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Abstract. We consider a family of phase-field systems with memory effects in the

temperature ϑ, depending on a parameter ω ≥ 0. Setting the problems in a suitable

phase-space accounting for the past history of ϑ, we prove the existence of a family
of exponential attractors Eω which is robust as ω → 0.

1. Introduction. A well-known and widely used mathematical model to describe
phase transitions was proposed by Caginalp [1]. Suppose that, for any time t ≥ 0,
a two-phase material occupies a bounded domain Ω ⊂ R

3 with smooth boundary
∂Ω, and denote by ϑ its relative temperature with respect to some fixed critical
temperature ϑc, and by χ the phase proportion (or phase-field). Taking some
constants equal to 1, the Caginalp model reduces to the following system of partial
differential equations

∂t (cϑ+ λχ) − κ∆ϑ = f,

∂tχ− ∆χ+ φ(χ) − λϑ = 0,

in Ω × R
+, where R

+ = (0,∞). Here, λ ∈ R is a coupling constant related to the
latent heat, c and κ are positive constants representing the specific heat and the
heat conductivity, respectively, and f denotes an external heat source. The smooth
function φ : R → R accounts for the presence of two phases and, usually, it is the
derivative of a double-well potential, i.e, φ(r) = r3 − r. This model is known as
nonconserved phase-field system.

There are special materials like, for instance, viscous glass-forming liquids, for
which c and κ show, in the frequency domain, a dependence on the frequency
itself (see, e.g., [10, 11, 12] and references therein). This means that, in the time
domain, the internal energy e and the heat flux q depend on the past history of ϑ
through time convolution integrals, characterized by suitable memory kernels (see
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the pioneering papers [2, 14]). On account of this fact, in [7, 8] the constitutive
laws used to derive the above system, namely,

e(t) = cϑ(t) + λχ(t), q(t) = −κ∇ϑ(t),

have been replaced by

e(t) = c0ϑ(t) +

∫ ∞

0

a(s)ϑ(t− s)ds+ λχ(t)

and

q(t) = −ω∇ϑ(t) −
∫ ∞

0

b(s)∇ϑ(t− s)ds,

with c0 > 0 and ω ≥ 0. The smooth functions a, b : R
+ → R

+ are the specific heat
relaxation kernel and the heat conductivity relaxation kernel, respectively. Besides,
for thermodynamic reasons, we also assume that b is nonincreasing and summable
along with its first derivative, whereas a is bounded, nondecreasing, concave, and
with summable first and second derivatives (see [7] for details). This choice entails
that the evolution of (ϑ, χ) is ruled by the following integrodifferential system

∂tϑ+ ϑ+

∫ ∞

0

a′(s)ϑ(t− s)ds+ ∂tχ− ω∆ϑ+

∫ ∞

0

b(s)∆ϑ(t− s)ds = f,

∂tχ− ∆χ+ φ(χ) − ϑ = 0,

in Ω × R
+, where we set c0 = λ = a(0) = 1 for the sake of simplicity.

In a series of papers (see [6, 7, 8, 9] and references therein), the above model has
been analyzed within the theory of dissipative dynamical systems by introducing,
following [3] (in the same spirit, see also [16, 17]), the additional (integrated) past
history

ηt(s) =

∫ t

t−s

ϑ(y)dy in Ω, s ∈ R
+.

supposing, in addition, that the past history of ϑ is given up to a given initial time
(e.g., t = 0). This approach leads us to concentrate our attention on the equivalent
system (see [13] for details)

∂tϑ+ ϑ+ ∂tχ− ω∆ϑ+

∫ ∞

0

ν(s)η(s)ds−
∫ ∞

0

µ(s)∆η(s)ds = f, (1.1)

∂tχ− ∆χ+ φ(χ) − ϑ = 0, (1.2)

∂tη + ∂sη = ϑ. (1.3)

Here the memory kernels ν = −a′′ and µ = −b′ are positive nonincreasing functions
on R

+ vanishing at infinity exponentially fast. Observe that, depending on the
value of ω, equation (1.1) is of parabolic or of hyperbolic type. Hence, for short,
we refer to the case ω > 0 as parabolic, opposed to the case ω = 0, that we call
hyperbolic. Strictly speaking, this terminology is not completely correct, since some
hyperbolicity is always present in the system due to equation (1.3).

Assuming, for instance, Neumann boundary conditions for ϑ, χ and η, and tak-
ing f constant in time, it has been shown that (1.1)-(1.3) generates a strongly
continuous semigroup Sω(t) on a suitable phase-space. Besides, Sω(t) possesses a
global attractor Aω which is upper semicontinuous at ω = 0, with respect to the
standard Hausdorff semidistance (see [7, 8, 9]). In the parabolic case, the existence
of exponential attractors has also been proved [6].



A FAMILY OF PHASE-FIELD SYSTEMS WITH MEMORY 1021

The aim of the present work is to complete the analysis carried out so far,
showing that even in the hyperbolic case there exist exponential attractors for
the semigroup. Indeed, we will prove a deeper fact. Namely, we will construct a
specific family of exponential attractors Eω for Sω(t) that are robust in the following
sense: the symmetric Hausdorff distance between Eω and E0 goes to 0 as ω → 0
in an explicitly controlled way. The result is obtained as a nontrivial application
of a recent abstract theorem due to Fabrie, Galusinski, Miranville and Zelik [5,
Theorem 1.1] (reported below as Lemma 3.1), which provides sufficient conditions
ensuring that certain (possibly singularly) perturbed dynamical systems associated
with asymptotically compact semigroups possess robust exponential attractors.

Remark 1.1. We emphasize that we consider a linear coupling between ϑ and χ,
since we want to capture also the limiting case ω = 0. However, when ω > 0, one
can replace the terms ∂tχ of equation (1.1) and −ϑ of equation (1.2) with λ′(χ)∂tχ

and −λ′(χ)ϑ, respectively, where λ is a function with quadratic growth (cf. [6]).
Thus, from one side, it will be easier to obtain energy estimates, because of the
linear coupling; nonetheless, the estimates will have to be independent of ω (cf.
[9]).

Before getting into details, let us fix some notation first. On the Hilbert space
L2(Ω) (with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively), we
define the strictly positive operator

A = I − ∆ with domain D(A) =
{

v ∈ H2(Ω)
∣

∣ ∂nv = 0 on ∂Ω
}

.

For r ∈ R, we introduce the Hilbert spaces Hr = D(Ar/2), endowed with the inner
products 〈·, ·〉Hr

= 〈Ar/2·, Ar/2·〉, and the weighted Hilbert spaces

Mr = L2
ν(R+;Hr) ∩ L2

µ(R+;Hr+1),

whose inner products are given by

〈η1, η2〉Mr
=

∫ ∞

0

ν(s)〈η1(s), η2(s)〉Hr
ds+

∫ ∞

0

µ(s)〈η1(s), η2(s)〉Hr+1
ds.

Next, we consider the infinitesimal generator of the strongly continuous semigroup
of right-translations on M0 (see [13]), namely, the linear operator on M0

T = −∂s with domain D(T ) =
{

η ∈ M0

∣

∣ ∂sη ∈ M0, η(0) = 0
}

.

Here ∂sη denotes the distributional derivative of η with respect to the internal
variable s. Finally, we define the product Hilbert spaces

Hr = Hr ×Hr+1 ×Mr.

It is worth noting that the embedding H1 ↪→ H0 is continuous but not compact,
due to the presence of the third component Mr. Finding nice compact embeddings
is actually crucial to prove our results. Hence, in order to remove this obstacle, we
need to introduce a further space. Defining for every η ∈ M0 the tail function

Tη(x) =

∫

(0, 1
x
)∪(x,∞)

[

ν(s)‖η(s)‖2 + µ(s)‖A1/2η(s)‖2
]

ds, x ≥ 1,

we set

Z =
{

z = (ϑ, χ, η) ∈ H1

∣

∣ η ∈ D(T ) and sup
x≥1

xTη(x) <∞
}

.
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It is readily seen that Z is a Banach space with the norm

‖z‖2
Z = ‖z‖2

H1
+ ‖Tη‖2

M0
+ sup

x≥1
xTη(x).

Then, appealing to an immediate generalization of a compactness lemma from [15],
it is possible to show that the embedding Z ↪→ H0 is indeed compact (cf. [6]).

Conditions on the nonlinearity φ and the source term f .

φ ∈ C2(R) with |φ′′(r)| ≤ c(1 + |r|), ∀r ∈ R and some c ≥ 0, (H1)

lim inf
|r|→∞

φ(r)

r
> 1 − α1, where α1 is the first eigenvalue of A, (H2)

f ∈ H1 constant in time. (H3)

Conditions on the memory kernels ν and µ.

ν, µ ∈ C1(R+) ∩ L1(R+), (K1)

ν(s) ≥ 0, µ(s) ≥ 0, ∀s ∈ R
+, (K2)

∃ δ > 0 : ν′(s) + δν(s) ≤ 0, µ′(s) + δµ(s) ≤ 0, ∀s ∈ R
+. (K3)

Assuming Neumann boundary conditions for ϑ, χ and η, together with the ad-
ditional constraint ηt(0) = 0, we interpret the differential operators ∆ and ∂s

appearing in equations (1.1)-(1.3) as I − A and −T , respectively. Then, according
to [7, 8], we have

Theorem 1.2. For every ω ≥ 0, system (1.1)-(1.3), endowed with Neumann bound-
ary conditions, generates a strongly continuous semigroup Sω(t) on the phase-space
H0.

The main result of this paper is

Theorem 1.3. Let ω0 > 0 be fixed. Then, for every ω ∈ [0, ω0], the strongly
continuous semigroup Sω(t) has a compact invariant set Eω ⊂ H0 of finite fractal
dimension (called exponential attractor) that satisfies the following conditions:

(i) there exist κ > 0 and a positive increasing function J such that, for every
bounded set B ⊂ H0, there holds

distH0
(Sω(t)B, Eω) ≤ J(R)e−κt, ∀t ≥ 0,

where R = supz∈B ‖z‖H0
;

(ii) the fractal dimension of Eω is uniformly bounded with respect to ω ∈ [0, ω0];

(iii) there exist τ ∈ (0, 1) and C > 0 such that

distsym
H0

(Eω, E0) ≤ Cωτ .

Here distH0
and distsym

H0
denote the usual Hausdorff semidistance and symmetric

Hausdorff distance in H0. All the quantities appearing here and in the sequel are
independent of ω ∈ [0, ω0]. It is worth pointing out that the basin of attraction of
Eω is the whole phase-space, even in the hyperbolic case ω = 0.

As a byproduct, we obtain the existence of a (unique) global attractor Aω for
Sω(t), recovering the results of [8, 9]. Indeed, Eω is by definition a compact attract-
ing set (see, for instance, [18]). So, in particular, Aω ⊂ Eω.
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We point out that the existence of Aω can be demonstrated under the weaker
condition f ∈ H0. However, if f ∈ H0 and ω = 0, we do not get enough regularity,
which is basic in order to prove Theorem 1.3.

We conclude the section recalling some already known results (see [8]), that
will be needed in the course of the investigation. The first regards the continuous
dependence on the initial data.

Theorem 1.4. For every R > 0 there exists a positive constant K = K(R) such
that, for any time T > 0 and any pair of initial data z1, z1 ∈ H0 with ‖zi‖H0

≤ R,
there hold

‖Sω(t)z1 − Sω(t)z2‖H0
≤ eKt‖z1 − z2‖H0

, ∀t ∈ [0, T ], (1.4)

and √
ω ‖ϑ1 − ϑ2‖L2(0,T ;H1) ≤ KeKT ‖z1 − z2‖H0

, (1.5)

where ϑi(t) is the first component of Sω(t)zi.

The dissipative character of Sω(t) follows from

Theorem 1.5. There exists a bounded set B0 ⊂ H0 which is invariant and absorb-
ing for Sω(t), for every ω ∈ [0, ω0]. That is, given any bounded set B ⊂ H0, there
exists t0 = t0(B) such that Sω(t)B ⊂ B0 for every t ≥ t0, and t0(B0) = 0. Besides,
there exists K0 = K0(B) ≥ 0 such that

sup
z∈B

‖Sω(t)z‖H0
≤ K0, ∀t ≥ 0.

We will also make use of higher order integral estimates. Namely (see [6]),

Proposition 1.6. For every R ≥ 0, there exists C0 = C0(R) ≥ 0 such that, for
every z ∈ H1 with ‖z‖H1

≤ R, it follows that

ω

∫ t

0

‖Aϑ(y)‖2dy ≤ C0(1 + t),

where ϑ(t) denotes the first component of Sω(t)z.

The independence of ω in the above theorems, which is not explicitly stated in
[6, 8], comes from the fact that the diffusion term −ω∆ϑ gives always a contribution
of the right sign in the various estimates. In fact, this term provides a higher order
control that is in most cases superfluous, due to the linearity of the coupling between
ϑ and χ.

Remark 1.7. The term ϑ+
∫ ∞

0
µ(s)η(s)ds, coming from the constitutive assumption

on the internal energy, can be neglected if, for instance, ϑ satisfies the homogeneous
Dirichlet boundary condition (cf. [9]). On the contrary, this term plays a basic role
in proving the dissipativity of the system when the material is thermally isolated,
i.e., if ϑ satisfies the homogeneous Neumann boundary condition.

2. Compact Attracting Sets in H0. We first recall the so-called transitivity
property of exponential attraction, recently devised in [5, Theorem 5.1].

Lemma 2.1. Let S(t) be a strongly continuous semigroup on a Banach space H.
Let C0, C1, C2 ⊂ H be such that

distH(S(t)C0, C1) ≤ Λ1e
−β1t, distH(S(t)C1, C2) ≤ Λ2e

−β2t,
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for some β1, β2 > 0 and Λ1,Λ2 ≥ 0. Assume also that, for all z1, z2 ∈ ⋃

t≥0 S(t)Cj,
there holds

‖S(t)z1 − S(t)z2‖H ≤ Λ0e
β0t‖z1 − z2‖H,

for some β0 ≥ 0 and some Λ0 ≥ 0. Then it follows that

distH(S(t)C0, C2) ≤ Λe−βt,

where β = β1β2

β0+β1+β2
and Λ = Λ0Λ1 + Λ2.

Then we have

Proposition 2.2. There exists a bounded set K ⊂ Z, compact in H0, such that

(i) Sω(t)K ⊂ K;

(ii) there exist ε > 0 and M > 1 such that

distH0
(Sω(t)B0,K) ≤Me−εt, ∀t ≥ 0.

Proof. Following [9, Proposition 4.6, Lemma 6.3], we learn that the solution Sω(t)z
with initial data z ∈ B0 can be decomposed into the sum zd(t) + zc(t) satisfying
the following properties:

– there exist ε > 0 and M > 1 such that

sup
z∈B0

‖zd(t)‖H0
≤Me−εt, ∀t ≥ 0;

– there exists a compact set K0 ⊂ H0 such that
⋃

z∈B0

zc(t) ⊂ K0, ∀t ≥ 0.

Due to the two above results, we get at once the inequality

distH0
(Sω(t)B0,K0) ≤Me−εt, ∀t ≥ 0. (2.1)

In fact, a closer look to [9] shows that K0 is of the form

K0 =

{

z = (ϑ, χ, η)
∣

∣ ‖z‖2
H1

+ ‖Tη‖2
M0

+ sup
s∈R+

1

1 + s
‖A1/2η(s)‖2 ≤ R0

}

,

for some R0 ≥ 0. So, in particular, K0 is a bounded subset of Z. To reach the
conclusion, we just have to refine a little bit the set K0. Hence, following [6], we
introduce the set

K∗ =

{

z = (ϑ, χ, η)
∣

∣ ‖z‖2
H1

+ ‖Tη‖2
M0

≤ R2
1, Tη(x) ≤ R2

1

x
, ∀x ≥ x∗

}

.

Here x∗ ≥ 1 is a fixed number depending only on the kernels ν and µ. Observe that
K∗ is a bounded subset of Z closed in H0, and thus compact in H0. Reasoning as
in the proof of [6, Theorem 5.2], one can show that, provided that R1 is big enough,
the set K∗ absorbs (uniformly in ω) bounded subsets of Z. Indeed, in this case the
proof is even easier (cf. Remark 1.1). So, there exists t∗ ≥ 0 such that

Sω(t)K0 ⊂ K∗ and Sω(t)K∗ ⊂ K∗, ∀t ≥ t∗

2
.

Finally, we define the compact set

K =
⋃

ω∈[0,ω0]

⋃

t≥ t∗

2

Sω(t)K∗

H0

⊂ K∗.
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The invariance of K easily follows from the continuity of Sω(t). Besides, by con-
struction,

Sω(t)K0 ⊂ K, ∀t ≥ t∗. (2.2)

Notice that (2.2), thanks to Theorem 1.5, implies

sup
ω∈[0,ω0]

sup
t∈[0,t∗]

distH0

(

Sω(t)K0,K
)

<∞,

thus K attracts with an arbitrary exponential rate Sω(t)K0. At this point, we use
Lemma 2.1. Thus, collecting (2.1)-(2.2) and the continuous dependence estimate
(1.4), we get the desired conclusion.

3. Robust Exponential Attractors. In order to prove the main Theorem 1.3,
we first need to write the abstract result of [5] adapted to our situation.

Lemma 3.1. Assume there exist α ∈ (0, 1
4 ), a time tα > 0 and constants Cj =

Cj(α) ≥ 0 such that the following conditions hold.

(L1) The map Sω = Sω(tα) admits the decomposition Sω = Lω +Nω such that, for
every z1, z2 ∈ K,

‖Lωz1 − Lωz2‖H0
≤ α‖z1 − z2‖H0

,

and

‖Nωz1 −Nωz2‖Z ≤ C1‖z1 − z2‖H0
.

(L2) For every n ∈ N and every z ∈ K
‖Sn

ωz − Sn
0 z‖H0

≤ Cn
2

√
ω.

(L3) For every z ∈ K and every t ∈ [tα, 2tα]

‖Sω(t)z − S0(t)z‖H0
≤ C3

√
ω.

(L4) The map

(t, z) 7→ Sω(t)z : [tα, 2tα] ×K → K
is Lipschitz continuous. Here K is endowed with the metric topology of H0.

Then, for every ω ∈ [0, ω0], there exists a family of sets Eω ⊂ K satisfying (ii)-(iii)
of Theorem 1.3 and the attraction property

distH0
(Sω(t)K, Eω) ≤ J0e

−κ0t, ∀t ≥ 0,

for some κ0 > 0 and J0 ≥ 0.

The check that conditions (L1)-(L4) of Lemma 3.1 hold true is postponed to
the last section. Thus, to complete the proof of Theorem 1.3, we are left to show
that the basin of attraction of Eω coincides with the whole phase-space H0 (that
is, condition (i) of the theorem). To this aim, let B ⊂ H0 be a bounded set
and let R = supz∈B ‖z‖H0

. Then, by means of Theorem 1.5, Proposition 2.2 and
Lemma 3.1, we have the following chain of exponential attractions:

distH0
(Sω(t)B,B0) ≤ Λ(R)e−t,

distH0
(Sω(t)B0,K) ≤Me−εt,

distH0
(Sω(t)K, Eω) ≤ J0e

−κ0t,

for some increasing positive function Λ.
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In light of (1.4), a further application of Lemma 2.1 allows us to connect the
above chain, so getting the desired exponential attraction property (i) of Theo-
rem 1.3.

4. Verification of Conditions (L1)-(L4) of Lemma 3.1. Throughout this sec-
tion, let c = c(α) ≥ 0 be a generic constant. Again, c as well as all the other
quantities appearing in the sequel are understood to be independent of ω ∈ [0, ω0].

4.1. Proof of (L1). First of all, we decompose the map Sω(t) : K → K as

Sω(t) = Lω(t) +Nω(t),

where, for z ∈ K,

Lω(t)z = (ϑL(t), χL(t), ηL(t))

is the solution at time t to the linear problem

∂tϑL + ϑL + ωAϑL +

∫ ∞

0

ν(s)ηL(s)ds+

∫ ∞

0

µ(s)AηL(s)ds = −∂tχL,

∂tχL +AχL = ϑL,

∂tηL = TηL + ϑL,

Lω(0)z = z,

and Nω(t) is obtained by difference.
It is easy to prove (cf. [8, Lemma 6.2]) that Lω(t) is an exponentially stable

strongly continuous linear semigroup on H0. Thus, there exists σ > 0 such that

‖Lω(t)z1 − Lω(t)z2‖H0
≤ ce−σt ‖z1 − z2‖H0

, ∀t ≥ 0,

for every z1, z2 ∈ H0. It is then clear that we can fix (any) α ∈ (0, 1
4 ) and,

accordingly, tα > 0 such that Lω = Lω(tα) satisfies the first inequality of (L1).
Concerning the second one, we leave to the reader the easy check that Nω(t)

maps K into Z. Then, for z1, z2 ∈ K, we set

(ϑ(t), χ(t), ηt) = Sω(t)z1 − Sω(t)z2,

z̄(t) = (ϑ̄(t), χ̄(t), η̄t) = Nω(t)z1 −Nω(t)z2.

By straightforward computations, we find the system

∂tϑ̄+ ϑ̄+ ωAϑ̄+

∫ ∞

0

ν(s)η̄(s)ds+

∫ ∞

0

µ(s)Aη̄(s)ds = ωϑ− ∂tχ̄+

∫ ∞

0

µ(s)η(s)ds,

∂tχ̄+Aχ̄ = ϑ̄− φ(χ1) + φ(χ2) + χ,

∂tη̄ = T η̄ + ϑ̄,

z̄(0) = 0,

where χi is the second component of Sω(t)zi. Next, multiply the first equation
by Aϑ̄ in H0, the second by A∂tχ̄ in H0, and the third by η̄ in M1, and add the
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resulting equations. Integrating by parts, in view of (K3), we obtain

1

2

d

dt
‖z̄‖2

H1
+ ‖A1/2ϑ̄‖2 + ω‖Aϑ̄‖2 + ‖A1/2∂tχ̄‖2

≤ ω〈A1/2ϑ,A1/2ϑ̄〉 +

∫ ∞

0

µ(s)〈A1/2η(s), A1/2ϑ̄〉ds+ 〈A1/2χ,A1/2∂tχ̄〉

− 〈A1/2φ(χ1) −A1/2φ(χ2), A
1/2∂tχ̄〉.

On account of (H1) and the boundedness (and the invariance) of K, we deduce that

‖A1/2φ(χ1) −A1/2φ(χ2)‖ ≤ c‖A1/2χ‖.
Hence, using the Hölder and the Young inequalities together with (K1), we easily
end up with

d

dt
‖z̄‖2

H1
≤ c

(

ω‖A1/2ϑ‖2 + ‖η‖2
M0

+ ‖A1/2χ‖2
)

.

Finally, integrating on (0, tα), from (1.4)-(1.5), we get

‖Nωz1 −Nωz2‖H1
≤ c‖z1 − z2‖H0

,

having set Nω = Nω(tα). Actually, to conclude that the second inequality of (L1)
holds, we need to control the left-hand side in the norm of Z. This, on account of
the above estimate, amounts to showing that

‖T η̄tα‖2
M0

+ sup
x≥1

xTη̄tα (x) ≤ c‖z1 − z2‖2
H0
.

The proof, similar to the one of [6, Lemma 7.4], is left to the reader.

4.2. Proofs of (L2)-(L3). Both conditions follow directly from

Lemma 4.1. There holds

‖Sω(t)z − S0(t)z‖H0
≤ c

√
ω ect, ∀t ≥ 0,

for every z ∈ K.

Proof. For z ∈ K, we set

(ϑω(t), χω(t), ηt
ω) = Sω(t)z,

z̄(t) = (ϑ̄(t), χ̄(t), η̄t) = Sω(t)z − S0(t)z.

Then z̄ solves the system

∂tϑ̄+ ϑ̄+ ∂tχ̄+

∫ ∞

0

ν(s)η̄(s)ds+

∫ ∞

0

µ(s)Aη̄(s)ds = −ωAϑω + ωϑω+

∫ ∞

0

µ(s)η̄(s)ds,

∂tχ̄+Aχ̄+ φ(χω) − φ(χ0) = ϑ̄+ χ̄,

∂tη̄ = T η̄ + ϑ̄,

z̄(0) = 0.

Multiplying the above equations by ϑ̄ in H0, ∂tχ̄ in H0 and η̄ in M0 respectively,
and adding the resulting equations, in view of (K3) we find

1

2

d

dt
‖z̄‖2

H0
+ ‖ϑ̄‖2 + ‖∂tχ̄‖2

≤ −ω〈Aϑω, ϑ̄〉 + ω〈ϑω, ϑ̄〉 +

∫ ∞

0

µ(s)〈η̄(s), ϑ̄〉ds− 〈φ(χω) − φ(χ0), ∂tχ̄〉 + 〈∂tχ̄, χ̄〉.
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By virtue of (H1),

‖φ(χ0) − φ(χω)‖2 ≤ c‖A1/2χ̄‖2,

so the Hölder and the Young inequalities, together with (K1), yield

d

dt
‖z̄‖2

H0
≤ c‖z̄‖2

H0
+ cω2‖Aϑω‖2.

Applying the standard Gronwall Lemma on [0, t], in view of Proposition 1.6, we
obtain the desired estimate.

4.3. Proof of (L4). Throughout this proof, the positive constant c may depend on
T . On account of estimate (1.4), we have

‖Sω(t1)z1 − Sω(t2)z2‖H0
≤ ‖Sω(t1)z1 − Sω(t2)z1‖H0

+ c‖z1 − z2‖H0
,

for every t1, t2 ∈ [0, T ] and z1, z2 ∈ K. In order to prove the result it then suffices
to show that

sup
z∈K

sup
t∈[0,T ]

‖∂tSω(t)z‖H0
≤ c. (4.1)

For z = (ϑ0, χ0, η0) ∈ K we consider the system, obtained via formal time differen-
tiation from the original one,

∂tϕ+ ϕ+ ωAϕ+

∫ ∞

0

ν(s)ξ(s)ds+

∫ ∞

0

µ(s)Aξ(s)ds = ωϕ+

∫ ∞

0

µ(s)ξ(s)ds− ∂tψ,

∂tψ +Aψ = −φ′(χ)∂tχ+ ϕ+ ψ,

∂tξ = Tξ + ϕ,

ϕ(0) = (ω − 1)ϑ0 − ωAϑ0 −
∫ ∞

0

ν(s)η0(s)ds−
∫ ∞

0

µ(s)Aη0(s)ds+

∫ ∞

0

µ(s)η0(s)ds

+
(

Aχ0 + φ(χ0) − ϑ0 − χ0

)

+ f,

ψ(0) = −Aχ0 − φ(χ0) + ϑ0 + χ0,

ξ0 = Tη0 + ϑ0,

which, by standard arguments, admits a unique solution (ϕ,ψ, ξ) with

ϕ ∈ C0([0, T ], H−1) ∩ L2(0, T ;H0),

ψ ∈ C0([0, T ], H0) ∩ L2(0, T ;H1) ∩H1(0, T ;H0),

ξ ∈ C0([0, T ],M−1).

Hence, for all t ∈ [0, T ],

ϕ(t) = ∂tϑ(t), ψ(t) = ∂tχ(t), ξt = ∂tη
t. (4.2)

Let us introduce the functional

Ψ(t) = ‖ϕ(t)‖2 + ‖A1/2ψ(t)‖2 + ‖ξ(t)‖2
M0

.

Next, multiply the first equation by ϕ in H0, the second by ∂tψ in H0, and the
third by ξ in M0. Adding the resulting identities and integrating by parts with
respect to s the term 〈Tξ, ξ〉M0

with the aid of (K3), we find

1

2

d

dt
Ψ + ‖ϕ‖2 + ‖∂tψ‖2 + ω‖A1/2ϕ‖2

≤ ω0‖ϕ‖2 +

∫ ∞

0

µ(s)〈ξ(s), ϕ〉ds− 〈φ′(χ)∂tχ, ∂tψ〉 + 〈ψ, ∂tψ〉.
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By (K1)-(K2), the Hölder and the Young inequalities and (4.2), we deduce

d

dt
Ψ ≤ cΨ.

Applying the Gronwall’s lemma on [0, T ] and taking the initial data into account,
we finally obtain (4.1).
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