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1. Introduction

Given ω > 0, N ≥ 3, α ∈ (0, N), p > 1 and s ∈ (0, 1), we consider the nonlocal
problem

(−∆)su+ ωu = (Kα ∗ |u|p)|u|p−2u, u ∈ Hs(RN ), (Pω)

where Kα(x) = |x|α−N and the Hilbert space Hs(RN ) is defined as

Hs(RN ) = {u ∈ L2(RN ) : (−∆)s/2u ∈ L2(RN )},
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with scalar product and norm given by

(u, v) =
∫

(−∆)s/2u(−∆)s/2v + ω

∫
uv, ‖u‖2 = ‖(−∆)s/2u‖22 + ω‖u‖22.

The fractional Laplacian operator (−∆)s is defined by

(−∆)su(x) = −C(N, s)
2

∫
u(x+ y)− u(x− y)− 2u(x)

|y|N+2s
dy, x ∈ R

N ,

where C(N, s) is a suitable normalization constant. Thus, problem (Pω) presents
nonlocal characteristics in the nonlinearity as well as in the (fractional) diffusion.

We point out that when s = 1, p = 2 and α = 2, then (Pω) boils down to the
so-called Choquard or nonlinear Schrödinger–Newton equation

−∆u+ ωu = (K2 ∗ u2)u, u ∈ H1(RN ). (1.1)

This equation was elaborated by Pekar30 in the framework of quantum mechanics.
Subsequently, it was adopted as an approximation of the Hartree–Fock theory, see
Ref. 6. More recently, Penrose31 settled it as a model of self-gravitating matter.
The first investigations for existence and symmetry of the solutions to (1.1) go
back to the works of Lieb23 and Lions.25 On this basis, we will refer to (Pω) as to
the generalized nonlinear Choquard equation. In the last few years, the study of
equations involving pseudo-differential operators has steadily grown. In Refs. 26 and
27 the authors discuss recent developments in the description of anomalous diffusion
via fractional dynamics and various fractional equations are derived asymptotically
from Lévy random walk models, extending Brownian walk models in a natural way.
In particular, in Ref. 20, a fractional Schrödinger equation with local power type
nonlinearity was studied. This extends to a Lévy framework the classical statement
that path integral over Brownian trajectories leads to the standard Schrödinger
equation −∆u + ωu = f(u), see e.g. Ref. 8 and references therein. In the case
s = 1/2, problem (Pω) has been used to model the dynamics of pseudo-relativistic
boson stars. Indeed in Ref. 16 the following equation is studied:

√
−∆u+ u = (K2 ∗ |u|2)u, u ∈ H1/2(R3), u > 0,

and in Ref. 13 it is shown that the dynamical evolution of boson stars is described
by the nonlinear evolution equation

i∂tψ =
√
−∆ +m2ψ − (K2 ∗ |ψ|2)ψ (m ≥ 0),

for a field ψ : [0, T )×R3 → C (see also Refs. 18, 19 and 21). The square root of the
Laplacian also appears in the semi-relativistic Schrödinger–Poisson–Slater systems,
see e.g. Ref. 4.

So motivated by the above-cited works, in this paper we have considered (Pω) as
a generalization of (1.1) which takes into account more general convolution kernels
and allows a distribution density of type |u|p. Observe that mathematically Eq. (Pω)
involves two fractional operators since it can be seen as a coupled system of two
equations involving fractional Laplacians (see Sec. 5, in particular problem (5.2)).
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We shall say that u ∈ Hs(RN ) is a weak solution of (Pω) if∫
(−∆)s/2u(−∆)s/2v + ω

∫
uv =

∫
(Kα ∗ |u|p)|u|p−2uv, for all v ∈ Hs(RN ).

Let

1 +
α

N
< p <

N + α

N − 2s
, (1.2)

and introduce the Nehari manifold

Nω :=
{
u ∈ Hs(RN )\{0} : ‖(−∆)s/2u‖22 + ω‖u‖22 −

∫
(Kα ∗ |u|p)|u|p = 0

}
,

and the C1 functional Eω : Hs(RN )→ R defined by

Eω(u) =
1
2

∫
|(−∆)s/2u|2 +

ω

2

∫
u2 − 1

2p

∫
(Kα ∗ |u|p)|u|p. (1.3)

A ground state of (Pω) is a solution with minimal energy Eω and can be char-
acterized as

min
u∈Nω

Eω(u).

The main result of the paper is the following.

Theorem 1.1. Assume that p satisfies (1.2). Then

Existence: There exists a ground state u ∈ Hs(RN ) to problem (Pω) which is
positive, radially symmetric and decreasing;

Regularity: u ∈ L1(RN ) and moreover if s ≤ 1/2, u ∈ C0,µ(RN ) for some µ ∈
(0, 2s), if s > 1/2, u ∈ C1,µ(RN ) for some µ ∈ (0, 2s− 1);

Asymptotics: If p ≥ 2, there exists C > 0 such that

u(x) =
C

|x|N+2s
+ o(|x|−N−2s), as |x| → ∞;

Morse index: If 2 ≤ p < 1 + (2s + α)/N and s > 1/2, the Morse index of u is
equal to one.

Under some restrictions on the values of p, there exist different ways of obtaining
ground state solutions, via minimization problems which turn out to be equivalent
up to a suitable change of scale, as shown in Propositions 4.1 and 4.2. In particular,
in the range

1 +
α

N
< p < 1 +

2s+ α

N
, (1.4)

the ground states can be found by minimizing the functional

E0(u) =
1
2

∫
|(−∆)s/2u|2 − 1

2p

∫
(Kα ∗ |u|p)|u|p, (1.5)

on L2-spheres, which allows to obtain the additional information about the Morse
index of solutions. The information provided in Proposition 4.2 is also useful when
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studying the orbital stability property of the family of ground states for the equation

iut = (−∆)su+ ωu− (Kα ∗ |u|p)|u|p−2u R
N × (0,∞). (1.6)

This topic was recently investigated in Ref. 36 in the case p = 2 and with α ∈
(N − 2s,N), see the introduction therein for the physical motivations. We plan to
investigate (1.6) — in presence of a parameter ε of singular perturbation — from
the point of view of soliton dynamics by following an approach used in Ref. 5 to
study the local case s = 1 and motivated by the absence of general results about
the nondegeneracy of ground states.

We point out that, contrary to the local case s = 1, the solutions can only decay
at the polynomial rate |x|−N−2s. We refer the reader to Ref. 29 for sharp results
about the exponential decay of ground state solutions in the case s = 1.

Moreover, we have the following multiplicity result.

Theorem 1.2. Assume that (1.2) holds. Then (Pω) admits infinitely many radial
solutions with diverging norm and diverging energy levels. If in addition N = 4 or
N ≥ 6, then (Pω) admits infinitely many nonradial solutions with diverging norm
and diverging energy levels.

Next, we have the following nonexistence result.

Theorem 1.3. Assume that either p ≤ 1 + α/N or p ≥ (N + α)/(N − 2s). Then
(Pω) does not admit nontrivial solutions u ∈ C2(RN ).

As a consequence, the range of p detected in (1.2) is optimal for the exis-
tence of nontrivial solutions. The first complete study of Pohožaev identities and
nonexistence results in star-shaped bounded domains for equations involving the
fractional Laplacian and a local nonlinearity was done in Refs. 32 and 33. Then,
more recently, for fractional equations set on the whole RN , in Ref. 9, the authors
obtained a Pohožaev identity for power type nonlinearities. Theorem 1.3 is based
upon Pohožaev identity (6.1) which is obtained, as in Ref. 9, by the localization
procedure due to Caffarelli and Silvestre.7

Next, we denote by Ḣs(RN ) the completion of C∞
c (RN ) with respect to the

seminorm ‖(−∆)s/2 · ‖2, known as Gagliardo seminorm, and consider the problem

(−∆)su = (Kα ∗ |u|p)|u|p−2u, u ∈ Ḣs(RN ). (P0)

We have the following result.

Theorem 1.4. The following assertions hold :

(1) Let p 	= α+N
N−2s . Then (P0) does not admit nontrivial solutions u ∈ Ḣs(RN ) ∩

L
2pN
N+α (RN ).

(2) Let p = α+N
N−2s = 2. Then the problem writes as

(−∆)su = (|x|−4s ∗ |u|2)u, u ∈ Ḣs(RN ), N > 4s, (1.7)
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and any of its solutions of fixed sign have the form

C

(
t

t2 + |x− x0|2

)N−2s
2

, x ∈ R
N , (1.8)

for some x0 ∈ RN , C > 0 and t > 0.

The classification of the solutions to problem (1.7) is reminiscent of that for the
fixed-sign solutions to

(−∆)su = u
N+2s
N−2s in R

N .

In Ref. 10 (see also Ref. 22) the authors proved that any positive to this problem
has the form of (1.8).

The plan of the paper is as follows. In Sec. 2 we collect some preliminary notions
and results. In Sec. 3 we investigate the Hölder regularity and the asymptotic
behavior of weak solutions. In Sec. 4 we prove the existence of least energy solutions
(ground states) determining equivalent ways of characterizing them. Here we also
get their symmetry and monotonicity properties and we investigate the Morse index
of ground states in the particular ranges 2 ≤ p < 1 + (2s + α)/N and s ≥ 1/2.
In Sec. 5 we get the existence of infinitely many solutions, symmetric under the
action of some group. In Sec. 6, we obtain a general Pohǒzaev identity and we
prove Theorem 1.4. In the paper, C will always denote a generic constant which
may vary from line-to-line. Unless expressly specified, the integral are meant to be
extended to R

N .

2. Preliminaries

First of all, let us recall the following properties which follow from the fractional
Sobolev embedding

Hs(Rn) ↪→ Lr(RN ), r ∈ [2, 2∗s], where 2∗s :=
2N

N − 2s
,

the Hardy–Littlewood inequality and the fractional version of the Gagliardo–
Niremberg inequality

‖u‖q ≤ C‖(−∆)s/2u‖β2‖u‖
(1−β)
2 , (2.1)

for q ∈ [2, 2∗s] and β satisfying 1
q = β

2∗
s

+ 1−β
2 . Notice that by Proposition 3.6 of

Ref. 12),

‖(−∆)s/2u‖22 =
C(N, s)

2

∫∫ |u(x)− u(y)|2
|x− y|N+2s

. (2.2)

Lemma 2.1. Let p satisfy (1.2). We have that:

(i) 2Np/(N + α) ∈ (2, 2∗s) and for every u ∈ Hs(RN ):∫
(Kα ∗ |u|p)|u|p ≤ C‖u‖2p2Np/(N+α). (2.3)
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(ii) If

N(2p− 1)
N + α

≤ q < Np

α
, (2.4)

and u ∈ Lq(RN ), then

(Kα ∗ |u|p)|u|p−2u ∈ Lr(RN ) for
1
r

=
2p− 1
q
− α

N
. (2.5)

In particular (2.5) defines a function r = r(q) which is strictly increasing and
maps [N(2p− 1)/(N + α), Np/α) onto [1, Np/(α(p− 1))).

(iii) For every u ∈ Hs(RN ):∫
(Kα ∗ |u|p)|u|p ≤ C‖(−∆)s/2u‖2βp2 ‖u‖2(1−β)p

2 , β =
Np−N − α

2sp
. (2.6)

Proof. Property (2.1) is trivial. In order to prove (2.5), let q be as in (2.4) and
u ∈ Lq(RN ). Using Hardy–Littlewood–Sobolev inequality we have that

Kα ∗ |u|p ∈ Lt(RN ) with
1
t

=
p

q
− α

N
.

Since q < Np/α, then t > 0. Moreover, since p > 1, then

Np

N + α
<
N(2p− 1)
N + α

,

and so t > 1. Hence, since for p > 1,

Np

α
<
N(2p− 1)

α
,

by using Hölder inequality we get (2.5). Finally (2.1) easily follows from (2.3) and
(2.1).

The next result is an adaptation of a classical lemma of Lions and it is crucial
in the proofs of the existence theorems.

Lemma 2.2. Let q ∈ [2, 2∗s]. For every u ∈ Hs(RN ) we have that

‖u‖qq ≤ C
(

sup
x∈RN

∫
B1(x)

|u|q
)1− 2

q

‖u‖2.

Proof. If q = 2 it is obvious. Let now q ∈ (2, 2∗s]. Since r := N(q − 2)/2s ≤ q, for
a.e. x ∈ RN , by Theorem 6.7 of Ref. 12, we have

∫
B1(x)

|u|q ≤
(∫

B1(x)

|u|r
) q

r (1− 2
q )(∫

B1(x)

|u|2∗
s

) 2
2∗s
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≤ C

(∫
B1(x)

|u|q
)1− 2

q

‖u‖2Hs(B1(x))

≤ C

(
sup
x∈RN

∫
B1(x)

|u|q
)1− 2

q

‖u‖2Hs(B1(x)),

where ‖u‖2Hs(B1(x))
is defined in Eq. (2.2) of Ref. 12. Hence, we cover R

N with balls
of radius 1 in such a way that each point of RN is contained in at most N +1 balls.
This procedure works even if in the Hs(B1(x))-norm there is a nonlocal term (the
Gagliardo seminorm) and so we conclude.

With the same procedure of Lemma 2.2, one proves that, for all u ∈ Hs(RN ),
2 ≤ q < 2∗s, and σ > 0,

‖u‖tt ≤ C
(

sup
x∈RN

∫
Bσ(x)

|u|q
) βt

q

‖u‖2,

where t = q+ 2(2∗s − q)/2∗s and β = q(2∗s − 2)/[q(2∗s − 2)+ 2 · 2∗s] and so one obtains
the following lemma.

Lemma 2.3. If {un} is bounded in Hs(RN ) and for some σ > 0 and 2 ≤ q < 2∗s
we have

sup
x∈Rn

∫
Bσ(x)

|un|q → 0 as n→∞,

then un → 0 in Lr(RN ) for 2 < r < 2∗s.

3. Regularity and Asymptotics

In this section we want to show that any Hs(RN )-solution of (Pω) is indeed regular
as well as the asymptotic profile. Let us recall the definition of the fractional Sobolev
spaces for q ≥ 1 and β ≥ 0:

Wβ,q = {u ∈ Lq(RN )|F−1[(1 + |ξ|β)Fu] ∈ Lq(RN )} (3.1)

(see Ref. 35 for more details) and the following results (see Theorem 3.2 in Ref. 15).

Theorem 3.1. We have the following:

(i) If β ≥ 0 and either 1 < r ≤ q ≤ r∗β := Nr/(N − βr) < +∞ or r = 1 and

1 ≤ q < N/(N − β), we have that Wβ,r is continuously embedded in Lq(RN ).
(ii) Assume that 0 ≤ β ≤ 2 and β > N/r. If β − N/r < 1 and 0 < µ ≤ β − N/r

then Wβ,r is continuously embedded in C0,µ(RN ). If β−N/r > 1 and 0 < µ ≤
β −N/r − 1 then Wβ,r is continuously embedded in C1,µ(RN ).

We prove the following theorem.
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Theorem 3.2. Let u be a solution of (Pω). If s≤ 1/2, then u∈L1(RN )∩C0,µ(RN )
for µ ∈ (0, 2s). If s > 1/2, then u ∈ L1(RN ) ∩ C1,µ(RN ) for µ ∈ (0, 2s− 1).

Lemma 3.1. Let u ∈ Hs(RN ) be a solution of (Pω). Then for every q ≥ 1 such
that

1
q
>

α

N

(
1− 1

p

)
− 2s
N
,

we have that u ∈ Lq(RN ). Moreover, for every r > 1 such that

1
r
>

α

N

(
1− 1

p

)
,

we have that u ∈ W2s,r.

Proof. Let us consider q0 = 2Np/(N +α). Since u ∈ Hs(RN ), by Sobolev embed-
dings we have that u ∈ Lq0(RN ). Moreover by (2.1) of Lemma 2.1 we have that
(Kα ∗ |u|p)|u|p−2u ∈ Lr0(RN ) with 1/r0 = (2p − 1)/q0 − α/N . Thus, since the
Bessel operator preserves the Lebesgue spaces (see Ref. 35) and by (3.1) we have
that u ∈ W2s,r0 . Then, by Sobolev embedding in (3.1) of Theorem 3.1, u ∈ Lq(RN )
for every q ∈ [r0, (r0)∗2s], i.e. for every q such that(

α

N

(
1− 1

p

)
− 2s
N

<

)
1
r0
− 2s
N
≤ 1
q
≤ 1
r0

(< 1).

Hence let us define

q1 := max
{
r0,

N(2p− 1)
N + α

}
and q1 := min

{
(r0)∗2s,

Np

α

}
.

It is easy to see that q0 ∈ [q1, q1[. Moreover, since for every q ∈ [q1, q1[ we have
u ∈ Lq(RN ), then (Kα ∗ |u|p)|u|p−2u ∈ Lr(RN ) and so u ∈ W2s,r for every r ∈
[r(q1), r(q1)[, where the map r = r(q) has been defined in (2.1) of Lemma 2.1.
Hence by Sobolev embeddings and again by (2.1) of Lemma 2.1, u ∈ Lq(RN ) for
every q ∈ [r(q1), (r(q1))∗2s[. If r(q1) = 1, namely q1 = N(2p− 1)/(N + α), we stop
here from the left-hand side of the interval of q’s. Analogously, if 1/(r(q1))∗2s =
α/N(1− 1/p)− 2s/N , namely q1 = Np/α we stop here from the right-hand side of
the interval of q’s. Otherwise we iterate the procedure. We take

qi := max
{
r(qi−1),

N(2p− 1)
N + α

}
= max

{
r(r(qi−2)),

N(2p− 1)
N + α

}
,

and

qi := min
{

(r(qi−1))∗2s,
Np

α

}
= min

{
(r((r(qi−2))∗2s))

∗
2s,

Np

α

}
.

We have that

qi+1 < qi < · · · < q0 < · · · < qi < qi+1.
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Indeed, by induction, if we assume that qi < qi−1 then
1
qi

=
1

r(qi−1)
<

1
r(qi)

=
1
qi+1

,

and, analogously, if qi−1 < qi then
1

qi+1
=

1
r(qi)

− 2s
N

<
1

r(qi−1)
− 2s
N

=
1
qi
.

We can conclude this procedure after a finite number of steps; indeed,

1
qi

= (2p− 1)i
(

1
q0
− α

2N(p− 1)

)
+

α

2N(p− 1)
with

1
q0
− α

2N(p− 1)
> 0,

and
1
qi

= (2p− 1)i
(

1
q0
− α+ 2s

2N(p− 1)

)
+

α+ 2s
2N(p− 1)

with
1
q0
− α

2N(p− 1)
< 0.

Lemma 3.2. For every r > 1, the solution u of (Pω) is in W2s,r.

Proof. Let r0 be such that 1/r0 = α(1 − 1/p)/N . By Lemma 3.1 we have that
u ∈ W2s,r for every r ∈ (1, r0). Then by Sobolev embeddings, u ∈ Lq(RN ) for
every q ∈ [1, (r0)∗2s). Hence, since p < (N + α)/(N − 2s), then

1
(r0)∗2s

=
α

N

(
1− 1

p

)
− 2s
N

<
α

N

(
1− N − 2s

N + α

)
− 2s
N

<
α

N

N − 2s
N + α

<
α

Np
.

Thus by Kα ∗ |u|p ∈ L∞(RN ) and so (Kα ∗ |u|p)|u|p−2u ∈ Lr(RN ) for every
r ∈ (max{1/(p− 1), 1}, (r0)∗2s/(p− 1)). Thus u ∈ W2s,r for every r ∈ (max{1/(p−
1), 1}, (r0)∗2s/(p − 1)) and so for every r ∈ (1, (r0)∗2s/(p − 1)). If r0 ≥ N/(2s) we
conclude. Otherwise we take r1 := (r0)∗2s/(p − 1) and we iterate the procedure. If
p < 2, then r1 > r0 and the procedure stops in a finite number of steps since

1
ri

=
p− 1

(ri−1)∗2s
=

(p− 1)i

r0
− 2s(p− 1)

N

i−1∑
j=0

(p− 1)j

=
(p− 1)i

r0
− 2s(p− 1)(1 − (p− 1)i)

N(2− p) .

If p = 2, then r1 > r0 and the procedure stops in a finite number of steps since
1
ri

=
1

(ri−1)∗2s
=

1
r0
− 2si

N
.

If p > 2, then, since

1
ri
<

2s(p− 1)
N(p− 2)

,

we have that
1
ri+1

= (p− 1)
(

1
ri
− 2s
N

)
=

1
ri

+
p− 2
ri
− 2s(p− 1)

N
<

1
ri
,
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and the procedure stops in a finite number of steps since
1
ri

= (p− 1)i
(

1
r0
− 2s(p− 1)
N(p− 2)

)
+

2s(p− 1)
N(p− 2)

.

Proof of Theorem 3.2. The conclusions follow from Lemma 3.1 and combining
Lemma 3.2 and (3.1) of Theorem 3.1.

The proof of the regularity in Theorem 1.1 is thereby completed.
We note also the following result on the summability property of the fixed sign

solutions which we will need in studying the Morse index. In this context we need
the functional to be C2, and this is achieved for p ≥ 2.

Proposition 3.1. Let s > 1/2 and p ≥ 2. If u ∈ Hs(RN ) is a solution of (Pω)
with |u| > 0, then u ∈ H2s+1(RN ). In particular ∇u ∈ Hs(RN ).

Before to proceed with the proof, we show the following general fact.

Lemma 3.3. Let u be a function in L1(RN )∩L∞(RN ). Then Kα ∗ |u|p ∈ C0(RN ).

Proof. Let B1 ⊂ RN be the unit ball centered in 0 and writeKα = 1B1Kα+1Bc
1
Kα,

with:

1B1Kα ∈ Lr(RN ) for every r ∈ [1, N/(N − α)),

1Bc
1
Kα ∈ Lr(RN ) for every r ∈ (N/(N − α),+∞].

Since u ∈ L1(RN ) ∩ L∞(RN ), it is possible to choose a small positive ε in such
a way that 1B1Kα ∈ L1+ε(RN ) and |u|p ∈ L1+1/ε(RN ) and we conclude that

(1B1Kα) ∗ |u|p ∈ C0(RN ). (3.2)

Here C0(RN ) the space of continuous functions vanishing at infinity. Analogously,
we can choose a small positive ε such that |u|p ∈ L1+ε(RN ) and 1Bc

1
Kα ∈

L1+1/ε(RN ) and we have

(1Bc
1
Kα) ∗ |u|p ∈ C0(RN ). (3.3)

By (3.2) and (3.3) we conclude.

Proof of Proposition 3.1. Let us assume u > 0. By Theorem 3.2 and Lemma 3.2,
it is u∈L1(RN )∩C1,µ(RN )∩H1(RN ). We will show that ‖(−∆)s+1/2u‖2<∞. By
Lemma 3.3 we know that Kα∗up ∈ C0(RN ). We observe now thatKα∗up ∈ C1(RN ).
Indeed, consider η ∈ C∞

c (RN ) with supp(η) ⊂ B1(0) and η ≡ 1 on B1/2(0). Then:

• ηKα ∈ L1(RN ), up ∈ C1(RN ) with bounded first-order derivatives;
• (1− η)Kα ∈ C∞(RN ) with bounded derivatives, up ∈ L1(RN ).

Hence, by the usual properties of the convolution, Kα ∗up is C1 with derivatives
given by

∂i(Kα ∗ up) = ηKα ∗ ∂iup + ((1− η)Kα) ∗ ∂iup.
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Now, since u ∈ C1,µ(RN ) and p ≥ 2, we have:

ηKα ∗ ∂iup = ηKα ∗ (pup−1∂iu) ∈ L1(RN ) ∗ L∞(RN ) ⊂ L∞(RN ),

((1 − η)Kα) ∗ ∂iup = ((1 − η)Kα) ∗ (pup−1∂iu) ∈ L∞(RN ) ∗ L1(RN ) ⊂ L∞(RN ),

which prove that ∂i(Kα ∗ up) ∈ L∞(RN ). Set v := (Kα ∗ up)up−1; since p ≥ 2 we
have

∂iv = up−1∂i(Kα ∗ up) + (Kα ∗ up)∂iup−1 ∈ L2(RN ) ∩ L∞(RN ), (3.4)

and then

‖(−∆)s+1/2u‖2 = ‖(−∆)s[(−∆)s + ωI]−1(−∆)1/2v‖2 ≤ C‖∇v‖2 <∞.

The proof is thereby complete.

Remark 3.1. Under the hypotheses of Proposition 3.1, we have u ∈ C2(RN ).
Indeed by Theorem 3.2 and (3.4) we know that u ∈ C1,µ(RN ) with

∂i(−ωu+ (Kα ∗ up)up−1) ∈ L∞(RN ).

Thus ∂iu satisfies

(−∆)s∂iu = ∂i(−ωu+ (Kα ∗ up)up−1),

and, by Proposition 2.1.11 of Ref. 34, we conclude that ∂iu ∈ C1(RN ).

We conclude this section by showing the asymptotic profile of the solutions of
(Pω). For the sake of simplicity we set

V := −(Kα ∗ |u|p)|u|p−2.

We get the following theorem.

Theorem 3.3. Let p ≥ 2 and u be a solution of (Pω). Then there exist two positive
constants C1, C2 such that, for any x ∈ RN ,

|u(x)| ≤ C1〈x〉−N−2s, where 〈x〉 = (1 + |x|2)1/2,

and

u(x) = −C2

(∫
V u

)
1

|x|N+2s
+ o(|x|−N−2s) for |x| → +∞.

Proof. For a solution u of (Pω), we have

(−∆)su+ V u = −ωu.

By Lemma 3.3 we have V ∈ L∞(RN ) and V (x) → 0 for |x| → ∞. Then, for every
τ ∈ (0, 1) there exists R > 0 such that V (x) ≥ −τ , whenever |x| ≥ R. Then, we are
in a position to apply Lemma C.2 in Ref. 17 to obtain the conclusion.

As it can be seen in Lemma C.2 of Ref. 17, the constants C1, C2 depend on the
solutions by their L2-norm.

The decay estimate in Theorem 1.1 is proved.
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4. Ground States

Ground states solutions for (Pω) can be found minimizing E0, defined in (1.5), on
the sphere Σρ = {u ∈ Hs(RN ) : ‖u‖2 = ρ} with ρ > 0, or

S(u) :=
‖u‖2

(
∫

(Kα ∗ |u|p)|u|p)1/p
,

on (Hs(RN ) ∩ L2Np/(N+α)(RN ))\{0}, or considering

W (u) :=
‖(−∆)s/2u‖

N(p−1)−α
sp

2 (ω‖u‖22)
N+α−(N−2s)p

2sp

(
∫

(Kα ∗ |u|p)|u|p)1/p
.

Indeed, straightforward calculations show the following relationships between these
three functionals.

Proposition 4.1. For every p > 1 and u ∈ (Hs(RN ) ∩ L2Np/(N+α)(RN ))\{0},

max
τ>0

Eω(τu) =
(

1
2
− 1

2p

)
S(u)p/(p−1).

Moreover let uτ (·) = u(τ ·). We have that:

(i) if p satisfies (1.2) then

min
τ>0

S(uτ ) =
2sp

N + α− (N − 2s)p

(
N + α− (N − 2s)p
Np− (N + α)

)Np−(N+α)
2sp

W (u);

(ii) if p satisfies (1.4) then

min
τ>0

E0(τN/2uτ ) = −a

(
(ω‖u‖22)N+α−(N−2s)p

W (u)2sp

) 1
(2s+α)−N(p−1)

,

where

a =
(α + 2s)−N(p− 1)

4sp

(
N(p− 1)− α

2sp

) N(p−1)−α
(α+2s)−N(p−1)

;

(iii) if p = 1 + (2s+ α)/N then E0(τN/2uτ ) = τ2sE0(u);
(iv) if p > 1 + (2s+ α)/N then

lim
τ→+∞E0(τN/2uτ ) = −∞,

and

max
τ>0

E0(τN/2uτ ) = b

(
W (u)2sp

(ω‖u‖22)N+α−(N−2s)p

) 1
N(p−1)−(2s+α)

,

where

b =
N(p− 1)− (α+ 2s)

2[N(p− 1)− α]

(
2sp

N(p− 1)− α

) 2s
N(p−1)−(α+2s)

.
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Hence, arguing as in the proof of Proposition 2.2 of Ref. 29 and applying
Lemma 2.2, we obtain the following theorem.

Theorem 4.1. If p satisfies (1.2), then S achieves the minimum on Hs(RN )\{0}.

This proves the existence part of Theorem 1.1. Concerning the symmetry of
these ground states, we have the following result.

Theorem 4.2. Let u ∈ Hs(RN ) be a ground state of (Pω). Then u has fixed sign
and there exist x0 ∈ RN and a monotone function v : R → R with fixed sign such
that u(x) = v(|x − x0|).

Proof. Given a ground state u of (Pω), u 	= 0 and u is a solution of

S(u) = inf
ϕ∈Hs(RN )\{0}

S(ϕ).

Taking into account ‖(−∆)s/2|u|‖2 ≤ ‖(−∆)s/2u‖2 also |u| is a ground state. Then

(−∆)s|u|+ ω|u| = (Kα ∗ |u|p)|u|p−1.

By arguing as in the end of Sec. 3 of Ref. 15, if u(x0) = 0 for some x0 ∈ RN ,
then one obtains ∫ |u(x0 + y)|+ |u(x0 − y)|

|x0 − y|N+2s
= 0,

yielding u = 0, a contradiction. Whence |u| > 0 and u does not change sign. We
shall assume u > 0. Given v ∈ Hs(RN ) with v ≥ 0 and any half-space H ⊂ RN ,
the polarization vH is defined as

vH(x) =

{
max{v(x), v(σH (x))} if x ∈ H ,

min{v(x), v(σH (x))} if x ∈ RN\H,

where σH(x) is the reflected of x with respect to ∂H . Then, ‖vH‖22 = ‖v‖22 and,
by (2.2) and Theorem 2 of Ref. 1, ‖(−∆)s/2vH‖22 ≤ ‖(−∆)s/2v‖22. In turn, since
S(u) ≤ S(uH), we conclude that∫

(Kα ∗ |u|p)|u|p =
‖u‖2p
[S(u)]p

≥ ‖u
H‖2p

[S(uH)]p
=
∫

(Kα ∗ |uH |p)|uH |p.

Then, by combining Lemma 5.3 and Lemma 5.4 of Ref. 29, we conclude the proof.

As we said in the Introduction, here we are particularly interested into the
precompactness properties of the minimizing sequences of E0 on Σρ. In this case
we have to assume that p satisfies (1.4). Indeed, if p ≥ 1 + 2s+α

N , using the same
rescaling τN/2uτ as in Proposition 4.1, we deduce that E0 is unbounded from below.
In the following lemma we collect some basic facts.

Lemma 4.1. Let ρ > 0 be fixed. Then:

(i) E0 is coercive and bounded from below on Σρ;
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(ii) mρ2 := infu∈Σρ E0(u) < 0;
(iii) every minimizing sequence for E0 in Σρ is bounded and can be assumed non-

negative, radially symmetric and decreasing.

Proof. Let u ∈ Σρ. By (2.6) we have

E0(u) ≥ 1
2
‖(−∆)s/2u‖22 − C‖(−∆)s/2u‖2βp2 ρ2(1−β)p.

Since p satisfies (1.4), then 0 < βp < 1 we get (4.1). To show (4.1), fix u ∈ Σρ
and observe that the rescaling τN/2uτ preserves L2-norm. We have that E0(τN/2uτ )
becomes negative for small τ . Finally, the statements in (4.1) easily follow from the
coercivity of E0 and from the fact that ‖(−∆)s/2u∗‖2 ≤ ‖(−∆)s/2u‖2, where u∗ is
the symmetric radial decreasing rearrangement of u (see Theorem 3 in Ref. 1).

Hence we have the following compactness result.

Theorem 4.3. For every ρ > 0, every minimizing sequence for E0 in Σρ is rela-
tively compact in Hs(RN ) up to a translation. In particular E0 has a minimum
point on Σρ, that can be assumed non-negative, radially symmetric and decreasing.

Proof. Let {un} be a minimizing sequence for E0 on Σρ satisfying E′
0(un)→ 0 as

n → +∞. In view of Lemma 4.1 it is bounded in Hs(RN ) and then there exists
u ∈ Hs(RN ) such that un ⇀ u. Now let R > 0. If it were

lim
n

sup
y∈RN

∫
BR(y)

u2
n = 0,

then, by Lemma 2.3, we would have un → 0 in Lq(RN ) and then, by (i) of
Lemma 2.1, ∫

(Kα ∗ |un|p)|un|p → 0,

implying that limnE0(un) ≥ 0, which is a contradiction with (ii) in Lemma 4.1.
Then, possibly passing to a subsequence, there exists a δ > 0 such that

sup
n

sup
y∈RN

∫
BR(y)

|un|2 ≥ δ.

We infer that there exists {yn} ⊂ R
N such that∫

BR(yn)

|un|2 ≥ δ.

Hence, defining vn = un(· + yn) and by the compact embedding of Hs
loc(R

N ) into
L2

loc(R
N ) (see e.g. Corollary 7.2 in Ref. 12) we get a bounded minimizing sequence



April 20, 2015 14:14 WSPC/103-M3AS 1550038

Fractional Choquard equations 1461

whose weak limit v is nontrivial, ‖v‖2 ≤ ρ,

‖vn − v‖22 + ‖v‖22 = ‖vn‖22 + on(1), (4.1)

‖(−∆)s/2(vn − v)‖22 + ‖(−∆)s/2v‖22 = ‖(−∆)s/2vn‖22 + on(1), (4.2)

and, by Lemma 2.4 of Ref. 29,∫
(Kα ∗ |vn − v|p)|vn − v|p +

∫
(Kα ∗ |v|p)|v|p

=
∫

(Kα ∗ |vn|p)|vn|p + on(1). (4.3)

Assume by contradiction that ‖v‖2 = µ < ρ. Since, by (4.1),

an =

√
ρ2 − µ2

‖vn − v‖2
→ 1,

and, by (4.2) and (4.3),

E0(vn − v) + E0(v) = mρ2 + on(1),

and then

E0(an(vn − v)) + E0(v) = E0(vn − v) + E0(v) + on(1) = mρ2 + on(1).

Then, since ‖an(vn − v)‖22 = ρ2 − µ2, we get

mρ2−µ2 +mµ2 ≤ mρ + on(1). (4.4)

Now let us define for ν > 0, Σνρ = {w ∈ Σρ :
∫
(Kα ∗ |w|p)|w|p ≥ ν}. We show

that there exists ν > 0 such that

mρ2 = inf
w∈Σν

ρ

E0(w). (4.5)

Of course mρ2 ≤ infu∈Σν
ρ
E0(u). Assuming by contradiction that, for every ν > 0,

mρ2 < infw∈Σν
ρ
E0(w), we can find a minimizing sequence {wn} such that

E0(wn)→ mρ2 and
∫

(Kα ∗ |wn|p)|wn|p → 0.

Thus

0 ≤ 1
2
‖(−∆)s/2wn‖22 = E0(wn) +

1
p

∫
(Kα ∗ |wn|p)|wn|p → mρ2 < 0.

Then, by (4.5), we easily get mτ2ρ2 < τ2mρ2 for every τ > 1. Thus, for all
µ ∈ (0, ρ):

mρ2 < mµ2 +mρ2−µ2 ,

which is in contradiction with (4.4). Hence v ∈ Σρ, ‖vn − v‖2 = on(1) and, by
applying (2.1),

‖vn − v‖2Np/(N+α) = on(1). (4.6)
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It remains to show that ‖(−∆)s/2(vn − v)‖2 = on(1). Since {vn} is a bounded
Palais–Smale sequence, there exists {λn} ⊂ R such that for every w ∈ Hs(RN ):

E′
0(vn)[w] − λn

∫
vnw = on(1) and E′

0(vn)[vn]− λn‖vn‖22 = on(1).

Then we obtain that {λn} is bounded and

(E′
0(vn)− E′

0(vm))[vn − vm]− λn
∫
vn(vn − vm)

+λm

∫
vm(vn − vm)→ 0 as m,n→∞.

Since, by Hardy–Littlewood–Sobolev inequality and (4.6):∣∣∣∣
∫

(Kα ∗ |vn|p)|vn|p−2vn(vn − vm)
∣∣∣∣

≤ C‖vn‖2p−1
2Np/(N+α)‖vn − vm‖2Np/(N+α) → 0,

and

λn

∫
vn(vn − vm)→ 0,

as m,n→∞, we have that {vn} is a Cauchy sequence in Hs(RN ) and we get that
{vn} is relatively compact. The last statement of the theorem is achieved by taking
into account (4.1) of Lemma 4.1.

Finally, following step-by-step (see proof of Lemma 2.6 in Ref. 11), we get the
following relations between the ground states (as minima of Eω on Nω) and the
minima of E0 on Σρ.

Proposition 4.2. For every ρ > 0, the minimization problems

min
u∈Σρ

E0(u) and min
u∈Nω

Eω(u)

are equivalent. Moreover the L2-norm ρ of any ground state u of (Pω) satisfies

ρ2 =
N + α− (N − 2s)p

ωs(p− 1)
min
u∈Nω

Eω(u)

and

min
u∈Σρ

Eω(u) = min
u∈Nω

Eω(u).

Proof. Let ρ, ω > 0,

KΣρ = {m ∈ R− : ∃u ∈ Σρ s.t. E′
0|Σρ(u) = 0 and E0(u) = m}

and

KNω = {c ∈ R : ∃u ∈ Nω s.t. E′
ω(u) = 0 and Eω(u) = c},
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where, for all u, v ∈ Hs(RN ),

E′
ω(u)[v] =

∫
(−∆)s/2u (−∆)s/2v + ω

∫
uv −

∫
(Kα ∗ |u|p)|u|p−2uv.

First of all we observe that, by Lemma 4.1 and Theorem 4.3, KΣν is well defined.
Let now u ∈ Σρ such that E′

0|Σρ(u) = 0 and E0(u) = m with m < 0. Then there
exists λ ∈ R such that

(−∆)su− (Kα ∗ |u|p)|u|p−2u = −λu, (4.7)

and so

‖(−∆)s/2u‖22 −
∫

(Kα ∗ |u|p)|u|p = −λρ2. (4.8)

Then, since E0(u) = m, by (4.8) we get

p− 1
2p
‖(−∆)s/2u‖22 = m+

λρ2

2p
, (4.9)

and so λ > 0. Now let

w(x) := τ
α+2s

2(p−1) u(τx) with τ =
(ω
λ

)1/(2s)

.

We have that w solves

(−∆)sw + ωw − (Kα ∗ |w|p)|w|p−2w = 0,

and so w ∈ Nω, E′
ω(w) = 0 and c = Eω(w) ∈ KNω .

Vice versa, if w ∈ Nω such that E′
ω(w) = 0 and c = Eω(w), we consider

u(x) := τ
α+2s

2(p−1)w(τx) with τ =
(

ρ

‖w‖2

) 2(p−1)
α+2s−N(p−1)

.

We have that u ∈ Σρ, (4.7) holds for

λ = ωτ2s = ω

(
ρ

‖w‖2

) 4s(p−1)
α+2s−N(p−1)

,

and

m = τ
α+2sp−N(p−1)

p−1

(
c− ω

2
‖w‖22

)

=
(

ρ

‖w‖2

)2(α+2sp−N(p−1))
α+2s−N(p−1) (

c− ω

2
‖w‖22

)
. (4.10)

By Pohožaev identity (6.1) and since w ∈ Nω and Eω(w) = c we get the system:


(N − 2s)‖(−∆)s/2w‖22 + ωN‖w‖22 −
α+N

p

∫
(Kα ∗ |w|p)|w|p = 0,

‖(−∆)s/2w‖22 + ω‖w‖22 −
∫

(Kα ∗ |w|p)|w|p = 0,

1
2
‖(−∆)s/2w‖22 +

ω

2
‖w‖22 −

1
2p

∫
(Kα ∗ |w|p)|w|p = c,



April 20, 2015 14:14 WSPC/103-M3AS 1550038

1464 P. d’Avenia, G. Siciliano & M. Squassina

from which

‖w‖22 =
N + α− (N − 2s)p

ωs(p− 1)
c.

Thus (4.10) becomes:

m = −α+ 2s−N(p− 1)
2

(
ωρ2

N + α− (N − 2s)p

)α+2sp−N(p−1)
α+2s−N(p−1)

×
(
s(p− 1)

c

) 2s(p−1)
α+2s−N(p−1)

, (4.11)

and, for

ρ2 =
N + α− (N − 2s)p

ωs(p− 1)
c,

(4.11) implies

m+
ω

2
ρ2 = c.

Hence the conclusions easily follow.

Finally we study the Morse index of the ground state. In the last part of this
section we assume 2 ≤ p < 1 + (2s + α)/N to have that the functional Eω is C2

and s > 1/2. If u is the minimum of E0 on Σρ we have∫
|(−∆)s/2u|2 −

∫
(Kα ∗ |u|p)|u|p = −λρ2, (4.12)

with λ > 0 (by (4.9)). Now consider

E′′
λ(u)[ξ, η] =

∫
(−∆)s/2ξ(−∆)s/2η + λ

∫
ξη − p

∫
(Kα ∗ |u|p−2uη)|u|p−2uξ

− (p− 1)
∫

(Kα ∗ |u|p)|u|p−2ξη. (4.13)

To obtain information on the Morse index, we need to study kerE′′
λ(u).

Since the problem is invariant for the group of translations, the solutions of
(Pω) will never be isolated: in other words kerE′′

λ(u) 	= {0} and in particular

span{∇u} ⊂ kerE′′
λ(u). (4.14)

Indeed, for every a ∈ RN , consider the action of the group of the translations
in R

N induced on Hs(RN ), that is

ta : u ∈ Hs(RN ) �−→ u(·+ a) ∈ Hs(RN ),

which is linear and isometric. Since Eλ◦ta = Eλ, we have E′
λ(tau)[v] = E′

λ(u)[t−av],
for every u, v ∈ Hs(RN ). For every u ∈ Hs(RN ) it is also convenient to introduce
the following map

su : a ∈ R
N �−→ u(·+ a) ∈ Hs(RN ).
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Of course, for a generic fixed u ∈ Hs(RN ), the map su does not need to be dif-
ferentiable but (for example) whenever u ∈ Hs(RN ) is a solution of (Pω) as in
Proposition 3.1 it does, and the differential in 0 given by

s′u(0)[b] = ∇u · b ∈ Hs(RN ), for all b ∈ R
N .

Hence, in this case, by differentiating in 0 the map

a ∈ R
N �−→ E′

λ(su(a)) ∈ H−s(RN ),

we get E′′
λ(su(0))[s′u(0)[b], ·] = 0 for all b ∈ RN and this gives (4.14).

It would be interesting to understand if the ground state is nondegenerate in
the sense that

span{∇u} = kerE′′
λ(u).

We define the Morse index iMorse(u) as the maximal dimension of subspaces of
Hs(RN ) on which E′′

λ(u) is negative definite. We have the following result which
completes the proof of Theorem 1.1.

Proposition 4.3. Let u ∈ Σρ be a ground state and TuΣρ = {w ∈ Hs(RN ) :∫
uw = 0}. Then:

(i) E′′
λ(u) is positive semidefinite on TuΣρ;

(ii) infw∈TuΣρ E
′′
λ(u)[w,w] = 0;

(iii) iMorse(u) = 1.

Proof. Let v be any element of TuΣρ and γ : (−ε, ε) → Σρ a smooth curve such
that γ(0) = u and γ′(0) = v. Since u is the minimum of E0 on Σρ, it is

d2

dτ2
E0(γ(τ))|τ=0 ≥ 0,

which explicitly reads as

0 ≤ E′′
0 (u)[v, v] + E′

0(u)[γ′′(0)] = E′′
0 (u)[v, v]− λ

∫
uγ′′(0). (4.15)

Of course, 0 = d
dτ

∫
|γ(τ)|2 = 2

∫
γ(τ)γ′(τ) implies∫
|v|2 +

∫
uγ′′(0) = 0,

which, plugged into (4.15) gives (i). Property (ii) follows by Proposition 3.1 and the
translation invariance of Σρ: indeed ∂xiu∈TuΣρ and we know E′′

λ(u)[∂xiu, ∂xiu] = 0.
Finally, to prove (4.3), note that by (4.13) and (4.12):

E′′
λ(u)[u, u] =

∫
|(−∆)s/2u|+ λρ2 + (1− 2p)

∫
(Kα ∗ |u|p)|u|p

= 2(1− p)
∫

(Kα ∗ |u|p)|u|p < 0.

The result then follows from (i) and the direct sum decomposition (see Ref. 2 for
the general setting): Hs(RN ) = TuΣρ ⊕ span{u}.
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5. Multiplicity

We begin with some geometric properties of the functional Eω in (1.3). The assump-
tion (1.2) will be tacitly assumed in the whole section.

Proposition 5.1. The functional Eω satisfies the following geometric assumptions
of the symmetric mountain pass theorem:

(i) it is even, that is Eω(u) = Eω(−u);
(ii) it has a strict local minimum in 0 with Eω(0) = 0;
(iii) there exist a nested sequence {Vk} of finite-dimensional subspaces of Hs(RN )

and {Rk} ⊂ R+ such that Eω(u) ≤ 0 for every u ∈ Vk with ‖u‖ ≥ Rk.

Proof. Property (i) is immediate. By (2.3) it holds

Eω(u) ≥ 1
2
‖u‖2 − C‖u‖2p,

getting (ii). Finally, if {ei}i=1,...,k is an orthogonal basis of a k-dimensional subspace
Vk of Hs(RN ), then, writing u =

∑k
i=1 tiei, it is Eω(u) → −∞ for ‖u‖ → ∞,

proving (iii).

To ensure existence of critical points of Eω, a compactness condition is necessary.
To this aim some preliminaries are in order.

Firstly, let � > 1, Ni ≥ 2, i = 1, . . . , �, or � = 1 and N ≥ 3, and N =
∑


i=1Ni.
A point in RN is now denoted with x = (x1, . . . , x
), xi ∈ RNi . Let O(Ni) be the
orthogonal group on RNi and consider the product group

G := O(N1)× · · · ×O(N
),

acting on RN by

g · x = (g1x1, . . . , g
x
), g = (g1, . . . , g
) ∈ G,

and whose representation in Hs(RN ) is given by the linear and isometric action

(Tgu)(x) = u(g−1 · x). (5.1)

Set

X := {u ∈ Hs(RN ) : Tgu = u for all g ∈ G}.

In particular for � = 1 we have the radial functions, u(x) = u(|x|). In this we say
that the functions in X are “symmetric”. Then X is exactly the closed and infinite-
dimensional subspace of fixed points for the action (5.1). The importance of this
setting is twofold. Indeed the functional Eω is G-invariant, i.e. for every g ∈ G,
Eω ◦ Tg = Eω and the space X has compact embedding into Lq(RN ), q ∈ (2, 2∗s),
see Ref. 24.
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Secondly, for every fixed u ∈ Hs(RN ), consider the problem:
(−∆)α/2ϕ = γ(α)|u|p, where γ(α) :=

πN/22αΓ(α/2)
Γ(N/2− α/2)

,

ϕ ∈ Ḣα/2(RN ),
(5.2)

(where Γ is the gamma function) whose weak formulation is the following one: we
say that ϕ ∈ Ḣα/2(RN ) is a weak solution if for every ξ ∈ Ḣα/2(RN ):∫

(−∆)α/4ϕ(−∆)α/4ξ = γ(α)
∫
ξ|u|p. (5.3)

Recall that for every α ∈ (0, N), (−∆)α/2u is defined via the Fourier transform
and Ḣα/2(RN ) is defined as the completion of C∞

c (RN ) with respect to the associ-
ated Gagliardo seminorm (these notions coincide with that given in the Introduction
for α ∈ (0, 2)). Observe now that, under the assumption on p, the right-hand side
in (5.3) defines the map

L : v ∈ Ḣα/2(RN ) �→
∫
v|u|p ∈ R,

which is linear and continuous; indeed

|Lv| ≤ C‖u‖p2Np/(N+α)‖v‖Ḣα/2 ≤ C‖u‖p‖v‖Ḣα/2 .

By the Riesz representation theorem there exists a unique weak solution ϕ of
(5.2), represented as a convolution with the kernel Kα/γ(α), i.e. ϕ = Kα ∗ |u|p and

‖Kα ∗ |u|p‖Ḣα/2 = ‖L‖ ≤ C‖u‖p.

As a consequence of the above setting we can prove the following result, which will
help us to recover compactness.

Lemma 5.1. Let {un}, u ∈ X be such that un ⇀ u in Hs(RN ). Then:

(i) Kα ∗ |un|p → Kα ∗ |u|p in Ḣα/2(RN );
(ii)

∫
(Kα ∗ |un|p)|un|p →

∫
(Kα ∗ |u|p)|u|p;

(iii)
∫

(Kα ∗ |un|p)|un|p−2unu→
∫
(Kα ∗ |u|p)|u|p.

Proof. Define the linear and continuous maps Ln, L : Ḣα/2(RN )→ R such that

Lnv =
∫
v|un|p, Lv =

∫
v|u|p, v ∈ Ḣα/2(RN ).

By the compact embedding we may assume

‖un − u‖q → 0, for all q ∈ (2, 2∗s).

Then, denoting with (2∗α/2)
′ the conjugate exponent of 2∗α/2,

|Lnv − Lv| ≤
∫
|v|||un|p − |u|p| ≤ ‖v‖2∗

α/2
‖|un|p − |u|p‖(2∗

α/2)
′

≤ ‖v‖Ḣα/2εn → 0,
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which proves the convergence of Ln to L in the operator norm, yielding (i). We now
observe that:

|Kα ∗ |un|p| ≤ ξ ∈ L2∗
α/2(RN ), |un|p ≤ µ ∈ L(2∗

α/2)
′
(RN ),

|un|p−1 ≤ η ∈ L
2Np

(N+α)(p−1) (RN ).

Hence by the Young inequality we have

(Kα ∗ |un|p)|un|p ≤
1

2∗α/2
ξ2

∗
α/2 +

1
(2∗α/2)

′µ
(2∗

α/2)
′
∈ L1(RN ),

as well as

(Kα ∗ |un|p)|un|p−1|u|

≤ 1
2∗α/2

ξ2
∗
α/2 +

(N + α)(p− 1)
2Np

η
2Np

(N+α)(p−1) +
N + α

2Np
|u|

2Np
N+α ∈ L1(RN ).

The dominated convergence theorem allows to obtain (ii) and (iii).

Theorem 5.1. The functional Eω satisfies the Palais–Smale condition in X.

Proof. Let {un} ⊂ X be a Palais–Smale sequence, that is,

|Eω(un)| ≤M, E′
ω(un)→ 0 in H−s(RN ).

Then we deduce in a standard way the boundedness of {un} in Hs(RN ). Hence,
there exists u ∈ X such that, up to subsequences, un ⇀ u in Hs(RN ). By Lemma
5.1 we have the convergences:

0← E′
ω(un)[u] = (un, u)−

∫
(Kα ∗ |un|p)|un|p−2unu→ ‖u‖2 −

∫
(Kα ∗ |u|p)|u|p,

E′
ω(un)[un] = ‖un‖2 −

∫
(Kα ∗ |un|p)|un|p → 0,

∫
(Kα ∗ |un|p)|un|p →

∫
(Kα ∗ |u|p)|u|p,

from which we deduce that ‖un‖ → ‖u‖. This gives the desired conclusion.

Theorem 5.2. The functional Eω possesses infinitely many critical points
{un} ⊂ X such that Eω(un) → ∞, and ‖un‖ → ∞. In particular, problem (Pω)
has infinitely many solutions in X.

Proof. All the hypotheses (geometry and compactness) of the symmetric mountain
pass theorem on the space X are satisfied, so that the existence of infinitely many
critical points {un} ⊂ X with Eω(un) → ∞ is guaranteed. Then, since

∫
(Kα ∗

|un|)|un|p ≤ C‖un‖2p, it has to be ‖un‖ → ∞. By the Palais Principle of Symmetric
Criticality, the constrained critical points {un} ⊂ X for Eω are indeed “true” critical
points and hence solutions of (Pω).
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Observe that Proposition 5.1 holds also in the limit cases p = 1 + α/N and
p = (N +α)/(N − 2s). Due to the nonexistence result (see Sec. 6), we see that the
Palais–Smale condition cannot be satisfied for these values.

To obtain nonradial solutions we need a slight modification in the above setting,
as introduced in Ref. 3. Let N = 4 or N ≥ 6 and choose an integer m 	= (N − 1)/2
such that 2 ≤ m ≤ N/2. Let us define

G := O(m)× O(m)× O(N − 2m),

whose induced action on Hs(RN ) is as usual,

(Tgu)(x) = u(g−1
1 x1, g

−1
2 x2, g

−1
3 x3), g = (g1, g2, g3) ∈ G, (5.4)

where, now x = (x1, x2, x3) ∈ Rm ⊕ Rm ⊕ RN−2m. We know that X , associated
to the action (5.4), has compact embedding into Lq(RN ), q ∈ (2, 2∗s). Consider the
involution in RN :

τ · x = (x2, x1, x3),

and the action

(Iu)(x) = u(x), (T u)(x) = −u(τ−1 · x),

induced by H = {ιH , τ} on Hs(RN ). Define also the group

K := G�ψ H ⊂ O(N),

via the group homomorphism ψ : H → Aut(G) given by

ψ(ιH)g = g, ψ(τ)g = g−1, g ∈ G.

Moreover, if

π : K → {+1,−1} such that π(g, ιH) = 1, π(g, τ) = −1,

denotes the canonical epimorphism, we define the action of K on Hs(RN ) by

(Tku)(x) := π(k)u(k−1 · x), k ∈ K.

Of course, this action is linear and isometric and in particular if k = (g, ιH), then
(Tku)(x) = u(g−1 · x), if k = (ιG, τ), then (Tku)(x) = −u(τ−1 · x). Set

Y := {u ∈ Hs(RN ) : Tku = u for all k ∈ K},

and note that the unique radial function in Y is u ≡ 0. Since Eω is K-invariant
and Y ⊂ X is closed and infinite-dimensional, we can argue as before obtaining the
following multiplicity result.

Theorem 5.3. Assume N = 4 or N ≥ 6. The functional Eω possesses infinitely
many critical points {un} ⊂ Y such that Eω(un) → ∞ and ‖un‖ → ∞. In partic-
ular, problem (Pω) has infinitely many solutions in Y .

Hence the proof of Theorem 1.2 is completed.
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6. Nonexistence

As known, in order to formally deduce a Pohožaev identity, one can compute
d

dϑ
J(γu(ϑ))|ϑ=1 = 0,

where γu(ϑ) := u(ϑx) and u is a solution to problem (Pω). We find

(N − 2s)
∫
|(−∆)s/2u|2 + ωN

∫
|u|2 =

α+N

p

∫
(Kα ∗ |u|p)|u|p. (6.1)

We shall rigorously justify this identity. We follow the localization argument deve-
loped in Ref. 9 by defining the space Xs(RN+1

+ ) as the completion of C∞
0 (RN+1

+ )
for the norm

‖w‖Xs(RN+1
+ ) :=

(
�−1
s

∫
R

N+1
+

y1−2s|∇w|2dxdy
)1/2

, �s := 21−2sΓ(1− s)
Γ(s)

.

For a given u ∈ Hs(RN ), the solution w ∈ Xs(RN+1
+ ) of the minimization

problem

min

{∫
R

N+1
+

y1−2s|∇w|2dxdy : w(x, 0) = u(x) on R
N

}

is the solution to the boundary value problem:{
−div(y1−2s∇w) = 0 on R

N+1
+ ,

w(x, 0) = u(x) on RN ,

and it is usually called the s-harmonic extension of u, and

‖w‖Xs(RN+1
+ ) = ‖(−∆)s/2u‖2.

As known, the fractional Laplacian can be defined as the Dirichlet-to-Neumann
map

(−∆)su(x) = − 1
�s

lim
y→0+

y1−2s ∂w

∂y
(x, y), u ∈ Hs(RN ).

Therefore, our nonlocal equation (Pω) can be restated into a local form as:{
−div(y1−2s∇w) = 0 on R

N+1
+ ,

∂sνw(x, 0) = −ωu+ (Kα ∗ |u|p)|u|p−2u on RN ,

where we have set

∂sνw(x, 0) := − 1
�s

lim
y→0+

y1−2s∂yw(x, y).

Without loss of generality, we shall set �s = 1. Of course, if w is a weak solution
to this problem, then u(x) = w(x, 0) is a weak solution to (Pω).

We have the following result.

Theorem 6.1. Let u ∈ C2(RN )∩Hs(RN )∩L
2Np
N+α (RN ) be a weak solution to (Pω).

Then (6.1) holds.

Taking into account Remark 3.1, it is not restrictive to assume u ∈ C2(RN ).
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Proof. Since u ∈ C2(RN ) we have w ∈ C2(RN+1
+ ). Set D = {z = (x, y) ∈ R

N ×
[0,+∞) : |z| ≤ 1} and consider a cut-off function ϕ ∈ C1

c (R
N × [0,+∞)) such that

ϕ = 1 on D, and ϕR(x, y) := ϕ(x/R, y/R). A direct computation yields:

div(y1−2s∇w)[ϕR(z · ∇w)]

= div[(y1−2s∇w)ϕR(z · ∇w)]− y1−2s∇w · ∇[ϕR(z · ∇w)]

= div[(y1−2s∇w)ϕR(z · ∇w)]− y1−2s(∇ϕR · ∇w)(z · ∇w)

− y1−2sϕR|∇w|2 −
1
2
y1−2sϕR(z · ∇(|∇w|2))

= div
[
(y1−2s∇w)ϕR(z · ∇w) − 1

2
y1−2sϕRz|∇w|2

]

− y1−2s(∇ϕR · ∇w)(z · ∇w) +
N − 2s

2
y1−2sϕR|∇w|2

+
1
2
y1−2s(z · ∇ϕR)|∇w|2,

and, integrating on R
N+1
+ , we get:∫

R
N+1
+

div[(y1−2s∇w)ϕR(z · ∇w)] = lim
ε→0+

∫
RN×[ε,+∞[

div[(y1−2s∇w)ϕR(z · ∇w)]

= lim
ε→0+

∫
∂(RN×[ε,+∞[)

(y1−2s∇w) · νϕR(z · ∇w)

= − lim
ε→0+

∫
∂(RN×[ε,+∞[)

(y1−2s∂yw)ϕR(z · ∇w)

=
∫

(−ωu+ (Kα ∗ |u|p)|u|p−2u)ϕR(x, 0)(x · ∇u),

where ν(x) = (0, . . . , 0,−1). Now following the proof of Proposition 3.1 in Ref. 29
we get

ω

∫
uϕR(x, 0)(x · ∇u)→ −ωN

2
‖u‖22 as R→ +∞,

and ∫
((Kα ∗ |u|p)|u|p−2u)ϕR(x, 0)(x · ∇u)

→ −N + α

2p

∫
(Kα ∗ |u|p)|u|p as R→ +∞.

Moreover by the dominated convergence theorem we have:∫
R

N+1
+

div(y1−2sϕRz|∇w|2) = lim
ε→0+

∫
RN×[ε,+∞[

div(y1−2sϕRz|∇w|2)

= − lim
ε→0+

ε2−2s

∫
∂(RN×[ε,+∞[)

ϕR|∇w|2 = 0,
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∫
R

N+1
+

y1−2s(∇ϕR · ∇w)(z · ∇w) → 0 as R→ +∞,

∫
R

N+1
+

y1−2s(z · ∇ϕR)|∇w|2 → 0 as R→ +∞,
∫

R
N+1
+

y1−2sϕR|∇w|2 →
∫

R
N+1
+

y1−2s|∇w|2 as R→ +∞,

which conclude the proof.

By combining the Pohožaev identity (6.1) with∫
|(−∆)s/2u|2 + ω

∫
|u|2 =

∫
(Kα ∗ |u|p)|u|p,

we get (
N − 2s− α+N

p

)∫
|(−∆)s/2u|2 + ω

(
N − α+N

p

)∫
|u|2 = 0.

Now, since ω > 0, if both the coefficients are positive, that is p ≥ α+N/(N − 2s),
the unique solution is the trivial one. Analogously, if they are negative, that is
p ≤ 1 +α/N, nontrivial solutions cannot exist. Thus we conclude the proof of
Theorem 6.1. Now, the first statement of Theorem 1.4 follows by Pohožaev identity
(6.1).

In case s = 1, the assertion that any solution to problem (1.7) of fixed sign has
the form given in formula (1.8), was stated in Proposition A.1 of Ref. 28 and the
authors claim in Remark A.2-(3) that the same holds for the fractional Laplacian.
In order to justify this conclusion and make the paper self-contained, we provide
the following analysis on how to rigorously prove the statement.

• Invariance under Kelvin transform. Consider the equation

(−∆)su = vuu, with vu = | · |−4s ∗ u2,

and define the following operators, on functions g defined a.e.,

(Kg)(x) := |x|2s−Ng(x/|x|2) and (Hg)(x) := |x|−N−2sg(x/|x|2).

K is a Kelvin transform type operator, which is an isometry in Ḣs(RN ), see
Lemma 2.2 in Ref. 14. Observe that K,H are involutions, namely K2 = I = H2.

Let us see now the behavior of (−∆)s and vuu under the operators H,K. Fall and
Weth (see Corollary 2.3 in Ref. 14) prove that

H(−∆)s = (−∆)sK.

The behavior of the convolution term vu is proved in Lemma A.3 of Ref. 28, with
s = 1, where the authors use the identity |y|4|x − y/|y|2|4 = |x|4|x/|x|2 − y|4. In
our case, by replacing the exponent 4 with 4s, exactly the same computation gives

vu(x) = |x|−4svK−1u(x/|x|2).
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Notice that, by the definition,

u(x) = |x|−(N−2s)Ku(x/|x|2),

and then

vu(x)u(x) = |x|−4svKu(x/|x|2)|x|−(N−2s)Ku(x/|x|2)

= |x|−(N+2s)vKu(x/|x|2)Ku(x/|x|2)

= H(vKuKu)(x),

namely, H [vuu] = vKuKu. If u is a solution of (1.7), by applying H to both sides
we have

(−∆)sKu = vKuKu,

and so Ku ∈ Ḣs(RN ) is a solution of (1.7) too.

• Radial symmetry and monotonicity. We want to prove that each positive solution u
of (1.7) is radially symmetric and monotone decreasing about some point x0 ∈ RN .
Let u ∈ Ḣs(RN ), u > 0, be a solution of (1.7) and, for simplicity, let v := vu. By
Sobolev embedding we have that u ∈ L2∗

s (RN ) and by Hardy–Littlewood–Sobolev
inequality, it follows v ∈ LN/(2s)(RN ). Moreover, by arguing as in Theorem 4.5 of
Ref. 10, we have that Eq. (1.7) is equivalent to the system

u(x) =
∫

v(y)u(y)
|x− y|N−2s

dy, v = |x|−4s ∗ u2. (6.2)

We use classical notations for the moving plane, namely Σλ = {x1 ≥ λ} and
uλ(x) = u(xλ) = u(2λ− x1, x2, . . . , xN ). Simple calculations show that:

uλ(x) − u(x) =
∫

Σλ

(
1

|x− y|N−2s
− 1
|xλ − y|N−2s

)
(uλ(y)vλ(y)− u(y)v(y))dy,

vλ(x)− v(x) =
∫

Σλ

(
1

|x− y|4s −
1

|xλ − y|4s

)
(u2
λ(y)− u2(y))dy.

Then, for any x ∈ Σλ, we have:

uλ(x)− u(x) ≤
∫
{y∈Σλ:uv≤uλvλ}

uλ(y)vλ(y)− u(y)v(y)
|x− y|N−2s

dy

=
∫
{y∈Σλ:uv≤uλvλ}

u(y)[vλ(y)− v(y)] + vλ(y)[uλ(y)− u(y)]
|x− y|N−2s

dy

≤
∫

Σu
λ

vλ(y)[uλ(y)− u(y)]
|x− y|N−2s

dy +
∫

Σv
λ

u(y)[vλ(y)− v(y)]
|x− y|N−2s

,

where we have set Σuλ = Σλ ∩ {uλ > u} and Σvλ = Σλ ∩ {vλ > v}. Then, by Hardy–
Littlewood–Sobolev and Hölder inequalities we have

‖uλ − u‖L2∗s (Σu
λ) ≤ C(‖v‖LN/(2s)(Σc

λ)‖uλ − u‖L2∗s (Σu
λ)

+ ‖u‖L2∗s (Σv
λ)‖vλ − v‖LN/(2s)(Σv

λ)). (6.3)
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Analogously we get, for all x ∈ Σλ,

vλ(x) − v(x) ≤ 2
∫

Σu
λ

uλ(y)(uλ(y)− u(y))
|x− y|4s dy,

and

‖vλ − v‖LN/(2s)(Σv
λ) ≤ C‖u‖L2∗s (Σc

λ)‖uλ − u‖L2∗s (Σu
λ). (6.4)

Since ‖v‖LN/(2s)(Σc
λ), ‖u‖L2∗s (Σc

λ) → 0 as λ → −∞, combining (6.3) and (6.4), we

obtain ‖uλ − u‖L2∗s (Σu
λ) = 0 and hence |Σuλ| = 0 and |Σvλ| = 0. The proof of radial

symmetry and monotonicity of u and v can be obtained in the same way of Step 2
and Step 3 in Ref. 28 using the analogous inequalities given above.

• Classification result. The same geometrical argument as in the proof of Step 3,
on p. 335 of Ref. 10, which exploits the invariance of the problem under the Kelvin
transform, shows that there exists a positive constant u∞ such that

lim
|x|→∞

|x|N−2su(x) = u∞. (6.5)

With the above tools available, namely Kelvin invariance, radial symmetry, the
scaling invariance

uλ(x) = λ
N−2s

2 u(λx), λ > 0,

and the asymptotics as in (6.5), then the desired classification follows as in Sec. 3.1
of Ref. 10, where the authors deal with the problem (−∆)su = u2∗

s−1 in RN .
More precisely, having formula (6.5) available, the arguments of Sec. 3.1 in Ref. 10,
which rely on the validity of Lemmas 3.1 and 3.2 in Ref. 10, carry on with no
variations since they contain calculations independent of the particular structure
of the nonlinear term.
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