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1. Introduction

1.1. Overview

Around 2001, J. Bourgain, H. Brezis and P. Mironescu, investigated [5,6,8] the asymp-
totic behavior of a class of nonlocal functionals on a domain Ω ⊂ R

N , including those 
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related to the norms of the fractional Sobolev space W s,p(Ω), as s ↗ 1. More precisely, 
if p ≥ 1 and u ∈ W 1,p(Ω), then

lim
s↗1

(1 − s)
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x− y|N+ps

dL N (x) dL N (y) = Kp,N

∫
Ω

|∇u|p dL N (x),

where | · | denotes the Euclidean norm, L N the Lebesgue measure on RN and

Kp,N = 1
p

∫
SN−1

|ω · x|pdH N−1,

being ω ∈ S
N−1 arbitrary. By replacing the Euclidean distance |x − y| with a distance 

dK(x, y) = ‖x −y‖K , where K denotes the unit ball for ‖ · ‖K , it was proved in [23,24,30]
that, if u ∈ W 1,p(Ω)

lim
s↗1

(1 − s)
∫
Ω

∫
Ω

|u(x) − u(y)|p
dK(x, y)N+ps

dL N (x) dL N (y) =
∫
Ω

‖∇u‖pZ∗
pK

dL N (x),

where we have set

‖ξ‖Z∗
pK

:=

⎛
⎝N + p

p

∫
K

|ξ · x|pp dL N (x)

⎞
⎠

1/p

, ξ ∈ R
N .

Similar results hold for BV spaces [16,32] and for magnetic Sobolev spaces [31] and 
criteria for recognizing constants among measurable functions can be obtained [8]. The 
nonlocal norms thus converge in the limit as s ↗ 1 to a Dirichlet type energy which 
depends on p, N and on the distance dK . More in general, it is natural to wonder if 
similar characterizations may hold for some classes of BV and Sobolev spaces on a 
complete metric measure space (X, d, μ) in place of RN , at least in the case where some 
structural assumption is assumed on the measure μ acting on X. The general definition 
of Sobolev and BV space will be given in Section 2.1, and for every Sobolev function 
u it is defined a weak upper gradient |∇u|w ∈ Lp(X), along with its Cheeger energy
(introduced by Cheeger in [14])

Chp(u) :=
∫
X

|∇u|pw dμ.

In particular Chp will be l.s.c. with respect to the strong convergence in Lp and so is 
a good generalization of the Dirichlet energy in an Euclidean context, where the two 
notions coincide. Moreover W 1,p(X, d, μ) is a Banach space with the norm ‖u‖1,p =
(‖u‖pLp + Chp(u))1/p.
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We recall here (using [20,22]), that whenever μ is doubling and it satisfies a 
(1, p)-Poincaré inequality, W 1,p(X, μ, d) coincides with the Hajlasz–Sobolev space, that 
is the space of u ∈ Lp(X, μ) such that there exists g ∈ Lp(X, μ) with

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)), for μ a.e. x, y ∈ X. (1.1)

Moreover, we can choose g such that ‖g‖pp ≤ C · Ch(u).
Furthermore, if p > 1 and Ω ⊂ R

N is an extension domain, then W 1,p(Ω, L N , d)
coincides with the usual space W 1,p(Ω) and the norms are equivalent.

For any p ≥ 1 and 0 < s < 1, the fractional space Hs,p(X, μ, d) can be defined as the 
space of u ∈ Lp(X, μ) such that the Gagliardo seminorm [u]Hs,p(X) is finite, where

[u]Hs,p(X) :=

⎛
⎝∫

X

∫
X

|u(x) − u(y)|p
d(x, y)psρ(x, y) dμ(x) dμ(y)

⎞
⎠

1/p

,

and ρ is a doubling kernel for μ (see Definition 1.2). A fractional counterpart of the 
Hajlasz–Sobolev spaces can also be introduced as follows. For 0 < s < 1 we define 
W s,p(X, μ, d) as the spaces of u ∈ Lp(X, μ) such that there is a function g ∈ Lp(X, μ)
with

|u(x) − u(y)| ≤ ds(x, y)(g(x) + g(y)),

for almost any x, y ∈ X. When the measure is N -Ahlfors it follows (see [18]) that

Hs,p(X,μ, d) ↪→ W s,p(X,μ, d) ↪→ Hs−ε,p(X,μ, d),

for all ε ∈ (0, s), so that the two spaces are comparable.
The main goal of this paper is to provide a proof of the connection between

lim sup
s↗1

(1 − s)
∫
X

∫
X

|u(x) − u(y)|p
d(x, y)psρ(x, y) dμ(x) dμ(y) < +∞

and u ∈ W 1,p(X) for p > 1 or u ∈ BV (X) for p = 1. A second characterization we want 
to provide is in terms of the family of nonlocal integrals

u �→
∫∫

{|u(x)−u(y)|>δ}

δp

d(x, y)pρ(x, y) dμ(x) dμ(y).

In the Euclidean case X = R
N , Nguyen [26–29] (see also the recent works [9–13] by 

Brezis and Nguyen) proved that, if p > 1, then u ∈ W 1,p(RN ) if and only if u ∈ Lp(RN )
and
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sup
0<δ<1

∫∫
{|u(x)−u(y)|>δ}

δp

|x− y|N+p
dL N (x) dL N (y) < +∞,

in which case

lim
δ↘0

∫∫
{|u(x)−u(y)|>δ}

δp

|x− y|N+p
dL N (x) dL N (y) = Kp,N

∫
RN

|∇u|p dL N (x).

In the case p = 1 this property fails, in general [13].

1.2. Main results

In the following, (X, d, μ) denotes a complete and separable metric measure space 
with measure μ.

Definition 1.1 (Doubling). We say that μ is a doubling measure if there exists a constant 
cD such that

μ(B(x, 2r)) ≤ cDμ(B(x, r)), for all x ∈ supp(μ) and any r > 0.

Definition 1.2 (Doubling kernel). Let (X, d, μ) be a metric space with μ doubling and 
let us denote ρ1(x, y) = μ

(
B(x, d(x, y))

)
and ρ2(x, y) = μ

(
B(y, d(x, y))

)
. We say ρ :

X ×X → R is a doubling kernel if there exists a constant Cρ > 0 such that

1
Cρ

ρ1(x, y) ≤ ρ(x, y) ≤ Cρρ1(x, y), for all x, y ∈ supp(μ).

There are several examples of doubling kernels used in the literature; here we list a 
few

ρ1, ρ2, ρ1 + ρ2,
ρ1 + ρ2

ρ1ρ2
,

√
ρ1ρ2,

and in general f(ρ1, ρ2) where min{t, s} ≤ f(t, s) ≤ max{t, s}. In the special case when 
μ is N -ahlfors, also d(x, y)N is a doubling kernel.

Definition 1.3 (Poincaré inequality). We say that μ satisfies a (1, p)-Poincaré inequality 
if there is cP > 0 such that for any ball B ⊂ X of radius t > 0

∫
B

|uB − u(x)|p dμ(x) ≤ tpcP

∫
B

gp(x) dμ(x), u ∈ W 1,p(X), (Sobolev case),

∫
B

|uB − u(x)| dμ(x) ≤ tcP |Du|(B), u ∈ BV (X), (BV case).
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Notice that this definition is a bit different and less general than the usual one, that 
allows the integral on the right hand side to be performed over a larger ball B(x, τr), 
for some τ ≥ 1. We prefer to stick to this version since the proof becomes clearer, but of 
course modifications can be done in order to fit the more general definition.

The main results of the paper are the following.

Theorem 1.4 (BBM type characterization). Let p ≥ 1. Assume that (X, d, μ) is a complete 
and separable metric measure space and μ is doubling and satisfies a (1, p)-Poincaré 
inequality. Let ρ be a doubling kernel: then there exist CU > 0 and CL > 0 depending on 
p, N, Cρ, cP , cD such that for every u ∈ Lp(X) we have:

lim sup
s↗1

(1 − s)
∫
X

∫
X

|u(x) − u(y)|p
ρ(x, y)d(x, y)ps dμ(x) dμ(y) ≤ CUChp(u),

lim inf
s↗1

(1 − s)
∫
X

∫
X

|u(x) − u(y)|p
ρ(x, y)d(x, y)ps dμ(x) dμ(y) ≥ CLChp(u).

In the case p > 1, Theorem 1.4 was already obtained in [25] with a different and 
more involved technique, while the BV case, to the best of our knowledge, was open. 
The details in [25] are present only for Ahlfors measures, in which case an upper bound 
is firstly obtained on balls by exploiting the definition (1.1) and

sup
0<s<1

(1 − s)
∫

B(y,r)

1
d(x, y)N−p(1−s) dμ(x) < +∞, for μ a.e. y ∈ X and all r > 0,

which essentially follows from the fact that the measure of the balls of radius t grows 
N -polynomially. On the contrary, the lower bound in [25] is extremely involved and 
based, among other tools, upon some deep differentiation result contained in [15], which 
says that every Lipschitz map from X into a Banach space with the Radon–Nikodym 
Property is almost everywhere differentiable.

The following result is instead new in metric spaces, up to our knowledge.

Theorem 1.5 (Nguyen type characterization). Let p > 1. Assume that (X, d, μ) is a com-
plete and separable metric measure space and μ is doubling and satisfies a (1, p)-Poincaré 
inequality. Let ρ be a doubling kernel: then there exist CU > 0 and CL > 0 depending on 
p, N, Cρ, cP , cD such that for every u ∈ Lp(X) we have:

CLChp(u) ≤ lim sup
δ↘0

∫
X

∫
X

{|u(x)−u(y)|>δ}

δp

ρ(x, y)d(x, y)p dμ(x) dμ(y) ≤ CUChp(u).

We will now outline the proof of the results.
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In the case of the BBM type characterization the key tool is a clever use of Fubini 
theorem that let us compare the quantity we want to estimate with

St :=
∫
X

1
μ(B(x′, t))2

∫∫
B(x′,t)×B(x′,t)

|u(x) − u(y)|p dμ(x) dμ(y) dμ(x′),

which is very reminiscent of the Korevaar and Shoen definition of Sobolev functions 
[21]. As a result of this estimate we show that, in order to conclude, it is sufficient to 
have a good bound on the liminf/limsup of St

tp as t → 0. Then an easy application of 
the Poincaré inequality will give us the upper bound while for the lower bound we use 
Lemma 2.6, and the fact that St

tp can be seen as the energy of gt, which, up to a constant, 
is an upper gradient up to scale t/2 of the function ut, that in turn is an approximation 
of u.

As for the Nguyen-type characterization, for the upper bound we use the Hajlasz–
Sobolev characterization of Sobolev functions, while for the lower bound we again use 
cleverly Fubini (as done by Nguyen in its original work [26]), and then we use again 
Lemma 2.6, but this time the proof is more involved because the estimate is not so 
direct.

Remark 1.6. We work with the assumption that (X, d) is complete but the results in the 
Euclidean spaces are true also if restricted to an open domain Ω. In order to cover this 
case one should first adapt the definition of Sobolev spaces; we believe that Definition 2.4
is still the correct one, but the equivalence with other definitions is yet to be proven. 
If this is the case then the results of Theorem 1.4 and the lower bound in Theorem 1.5
are still valid. However, in order to deduce the upper bound in Theorem 1.5, one has 
to use a different proof since we relied on Proposition 2.9, which in turn relies on the 
self-improving property of the Poincaré inequality, which is not true for general open sets 
Ω, not even if Ω ⊆ R

n. Of course an easy solution is to suppose that a (1, q)-Poincaré 
inequality is valid, for some q < p, otherwise one should use an integral-geometric in-
terpretation of 

∫∫
B×B

in the spirit of the original proof, which is yet to be proven in a 
general setting.

Remark 1.7. Concerning the case p = 1 in the previous Theorem 1.5, in general, already 
in the Euclidean case, the assertion cannot hold true, in the sense that examples can be 
found [7,13] of functions u in W 1,1(Ω) such that

lim
δ↘0

∫
Ω

∫
Ω

{|u(x)−u(y)|>δ}

δ

|x− y|N+1 dLN (x) dLN (y) = +∞.

Moreover, it is desirable to have a lower bound of the lim inf as in Theorem 1.4, but this 
is more difficult and in the Euclidean context it was solved in [7].
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Open problem 1.8. Let u ∈ L1(X). Let {δn}n∈N ⊂ R
+ with δn → 0. Assume that

lim inf
δn→0

∫
X

∫
X

{|u(x)−u(y)|>δn}

δn
ρ(x, y)d(x, y) dμ(x) dμ(y) < +∞.

Then u ∈ BV (X) and there exists a positive constant C such that

lim inf
δn→0

∫
X

∫
X

{|u(x)−u(y)|>δn}

δn
ρ(x, y)d(x, y) dμ(x) dμ(y) ≥ CCh1(X)

This rather subtle assertion was proved in the Euclidean case in [7] (see also [13]).

Acknowledgments. The first author thanks Guido De Philippis and Nicola Gigli for the 
useful discussions on the topic, and also the warm hospitality of Università Cattolica di 
Brescia during some of the writing of the present paper. The authors thank an anonymous 
referee for his/her extremely valuable remarks.

2. Preliminaries

In this section we will introduce the well established theory of Sobolev spaces in metric 
measure spaces, as well as some technical results that will be needed in the proofs.

2.1. Sobolev spaces in metric measure spaces

Several equivalent definition of W 1,p(X, μ, d) and BV are available in the literature: 
we refer to [2–4,17,19,33] as general references. We will use the definition of Sobolev 
spaces given in [3] (and in [2] for BV spaces), where it is also proved to be equivalent to 
the more common definition of Newtonian spaces N1,p, defined for example in [33]. In the 
sequel p will be the Sobolev exponent and q is its dual exponent, namely 1/p + 1/q = 1.

We will denote by AC([0, 1]; X) the space of absolutely continuous curves γ :
[0, 1] → X, for which it is defined the metric derivative |γ′| almost everywhere. More-
over, we set et : AC([0, 1]; X) → X as the evaluation of γ at time t, namely et(γ) = γ(t). 
Another useful definition is that of push forward: given a Borel function f : X → Y and 
a measure μ on X we define ν = f�μ as the measure on Y such that ν(A) = μ(f−1(A)).

A key useful concept for Sobolev Spaces is the upper gradient.

Definition 2.1 (Upper gradients). Let f : X → R and g : X → [0, ∞]. We say that g is 
an upper gradient for f if for every curve γ ∈ AC([0, 1]; X) we have the so called upper 
gradient inequality
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|f(γ(1)) − f(γ(0))| ≤
1∫

0

g(γ(t))|γ|′(t) dt. (2.1)

We will often substitute the right hand side with the shorter notation 
∫
γ
g. Moreover, 

we say that g is an upper gradient of f up to scale δ if (2.1) is satisfied for every γ such 
that 
(γ) > δ.

We will need one more class object in order to define the Sobolev Spaces: the p-plans.

Definition 2.2 (p-plans). Let π be a probability measure on C([0, 1]; X). We say π is a 
p-plan if

• there exists C > 0 such that (et)�π ≤ Cμ for every 0 ≤ t ≤ 1;
• there exists bπ ∈ Lq(X, μ), called barycenter of π, such that

∫
AC

⎛
⎝∫

γ

g

⎞
⎠ dπ =

∫
X

g · bπ dμ, ∀g ∈ Cb(X, d).

We will say that a property on AC is true for p-almost every curve if it is true for 
π-almost every curve, for every p-plan π. Conversely a set of curves Γ is said to be p-null 
or p-negligible if π(Γ) = 0 for every p-plan π.

With this notion of p-almost every curve, we can relax the notion of upper gradient, 
and with this relaxed notion we can define the Sobolev Space.

Definition 2.3 (p-weak upper gradient). A function g ∈ Lp(X, μ) is a p-weak upper gra-
dient for f ∈ Lp(X, μ) if for p-almost every curve γ we have that f ◦ γ is W 1,1 and 
moreover

∣∣∣∣ ddtf ◦ γ(t)
∣∣∣∣ ≤ g(γ(t))|γ|′(t),

for almost every t ∈ [0, 1].

Definition 2.4 (Sobolev space). Let p ≥ 1. A function f ∈ Lp(X, μ) belongs to 
W 1,p(X, d, μ) if equivalently

(a) f has a p-weak upper gradient; then there exists a minimal weak upper gradient (in 
the μ-a.e. sense), denoted by |∇f |w.

(b) (only if p > 1) there exists a constant C such that for every p-plan π we have
∫

|f(γ(0)) − f(γ(1))| dπ ≤ ‖bπ‖q · C1/p.
AC
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(c) there exists g ∈ Lp(X, μ) such that for every p-plan π we have

∫
AC

|f(γ(0)) − f(γ(1))| dπ ≤
∫
X

g · bπ dμ.

Moreover, the least constant C in (b) is equal to 
∫
X
|∇f |pw dμ and the minimal g that 

satisfies (c) is again |∇f |w.

Definition 2.5 (BV space). A function f ∈ L1(X, μ) belongs to BV (X, d, μ) if equivalently

(a) f ◦ γ is BV for p-almost every curve and there exists a finite measure ν such that 
for every 1-plan π we have

∫
AC

γ�|D(f ◦ γ)|(A) dπ ≤ ‖bπ‖∞ · ν(A) ∀A ⊆ X open set.

(b) there exists a constant C such that for every 1-plan π we have

∫
AC

|f(γ(0)) − f(γ(1))| dπ ≤ ‖bπ‖∞ · C.

(c) there exists a finite measure ν such that for every 1-plan π we have

∫
AC

|f(γ(0)) − f(γ(1))| dπ ≤
∫
X

b∗π dν,

where b∗π denotes the upper semicontinuous relaxation of bπ.

Moreover the minimal ν in either (a) or (c) is denoted by |Df | and the least constant C
in (b) is equal to |Df |(X).

In the following we will denote

Chp(f) :=
∫
X

|∇f |pw dμ, for p > 1, Ch1(f) := |Df |(X). (2.2)

For the next lemma in the case p > 1 we refer the reader to[1].

Lemma 2.6 (Semicontinuity). Let p ≥ 1 and let fn, gn ∈ Lp
loc(X, μ) be functions such that 

gn is an upper gradient up to scale δn of fn. Suppose that δn ↓ 0, fn → f in Lp(X, μ) and 
gn ⇀ g weakly in Lp

loc(X, μ) (respectively in the sense of measure). Then g is a p-weak 
upper gradient for f (respectively we have |Df | ≤ g). In particular we have also
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lim inf
n→∞

∫
X

gpn dμ ≥ sup
R>0

lim inf
n→∞

∫
B(x0,R)

gpn dμ ≥ Chp(f).

Proof. For every M > 0, let us denote by AM ⊆ AC([0, 1]; X) the set

AM := {
(γ) ≥ 1
M } ∩ {γ([0, 1]) ⊆ BM (x0)}.

If 
(γ) > 0 we have that γ ∈ AM for M = sup
{

(γ)−1, d(γ(0), x) + 
(γ)

}
, so, in partic-

ular

AC([0, 1];X) = {
(γ) = 0} ∪
∞⋃

n=1
An.

We can now define Bn = {
(γ) = 0} ∪An. Let us consider πn := π|Bn
and compute

∫
AC

|f(γ1) − f(γ0)| dπn ≤
∫
AC

|fm(γ0) − fm(γ1)| dπn + 2C
∫

B(x0,n)

|fm − f | dμ,

where we used the triangle inequality and the first property of p-plans. Then we take m
big enough such that δm ≤ 1

n and in this way we can use the upper gradient property 
πn-almost everywhere (notice also that if 
(γ) = 0 the upper gradient property is trivial) 
to get

∫
AC

|f(γ1) − f(γ0)| dπn ≤
∫
AC

⎛
⎝∫

γ

gm

⎞
⎠ dπn + 2C

∫
B(x0,n)

|fm − f | dμ

≤
∫

B(x0,n)

gm · bπ dμ + 2C
∫

B(x0,n)

|fm − f | dμ

Taking the limit as m → ∞ (using bπ ∈ Lq and the weak convergence of gm to g), and 
then taking n → ∞ we get precisely Definition 2.4 (respectively 2.5) (c), and so we can 
conclude. �
2.2. Preliminaries on doubling spaces equipped with Poincaré inequality

Let us define a regularization operator Mt : Lp(X) → Lp(X)

Mtf(x) = 1
μ(B(x, t))

∫
B(x,t)

f(y) dμ(y).

We state its main properties
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Lemma 2.7 (Boundedness of Mt). Let μ be a doubling measure with doubling constant cD. 
Then Mt is a linear bounded operator from Lp(X) to itself, in particular

‖Mtf‖p ≤ cD‖f‖p, for every f ∈ Lp(X).

Moreover we have ‖Mtf − f‖p → 0 as t → 0 for every f ∈ Lp(X).

Proof. For the first part we use first Jensen inequality

∫
X

⎛
⎜⎝ 1
μ(B(x, t))

∫
B(x,t)

f(y) dμ(y)

⎞
⎟⎠

p

dμ(x) ≤
∫
X

1
μ(B(x, t))

∫
B(x,t)

fp(y) dμ(y) dμ(x),

and then Fubini to obtain
∫
X

1
μ(B(x, t))

∫
B(x,t)

fp(y) dμ(y) dμ(x) =
∫
X

fp(y)gt(y) dμ(y),

where gt(y) =
∫
B(y,t)

1
μ(B(x,t)) dμ(x). Using the doubling property we get

gt(y) ≤
∫

B(y,t)

cD
μ(B(x, 2t)) dμ ≤

∫
B(y,t)

cD
μ(B(y, t)) dμ = cD.

The convergence of Mtf to f is obvious for Lipschitz functions with bounded support 
and then we can conclude using the boundedness of Mt and the density of Lipschitz 
functions in Lp(X). �
Lemma 2.8. If μ is doubling, there exist C > 0 such that for every x ∈ X, r > 0, we have

∫
{d(x,y)≥r}

1
ρ(x, y)d(x, y)p dμ(y) ≤ C

rp
.

Proof. We consider the annuli Ai(x) = {2ir ≤ d(x, y) < 2i+1r}. Now, whenever y ∈ Ai

we have d(x, y) ≥ 2i+1r, but also ρ(x, y) ≥ 1
Cμ(B(x, 2ir)), since μ is doubling and ρ(x, y)

is comparable to μ(B(x, d(x, y))). We thus estimate

∫
{d(x,y)≥r}

1
ρ(x, y)d(x, y)p dμ(y) =

∞∑
i=0

∫
Ai

1
ρ(x, y)d(x, y)p dμ(y)

≤
∞∑
i=0

C
μ(Ai)

μ(B(x, 2ir))rp2ip+p
.
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In the end we use μ(Ai) ≤ μ(B(x, 2i+1r)) and then the doubling condition again to get
∫

{d(x,y)≥r}

1
ρ(x, y)d(x, y)p dμ(y) ≤ C

rp
1

2p − 1 ≤ C

rp
,

which concludes the proof. �
In the spirit of the Hajlasz–Sobolev space we then state the following

Proposition 2.9. Let p > 1, μ be a doubling measure that satisfies a (1, p)-Poincaré 
inequality. Then for every r > 0 there exists a constant Cr such that for every u ∈
W 1,p(X, d, μ) there exists g ∈ Lp such that ‖g‖pp ≤ Cr · Chp(X) and

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)) ∀x, y ∈ X, d(x, y) ≤ r.

Proof. It is sufficient to combine the results from [22] and [20], along with the bounded-
ness of the maximal function operator in doubling spaces. �
3. Proof of Theorem 1.4

We prove separately the upper and the lower bound.

3.1. Upper bound of (doubling) Theorem 1.4

For every ball B = B(x′, t), denoting by

uB := 1
μ(B)

∫
B

u dμ,

we have

μ(B)
∫
B

|uB − u(x)|p dμ(x) ≤
∫
B

∫
B

|u(x) − u(y)|p dμ(x) dμ(y) (3.1)

≤ 2pμ(B)
∫
B

|uB − u(x)|p dμ(x).

The first inequality follows by Hölder inequality, while the second one follows from the 
elementary inequality |a + b|p ≤ 2p−1|a|p + |b|p applied with a = u(x) − uB and b =
uB − u(y). We now write

1
d(x, y)ps = ps

∞∫ 1
tps+1 dt.
d(x,y)
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Then we apply the Fubini–Tonelli Theorem and get in turn

∫
X×X

|u(x) − u(y)|p
ρ(x, y)d(x, y)ps dμ(x) dμ(y) (3.2)

= ps

∫
X

∫
X

∞∫
d(x,y)

|u(x) − u(y)|p
ρ(x, y)tps+1 dt dμ(x) dμ(y)

= ps

∞∫
0

1
tps+1

⎛
⎜⎝

∫∫
{d(x,y)≤t}

|u(x) − u(y)|p
ρ(x, y) dμ(x) dμ(y)

⎞
⎟⎠ dt.

Now, let us define the quantities

Kt :=
∫∫

{d(x,y)≤t}

|u(x) − u(y)|p
ρ(x, y) dμ(x) dμ(y),

Ht :=
∫∫

{d(x,y)≤t}

|u(x) − u(y)|p√
μ(B(x, t))μ(B(y, t))

dμ(x) dμ(y),

St :=
∫ 1

μ(B(x′, t))2

∫∫
B(x′,t)×B(x′,t)

|u(x) − u(y)|p dμ(x) dμ(y) dμ(x′).

We will prove a lemma that deals with relations between these quantities, and then 
an estimate from above of St.

Lemma 3.1. There exist 0 < c < C < ∞, depending only on the doubling and Poincaré 
constants, and possibly the constant Cρ of the doubling kernel, such that for every t > 0
we have

(i) cHt ≤ Kt ≤ C
∑∞

k=0 Ht/2k ;
(ii) cHt/2 ≤ St ≤ CH2t;
(iii) St ≤ CtpChp(u);
(iv) if t ≥ 1 then Kt ≤ K1 + C log2(2t) 

∫
X
up dμ.

Before proving Lemma 3.1 we use it to deduce the upper bound: first of all we have

Kt ≤
C

c

∞∑
k=0

S2t/2k ≤ C2

c
Chp(X)

∞∑
k=0

(
4t
2k

)p

≤ CtpChp(X). (3.3)

Now we can use (3.2) in order to find
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(1 − s)
∫

X×X

|u(x) − u(y)|p
ρ(x, y)d(x, y)ps dμ(x) dμ(y) = (1 − s)ps

∞∫
0

Kt

tps+1 dt.

Splitting the last integral in t ≤ 1 and t > 1 will let us conclude using (3.3) in the first 
part and Lemma 3.1 (iv) for the second part:

(1 − s)ps
∞∫
0

Kt

tps+1 dt ≤ (1 − s)psC
1∫

0

Chp(X)
tp(s−1)+1 dt + (1 − s)ps‖u‖ppC

∞∫
1

log2(2t)
tps+1 dt

≤ Cs · Chp(X) + (1 − s)C‖u‖pp
∞∫
0

(1 + τ
ps )e

−τ dτ

= Cs · Chp(X) + (1 − s)C‖u‖pp(1 + 1
ps ).

In particular, letting s → 1 we obtain the upper bound.

Proof of Lemma 3.1. Every constant inside this proof will depend on cD, cP , Cρ, and 
possibly p.

(i) Since both ρ and 
√
ρ1ρ2 (see Definition 1.2) are both doubling kernels we have, 

thanks to the doubling property, that c√ρ1ρ2 ≤ ρ ≤ 1
c

√
ρ1ρ2 for some c > 0. In 

particular, up to losing a multiplicative constant, we can assume ρ = √
ρ1ρ2. In 

this case the inequality Ht ≤ Kt is trivial thanks to the monotonicity of measure of 
balls. The other inequality comes from the fact that

Kt =
∞∑
k=0

∫∫
{ t

2k+1 ≤d(x,y)≤ t

2k
}

|u(x) − u(y)|p
ρ(x, y) dμ(x) dμ(y);

then in every term we have

ρ(x, y) ≥
√

μ(B(x, t
2k+1 ))μ(B(y, t

2k+1 )) ≥ 1
cD

√
μ(B(x, t

2k ))μ(B(y, t
2k )),

and so we have

Kt ≤ cD

∞∑
k=0

Ht/2k .

(ii) Let us begin by writing more explicitly St, by doing the integration in x′ first, which 
yields

St =
∫
X

∫
X

|u(x) − u(y)|pft(x, y) dμ(x) dμ(y),

where we have set
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ft(x, y) :=
∫

B(x,t)∩B(y,t)

1
μ(B(x′, t))2 dμ(x′).

Thus, it is sufficient to prove that
c√

μ(B(x, t))μ(B(y, t))
χ{d(x,y)≤t/2} ≤ ft(x, y)

≤ C√
μ(B(x, 2t))μ(B(y, 2t))

χ{d(x,y)≤2t}.

For the second inequality, if d(x, y) > 2t we have ft(x, y) = 0, since B(x, t) ∩
B(y, t) = ∅. Moreover we can bound from above using μ(B(x, t)) ≤ μ(B(x′, 2t)) ≤
cDμ(B(x′, t)) and the same for y:

ft(x, y) ≤ c2D
μ(B(x, t) ∩B(y, t))√

μ(B(x, t))μ(B(y, t))μ(B(x, t))
≤ c3D√

μ(B(x, 2t))μ(B(y, 2t))
.

For the first inequality we need only to check that if d(x, y) ≤ t/2 then ft is bounded 
from below. But in this case we have B(x′, t) ⊆ B(x, 2t) and so μ(B(x′, t)) ≤
μ(B(x, 2t)) and the same is true for y. In particular, since this time B(x, t/2) ⊂
B(x, t) ∩B(y, t), we get

ft(x, y) ≥
μ(B(x, t/2))√

μ(B(x, 2t)μ(B(y, 2t)B(x, 2t)
≥ 1

c4D
√

μ(B(x, t))μ(B(y, t))
.

(iii) We use the Poincaré inequality in the form (remember that B is a ball of radius t)
∫
B

|uB − u(x)|p dμ(x) ≤ tpcP

∫
B

gp(x) dμ(x),

∫
B

|uB − u(x)| dμ(x) ≤ tcP |Du|(B).

In the spirit of treating the Sobolev and the BV case together, we can write

ν(E) =
∫
E

gpdμ, ν(E) = |Du|(E),

respectively. We then have, using Equation (3.1) and Poincaré inequality

St ≤ 2p
∫
X

1
μ(B(x, t))

∫
B(x,t)

|uB(x,t) − u(y)|p dμ(y) dμ(x)

≤ cP 2ptp
∫
X

ν(B(x, t))
μ(B(x, t)) dμ(x) = cP (2t)p

∫
X×X

χ{d(x,y)≤t}(x, y)
μ(B(x, t)) dμ⊗ ν(x, y).



1868 S. Di Marino, M. Squassina / Journal of Functional Analysis 276 (2019) 1853–1874
Notice now that if d(x, y) ≤ t then we have B(y, t) ⊆ B(x, 2t) and in particular, 
using the doubling condition, μ(B(y, t)) ≤ μ(B(x, 2t)) ≤ cDμ(B(x, t)). Then we 
deduce that

χ{d(x,y)≤t}(x, y)
μ(B(x, t)) ≤ cD

χ{d(x,y)≤t}(x, y)
μ(B(y, t)) .

Using Fubini–Tonelli we then get St ≤ cP cD(2t)pν(X).
(iv) In this case, we want to control also the part where d(x, y) ≥ 1; there we will use 

the triangle inequality |u(x) − u(y)|p ≤ 2p−1(|u(x)|p + |u(y)|p) and also ρ(x, y) ≥
Cμ(B(x, d(x, y))) and ρ(x, y) ≥ Cμ(B(y, d(x, y))) (from the property of being a 
doubling kernel), to get

Kt =
∫∫

{d(x,y)≤t}

|u(x) − u(y)|p
ρ(x, y) dμ(x) dμ(y),

= K1 +
∫∫

{1≤d(x,y)≤t}

|u(x) − u(y)|p
ρ(x, y) dμ(x) dμ(y)

≤ K1 + 2p

C

∫∫
{1≤d(x,y)≤t}

|u(x)|p
μ(B(x, d(x, y))) dμ(x) dμ(y)

= K1 + 2p

C

∫
X

|u(x)|p
∫

{1≤d(x,y)≤t}

1
μ(B(x, d(x, y))) dμ(y) dμ(x).

In order to estimate the last integral we divide in shells Sk = {y : 2k ≤ d(x, y) ≤
2k+1} and then we have

∫
{1≤d(x,y)≤t}

1
μ(B(x, d(x, y))) dμ(y) ≤

�log2(t)∑
k=0

∫
Sk

1
μ(B(x, 2k)) dμ(y)

=
�log2(t)∑

k=0

μ(Sk)
μ(B(x, 2k)) ≤ �log2(2t)� · (cD − 1),

which concludes the proof. �
3.2. Lower bound of Theorem 1.4

We first recall the following

Definition 3.2 (Upper gradient). Given a function f ∈ L1 +L∞ and a function g ≥ 0, we 
say that g is an upper gradient up to scale δ of f if for every curve γ of length ≥ δ we 
have
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|f(γa) − f(γb)| ≤
∫
γ

g. (3.4)

Let us define ut = Mtu and

gt(x′) := 1
μ(B(x′, t))2

∫∫
B(x′,t)×B(x′,t)

∣∣∣∣u(x) − u(y)
t

∣∣∣∣ dμ(x) dμ(y).

In this way we have, by Jensen,

St ≥ tp
∫

gt(x′)p dμ(x′).

Now, the idea is that for some C > 0, we have that Cg2t is an upper gradient up to scale 
t/2 of the function ut. This is significant thanks to Lemma 2.6 and Lemma 2.7.

The proof that Cg2t is an upper gradient up to scale t/2 of ut is as follows: it is 
sufficient to check Equation (3.4) only on curves that have length between t/2 and t, and 
then use the triangle inequality. So let us consider γ : [a, b] → X with length between 
t/2 and t. Then for every c ∈ (a, b) we have d(γc, γa) ≤ t and d(γc, γb) ≤ t. In particular 
B(γa, t) ⊆ B(γc, 2t) ⊆ B(γa, 4t) and so

|ut(γa) − ut(γb)| ≤
1

μ(B(γa, t))μ(B(γb, t))

∫
B(γa,t)×B(γb,t)

|u(x) − u(y)| dμ(x) dμ(y)

≤ 1
μ(B(γa, t))μ(B(γb, t))

∫
B(γc,2t)×B(γc,2t)

|u(x) − u(y)| dμ(x) dμ(y)

≤ c4D
μ(B(γa, 4t))μ(B(γb, 4t))

∫
B(γc,2t)×B(γc,2t)

|u(x) − u(y)| dμ(x) dμ(y)

≤ 2tc4D · g2t(γc).

In particular we have that, taking ht = 4c4Dg2t,
∫
γ

ht ≥
∫
γ

2
t
|ut(γa) − ut(γb)| = 2l(γ)

t
|ut(γa) − ut(γb)| ≥ |ut(γa) − ut(γb)|.

Using Lemma 2.6 and 2.7 we get lim inft→0
St

tp ≥ C ·Chp(X). Then we are done using 
Kt ≥ cSt/2

lim inf
s→1

(1 − s)ps
∞∫
0

Kt

tps+1 dt ≥ lim inf
s→1

(1 − s)ps
1∫

0

Kt

tps+1 dt ≥ lim inf
s→1

c

1∫
0

St/2

tp
dνs,p

≥ c lim inf
St/2 ≥ C · Chp(X),
t→0 tp
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where we used that νs,p = (1−s)p
tp(s−1)+1 is a probability measure on [0, 1] that goes weakly 

to δ0.

4. Proof of Theorem 1.5

4.1. Upper bound of Theorem 1.5

Consider the quantities

Aδ :=
∫
X

∫
X

{|u(x)−u(y)|>δ}

δp

ρ(x, y)d(x, y)p dμ(x) dμ(y),

Bδ,r :=
∫
X

∫
X

{|u(x)−u(y)|>δ, d(x,y)≤r}

δp

ρ(x, y)d(x, y)p dμ(x) dμ(y).

Notice now that if |u(x) −u(y)| > δ we have δp ≤ 2p−1(δp ∧ |u(x)|p + δp ∧ |u(y)|p). Using 
this inequality and Lemma 2.8 we get

Bδ,r ≤ Aδ ≤ C

rp

∫
X

(|u(x)| ∧ δ)p dμ + Bδ,r.

In particular, thanks to dominated convergence, we deduce that for every r > 0 the limit 
points as δ → 0 of Bδ,r and Aδ are the same. Now let us assume that u ∈ W 1,p(X). 
In particular, by Proposition 2.9 there exists a function g ∈ Lp such that 

∫
gp dμ ≤

C · Chp(u) and for any x, y with d(x, y) ≤ r we have

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)).

But then, the triangle inequality lets us conclude that in the subset {d(x, y) ≤ r} we 
have:

{|u(x) − u(y)| > δ} ⊆ {Cd(x, y) · g(x) ≥ δ/2} ∪ {Cd(x, y) · g(y) ≥ δ/2}.

By symmetry then we can estimate

Bδ,r ≤ 2
∫
X

∫
X

{Cd(x,y)·g(x)≥δ/2,d(x,y)≤r}

δp

ρ(x, y)d(x, y)p dμ(x) dμ(y)

= 2
∫
X

∫
d(x,y)≥r1(x)

δp

ρ(x, y)d(x, y)p dμ(y) dμ(x),
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where r1(x) = δ
2Cg(x) . Using again Lemma 2.8 we get

Bδ,r ≤ C̃

∫
g(x)p dμ(x) ≤ C̃ · C · Chp(u).

4.2. Lower bound of Theorem 1.5

In this case we suppose, without loss of generality, that

sup
0<δ<1

Aδ ≤ C.

Notice that then for every r ≤ 1 and for every 0 < ε < 1 we have

C ≥
r∫

0

εδε−1Aδ dδ = ε

p + ε

∫
X

∫
X

inf{|u(x) − u(y)|, r}p+ε

ρ(x, y)d(x, y)p dμ(x) dμ(y).

Now let us define (ϕ is a 1-Lipschitz function)

gt(x′) := 1
μ(B(x′, t))2

∫∫
B(x′,t)×B(x′,t)

inf{|u(x) − u(y))|, r}
t

dμ(x) dμ(y),

gϕ,t(x′) := 1
μ(B(x′, t))2

∫∫
B(x′,t)×B(x′,t)

|ϕ(u(x)) − ϕ(u(y))|
t

dμ(x) dμ(y),

and, with the same argument as in the proof of the lower bound in Theorem 1.4, we can 
estimate

C ≥ ε

p + ε

∫
X

∫
X

inf{|u(x) − u(y)|, r}p+ε

ρ(x, y)d(x, y)p dμ(x) dμ(y) ≥ c

1∫
0

∫
X
gp+ε
t dμ

tp+ε
dηε.

Here ηε = ν p
p+ε ,p+ε = ε

t1−ε and so ηε ⇀ 0. In particular, using this inequality for 
ε → 0, we deduce that there exists a sequence tε → 0 such that

lim
ε→0

∫
X

(
gtε
tε

)p+ε

dμ ≤ C/c.

In particular, up to a subsequence we have gtε/tε ⇀ h in Lp
loc(X, μ) and 

∫
X
hp dμ ≤ C/c.

Let us consider the class Lr ⊂ Lip(R) of 1-Lipschitz functions that have values in 
[0, r]; notice that for ϕ ∈ Lr we have |ϕ(t) − ϕ(s)| ≤ |t − s| and |ϕ(t) − ϕ(s)| ≤ r. In 
particular we have gϕ,t ≤ gt for ϕ ∈ Lr; moreover we already know that, up to constants, 
gϕ,t is a weak upper gradient at scale 2t for Mt(ϕ ◦u). This implies that gt is also a weak 
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upper gradient at scale 2t for Mt(ϕ ◦ u) and using Lemma 2.6 and 2.7 we find that h
is a p-weak upper gradient for ϕ ◦ u for every ϕ ∈ Lr. Now we want to prove that h is 
a p-weak upper gradient also for u. Thanks to Definition 2.3, we have that for every ϕ
and every p-plan π, there exists a set Nϕ that is π negligible, such that for γ /∈ Nϕ we 
have ϕ ◦ (f ◦ γ) ∈ W 1,1(0, 1) and |(ϕ ◦ (u ◦ γ))′(t)| ≤ h ◦ γ(t)|γ′|(t). In particular, we can 
take a countable dense set S ⊂ Lr and, denoting by

N =
⋃

ϕ∈S
Nϕ,

if γ /∈ N we have that f = u ◦ γ and g = h ◦ γ|γ′| satisfy the hypothesis of Lemma 4.1, 
and in particular we have

∀γ /∈ N u ◦ γ ∈ W 1,1(0, 1) and |u ◦ γ′(t)| ≤ g ◦ γ(t)|γ′| for a.e. t ∈ [0, 1].

Since N is a union of countably many π-negligible sets, it is itself π-negligible. Thanks to 
the arbitrariness of π, using again Definition 2.3 we conclude that h is indeed a p-weak 
upper gradient for u.

Lemma 4.1. Let us consider f : [0, 1] → R. Suppose there exists g ∈ L1(0, 1) such that for 
every ϕ belonging to a dense subset of Lr we have ϕ ◦f ∈ W 1,1(0, 1) and |(ϕ ◦f)′(t)| ≤ g(t)
for L-almost every t ∈ [0, 1]. Then f ∈ W 1,1(0, 1) and |f ′| ≤ g.

Proof. First of all let us observe that if the hypothesis is true for a dense subset of ϕ
then it is true for every ϕ ∈ Lr since it is equivalent to require

|ϕ(f(x)) − ϕ(f(y))| ≤
y∫

x

g(t) dt for almost every x < y ∈ [0, 1],

which is a condition stable for uniform convergence of ϕ.
Let us consider, for every n ∈ N

ϕn(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < rn

t− rn if rn ≤ t < r(n + 1)
r if t ≥ r(n + 1);

we also define ϕ−n(t) = −ϕn(−t). Then clearly we have ϕn ∈ Lr; moreover

∑
n∈Z

ϕn(t) = t.

Considering then fn = ϕn ◦ f we have
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∑
n∈Z

fn(x) = f(x) for every x ∈ [0, 1]. (4.1)

By hypothesis we have fn ∈ W 1,1 and |f ′
n| ≤ g; however we have f ′

n = 0 almost every-
where in {fn = 0} ∪{fn = r} thanks to standard Sobolev theory. In particular denoting 
with An = {rn ≤ f < r(n + 1)} we have more precisely |f ′

n| ≤ gχAn
. Let us consider 

N big enough such that {f ≤ Nr} is not negligible. Then we have that {fn = 0} is not 
negligible for n ≥ N and then we have ‖fn‖∞ ≤ ‖gχAn

‖1 thanks to the fact that there 
exists x0 such that fn(x0) = 0 and the estimate

|fn(x)| = |fn(x) − fn(x0)| =

∣∣∣∣∣∣
x∫

x0

f ′
n(y) dy

∣∣∣∣∣∣ ≤
1∫

0

|f ′
n|(y) dy ≤ ‖gχAn

‖1.

A similar argument can be used for n very negative. Now we have that ‖gχAn
‖1 is 

summable and adds up to ‖g‖1. In particular this proves that 
∑

|n|≤N fn converges in 

L∞ to some function f̃ which will coincide with f almost everywhere thanks to (4.1). 
We will in particular have that

∑
|n|≤N

fn
L1

−→ f
∑

|n|≤N

f ′
n

L1

−→ ḡ

where ḡ = f ′
n in An. In particular we have f ∈ W 1,1 and f ′ = ḡ; in particular |f ′| =

|ḡ| ≤ g. �
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