(x)f(w(x, 0))χ{|w(x,0)|≤1}ϕ(x)dx.

Given v ∈ E, since
√
K(x) ≤ C

√
V (x), it follows

√
K(x)v(x, 0) ∈ L2(RN ), yielding

lim
k

∫
RN

K(x)f(wn(x, 0))χ{|wn(x,0)|≤1}v(x, 0)dx

=
∫

RN

K(x)f(w(x, 0))χ{|w(x,0)|≤1}v(x, 0)dx. (2.18)

1550063-9
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In a similar fashion, the sequence (K(x)f(wn(x, 0))χ{|wn(x,0)|≥1}) is bounded in

L
2∗s

2∗s−1 (RN ) being

|K(x)f(wn(x, 0))χ{|wn(x,0)|≥1}|
2∗s

2∗s−1 ≤ |wn(x, 0)|2∗
s .

This, by pointwise convergence, and since v ∈ E, yields

lim
k

∫
RN

K(x)f(wn(x, 0))χ{|wn(x,0)|≥1}v(x, 0)dx

=
∫

RN

K(x)f(w(x, 0))χ{|w(x,0)|≥1}v(x, 0)dx. (2.19)

Combining (2.18) and (2.19) yields the assertion. In a similar fashion one can treat
the case when (1.8) holds since, by means of (2), K1/pv(x, 0) ∈ Lp(RN ) for all
v ∈ E and, up to a subsequence,

|K(x)
p−1

p f(wn(x, 0))χ{|wn(x,0)|≤1}|p
′ ≤ K(x)|wn(x, 0)|p ≤ z(x) ∈ L1(RN ).

This concludes the proof.

From (f1) and (f2) one can prove that Jλ satisfies the Mountain–Pass geometry
(cf. [6]).

Lemma 2.2 (Geometry). The functional Jλ satisfies

(1) There exists β, ρ > 0 such that Jλ(u) ≥ β if ‖u‖ = ρ;
(2) There exists e ∈ E\{0} with ‖u‖ > ρ such that Jλ(e) ≤ 0.

Proof. (2) is obvious. Concerning (1), observe that in light of condition (1.8) on V
and K, the space E is continuously embedded into Lp

K(R) where p ∈ (2, 2∗s) is the
precisely the value which appears in condition (1.8). This can be readily obtained
by arguing as in the proof of [12, part (i) of Theorem 4] (see formula (8) therein
obtained by Hölder inequality) and by using the fractional Sobolev inequality. This
is possible since in any of the two assumptions between V and K, we have that

K

V γ
∈ L∞(R), γ =

ps−N(p− 2)
2s

.

This is the fractional counterpart of the assumption on W in [12]. Once this embed-
ding is available, recall that we can write the inequality, for ε0 to be fixed small

K(x)F (s) ≤ ε0V (x)s2 + Cs2
∗
s + CK(x)sp, x ∈ R, s ∈ R

+,

and the Mountain–Pass geometry can be proved.

Therefore, there exists a sequence {wn} ⊂ E, so-called Cerami sequence [18],
such that

Jλ(wn) → c, (1 + ‖wn‖)‖J ′
λ(wn)‖ → 0, (2.20)

where c is given by

c = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)),

1550063-10
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with

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 and Jλ(γ(1)) ≤ 0}.
Next we turn to the boundedness of (wn) in E.

Lemma 2.3 (Boundedness). Let λ ∈ {0, 1}. Then the Cerami sequence (wn) ⊂
E is bounded.

Proof. First of all, we observe that w−
n ∈ E and, by the definition of Jλ,

J ′
λ(wn)(−w−

n ) = −
∫

R
N+1
+

ksy
1−s∇wn · ∇w−

n dxdy −
∫

RN

V (x)wn(x, 0)w−
n (x, 0)

=
∫

R
N+1
+

ksy
1−s|∇w−

n |2dxdy +
∫

RN

V (x)w−
n (x, 0)2 = ‖w−

n ‖2.

Since (1 + ‖wn‖)J ′
λ(wn)(−‖w−

n ‖−1w−
n ) = on(1) as n → ∞, it follows that

J ′
λ(wn)(−w−

n ) = on(1) as n → ∞, which in turn implies that ‖w−
n ‖ = on(1),

as n→ ∞.

Case λ = 0. Denote J0 = J. Let tn ∈ [0, 1] be such that

J(tnwn) = max
t∈[0,1]

J(twn).

We claim that J(tnwn) is bounded from above. Without loss of generality, we may
assume that tn ∈ (0, 1) for all n. Then, we have J ′(tnwn)(wn) = 0 and

2J(tnwn) = 2J(tnwn) − J ′(tnwn)(tnwn)

=
∫

RN

K(x)H(tnwn(x, 0))dx

=
∫

RN

K(x)H(tnw+
n (x, 0))dx, (2.21)

where H(s) = sf(s) − 2F (s) is non-decreasing and H = 0 on R−. Thus, since
tn ∈ (0, 1) and w+

n ≥ 0, from formula (2.21) we obtain that

2J(tnwn) ≤
∫

RN

K(x)H(w+
n (x, 0))dx =

∫
RN

K(x)H(wn(x, 0))dx

= 2J(wn) − J ′(wn)(wn) = 2J(wn) + on(1),

which proves the claim. Now, we prove that (wn) ⊂ E is bounded. Assume by
contradiction that, up to subsequence, ‖wn‖ → +∞ as n→ ∞. Set zn := wn/‖wn‖
and suppose that zn ⇀ z, as n → ∞, in E. We now claim that z(x, 0) = 0 almost
everywhere in R

N . In fact,

on(1) +
1
2

=
∫

RN

K(x)F (wn(x, 0))
‖wn‖2

dx =
∫

RN

K(x)F (wn(x, 0))
|wn(x, 0)|2 z2

n(x, 0)dx.
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By (f3), given τ > 0 there exists ξτ > 0 such that F (s) ≥ τs2 for all |s| ≥ ξτ . Thus,

on(1) +
1
2
≥
∫
{|wn(x,0)|≥ξτ}

K(x)F (wn(x, 0))
|wn(x, 0)|2 z2

n(x, 0)dx

≥ τ

∫
RN

K(x)z2
n(x, 0)χ{|zn(x,0)|≥ ξτ

‖wn‖ }dx.

Thus, by Fatou lemma, since z2
n(x, 0)χ{|zn(x,0)|≥ ξτ

‖wn‖ } → z(x, 0) a.e., for any τ > 0,
we conclude

1
2
≥ τ

∫
RN

K(x)z2(x, 0)dx.

Since K > 0, it follows z(x, 0) = 0, by the arbitrariness of τ > 0 and the claim
follows. Now, let B > 0. Of course B‖wn‖−1 ∈ [0, 1] eventually for n ≥ nB, for
some nB ∈ N. Thus,

J(tnwn) ≥ J(Bzn) =
B2

2
−
∫

RN

K(x)F (Bzn(x, 0))dx,

since tn is a maximum point. By Proposition 2.1, it follows∫
RN

K(x)F (Bzn(x, 0))dx→
∫

RN

K(x)F (Bz(x, 0)) = 0,

and we have J(tnwn) + on(1) ≥ B2/2, which yields sup{J(tnwn) : n ∈ N} ≥ B2/2,
a contradiction if

B = 2
√

sup{J(tnwn) : n ∈ N} ∈ (0,∞).

This concludes the proof.

Case λ = 1. Denote Jλ = J. The boundedness of the {wn} in E follows easily
from (AR), since

on(1) + c ≥ J(wn) − 1
ϑ
J ′(wn)(wn) ≥

(
1
2
− 1
ϑ

)
‖wn‖2.

This concludes the proof.

The following Sobolev inequality can be found in [13],∫
R

N+1
+

y1−s|∇w|2dxdy ≥ S(s,N)
(∫

RN

|w(x, 0)|2∗
s dx

) 2
2∗s
,

for all w ∈ Xs(RN+1
+ ), (2.22)

where

S(s,N) =
Γ
(s

2

)
Γ
(

1
2
(N − s)

)
(Γ(N))

s
N

2π
s
N Γ
(

1
2
(2 − s)

)
Γ
(

1
2
(N + s)

)(
Γ
(

1
2
N

)) s
N
.
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This constant is achieved on the family of functions [13, 21, 32] wε = Es(uε) (by
[36] for s = 2), where

uε(x) =
ε

N−s
2

(|x|2 + ε2)
N−s

2

, ε > 0.

Furthermore, take φ(x, y) = φ0(|(x, y)|), where φ0 ∈ C∞(0,∞) is a non-increasing
cut-off such that

φ0(s) = 1 if s ∈ [0, 1/2], φ0(s) = 0 if s ≥ 1.

Let φwε which belongs to Xs(RN+1
+ ). By [9, Lemma 3.8] (which is formulated

on a bounded domain Ω, but which holds with the very same proof when taking
Ω = R

N ), we have the following.

Lemma 2.4 (Concentration). The family {φwε}, and its trace on {y = 0},
namely, φuε, satisfy

‖φwε‖2
Xs ≤ ‖wε‖2

Xs + CεN−s, (2.23)

‖φuε‖2
L2 =



O(εs) if N > 2s,

O(εs log(1/ε)) if N = 2s,

O(εN−s) if N < 2s,

(2.24)

for ε > 0 small enough. Define ηε = φwε/‖φuε‖L2∗s , then

‖ηε‖2
Xs ≤ ksS(s,N) + CεN−s, (2.25)

‖ηε(x, 0)‖2
L2 =



O(εs) if N > 2s,

O(εs log(1/ε)) if N = 2s,

O(εN−s) if N < 2s

(2.26)

and

‖ηε(x, 0)‖q
Lq =



O(ε

2N−(N−s)q
2 ) if q >

N

N − s
(or N ≥ 2s),

O(ε
(N−s)q

2 ) if q <
N

N − s
.

(2.27)

Here aε = O(bε) means that C1 ≤ aε/bε ≤ C2 for some C1, C2 > 0, independent
of ε.

Remark 2.5. We remark that, actually, except (2.23) and (2.25), the other esti-
mates follow exactly as in local case (see [14]), because in these cases, we know
the explicit expression for uε. While, for wε, except for s = 1 (see [37]) and s = 2
(local case), the explicit expressions are not available. But, in [9], the authors were
clever to overcome this difficulty, by exploring some properties of the Poisson kernel.
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The s-harmonic extension of the uε has the following explicit expression

wε(x, y) = P s
y ∗ uε(x) = CN,sy

s

∫
RN

uε(ξ)

(|x − ξ|2 + y2)
N+s

2

dξ, for some CN,s > 0.

Noticing that as uε and P s
y are self-similar functions, namely

uε(x) = ε
s−N

2 u1

(x
ε

)
, P s

y (x) =
1
yN

P s
1

(
x

|y|
)

=
ys

(|x|2 + y2)
N+s

2

,

then

wε(x, y) = ε
s−N

2 w1

(x
ε
,
y

ε

)
.

Exploiting this fact, they estimate as follows∫
R

N+1
+

y1−swεφ∇φ · ∇wεdxdy ≤ CεN−s,

∫
R

N+1
+

y1−s|wε∇φ|2dxdy ≤ CεN−s.

Combining these inequalities, (2.23) holds. The inequality (2.25) comes as a con-
sequence. Concerning (2.27), we justify it in the case q < N/(N − s), the opposite
case being similar. We have

‖φuε‖q
Lq =

∫
RN

|φ|q |uε|qdx ≥
∫

B(0, 12 )

|uε|qdx

= ε
(N−s)q

2

∫
B(0, 1

2 )

1

(ε2 + |x|2) (N−s)q
2

dx

= ε
(N−s)q

2

∫
B(0, 1

2ε )

1

ε(N−s)q(1 + |y|2) (N−s)q
2

εNdy

= εN− (N−s)q
2

∫
B(0, 1

2ε )

1

(1 + |y|2) (N−s)q
2

dy

= εN− (N−s)q
2 C

∫ 1/(2ε)

0

1

(1 + �2)
(N−s)q

2

�N−1d�

= εN− (N−s)q
2 C

(∫ 1

0

1

(1 + �2)
(N−s)q

2

�N−1d�

+
∫ 1/(2ε)

1

1

(1 + �2)
(N−s)q

2

�N−1d�

)

≥ εN− (N−s)q
2

(
C + C

∫ 1/(2ε)

1

1
�(N−s)q−N+1

d�

)

≥ εN− (N−s)q
2 (C + Cε(N−s)q−N ) ≥ Cε

(N−s)q
2 ,
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for ε > 0 small enough. Analogously, we get

‖φuε‖q
Lq =

∫
RN

|φ|q |uε|qdx ≤
∫

B(0,1)

|uε|qdx

= ε
(N−s)q

2

∫
B(0,1)

1

(ε2 + |x|2) (N−s)q
2

dx

= ε
(N−s)q

2

∫
B(0, 1ε )

1

ε(N−s)q(1 + |y|2) (N−s)q
2

εNdy

= εN− (N−s)q
2

∫
B(0, 1

ε )

1

(1 + |y|2) (N−s)q
2

dy

= εN− (N−s)q
2 C

∫ 1/ε

0

1

(1 + �2)
(N−s)q

2

�N−1d�

= εN− (N−s)q
2 C

(∫ 1

0

1

(1 + �2)
(N−s)q

2

�N−1d�

+
∫ 1/ε

1

1

(1 + �2)
(N−s)q

2

�N−1d�

)

≤ εN− (N−s)q
2

(
C + C

∫ 1/ε

1

1
�(N−s)q−N+1

d�

)

≤ εN− (N−s)q
2 (C + Cε(N−s)q−N ) ≤ Cε

(N−s)q
2 ,

for ε > 0 small enough. Since ‖φuε‖L2∗s converges to a positive constant, the asser-
tion follows. The remaining assertions can be obtained analogously.

The following result will be crucial for the proof of our main result.

Lemma 2.6 (MP energy bound). Let λ = 1 and let (f1)–(f2)–(f3)′ hold. Then
c < s

2N (ksS(s,N))N/s.

Proof. By definition of c, it is sufficient to prove that there exists ε > 0 small
enough that

sup
t≥0

J(tηε) <
s

2N
(ksS(s,N))N/s, J = J1.

By definition of J, we have

J(tηε) =
t2

2
‖ηε‖2 −

∫
RN

K(x)F (tηε(x, 0))dx − t2
∗
s

2∗s
.

By the assumptions of f , there exist q ∈ (2, 2∗s) and C0 > 0 with F (s) ≥ C0s
q for

any s ∈ R+. Then

J(tηε) ≤ ψ(t), ψ(t) =
t2

2
‖ηε‖2 − C0t

q

∫
RN

|ηε(x, 0)|qdx− t2
∗
s

2∗s
.
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Since ψ(t) → −∞ as t → +∞, we have sup{ψ(t) : t ≥ 0} = ψ(tε) for some tε > 0,
so that

‖ηε‖2 − C0qt
q−2
ε

∫
RN

|ηε(x, 0))|qdx = t
2∗

s−2
ε ,

which yields σ0 ≤ tε ≤ ‖ηε‖
2

2∗s−2 ≤ K0 for some σ0,K0 > 0 independent of ε, in
view of Lemma 2.4 and the above equality. Since the map

[0, ‖ηε‖
2

2∗s−2 ] � t �→ t2

2
‖ηε‖2 − t2

∗
s

2∗s
,

increases, we get for some universal constant C > 0,

sup
R+

ψ ≤ s

2N

(
‖ηε‖2

Xs +
∫

RN

V (x)ηε(x, 0)2dx
)N/s

− C0C‖ηε(x, 0))‖q
Lq

≤ s

2N

(
ksS(s,N) + CεN−s +

∫
RN

V (x)ηε(x, 0)2dx
)N/s

−C0C‖ηε(x, 0))‖q
Lq .

Now, by the elementary inequality (a+b)α ≤ aα +α(a+b)α−1b, α ≥ 1 and a, b > 0,
we get by (2.25)

sup
R+

ψ ≤ s

2N
(ksS(s,N))N/s + CεN−s

+C

∫
RN

V (x)ηε(x, 0)2dx− C0C‖ηε(x, 0))‖q
Lq

≤ s

2N
(ksS(s,N))N/s + CεN−s + C‖ηε(x, 0)‖2

L2 − C0C‖ηε(x, 0))‖q
Lq .

• In the case N > 2s, by means of (2.26) and (2.27), we get

sup
R+

ψ ≤ s

2N
(ksS(s,N))N/s + CεN−s + Cεs − C0Cε

2N−(N−s)q
2 .

Since 2N−(N−s)q
2 < s < N − s, we get the conclusion for ε sufficiently small.

• If N = 2s and 2 < q < 2∗s = 4, by (2.26) and (2.27), we get

sup
R+

ψ ≤ s

2N
(ksS(s,N))N/s + Cεs(1 + log(ε−1)) − C0Cε

2N−sq
2 .

Since it holds

lim
ε→0

ε
2N−sq

2

εs log(ε−1)
= +∞,

again we can get the conclusion, for ε sufficiently small.
• If s < N < 2s and N

N−s < q < 2∗s, by (2.26) and (2.27), we get

sup
R+

ψ ≤ s

2N
(ksS(s,N))N/s + CεN−s − C0Cε

2N−(N−s)q
2 .
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Since 2N−(N−s)q
2 < N − s means q > 2s

N−s(> 2), we get the conclusion for ε
sufficiently small.

• If s < N < 2s and 2 < q < N
N−s , by (2.26) and (2.27), we get

sup
R+

ψ ≤ s

2N
(ksS(s,N))N/s + CεN−s − C0Cε

(N−s)q
2 ,

and for C0 = ε−ϑ with ϑ > (N−s)(q−2)
2 , we get the conclusion. This concludes the

proof.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. In light of Lemma 2.2, there exists a Cerami sequence
{wn} ⊂ E for J = J0. From Lemma 2.3, it follows that w−

n → 0 in E as n→ ∞ and
that {wn} is bounded and has a non-negative weak limit w ∈ E. By Proposition
2.1, it follows that w is a weak non-negative solution, to which a weak solution
u ∈ Hs/2(RN ) to (1.1) corresponds. We have u > 0 if u = 0. In fact, if u(x0) = 0
for some x0 ∈ RN , then (−∆)s/2u(x0) = 0 and by the representation formula [22]

(−∆)s/2u(x) = −c(N, s/2)
2

∫
RN

u(x+ y) + u(x− y) − 2u(x)
|x− y|N+s

dy,

one obtains, at x0, that∫
RN

u(x0 + y) + u(x0 − y)
|x0 − y|N+s

dy = 0,

yielding u = 0, a contradiction. Let us prove that, indeed, u = 0. We prove that
w = Es(u) ≡ 0. In fact, (wn) converges to w strongly in E. Indeed, up to a
subsequence, wn ⇀ w in E as n → ∞, and since J ′(wn)(wn) = on(1), we have,
again by virtue of Proposition 2.1,

lim
n→∞ ‖wn‖2 = lim

n→∞

∫
RN

K(x)f(wn(x, 0))wn(x, 0)dx

=
∫

RN

K(x)f(w(x, 0))w(x, 0)dx = ‖w‖2,

that is, wn → w in E. Hence J(w) = c and J ′(w) = 0, this implies that w ≡ 0.
The proof is completed.

4. Proof of Theorem 1.2

Proof of Theorem 1.2. In light of Lemma 2.2, there exists a Cerami sequence
{wn} ⊂ E for J = J1. From Lemma 2.3 it follows that w−

n → 0 in E as n→ ∞ and
that {wn} is bounded and has a non-negative weak limit w ∈ E. By Proposition 2.1,
it follows that w is a weak non-negative solution, to which a weak solution u ∈
Hs/2(RN ) to (1.1) corresponds. We have u > 0 if u = 0, arguing as in Sec. 3. Let
us prove that, indeed, u = 0. We prove that w = Es(u) ≡ 0. By virtue of (2.20),
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we have
1
2
‖wn‖2 −

∫
RN

K(x)F (w(x, 0))dx − 1
2∗s

∫
RN

w+
n (x, 0)2

∗
s dx = c+ on(1),

‖wn‖2 −
∫

RN

K(x)f(w(x, 0))w(x, 0)dx −
∫

RN

w+
n (x, 0)2

∗
s dx = on(1).

Suppose, by contradiction, that w ≡ 0. Then, we entail(
1
2
− 1

2∗s

)
‖wn‖2 = c+ on(1),

which combined with ‖wn‖2 = ‖wn(x, 0)‖2∗
s

2∗
s

+ on(1) as n → ∞ and the Sobolev
inequality

‖wn‖2 ≥
∫

R
N+1
+

ksy
1−s|∇w|2dxdy ≥ ksS(s,N)‖wn(x, 0)‖2

2∗
s

implying

c = lim
n
J(wn) =

(
1
2
− 1

2∗s

)
lim
n

‖wn‖2 ≥ s

2N
(ksS(s,N))N/s.

This contradicts Lemma 2.6. Hence w ≡ 0 and the proof is complete.
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[15] X. Cabré and J. G. Tan, Positive solutions of nonlinear problems involving the square
root of the Laplacian, Adv. Math. 224 (2010) 2052–2093.

[16] L. Caffarelli and L. Silvestre, An extension problems related to the fractional Lapla-
cian, Comm. PDE 32 (2007) 1245–1260.

[17] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions
for some non local semilnear equations, Comm. PDE 36 (2011) 1353–1384.

[18] G. Cerami, Un criterio de esistenza per i punti critici su varieta ilimitate, Istit.
Lombardo Accad. Sc. Lett. Rend. 112 (1978) 332–336.

[19] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a frac-
tional Laplacian with general nonlinearity, Nonlinearity 26 (2013) 479–494.

[20] D. G. Costa and C. A. Magalhaes, Variational elliptic problems which are non-
quadratic at infinity, Nonlinear Anal. 23 (1994) 1401–1412.

[21] A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher
order fractional derivatives, J. Math. Anal. Appl. 295 (2004) 225–236.

[22] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional
Sobolev spaces, Bull. Sci. Math. 136 (2012) 521–573.

[23] M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary
value problems, J. Funct. Anal. 263 (2012) 2205–2227.

[24] M. Ghimenti and A. M. Micheletti, Existence of minimal nodal solutions for the
nonlinear Schrödinger equation with V (∞) = 0, Adv. Diff. Equations 11 (2006)
1375–1396.

[25] L. Jeanjean, On the existence of bounded PalaisSmale sequences and application to
a LandesmanLazer type problem set on R

N , Proc. Roy. Soc. Edinburgh Sect. A 129
(1999) 787–809.

[26] T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up
analysis and compactness of solutions, J. European Math. Soc. 16 (2014) 1111–1171.

[27] Z. Liu and Z.-Q. Wang, On the Ambrosetti–Rabinowitz superlinear condition, Adv.
Nonlinear Stud. 4 (2004) 563–574.

[28] Y. Liu, Z.-Q. Wang and J. Zhang, Ground states of nonlinear Schrödinger equations
with potentials, Ann. Inst. H. Poincare Anal. Non Linéaire 23 (2006) 829–837.
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