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Abstract. In this paper we study the validity of a Gausson (soliton) dynamics of the logarithmic Schrödinger equation in
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1. Introduction

This paper is concerned with the so-called soliton dynamics behaviour for the logarithmic Schrödinger
equation with an external potential{

iε∂tuε + ε2

2 �uε − V (x)uε + uε Log |uε|2 = 0,

uε(0, t) = uε,0(x),
(1.1)

that is, with the study of the behaviour of the solution uε, in the semi-classical limit ε → 0; namely
when the Planck constant ε = � tends to zero, by taking as initial datum for the Cauchy problem (1.1) a
function (Gausson type) of the form

uε,0(x) = e
i
ε
x·v0R

(
x − x0

ε

)
, R(x) := e

1+N
2 e−|x|2, x ∈ R

N. (1.2)

Here, uε = uε(x, t) is a complex-valued function of (x, t) ∈ R
N × R, N � 1, i is the imaginary unit,

V : RN → R is an external potential and x0, v0 ∈ R
N , v0 �= 0, are the initial position and velocity for

the Newtonian system{
ẋ(t) = ν(t), x(0) = x0,

ν̇(t) = −∇V (x(t)), ν(0) = v0.
(1.3)
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Notice that the classical Hamiltonian related to (1.3) is

H(t) = 1

2

∣∣ν(t)∣∣2 + V
(
x(t)

)
(1.4)

and is conserved in the time.
Equation (1.1) was proposed by Bialynicki-Birula and Mycielski [4] in 1976 as a model of nonlinear

wave mechanics. This NLS equation has wide applications in quantum optics [8], nuclear physics [17],
geophysical applications of magma transport [16], effective quantum and gravity, theory of superfluidity,
Bose–Einstein condensation and open quantum systems; see [30,31] and the references therein. We refer
to [1,2,10,12,13] for a study of existence and stability of standing waves, as well as for a study of the
Cauchy problem in a suitable functional framework.

Rigorous results about the soliton dynamics for nonlinear Schrödinguer equation with a power non-
linearity |u|p−1u were obtained in various papers by J.C. Bronski, R.L. Jerrard [7] and S. Keraani [19].
The main ingredients of the argument are the conservation laws of NLS and of the Hamiltonian (1.4)
combined with modulational stability estimates proved by M. Weinstein [27,28]. In recent years, the
so-called soliton dynamics has attracted a great deal of attention from both the mathematicians and
physicists; see for example [15,22–24,26].

Throughout this paper we assume that the potential V in (1.1) is a C3(RN) function bounded with
its derivatives. Formally, the NLS (1.1) has the following two conserved quantities. The first conserved
quantity is the energy Eε defined by

Eε(u) := 1

2εN−2

∫
RN

|∇u|2 dx + 1

εN

∫
RN

V (x)|u|2 dx − 1

εN

∫
RN

|u|2 Log |u|2 dx.

The second conserved quantity is the mass,

Qε(u) := 1

εN

∫
RN

|u|2 dx.

Notice that due to the singularity of the logarithm at the origin, the energy fails to be finite as well of
class C1 on H 1(RN). Therefore, we consider the reflexive Banach space

W
(
R

N
) := {

u ∈ H 1
(
R

N
) : |u|2 Log |u|2 ∈ L1

(
R

N
)}
. (1.5)

It is well known that the energy Eε is well-defined and of class C1 on W(RN) (see Section 2). Notice that
if u ∈ C(R,W(RN)) ∩ C1(R,W ′(RN)), then equation (1.1) makes sense in W ′(RN), where W ′(RN) is
the dual space of W(RN).

We see that the well-posedness of the Cauchy Problem for (1.1) in W ′(RN) and the conservation laws
follow by a standard compactness method developed in [11, Chapter 9].

Proposition 1.1. Let ε > 0. For every uε,0 ∈ W(RN), there is a unique global solution uε ∈
C(R,W(RN)) ∩ C1(R,W ′(RN)) of Eq. (1.1) such that uε(x, 0) = uε,0 and supt∈R ‖uε(t)‖W(RN) < ∞.
Furthermore, the solution uε(t) satisfies the conservation laws:

Eε

(
uε(t)

) = E(uε,0) and Qε

(
uε(t)

) = Qε(uε,0) for all t ∈ R.
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We denote

�
(
R

N
) := {

u ∈ H 1
(
R

N
) : |x|u ∈ L2

(
R

N
)}
.

It is well known that �(RN) is a Hilbert space when is equipped with the norm

‖u‖�(RN) :=
√∫

RN

(|∇u|2 + |x|2|u|2 + |u|2) dx,
and it is continuously embedded in H 1(RN). From [9, Theorem 1.5] we have that if initial data uε,0
belong to �(RN), then the solution uε(x, t) of Eq. (1.1) belong to L∞

loc(R, �(RN)). Moreover, if uε,0 ∈
H 2(RN), then uε(t) ∈ H 2(RN) and ∂tuε(t) ∈ L2(RN), for all t ∈ R.

Notice that the initial data uε,0 in (1.2) belong to �(RN) ∩ H 2(RN). On the other hand, it is not hard
to show that one has the following chain of continuous embeddings (see Lemma 2.1 below)

�
(
R

N
)
↪→ W

(
R

N
)
↪→ H 1

(
R

N
)
.

In particular, since Eε is of class C1 on W(RN), it follows that Eε is of class C1 on �(RN).
Let ω ∈ R and ϕ ∈ W(RN) be solution of the semilinear elliptic equation

−1

2
�ϕ + ωϕ − ϕ Log |ϕ|2 = 0, x ∈ R

N. (1.6)

It is well known that the Gausson

φω(x) := e
ω−1

2 R(x),

where the function R(x) is defined in (1.2), solves the problem (1.6) for any dimension N . Furthermore,
φω(x) is the unique, up to translations, strictly positive C2-solution for (1.6) such that φω(x) → 0 as
|x| → ∞; see [15, Theorem 1.2].

Orbital stability of Gaussons solutions φω(x) have been studied in a suitable functional framework.
More specifically, Cazenave [10]; Cazenave and Lions [13]; Ardila [1]; Blanchard and co. [5,6]; research
the orbital stability of stationary solutions of (1.1) in the energy space W(RN).

As mentioned above, the modulational stability property of ground states plays an important role in
soliton dynamics; however, due to the singularity of the logarithm at the origin, it is not clear whether
the energy functional is of class C2 in a tubular neighbourhood of the Gausson R. In particular, it is an
open problem to determine whether the Gausson R satisfies the modulational stability estimates.

Consider H 1(RN) equipped with the scaled norm

‖φ‖
H 1
ε

=
√
ε2−N‖∇φ‖2

L2 + ε−N‖φ‖2
L2 .

The following result is obtained by using the only information that the minimizing sequences for the
constrained variational problem associated to (1.6) are precompact in W(RN).
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Theorem 1.2. Let uε ∈ �(RN) be the family of solutions to the Cauchy problem (1.1) with initial data
(1.2), for some x0, v0 ∈ R

N . Then there exist a positive constant C, independent of ε > 0, such that

sup
t∈R

∥∥∇uε(t)
∥∥2

L2 � CεN−2.

Moreover, for any η > 0 there exist ε > 0, a time T ∗
ε > 0 and continuous functions

θε : [
0, T ∗

ε

] → [0, 2π], yε : [
0, T ∗

ε

] → R
N,

such that

uε(x, t) = e
i
ε
(ν(t)·x+θε(t))e

1+N
2 e

− 1
ε2 |x−yε(t)|2 + ωε(x, t), (1.7)

where ‖ωε(t)‖H 1
ε
< η2 for all t ∈ [0, T ∗

ε ).

Here yε = x(t) + εzε(t) for some continuous function zε : [0, T ∗
ε ] → R

N , where (x(t), ν(t)) is the
solution of the classical Hamiltonian system (1.3).

As it is well known, to prove the modulational stability property of ground states, it is necessary to
study the spectral structure of the complex self-adjoint operator E ′′(R), where

E(u) = 1

2

∫
RN

|∇u|2 dx −
∫
RN

|u|2 Log |u|2 dx. (1.8)

Notice that E is of class C1 on �(RN). Since E ′′(R) is a bounded operator defined on �(RN) with values
in �′(RN) (see Section 4 for more details), it is natural to assume that the energy functional is of class
C2 in a neighbourhood Vε(R) of R, of size ε > 0, where

Vε(R) := {
u ∈ �

(
R

N
) : ‖u − R‖2

H 1 < ε
}
.

Remark 1.3. The proof that the functional E is smooth on Vε(R) seems very difficult because of the
technical complications related to the singularity of the logarithm at the origin.

Open Problem 1.4. Prove or disprove that E is of class C2 on Vε(R).

Proposition 1.5. Suppose that E is of class C2 on Vε(R), for any ε small enough. Then the modulational
stability property holds. That is, there exist two constants C > 0 and h > 0, such that

inf
y∈RN ,θ∈R

∥∥φ − eiθR(· − y)
∥∥2

H 1 � C
(
E(φ) − E(R)

)

for all φ ∈ �(RN), such that ‖φ‖2
L2 = ‖R‖2

L2 and E(φ) − E(R) < h.

In light of Proposition 1.5, the soliton dynamics in Theorem 1.2 can be improved. Indeed, we have the
following result.
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Theorem 1.6. Let uε ∈ �(RN) be the family of solutions to the Cauchy problem (1.1) with initial data
(1.2). Furthermore, let (x(t), ν(t)) be the solution of the Hamiltonian system (1.3). Under the hypothesis
of Proposition 1.5, there exist θε : R+ → [0, 2π] such that,

uε(x, t) = e
i
ε
(ν(t)·x+θε(t))e

1+N
2 e

− 1
ε2 |x−x(t)|2 + ωε(x, t),

locally uniformly in time t ∈ R, where ωε ∈ H 1
ε and ‖ωε(t)‖H 1

ε
= O(ε), as ε → 0.

The paper is organized as follows.
In Section 2 we provide, by variational techniques, a characterization of the Gausson R.
In Section 3 we prove Theorem 1.2.
In Section 4, we show some delicate estimates for E ′′(R) (Proposition 1.5).
Finally, in Section 5 we give a sketch of proof of Theorem 1.6.

Notation. 〈·, ·〉 is the duality pairing between B ′ and B, where B is a Banach space and B ′ is its dual.
The space L2(RN,C) will be denoted by L2(RN) and its norm by ‖ · ‖L2 . This space will be endowed
with the real scalar product

(u, v)L2 = Re
∫
RN

uv dx, for u, v ∈ L2
(
R

N
)
.

We denote by ‖ · ‖H 1 the H 1
C
(RN)-norm. If L is a linear operator acting on some space 〈Lv, v〉 denotes

the value of the quadratic form associated with L evaluated at v. Finally, throughout this paper, the letter
C will denote positive constants whose value may change form line to line.

2. Variational analysis

In this section we establish some results that will be used later in the paper. In particular, we provide
a characterization of the Gausson R as minimizer of the energy functional E among functions with the
same mass.

We first need to introduce some notation which facilitates the subsequent discussion. Following [10],
we define the functions �, � on [0,∞) by

�(s) :=
{

−s2 Log(s2), if 0 � s � e−3;

3s2 + 4e−3s − e−6, if s � e−3;
�(s) := F(s) + �(s), (2.1)

where

F(s) := s2 Log s2 for all s ∈ R.

Notice that � is a Young function (see Lemma 1.3 in [10]). Then we define the associate Orlicz space
by considering

L�
(
R

N
) := {

f ∈ L1
loc

(
R

N
) : �(|f |) ∈ L1

(
R

N
)}
,
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and we endowed this space with Luxemburg norm

‖f ‖L� = inf

{
k > 0 :

∫
RN

�
(
k−1

∣∣f (x)∣∣) dx � 1

}
.

In light of [10, Lemma 2.1], we have that (L�(RN), ‖ · ‖L�) is a separable reflexive Banach space.
Finally, we define the Banach space (W(RN), ‖ · ‖

W(RN)
) = (H 1

C
(RN) ∩ L�(RN), ‖ · ‖

W(RN)
) where

‖f ‖
W(RN)

:= ‖f ‖
H 1(RN)

+ ‖f ‖
L� for all f ∈ W

(
R

N
)
.

Since E ∈ C1(W(RN),R) (see Proposition 2.7 in [10]), it follows from Lemma 2.1(ii) below that
E ∈ C1(�(RN),R).

Lemma 2.1. The following assertions hold.

(i) The embedding �(RN) ↪→ Lq(RN) is compact, where 2 � q < 2∗.
(ii) The inclusion map �(RN) ↪→ L2−δ(RN) is continuous, where δ = 1/N . In particular, the em-

bedding �(RN) ↪→ W(RN) is continuous.

Proof. Statement (i) is proved in [29, Lemma 3.1]. Next let u ∈ �(RN). By Hölder’s inequality with
conjugate exponents 2N/(2N − 1), 2N we obtain

∫
RN

∣∣u(x)∣∣2− 1
N dx �

(∫
RN

1

(1 + |x|2)α dx

) 1
2N

(∫
RN

(
1 + |x|2)∣∣u(x)∣∣2

dx

) 2N−1
2N

,

where α = 2N − 1. Since α > N/2, it follows that there exists a constant C > 0 depending only on N

such that ‖u‖L2−1/N (RN) � C‖u‖�(RN); that is, the embedding

�
(
R

N
)
↪→ L2−δ

(
R

N
)

(2.2)

is continuous. On the other hand, by [10, Proposition 2.2], we see that

∫
RN

∣∣�(|u|) − �
(|v|)∣∣ dx � C

(
1 + ‖u‖2

H 1(RN)
+ ‖v‖2

H 1(RN)

)‖u − v‖L2 (2.3)

for all u, v ∈ H 1(RN). Moreover, it follows from (2.1) that for every N ∈ N, there exists C > 0
depending only on N such that

�
(|z|) � C

(|z|2+ 1
N + |z|2− 1

N

) + �
(|z|) for any z ∈ C.

Since 2 < 2 + 1/N < 2∗, it follows from statement (i), (2.2), and (2.3) that if un → 0 strongly in
�(RN), then

∫
RN �(|un|) dx → 0 as n goes to +∞. By [10, inequality (2.2) in Lemma 2.1], we see

that un → 0 strongly in L�(RN). Therefore, the embedding �(RN) ↪→ L�(RN) is continuous. This
concludes the proof. �
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We have the following.

Proposition 2.2. For every η > 0, there exist h > 0 such that, if φ ∈ �(RN), ‖φ‖2
L2 = ‖R‖2

L2 and
E(φ) − E(R) < h, then

inf
y∈RN ,θ∈R

∥∥φ − eiθR(· − y)
∥∥2

H 1 < η2.

Our next goal is to prove Proposition 2.2. In this aim, we study the constrained problem

�R := inf
{
E(u) : u ∈ W

(
R

N
)
, ‖u‖2

L2 = ‖R‖2
L2

}
, (2.4)

where R is the Gausson defined in (1.2).

Lemma 2.3. Every minimizing sequence of �R is relativity compact in W(RN). More precisely, if a
sequence {un} ⊂ W(RN) is such that ‖un‖2

L2 = ‖R‖2
L2 and E(un) → �R as n → ∞, then there exist a

family {yn}n∈N ⊂ R
N and {θn}n∈N ⊂ R such that, up to a subsequence,

e−iθnun(· + yn) → R strongly in W
(
R

N
)
.

In particular, E(R) = �R and ‖un − eiθnR(· − yn)‖2
H 1 → 0, as n goes to +∞.

Before giving the proof of Lemma 2.3, we need to establish some preliminaries. We define the follow-
ing functionals of class C1 on W(RN):

S(u) := 1

4

∫
RN

|∇u|2 dx +
∫
RN

|u|2 dx − 1

2

∫
RN

|u|2 Log |u|2 dx, (2.5)

I (u) := 1

2

∫
RN

|∇u|2 dx +
∫
RN

|u|2 dx −
∫
RN

|u|2 Log |u|2 dx.

Notice that (1.6) with ω = 1 is equivalent to S ′(u) = 0, and I (u) = 〈S ′(u), u〉 is the so-called Nehari
functional. Finally, let us consider the minimization problem

d := inf
{
S(u) : u ∈ W

(
R

N
) \ {0}, I (u) = 0

}
= 1

2
inf

{‖u‖2
L2 : u ∈ W

(
R

N
) \ {0}, I (u) = 0

}
.

(2.6)

Now we recall the following fact from [1, Proposition 1.4 and Lemma 3.1].

Theorem 2.4. Let {un}n∈N ⊂ W(RN) be a minimizing sequence for d. Then there exist a family (yn) ⊂
R

N and {θn}n∈N ⊂ R such that, up to a subsequence, e−iθnun(· + yn) → R strongly in W(RN). In
particular, I (R) = 0 and S(R) = d.

Lemma 2.5. The following fact hold,

S(R) = inf
{
S(u) : u ∈ W

(
R

N
)
, ‖u‖2

L2 = ‖R‖2
L2

}
. (2.7)

In particular, E(R) = �R where �R is defined in (2.4).
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Proof. First, it is clear that inf{S(u) : u ∈ W(RN), ‖u‖2
L2 = ‖R‖2

L2} � S(R). Next we claim that if
‖u‖2

L2 = ‖R‖2
L2 , then I (u) � 0, where I is the Nehari functional. Indeed, assume by contradiction

that I (u) < 0. It is not hard to show that there exists λ, 0 < λ < 1, such that I (λu) = 0. But then,
‖λu‖2

L2 < ‖u‖2
L2 = ‖R‖2

L2 and I (λu) = 0, which is a contradiction with Theorem 2.4. Therefore, if
‖u‖2

L2 = ‖R‖2
L2 , then I (u) � 0 and

S(u) = 1

2
I (u) + 1

2
‖u‖2

L2 �
1

2
‖u‖2

L2 = 1

2
‖R‖2

L2 = S(R);

this implies (2.7). Finally, the proof of the last assertion of lemma immediately follows from (2.7). This
concludes the proof of Lemma 2.5. �

Now we give the proof of Lemma 2.3.

Proof of Lemma 2.3. Let {un}n∈N ⊂ W(RN) be a minimizing sequence for the value �R, that is
‖un‖2

L2 = ‖R‖2
L2 and E(un) → �R, as n → ∞. From Lemma 2.5, we have as n → ∞ that

I (un) = E(un) + ‖un‖2
L2 → E(R) + ‖R‖2

L2 = I (R) = 0.

Then, by elementary computations, we can see that there exists a sequence {λn}n∈N ⊂ R
+ such that

I (λnun) = 0 and λn → 1. Next, define the sequence fn(x) = λnun(x). It is clear that ‖fn‖2
L2 → ‖R‖2

L2

and I (fn) = 0 for any n ∈ N. Therefore, {fn}n∈N is a minimizing sequence for d. Thus, by Theorem 2.4,
up to a subsequence, there exist {yn}n∈N ⊂ R

N and {θn}n∈N ⊂ R such that e−iθnfn(· + yn) → R strongly
in W(RN). Since ‖fn − un‖W(RN)

→ 0 as n → ∞, the assertion follows. �

Now we give the proof of Proposition 2.2.

Proof of Proposition 2.2. The result is proved by contradiction. Assume that there exist η > 0 and a
sequence {φn}n∈N ⊂ �(RN), such that ‖φn‖2

L2 = ‖R‖2
L2 and

E(φn) − E(R) < 1

n
, (2.8)

inf
θ∈R

inf
y∈RN

∥∥φn − eiθR(· − y)
∥∥
H 1 � η, for any n ∈ N. (2.9)

Since E(φn) � E(R), from formula (2.8), it follows that E(φn) → E(R) as n → ∞. That is, {un}n∈N
is a minimizing sequence for �R. By Lemma 2.3, up to a subsequence, there exist {yn}n∈N ⊂ R

N and
{θn}n∈N ⊂ R such that

∥∥φn − eiθnR(· − yn)
∥∥
H 1 → 0 as n → ∞,

which is a contradiction with (2.9). This ends the proof. �
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3. Dynamics of the Gausson

The main aim of this section is to prove Theorem 1.2. Let uε be a solution of the Cauchy problem
(1.1) with initial data (1.2). We define the momentum as a function pε : RN × R → R

N by setting

pε(x, t) := 1

εN−1
Im

(
uε(x, t)∇uε(x, t)

)
,

where Im(z) denotes the imaginary part of z and uε is the complex conjugate of uε. Note that, by
assumption, there exists ω > 0 such that V (x) + ω � 0 for all x ∈ R

N . In particular, we can assume
V � 0. Indeed, if uε is a solution to (1.1)–(1.2), then e−iωt/εuε is a solution of (1.1)-(1.2) with the
potential V (x) + ω � 0 instead of V .

We have the following result.

Lemma 3.1. Let uε be the solution to problem (1.1) corresponding to the initial data (1.2). Then there
exists a positive constant C, independent of ε > 0, such that

sup
t∈R

∥∥∇uε(t)
∥∥2

L2 � CεN−2.

Moreover, there exists a positive constant C1 such that

sup
t∈R

∣∣∣∣
∫
RN

pε(x, t) dx

∣∣∣∣ � C1.

Proof. First, notice that Eε(uε(x, t)) = Eε(uε(0, t)). Moreover, by Lemma 3.3 below, there exists a
constant C > 0, independent of ε > 0, such that Eε(uε(x, t)) � C. Set vε(x) := uε(εx). Since V is
nonnegative, we see that

1

2
‖∇vε‖2

L2 −
∫
RN

|vε|2 Log |vε|2 dx � C. (3.1)

Now, applying the logarithmic Sobolev inequality (see [21, Theorem 8.14]) we have∫
RN

|vε|2 Log |vε|2 dx � α2

π
‖∇vε‖2

L2 + (
Log ‖vε‖2

L2 − N(1 + Logα)
)‖vε‖2

L2,

for any α > 0. By conservation of the mass, we obtain that ‖vε‖2
L2 = m := ‖R‖2

L2 . Therefore,

(
1

2
− α2

π

)
‖∇vε‖2

L2 � C + (
Logm − N(1 + Logα)

)
m.

Taking α > 0 sufficiently small, the first assertion of lemma follows by rescaling. On the other hand, by
Hölder inequality, the mass conservation law and the first assertion of lemma we see that∣∣∣∣

∫
RN

pε(x, t) dx

∣∣∣∣ �
∫
RN

∣∣pε(x, t)
∣∣ dx � 1

εN/2

∥∥uε(·, t)∥∥L2

1

εN/2−1

∥∥∇uε(·, t)
∥∥
L2 � C

for every t ∈ R, which completes the proof. �
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The following lemma will be useful later. For a proof see [19, Lemma 3.3].

Lemma 3.2. Let f ∈ C2(RN) be such that ‖f ‖C2(RN) < ∞. Then for every y ∈ R
N fixed∫

RN

f (εx + y)R2(x) dx = f (y)

∫
RN

R2(x) dx + O
(
ε2

)
, as ε ↘ 0,

where O(ε2) is independent of y.

Lemma 3.3. For every t ∈ R
+ we have

Eε

(
uε(t)

) = E(R) + mH(t) + O
(
ε2

)
as ε ↘ 0.

Proof. Since R is real, it follows by the energy conservation law

Eε

(
uε(t)

) = Eε

(
uε(0)

) = m
|v0|2

2
+ E(R) +

∫
RN

V (εx + x0)R
2(x) dx.

Next, from Lemma 3.2 we see that∫
RN

V (εx + x0)R
2(x) dx = mV

(
x(0)

) + O
(
ε2

)
, as ε ↘ 0.

But then, by the conservation law of the function t �→ H(t), we obtain

Eε

(
uε(t)

) = E(R) + mH(0) + O
(
ε2

)
= E(R) + mH(t) + O

(
ε2

)
, as ε ↘ 0.

This completes the proof. �

In our analysis, we use the following property of the functional δx defined on the space C2(RN)

endowed with the standard C2 norm: there exist three constants K0,K1 > 0 and K2 > 1 such that if
‖δy − δz‖C2∗ � K0 then

K1|y − z| � ‖δy − δz‖C2∗ � K2|y − z|. (3.2)

Here, C2∗ is the dual space of C2(RN). For a proof of such statement, see [19, Lemma 3.2].

Let ρ be a positive constant defined by

ρ := K2 sup
t∈[0,T ]

∣∣x(t)∣∣ + K0, (3.3)

where T > 0, x(t) is defined in (1.3), K0 and K2 are as in (3.2). Observe that, as K2 > 1, we have
|x(t)| � ρ for every t ∈ [0, T ]. Furthermore, let χ ∈ C∞(RN) be a function such that

χ(x) = 1 if |x| < ρ, χ(x) = 0 if |x| > 2ρ. (3.4)

Then we have the following.
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Lemma 3.4. Let uε be the family of solutions to problem (1.1) with initial data (1.2) and consider the
functions σε : R → R

N and λε : R → R defined by

σε(t) =
∫
RN

pε(x, t) dx − mν(t),

λε(t) = mV
(
x(t)

) − 1

εN

∫
RN

χ(x)V (x)
∣∣uε(x, t)∣∣2

dx,

where ν(t) is defined in (1.3) and m = ‖R‖2
L2 . Then σε(t) and λε(t) are continuous on R and satisfy

σε(0) = 0, |λε(0)| = O(ε2) as ε ↘ 0.

Proof. The continuity of σε and λε follow from the regularity properties of the solution uε. Since R is a
real function, it follows easily that σε(0) = 0. Finally, it is not hard to prove, using the Lemma 3.2, that
|λε(0)| = O(ε2) as ε goes to zero. See, e.g., [22, Lemma 3.7] for more details. �

Define now

ψε(x, t) := e− i
ε
ν(t)·[εx+x(t)]uε

(
εx + x(t), t

)
, (3.5)

where (x(t), ν(t)) is the solution to problem (1.3). Notice that ψε ∈ �(RN) for every t ∈ R and ε > 0.
Moreover, the mass of ψε is conserved. Indeed, by a change of variable we see that

∥∥ψε(t)
∥∥2

L2 = ∥∥uε(εx + x(t), t
)∥∥2

L2 = 1

εN

∥∥uε(t)∥∥2

L2 = ‖R‖2
L2 . (3.6)

Lemma 3.5. For every t ∈ R and ε > 0,

0 � E
(
ψε(t)

) − E(R) �
∣∣ν(t)∣∣∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ + O

(
ε2

)
,

where ψε is defined in (3.5).

Proof. We recall that pε(x, t) = Im(uε(x, t)∇uε(x, t))/ε
N−1. By a change of variable, it follows

E
(
ψε(t)

) = 1

2εN−2

∫
RN

|∇uε|2 dx + 1

2
m

∣∣ν(t)∣∣2 − 1

εN

∫
RN

|uε|2 Log |uε|2 dx

− ν(t) ·
∫
RN

pε(x, t) dx.

Thus, taking into account the definition of Eε, we have

E
(
ψε(t)

) = Eε

(
uε(t)

) − 1

εN

∫
RN

V (x)
∣∣uε(t, x)∣∣2

dx + 1

2
m

∣∣ν(t)∣∣2 − ν(t) ·
∫
RN

pε(x, t) dx.
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Then, from Lemma 3.3 we get

E
(
ψε(t)

) − E(R) = mH(t) − 1

εN

∫
RN

V (x)
∣∣uε(t, x)∣∣2

dx

+ 1

2
m

∣∣ν(t)∣∣2 − ν(t) ·
∫
RN

pε(x, t) dx + O
(
ε2

)
�

∣∣ν(t)∣∣∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ − 1

εN

∫
RN

(
1 − χ(x)

)
V (x)

∣∣uε(t, x)∣∣2
dx + O

(
ε2

)
.

Since V � 0, it follows that

0 � E
(
ψε(t)

) − E(R) �
∣∣ν(t)∣∣∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ + O

(
ε2

)
,

which concludes the proof of lemma. �

Proof of Theorem 1.2. Set βε(t) := |ν(t)||σε(t)| + |λε(t)| for t ∈ R. From Lemma 3.4, since
supt∈R |ν(t)| < +∞, it follows that the function {t → βε(t)} is continuous and |βε(0)| = O(ε2) as
ε ↘ 0. Let η > 0. Let us fix a time T0 > 0. Let h > 0, depending on η, be as in Proposition 2.2.
Introduce the number

T ∗
ε := sup

{
t ∈ [0, T0] : βε(τ ) �

h

2
, for all τ ∈ [0, t]

}
. (3.7)

Since |βε(0)| = O(ε2) it follows that T ∗
ε > 0, for any ε > 0 small. By choosing ε sufficiently small,

from Lemma 3.5, we get for all t ∈ [0, T ∗
ε )

E
(
ψε(t)

) − E(R) � βε(t) + O
(
ε2

)
< h.

Since ψε ∈ �(RN) and ‖ψε(t)‖2
L2 = ‖R‖2

L2 , by Proposition 2.2 there exist two families of uniformly
bounded functions θ∗

ε : R → R and zε : R → R
N such that

∥∥e− i
ε
ν(t)·[εx+x(t)]uε

(
εx + x(t), t

) − eiθ
∗
ε (t)R

(
x + zε(t)

)∥∥2

H 1 < η2

for every t ∈ [0, T ∗
ε ). Finally, by rescaling and setting

θε(t) := εθ∗
ε (t), yε(t) := x(t) − εzε(t),

we get formula (1.7). The proof of Theorem 1.2 is complete. �

4. Spectral analysis of linearization

The goal of this section is to prove Proposition 1.5. Before giving the proof, we need to establish some
preliminary lemmas.
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Lemma 4.1. Let R be the Gausson (1.2). Then there exists a positive constant δ such that for every
w ∈ �(RN) satisfying

(w,R)L2 = (w, iR)L2 =
(
w,

∂R

∂xj

)
L2

= 0, for all j = 1, . . . , N (4.1)

we have

〈
S ′′(R)w,w

〉
� δ‖ω‖2

�(RN)
,

where the functional S is defined in (2.5).

We set w = u + iv for real valued functions u, v ∈ �(RN,R). Then it is not hard to show that S ′′(R)
can be separated into a real and imaginary part L+ and L− such that

〈
S ′′(R)w,w

〉 = 〈L+u, u〉 + 〈L−v, v〉,

where L+ and L− are two bounded operator on �(RN) with values in �′(RN) and given by

L+u = −1

2
�u + 2|x|2u − (N + 2)u,

L−v = −1

2
�v + 2|x|2v − Nv.

Indeed, let f ∈ �(RN). Then we see that

S ′′(f )w = −1

2
�w + w − Log |f |2w − 2

f

|f |2 Re(fw).

Now recalling the definition of R given in (1.2) we get

S ′′(R)w = −1

2
�w + w − Log |R|2w − 2 Re(w)

= −1

2
�w − Nw + 2|x|2w − 2 Re(w)

= L+u + iL−v.

The above lemma follows immediately from the two following lemmas.

Lemma 4.2. There exists a positive constant δ1 such that for every v ∈ �(RN) satisfying

(v, R)L2 = 0

we have 〈L−v, v〉 � δ1‖v‖2
�(RN )

.
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Lemma 4.3. There exists a positive constant δ2 such that for every u ∈ �(RN) satisfying

(u, R)L2 =
(
u,

∂R

∂xj

)
L2

= 0 for all j = 1, . . . , N

we have 〈L+u, u〉 � δ2‖u‖2
�(RN)

.

Before giving the proof of Lemmas 4.2 and 4.3, we discuss some spectral properties of L− and L+.
First, since |x|2 → +∞ as |x| goes to +∞, the operators L− and L+ have only discrete spectrum,
i.e. σ(L±) = σp(L±) = {λ±

i }i∈N. Moreover, the corresponding eigenvalues λ±
i tending to +∞ and the

eigenfunctions are exponentially decaying as |x| → +∞.

Now we give the proof of Lemma 4.2.

Proof of Lemma 4.2. We claim that there exists κ > 0 such that for every v ∈ �(RN) \ {0} satisfying
(v, R)

L2 = 0, we have

〈L−v, v〉 � κ‖v‖2
L2 . (4.2)

Indeed, it is not hard to show that L−(R) = 0. Since R > 0, it follows that 0 is the first simple
eigenvalue of L− (see [3, Chapter 3]). Next let v ∈ �(RN) \ {0} with (v, R)

L2 = 0. From the min-max
characterization of eigenvalues (see [3, Supplement 1]) there exist κ > 0 such that 〈L−v, v〉 � κ‖v‖2

L2 .
Notice that κ is the second eigenvalue of L−. This proves our claim.

Now, let us set

τ = inf
{〈L−v, v〉 : ‖v‖2

�(RN)
= 1, (v, R)L2 = 0

}
,

and assume by contradiction that τ = 0. Let {vn}n∈N be a minimizing sequence for τ . Then since
‖vn‖�(RN) = 1, we can assume that the sequence converges weakly in �(RN) to some v. Furthermore,
since the embedding �(RN) ↪→ L2(RN) is compact, it follows that vn → v strongly in L2(RN) as
n → ∞. In particular, (v, R)

L2 = 0 and

0 � 〈L−v, v〉 � lim inf
n→∞ 〈L−vn, vn〉 = 0.

This implies that 〈L−v, v〉 = 0 and, since (v, R)
L2 = 0, it follows from (4.2) that v ≡ 0. On the other

hand,

lim
n→∞ ‖vn‖2

L2 = lim
n→∞

{‖vn‖2
L2 + 〈L−vn, vn〉

}
� lim

n→∞

{
1

2
‖vn‖2

�(RN)
− N‖vn‖2

L2

}

= 1

2
− N lim

n→∞ ‖vn‖2
L2 .

Therefore, ‖v‖2
L2 � 1/(2N + 2), which is a contradiction to the fact that v ≡ 0. This completes of proof

of lemma. �

We now turn our attention to L+. In order to prove Lemma 4.3, we first establish the following.
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Lemma 4.4. The following assertions hold.

(i) The operator L+ has only one negative eigenvalue. The unique negative simple eigenvalue equals
−2, and R is the corresponding eigenfunction.

(ii) The second eigenvalue of L+ is 0 and

ker(L+) = span

{
∂R

∂xj
: j = 1, . . . , N

}
.

Proof. We remark that L+(R) = −2R. But then, since R > 0, it follows that −2 is the first simple
eigenvalue of L+. From [25, Example 4.5 and Section 4.2], we see that −2 is the only negative eigen-
value. On the other hand, it is clear that 0 is the next eigenvalue. Indeed, since R ∈ C∞(RN), an easy
calculation shows that L+(∂R/∂xj ) = 0. Thus, 0 is an eigenvalue of L+ and

span

{
∂R

∂xj
: j = 1, . . . , N

}
⊆ ker(L+).

The reverse inclusion is shown in [14, Theorem 1.3]. The proof is completed. �

Proof of Lemma 4.3. From the spectral decomposition theorem [18, p. 177] and Lemma 4.3, the space
�(RN) can be decomposed into �(RN) = span{R/‖R‖

L2} ⊕ ker(L+) ⊕ E+, where E+ is the image
of the spectral projection to the positive part of the spectrum of L+. In particular, if ξ ∈ E+, then
〈L+ξ, ξ〉 > 0. Then for every u ∈ �(RN) \ {0} with

(u, R)L2 =
(
u,

∂R

∂xj

)
L2

= 0, for all j = 1, . . . , N

we get 〈L+u, u〉 > 0. The remainder of the argument is a literal repetition of the proof of Lemma 4.2.
We omit the details. �

Lemma 4.5. Let ψ ∈ �(RN) such that

inf
y∈RN ,θ∈[0,2π)

∥∥ψ − e−iθR(· + y)
∥∥
L2 � ‖R‖L2

and ‖ψ‖2
L2 = ‖R‖2

L2 . Then

inf
y∈RN ,θ∈[0,2π)

∥∥ψ − e−iθR(· + y)
∥∥2

L2

is achieved at some y0 ∈ R
N and θ0 ∈ [0, 2π).

Proof. Consider the auxiliary function � : RN × [0, 2π) → R defined by

�(y, θ) := ∥∥ψ − e−iθR(· + y)
∥∥
L2 .



218 A.H. Ardila and M. Squassina / Soliton dynamics for logarithmic NLS

It is clear that � is a continuous function. Now, since ‖ψ‖2
L2 = ‖R‖2

L2 we see that

�2(y, θ) = 2‖R‖2
L2 − 2 Re

(
e−iθ

∫
RN

R(x + y)ψ(x) dx

)
.

Since R(· + y) decay exponentially to zero as |y| → +∞, we have R(· + y) ⇀ 0 in L2(RN) as |y| goes
to +∞. Thus, we have

lim|y|→∞�2(y, θ) = 2‖R‖2
L2 .

By the first assumption on the function ψ , for every δ > 0, we see that there exist points y∗ ∈ R
N and

θ∗ ∈ [0, 2π) such that �(y∗, θ∗) � ‖R‖L2 + δ. As a consequence, �(y, θ) attains its infimum over the
compact set B�(0) × [0, 2π], for a suitable � > 0, which finishes the proof. �

We define now the tubular neighbourhood of R of size ε ∈ (0, ‖R‖2
L2) by

Uε(R) :=
{
u ∈ �

(
R

N
) : ‖u‖2

L2 = ‖R‖2
L2, inf

y∈RN ,θ∈[0,2π)
∥∥eiθu(· − y) − R

∥∥2

H 1 < ε
}
.

By Lemma 4.5, there exist σ : Uε(R) → R and Y : Uε(R) → R
N such that, for all u ∈ Uε(R),

∥∥eiσ(u)u(· − Y(u)
) − R

∥∥2

L2 = inf
y∈RN ,θ∈[0,2π)

∥∥eiθu(· − y) − R
∥∥2

L2 . (4.3)

We claim that the function w := eiσ(u)u(· − Y(u)) satisfies the orthogonality conditions

(w, iR)L2 =
(
w,

∂R

∂xj

)
L2

= 0 for all j = 1, . . . , N. (4.4)

Indeed, by differentiating (4.3) with respect to θ we see that

(w, iR)L2 = − Re
∫
RN

ieiσ (u)u
(· − Y(u)

)
R(x) dx

= (
ieiσ (u)u

(· − Y(u)
)
, eiσ (u)u

(· − Y(u)
) − R

)
L2 = 0.

On the other hand, by differentiating (4.3) with respect to yj we get

(
w,

∂R

∂xj

)
L2

= Re
∫
RN

eiσ (u)u
(· − Y(u)

)∂R(x)
∂xj

dx −
∫
RN

R(x)
∂R(x)

∂xj
dx

=
(
u − e−iσ (u)R

(· + Y(u)
)
, e−iσ (u) ∂R

∂xj

(· + Y(u)
))

L2

= 0.

Now we give the proof of Proposition 1.5.
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Proof of Proposition 1.5. Our proof is inspired by the one contained in [20, Lemma 6.3]. First, we
claim that there exist ε > 0 and C > 0 such that for all v ∈ Uε(R) we have

E(v) − E(R) � C inf
y∈RN ,θ∈R

∥∥eiθv(· − y) − R
∥∥2

H 1 .

Indeed, for ε small enough, let w := eiσ(v)v(· − Y(v)) be as in (4.3). Let λ ∈ R and z ∈ �(RN) be such
that w = R + λR + z with (z, R)L2 = 0. From (4.4) we see that

(z, ∂R/∂xj )L2 = 0, (z, iR)L2 = 0.

Then z satisfies the conditions (4.1) in Lemma 4.1. Hence, there exists δ > 0 such that

〈
S ′′(R)z, z

〉
� δ‖z‖2

�(RN )
� δ‖z‖2

H 1 . (4.5)

On the other hand, since S ′(R) = 0, under the hypothesis of Proposition 1.5 and by virtue of Taylor
formula we get

S(v) − S(R) = S(w) − S(R)

= 1

2

〈
S ′′(R)(w − R),w − R

〉 + o
(‖w − R‖2

H 1

)
. (4.6)

Moreover, it is not hard to show that λ = o(‖w − R‖H 1) and (see [20, Lemma 6.3])

〈
S ′′(R)(w − R),w − R

〉 = 〈
S ′′(R)z, z

〉 + o
(‖w − R‖2

H 1

)
.

Notice that ‖z‖2
H 1 � ‖w−R‖2

H 1 + o(‖w−R‖2
H 1). Thus, since ‖v‖2

L2 = ‖R‖2
L2 , from (4.5) and (4.6) we

obtain

E(v) − E(R) � δ

2
‖w − R‖2

H 1 + o
(‖w − R‖2

H 1

)
.

Then choosing ε small enough and recalling the definition of w in (4.3), it follows that

E(v) − E(R) � δ

4
inf

y∈RN ,θ∈R
∥∥eiθv(· − y) − R

∥∥2

H 1,

for every v ∈ Uε(R). This concludes the proof of the claim.
Finally, from Proposition 2.2 we see that for every ε > 0, there exists h > 0 such that if E(v)−E(R) <

h and ‖v‖2
L2 = ‖R‖2

L2 , then v ∈ Uε(R). Then, choosing h small enough, Proposition 1.5 follows. �

5. Proof of Theorem 1.6

In this section we will show the main steps of the proof of Theorem 1.6. We essentially follow the
argument of [19], which is based upon the original paper by Bronski and Jerrard [7]. Using the variational
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structure of (1.1) and by the regularity of solutions (see the paragraph after Proposition 1.1), it is not
difficult to show that the solution uε satisfies the identities

1

εN

∂|uε|2
∂t

(x, t) = − divx pε(x, t), (x, t) ∈ R
N × R, (5.1)

∫
RN

∂pε

∂t
(x, t) dx = −

∫
RN

∇V (x)
|uε(x, t)|2

εN
, x ∈ R

N. (5.2)

In light of Proposition 1.5, the result in Theorem 1.2 can be improved. More precisely, combining Propo-
sition 1.5 and Lemma 3.5 and following the same argument as Theorem 1.2 we have the following

Proposition 5.1. If uε ∈ �(RN) is the family of solutions to the Cauchy problem (1.1) with initial
data (1.2), then there exist ε0 > 0, a time T ∗

ε > 0, families of bounded functions θε : R → [0, 2π),
yε : R → R

N such that

uε(x, t) = e
i
ε
(ν(t)·x+θε(t))e

1+N
2 e

− 1
ε2 |x−yε(t)|2 + ωε(x, t),

where

∥∥ωε(t)
∥∥2

H 1
ε
� C

(∣∣ν(t)∣∣∣∣σε(t)∣∣ + ∣∣λε(t)∣∣) + O
(
ε2

)
for all ε ∈ (0, ε0) and t ∈ [0, T ∗

ε ).

Let ε0 > 0, T ∗
ε > 0 and yε(t) be as in Proposition 5.1. Then we have the following

Lemma 5.2. There exists a constant C > 0 such that

∥∥∥∥ |uε(x, t)|2
εN

dx − mδyε(t)

∥∥∥∥
(C2)∗

+ ∥∥pε(x, t) dx − mν(t)δyε(t)
∥∥
(C2)∗

� C
∣∣σε(t)∣∣ + C

∣∣λε(t)∣∣ + O
(
ε2

)
for all ε ∈ (0, ε0) and t ∈ [0, T ∗

ε ).

Proof. First, notice that for any v ∈ H 1(RN), we have |∇|v||2 = |∇v|2 − | Im(v∇v)|2
|v|2 . Furthermore, it is

not hard to show that

∫
RN

| Im(ψε∇ψε)|2
|ψε|2 dx = εN

∫
RN

|pε(x, t)|2
|uε(x, t)|2 dx + m

∣∣ν(t)∣∣2 − 2ν(t) ·
∫
RN

pε(x, t) dx

=
∫
RN

∣∣∣∣εN/2 pε(x, t)

|uε(x, t)| − 1

m

(∫
RN

pε(x, t) dx

) |uε(x, t)|
εN/2

∣∣∣∣
2

dx

+ m

∣∣∣∣ν(t) −
∫
RN pε(x, t) dx

m

∣∣∣∣
2

, (5.3)
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where ψε(x, t) is the function defined in (3.5). By Lemma 3.5 we see that

0 � E
(|ψε|

) − E(R) + 1

2

∫
RN

| Im(ψε∇ψε)|2
|ψε|2 dx

�
∣∣ν(t)∣∣∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ + O

(
ε2

)
for every t ∈ [0, T ∗

ε ) and ε ∈ (0, ε0). Since E(|ψε|) − E(R) � 0, it follows from (5.3),

∫
RN

∣∣∣∣εN/2 pε(x, t)

|uε(x, t)| − 1

m

(∫
RN

pε(x, t) dx

) |uε(x, t)|
εN/2

∣∣∣∣
2

dx + m

∣∣∣∣ν(t) −
∫
RN pε(x, t) dx

m

∣∣∣∣
2

� C
∣∣ν(t)∣∣∣∣σε(t)∣∣ + C

∣∣λε(t)∣∣ + O
(
ε2

)
(5.4)

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). Now, to prove the assertion, we need to estimate �(t), where

�(t) : =
∣∣∣∣
∫
RN

f (x)
|uε(x, t)|2

εN
dx − mf (yε)

∣∣∣∣ +
∣∣∣∣
∫
RN

pε(x, t)f (x) dx − mν(t)f (yε)

∣∣∣∣
for every function f in C2(RN) with ‖f ‖C2 � 1. By simple computations we see that

∣∣∣∣
∫
RN

pε(x, t)f (x) dx − mν(t)f (yε)

∣∣∣∣
� 1

m

∣∣∣∣
∫
RN

pε(x, t) dx

∣∣∣∣
∣∣∣∣
∫
RN

f (x)|uε(x, t)|2
εN

dx − mf
(
yε(t)

)∣∣∣∣
+

∣∣∣∣
∫
RN

f (x)

{
pε(x, t) − 1

m

(∫
RN

pε(x, t) dx

) |uε(x, t)|2
εN

}
dx

∣∣∣∣ + Cσε(t),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). Here, the function σε(t) is defined in Lemma 3.4. Set f�(x) :=

f (x) − f (yε(t)). Since
∫
RN pε(x, t) dx is bounded (see Lemma 3.1) and

∫
RN

{
pε(x, t) − 1

m

(∫
RN

pε(x, t) dx

) |uε(x, t)|2
εN

}
dx = 0,

it follows that

�(t) �
∫
RN

f�(x)

∣∣∣∣pε(x, t) − 1

m

(∫
RN

pε(x, t) dx

) |uε(x, t)|2
εN

∣∣∣∣ dx
+

∫
RN

∣∣f�(x)∣∣ |uε(x, t)|2
εN

dx + C

∫
RN

∣∣f�(x)∣∣ |uε(x, t)|2
εN

dx + Cσε(t).
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Using the inequality ab � a2 + b2 and (5.4) we obtain

�(t) � 1

2

∫
RN

∣∣∣∣εN/2 pε(x, t)

|uε(x, t)| − 1

m

(∫
RN

pε(x, t) dx

) |uε(x, t)|
εN/2

∣∣∣∣
2

dx

+
∫
RN

{
C

∣∣f�(x)∣∣ + 1

2

∣∣f�(x)∣∣2
} |uε(x, t)|2

εN
dx + Cσε(t)

�
∫
RN

{
C

∣∣f�(x)∣∣ + 1

2

∣∣f�(x)∣∣2
} |uε(x, t)|2

εN
dx + C

∣∣σε(t)∣∣ + C
∣∣λε(t)∣∣ + O

(
ε2

)
.

Finally, in view of the elementary inequality a2 � 2b2 + 2(a − b)2 with

a = |uε(x, t)|
εN/2

, b = 1

εN/2
R

(
x − yε(t)

ε

)
,

since f�(yε(t)) = 0, it follows from Lemma 3.2 and Proposition 5.1,

�(t) � C

εN

∫
RN

{∣∣f�(x)∣∣ + ∣∣f�(x)∣∣2}
R2

(
x − yε(t)

ε

)
dx

+ C

εN

∫
RN

∣∣∣∣uε(x, t) − R

(
x − yε(t)

ε

)∣∣∣∣
2

dx + C
∣∣σε(t)∣∣ + C

∣∣λε(t)∣∣ + O
(
ε2

)
� C

∣∣σε(t)∣∣ + C
∣∣λε(t)∣∣ + O

(
ε2

)
,

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0), which concluded the proof. �

We now turn to estimate the distance |x(t)−yε(t)|, where the function yε(t) is given in Proposition 5.1
and x(t) is the solution of the classical Hamiltonian system (1.3).

Lemma 5.3. Let uε be the family of solutions to problem (1.1) with initial data (1.2). Consider the
function γε defined by

γε(t) = mx(t) − 1

εN

∫
RN

xχ(x)
∣∣uε(x, t)∣∣2

dx,

where χ(x) is defined in (3.4). Then γε(t) is a continuous function on R and satisfy |γε(0)| = O(ε2) as
ε goes to zero.

Proof. The proof easily follows from Lemma 3.2, and the properties of the functions uε(x, t)

and χ(x). �

Lemma 5.4. Let T ∗
ε > 0 be the time introduced in (3.7). There exist positive constants h0 and ε0, such

that for a constant C > 0,∣∣x(t) − yε(t)
∣∣ � C

(∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ + ∣∣γε(t)∣∣) + O
(
ε2

)
for every t ∈ [0, T ∗

ε ].
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Proof. First, we claim that there exists T0 > 0 such that |yε(t)| < ρ, for every t ∈ [0, T ∗
ε ) with T ∗

ε � T0,
where the constant ρ is defined in (3.3). Let us first prove that

‖δyε(t1) − δyε(t2)‖C2∗ < ρ, for all t1, t2 ∈ [
0, T ∗

ε

]
.

Let f ∈ C2(RN) with ‖f ‖C2 � 1 and pick t1, t2 ∈ [0, T ∗
ε ). From Lemma 3.1 and identity (5.1) we see

that

1

εN

∫
RN

(∣∣uε(x, t2)∣∣2 − ∣∣uε(x, t1)∣∣2)
f (x) dx = 1

εN

∫
RN

∫ t2

t1

∂|uε|2
∂t

(x, t)f (x) dt dx

=
∫
RN

∫ t2

t1

−f (x) divx pε(x, t) dt dx

=
∫ t2

t1

∫
RN

∇f (x) · pε(x, t) dx dt

� ‖∇f ‖L∞

∫ t2

t1

dt

∫
RN

∣∣pε(x, t)
∣∣ dx

� C|t2 − t1|.

Therefore, there exists a constant C > 0 such that

∥∥∥∥ |uε(x, t2)|2
εN

dx − |uε(x, t1)|2
εN

dx

∥∥∥∥
C2∗

� C|t2 − t1| � CT0.

Now, from Lemma 5.2 we obtain

m‖δyε(t2) − δyε(t1)‖C2∗ � CT0 + C
∣∣σε(t)∣∣ + C

∣∣λε(t)∣∣ + O
(
ε2

)
� C(T0 + h/2) + O

(
ε2

)
.

Here we choose T0 and then ε0, h0 such that C(T0 +h/2)+O(ε2) < min{mK0,mK1K0}, where K0 and
K1 are the constants defined in formula (3.2). Thus, from inequality (3.2) we get |yε(t2) − yε(t1)| < K0

for every t1, t2 ∈ [0, T ∗
ε ), and since yε(0) = 0, this implies the claim. We now conclude the proof of

lemma. By the definition of χ , it follows that

∣∣x(t) − yε(t)
∣∣ = 1

m

∣∣mx(t) − myε(t)
∣∣ � 1

m

∣∣γε(t)∣∣ + 1

m

∣∣∣∣
∫
RN

xχ(x)
|uε(x, t)|2

εN
dx − myε(t)

∣∣∣∣.
Notice that from the claim above and (3.4) we see that χ(yε(t)) = 1 for all t ∈ [0, T ∗

ε ). In particular,
there exists a constant C > 0 such that

∣∣x(t) − yε(t)
∣∣ � C‖xχ‖C2

∥∥∥∥ |uε(x, t)|2
εN

dx − mδyε(t)

∥∥∥∥
C2∗

+ C
∣∣γε(t)∣∣.

Then the statement follows by Lemma 5.2. �
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Using Lemmas 5.2 and 5.4 and inequality (3.2), one can prove the following result.

Lemma 5.5. There exists a positive constant C such that

∥∥∥∥ |uε(x, t)|2
εN

dx − mδx(t)

∥∥∥∥
(C2)∗

+ ∥∥pε(x, t) dx − mν(t)δx(t)
∥∥
(C2)∗ � C!(t) + O

(
ε2

)
,

where !(t) := |σε(t)| + |λε(t)| + |γε(t)|, for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ).

Proof. The proof follows the same lines as Lemma 6.4 in [26]. �

In Lemma 5.4 we have fixed T0 such that Proposition 5.1 and Lemmas 5.2 and 5.5 hold. With this in
mind, now we give the proof of Theorem 1.6.

Proof of Theorem 1.6. The proof follows the lines of the corresponding proof in [19, Theorem 1.1 and
Lemma 3.6]. Let us give a brief sketch of the proof. First, we want to use a Gronwall inequality argument
to show that∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ + ∣∣γε(t)∣∣ � C(T0)ε

2 for every t ∈ [
0, T ∗

ε

]
. (5.5)

Indeed, from identities (5.1), (5.2) and Lemmas 5.4 and 5.5, and repeating the steps of the proof of
Lemma 3.6 in [19] we get for every t ∈ [0, T ∗

ε ],
∣∣∣∣ ddt σε(t)

∣∣∣∣ +
∣∣∣∣ ddt λε(t)

∣∣∣∣ +
∣∣∣∣ ddt γε(t)

∣∣∣∣ � C
[∣∣σε(t)∣∣ + ∣∣λε(t)∣∣ + ∣∣γε(t)∣∣ + O

(
ε2

)]
,

for some positive constant C. Moreover, by Lemmas 3.4 and 5.3 we see that |σε(0)|+|λε(0)|+|γε(0)| =
O(ε2), then (5.5) is a simple consequence of the Gronwall inequality. By the definition of T ∗

ε in formula
(3.7) and due to the continuity of σε, λε and γε one gets T ∗

ε = T0 for ε small enough, ε ∈ (0, ε0). Next,
in light of Proposition 5.1 there exist families of bounded functions θε : R → [0, 2π), yε : R → R

N

such that∥∥∥∥uε(·, t) − e
1
ε
(ν(t)·x+θε(t))R

(
x − yε(t)

ε

)∥∥∥∥
2

H 1
ε

= O
(
ε2

)
,

for all t ∈ [0, T0]. Furthermore, from Lemma 5.4 and (5.5), it is clear that |x(t) − yε(t)| � Cε2 for
t ∈ [0, T0] and ε ∈ (0, ε0). Therefore,

∥∥∥∥R
(
x − yε(t)

ε

)
− R

(
x − x(t)

ε

)∥∥∥∥
2

H 1
ε

� C
|x(t) − yε(t)|2

ε2
= O

(
ε2

)
,

for every t ∈ [0, T0] and ε ∈ (0, ε0). Hence Theorem 1.6 holds in [0, T0]. Finally, taking as new data
x(T0) and ν(T0) in system (1.3) and

uε,0(x) := e
i
ε
x·ν(T0)e

1+N
2 e

− 1
ε2 |x−x(T0)|2,
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as a new initial data in Cauchy problem (1.1), the statement is valid in [T0, 2T0]. Since T0 only depends on
the problem, we can achieve any finite time interval [0, T ]. This concludes the proof of Theorem 1.6. �
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