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Abstract. We consider a linear model of a thermoelastic plate where the heat flux
depends solely on the past history of the temperature gradient through a memory kernel
k. The resulting system consists of a fourth-order evolution equation, governing the
vertical deflection u, which is coupled with a hyperbolic integrodifferential equation for
the temperature field ϑ. The former one contains the term −ω∆utt, ω > 0, that accounts
for rotational inertia effects. If this term is missing, it is known that the system, endowed
with Navier boundary conditions, is not exponentially stable. Here we prove that its
presence restores the exponential stability. Moreover, rescaling k by a time relaxation
ε > 0, we obtain a closeness estimate between the solution to the system characterized by
ε and ω and the solution to the limiting system formally obtained by setting ε = ω = 0,
namely, the classical linear thermoelastic plate model.
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1 Introduction

Let Ω be a bounded planar domain with smooth boundary ∂Ω. Suppose that Ω is oc-
cupied, for all time t, by a thin homogeneous isotropic elastic plate. Denoting by u its
vertical deflection and by ϑ the temperature variation field, we suppose that the evolution
of the pair (u, ϑ) is governed by the following integrodifferential system











utt − ω∆utt + ∆(∆u+ ϑ) = 0,

ϑt +

∫ ∞

0

k(s)
[

cϑ(t− s) − ∆ϑ(t− s)
]

ds− ∆ut = 0,
(1.1)

in Ω×R+, where R+ = (0,∞). Here ω ≥ 0, c ≥ 0, and k : [0,∞) → R is a smooth positive
bounded convex function which vanishes at infinity. Moreover, all the other physical
constants have been set equal to 1. Observe that, if k coincides with the Dirac mass at 0,
then system (1.1) formally becomes the well-known model of linear thermoelastic plate

{

utt − ω∆utt + ∆(∆u+ ϑ) = 0,

ϑt + cϑ− ∆ϑ− ∆ut = 0.
(1.2)

In absence of rotational inertia effects, i.e., ω = 0, system (1.2) is essentially parabolic and
its exponential stability was proved with various kinds of boundary conditions (see, for
instance, [11, 13, 14, 15, 16, 19, 20] and their references). On the other hand, in the case
ω > 0, system (1.2) is weakly hyperbolic and the solutions propagate singularities. Then
the proof of exponential stability presents some technical difficulties (cf. [1, 12, 17, 21]
and references therein). For a detailed comparison between the two cases, the reader is
referred to [18].

Going back to system (1.1), the case ω = 0 was considered and carefully justified from
the physical viewpoint in [6]. However, in that paper, not only the heat conduction law
is of hereditary type (see [9]), but also the constitutive assumption for the thermal power
contains a memory term characterized by a relaxation kernel a ≥ 0. This implies the
presence of a dissipative term a(0)ϑ in the second equation. The exponential stability
proved in [6] essentially depends on such a term to the point that the authors conjectured
its failure in the case a ≡ 0 (see [6, Remark 5.1]). This fact was indeed proved in [7].
More precisely, system (1.1) with ω = 0 was endowed with Navier boundary conditions

u(t) = ∆u(t) = 0 on ∂Ω, t ≥ 0,

ϑ(t) = 0 on ∂Ω, t ∈ R,

and initial conditions

(u(0), ut(0), ϑ(0)) = (u0, u1, ϑ0) in Ω,

ϑ(−s) = ψ(s) in Ω × R+,

where the initial data u0, u1, ϑ0 : Ω → R and ψ : Ω × R+ → R are assigned functions.
Then, using the so-called past history approach (see [8] and references therein), it was
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proved that system (1.1) with ω = 0 generates a strongly continuous semigroup S0,ε(t)
acting on an appropriate (extended) phase space such that any trajectory goes to zero as
time goes to infinity [7, Thm. 4.1]. However, S0,ε(t) fails to be exponentially stable, no
matter how fast the memory kernel squeezes at infinity, provided that its growth around
the origin is suitably controlled [7, Thm. 5.4]. It is worth pointing out that if the set
of initial data is restricted to null initial past histories, i.e., ψ ≡ 0, it can be proved
that the energy of the system (1.1) with ω ≥ 0 exponentially decays to 0 provided that
k satisfies reasonable assumptions. This was done in [4] for a clamped plate, assuming
c = 0. Therefore, as remarked in [7], the presence of nonvanishing initial past history
might play a discriminating role in the stability of a system with memory effects.

The first result of the present paper, consists in showing that if ω > 0, then problem
(1.1) generates an exponentially stable semigroup with a decay rate proportional to ω

itself (see Theorem 3.2). This will be achieved by using a technique first devised in
[10, 22] whose main idea is essentially that of building a suitable perturbation of the first
order energy functional. Thus the presence of rotational inertia restores the exponential
stability, a pleasant feature from the physical viewpoint.

The second result is concerned with the closeness between the solutions to problem
(1.1) and the solutions to the system (1.2) endowed with the same boundary and initial
conditions (but the one for the past history of ϑ). We proceed in the spirit of [2] (see also
[3, 5]) by replacing the memory kernel k by a suitable rescaling kε, namely,

kε(s) =
1

ε
k

(s

ε

)

, ∀ s ∈ R+, (1.3)

where ε ∈ (0, 1] is a time relaxation. Note that kε approaches the Dirac mass at 0 as ε goes
to zero, in the sense of distribution. Thanks to the first result, a convenient reformulation
of system (1.1), with kε in place of k, generates an exponentially stable semigroup Sω,ε(t)
on a certain phase space. Then, denoting by S0,0(t) the semigroup generated by system
(1.2), we establish an estimate of the difference between two different trajectories, in terms
of ε and ω, which holds on any bounded time interval (see Theorem 4.1). In other words,
the estimate basically says that the solution to a system like (1.1), which is hyperbolic and
propagates data singularities, is close to the (arbitrarily smooth) solution to a parabolic
system like (1.2) with ω = 0, provided that ε and ω are small enough. Clearly, the
limit process as ε going to zero is singular, for the information on the past history of the
temperature field ϑ gets completely lost (see [2] for a complete discussion). As we shall
see, this implies that the closeness has always to be understood for time intervals which
do not contain 0.

We stress that the mentioned estimate also works for ω = 0, focusing solely on the
limit for ε going to zero (see Corollary 4.2). In this case the result becomes stronger since
the estimate holds true with constants which are independent of the time interval size, so
that we can control the differences between two trajectories for any time t > 0 (it has to
be noticed that, as far as we are aware, the first uniform in time singular-like control was
obtained in [5] for an electromagnetic system with memory effects). This fact implies that
system (1.1) with ω = 0, which lacks of exponential stability for all ε > 0, can be made
arbitrarily closed, as ε → 0, to the limit model (1.2), which instead exhibits exponential
decay. Therefore, loosely speaking, the more the memory kernel gets peaked around the
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origin, the less the trajectories of system (1.1) present deviation from the exponential
stability of system (1.2).

The content of the paper is organized as follows. In Section 2 we introduce the basic
notation and tools as well as the formulation of the problems in the proper functional
setting. Section 3 is devoted to prove the exponential decay of the solutions to system
(1.1), for every ε ∈ [0, 1], provided that ω > 0. Finally, in Section 4, we demonstrate the
closeness estimate between the strongly continuous semigroups associated with systems
(1.1) and (1.2) when ω and ε tend to zero.

Finally, we point out that our choice of boundary conditions clearly simplifies the
functional setup and some technical argument. However, we do think that the present
results can be quite easily extended, at least, to the supported (or clamped) plate, taking
advantage, for instance, of the results proved in [18] for system (1.2).

2 Functional setup and well-posedness

Given a real normed space H, we denote by BH(R) the closed ball in H of radius R ≥ 0
centered at zero. Let us define the positive operators A and B on (L2(Ω), 〈·, ·〉, ‖ · ‖) by

A = −∆ and B = cI − ∆,

with domain D(A) = D(B) = H1
0 (Ω) ∩ H2(Ω). Then we introduce the scale of Hilbert

spaces
Hr = D(Ar/2), r ∈ R,

endowed with the inner products

〈u1, u2〉Hr = 〈Ar/2u1, A
r/2u2〉.

Of course the operator B induces an equivalent inner product in Hr. Naming λ1 the first
eigenvalue of A, for any s > r, we also have the inequalities

‖Ar/2w‖ ≤ λ1
(r−s)/2‖As/2w‖, ∀w ∈ D(As/2). (2.1)

We assume that k : R+ → R+ is a smooth decreasing function satisfying, for the sake of
simplicity, the normalization conditions

∫ ∞

0

k(s)ds = 1, k(0) = 1. (2.2)

Then we set
µ(s) = −k′(s), ∀ s ∈ R+,

where µ is supposed to satisfy

µ ∈ C1(R+) ∩ L1(R+), (2.3)

µ(s) ≥ 0, ∀ s ∈ R+, (2.4)

µ′(s) ≤ 0, ∀ s ∈ R+. (2.5)
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Note that the above assumptions entail that µ cannot be identically zero.
Also, for any ε ∈ (0, 1], we define the function (cf. (1.3))

µε(s) =
1

ε2
µ

(s

ε

)

= −k′ε(s),

and we observe that, for ε ∈ (0, 1],
∫ ∞

0

µε(s)ds =
1

ε
and

∫ ∞

0

sµε(s)ds = 1, (2.6)

thanks to (2.2).
We now consider the weighted Hilbert spaces

Mr
ε = L2

µε
(R+, Hr+1), r ∈ R,

equipped with the inner products

〈η1, η2〉Mr
ε

=

∫ ∞

0

µε(s)〈B(1+r)/2η1(s), B
(1+r)/2η2(s)〉ds

and we introduce the product spaces

Hr
ω,ε =































Hr+2 ×Hr+1 ×Hr ×Mr
ε, if ε > 0, ω > 0,

Hr+2 ×Hr ×Hr ×Mr
ε, if ε > 0, ω = 0,

Hr+2 ×Hr+1 ×Hr, if ε = 0, ω > 0,

Hr+2 ×Hr ×Hr, if ε = 0, ω = 0,

endowed with the norms

‖(u, ut, ϑ, η)‖2
Hr

ω,ε
=

{

‖u‖2
Hr+2 + ‖ut‖2

Hr + ω‖ut‖2
Hr+1 + ‖ϑ‖2

Hr + ‖η‖2
Mr

ε
, if ε > 0,

‖u‖2
Hr+2 + ‖ut‖2

Hr + ω‖ut‖2
Hr+1 + ‖ϑ‖2

Hr , if ε = 0.

In particular, the space H0
ω,ε will be the extended phase-space on which we construct the

dynamical system associated with (1.1). Throughout the paper, when ε = 0, we shall
agree to interpret the four entries vector z = (u, ut, ϑ, η) just as the triplet (u, ut, ϑ). Let
Tε be the linear operator on M0

ε with domain

D(Tε) =
{

η ∈ M0
ε

∣

∣ ηs ∈ M0
ε, η(0) = 0

}

,

defined by
Tεη = −ηs, η ∈ D(Tε),

where ηs stands for the distributional derivative of η with respect to the internal variable
s. Tε is the infinitesimal generator of the right-translation semigroup on M0

ε. Notice that,
on account of (2.5), there holds

〈Tεη, η〉M0
ε

=

∫ ∞

0

µ′(s)‖B1/2η(s)‖2ds ≤ 0, ∀ η ∈ D(Tε). (2.7)
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Following the past history approach (see, e.g., [8] and references therein), we introduce
the so-called integrated past history of ϑ,

ηt(s) =

∫ s

0

ϑ(t− y)dy, (s, t) ∈ R+ × R+. (2.8)

Differentiating (2.8) leads to a further equation ruling the evolution of η

ηt
t(s) = −ηt

s(s) + ϑ(t), t ∈ R+.

Also, in view of (2.8), the initial-boundary conditions for η read as

η0(s) =

∫ s

0

ϑ(−y)dy, ηt(0) = 0, ∀ t ≥ 0.

We are now in the position to introduce the rigorous formulation of our problem.
For ε ∈ [0, 1] and ω ≥ 0, given (u0, u1, ϑ0, η0) ∈ H0

ω,ε, find (u, ut, ϑ, η) ∈ C([0,∞),H0
ω,ε)

solution to


















utt + ωAutt + A(Au− ϑ) = 0,

ϑt +

∫ ∞

0

µε(s)Bη(s)ds+ Aut = 0,

ηt = Tεη + ϑ,

(Pω,ε)

for t ∈ R+, which fulfills the initial conditions (u(0), ut(0), ϑ(0), η0) = (u0, u1, ϑ0, η0).
Similarly, we introduce the formal limiting problem.

Given (u0, u1, ϑ0) ∈ H0
0,0, find (u, ut, ϑ) ∈ C([0,∞),H0

0,0) solution to

{

utt + A(Au− ϑ) = 0,

ϑt +Bϑ+ Aut = 0,
(P0,0)

for t ∈ R+, which fulfills the initial conditions (u(0), ut(0), ϑ(0)) = (u0, u1, ϑ0).
The above problems are abstract reformulation of the initial and boundary value problems
associated with (1.1) and (1.2) (cf. Introduction). In particular, system Pω,ε allows us to
provide a description of the solutions in terms of a strongly continuous (i.e., C0) semigroup
of operators. Indeed, setting ζ(t) = (u(t), v(t), ϑ(t), ηt)⊤, we can rewrite the first problem
as

{

d
dt
ζ = Lζ,

ζ(0) = ζ0,

where L is the linear operator defined by

L









u

v

ϑ

η









=











v

−(I + ωA)−1A(Au− ϑ)

−Av −
∫ ∞
0
µε(s)Bη(s)ds

ϑ+ Tεη










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with domain

D(L) =































z ∈ H0
ω,ε

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Au− ϑ ∈ H2

v ∈ H2

ϑ ∈ H1

∫ ∞
0
µε(s)Bη(s)ds ∈ H0

η ∈ D(Tε)































.

By virtue of (2.7), L is a dissipative operator due to memory effects, namely

〈Lw,w〉H0
ω,ε

≤ 0,

for all w ∈ D(L). Then, arguing, e.g., as in [6], we have the following well-posedness
result.

Theorem 2.1. Let (2.3)-(2.5) hold if ε > 0. Then, for every ω ≥ 0 and ε ∈ [0, 1],
system Pω,ε defines a C0-semigroup Sω,ε(t) of contractions on the phase-space H0

ω,ε.

Remark 2.2. In the above theorem, we tacitly extend the definition of Sω,ε(t) to the case
ε = 0 which is well known (cf. Introduction). Of course, in this case we remind that the
solution semigroup has three components only.

3 Exponential stability for ω > 0

We already mentioned that, in absence of the rotational inertia term (ω = 0), if the mem-
ory kernel is not allowed to grow too rapidly around the origin, although each trajectory
of P0,ε squeezes to zero as time goes to infinity, the associated semigroup S0,ε(t) on H0

0,ε

lacks of exponentially stability. More precisely, there holds [7, Thm. 5.4]

Theorem 3.1. Let ε ∈ (0, 1] and assume that µ satisfies (2.3)-(2.5) and

lim
s→0

√
s µε(s) = 0.

Then the semigroup S0,ε(t) on H0
0,ε is not exponentially stable.

The aim of the present section is to prove that, on the contrary, for all ω > 0, the
semigroup Sω,ε(t) on H0

ω,ε is exponentially stable, with a decay rate which is proportional
to ω. As we anticipated in the Introduction, we use a technique first introduced in [10, 22],
namely, we obtain the decay estimate for a suitably defined perturbation of the energy
functional E : R+ → R defined by

E(t) = ‖Sω,ε(t)‖2
H0

ω,ε
.

Without loss of generality, we shall restrict the attention to the case ω ∈ (0, 1].

The main result of this section is
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Theorem 3.2. Let (2.3) and (2.4) hold if ε > 0. In addition, assume that

µ′(s) + δµ(s) ≤ 0, (3.1)

for some δ > 0. Then, for every ω ∈ (0, 1] and ε ∈ [0, 1], there exist two positive constants

Θ and ς, both independent of ε and ω, such that

E(t) ≤ ςE(0)e−ωΘt, ∀ t ≥ 0.

Remark 3.3. The energy exponential decay rate which appears in Theorem 3.2 breaks
down in the case ω = 0, according to the lack of exponential stability (cf. Thm. 3.1).
Also, observe that (3.1) entails the exponential decay of µ.

Proof of Theorem 3.2. We limit ourself to furnish the proof for ε > 0, the corresponding
proof for ε = 0 being easily recoverable and well-known (cf. Introduction). Let 0 < ν <

ρ < σ < 1 to be chosen later on, and define the energy perturbation functional

F(t) = E(t) + ρΥ(t) + νΛ(t) + σΠ(t),

where we have set

Υ(t) = ω〈ut(t), ϑ(t)〉 + 〈ut(t), A
−1ϑ(t)〉,

Λ(t) = 〈ut(t), u(t)〉 + ω〈A1/2ut(t), A
1/2u(t)〉,

Π(t) = −ε〈ϑ(t), ηt〉M−1
ε
.

From now on, we denote by C a generic positive constant independent of ρ, ν, σ and ω, ε
which may even vary from line to line within the same equation. Observe that, by means
of (2.6), we have

|Π(t)| ≤ C
(

‖ϑ(t)‖2 + ‖ηt‖2
M0

ε

)

.

Then, by Schwarz and Young inequalities and (2.1), up to choosing the constants ρ, ν
and σ sufficiently small, we have

1

2
F(t) ≤ E(t) ≤ 2F(t), (3.2)

so that E and F turn out to be equivalent for what concerns the energy decay estimate.
Let us now multiply the first equation of Pω,ε by ut in H0, the second by ϑ in H0, the

third by η in M0
ε and add the resulting identities. This yields

d

dt
E(t) = 2〈Tεη, η〉M0

ε
≤ − δ

2ε
‖ηt‖2

M0
ε
+

1

2

∫ ∞

0

µ′
ε(s)‖B1/2ηt(s)‖2ds,
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by virtue of (2.7), (3.1), and integration by parts. Besides, by direct computation,

d

dt
Υ(t) = ω〈utt(t), ϑ(t)〉 + ω〈ut(t), ϑt(t)〉

+ 〈utt(t), A
−1ϑ(t)〉 + 〈ut(t), A

−1ϑt(t)〉,
d

dt
Λ(t) = ‖ut(t)‖2 + ω‖A1/2ut(t)‖2 + 〈u(t), utt(t) + ωAutt(t)〉

= ‖ut(t)‖2 + ω‖A1/2ut(t)‖2 − ‖Au(t)‖2 + 〈ϑ(t), Au(t)〉,
d

dt
Π(t) = −ε〈ϑt(t), η

t〉M−1
ε

− ε〈ϑ(t), Tεη
t〉M−1

ε
− ‖ϑ(t)‖2,

where, in the last identity, we have exploited formula (2.6) once again. Also, by testing
with A−1ϑ the equation for u of system Pω,ε, we get

〈utt(t), A
−1ϑ(t)〉 + 〈Au(t), ϑ(t)〉 + ω〈utt(t), ϑ(t)〉 = ‖ϑ(t)‖2.

Furthermore, by multiplying in H0 the equation for ϑ of system Pω,ε by ωut, ωϑ and
A−1ut respectively, we conclude that

ω〈ut(t), ϑt(t)〉 + ω〈ut(t), η
t〉M0

ε
+ ω‖A1/2ut(t)‖2 = 0,

ω〈ϑt(t), ϑ(t)〉 + ω〈ϑ(t), ηt〉M0
ε
+ ω〈A1/2ut(t), A

1/2ϑ(t)〉 = 0,

〈A−1ϑt(t), ut(t)〉 + 〈A−1ut(t), η
t〉M0

ε
+ ‖ut(t)‖2 = 0.

Hence, by combining the previous identities, we reach

d

dt
Υ(t) = −〈ϑ(t), Au(t)〉 + ‖ϑ(t)‖2 − ω〈ut(t), η

t〉M0
ε

− ω‖A1/2ut(t)‖2 − 〈A−1ut(t), η
t〉M0

ε
− ‖ut(t)‖2.

On account of the obtained formulas for the derivatives of E , Υ, Λ, and Π, we deduce

d

dt
F(t) ≤ − δ

2ε
‖ηt‖2

M0
ε
+

1

2

∫ ∞

0

µ′
ε(s)‖B1/2ηt(s)‖2ds+ ν‖ut(t)‖2 + ων‖A1/2ut(t)‖2

− ν‖Au(t)‖2 − (ρ− ν)〈ϑ(t), Au(t)〉 + ρ‖ϑ(t)‖2 − ρω〈ut(t), η
t〉M0

ε

− ρω‖A1/2ut(t)‖2 − ρ〈A−1ut(t), η
t〉M0

ε
− ρ‖ut(t)‖2

− σε〈ϑt(t), η
t〉M−1

ε
− σε〈ϑ(t), Tεη

t〉M−1
ε

− σ‖ϑ(t)‖2.

Therefore, we get

d

dt
F(t) ≤ −ν‖Au(t)‖2 − (ρ− ν)‖ut(t)‖2 − (ρ− ν)ω‖A1/2ut(t)‖2

− (σ − ρ)‖ϑ(t)‖2 − δ

2ε
‖ηt‖2

M0
ε
+

1

2

∫ ∞

0

µ′
ε(s)‖B1/2ηt(s)‖2ds+ J (t),
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where we have set

J (t) = −(ρ− ν)〈ϑ(t), Au(t)〉 − ρω〈ut(t), η
t〉M0

ε
− ρ〈A−1ut(t), η

t〉M0
ε

− σε〈ϑt(t), η
t〉M−1

ε
+ σε〈ϑ(t), ηt

s〉M−1
ε
.

Notice that, by the Young inequality, there holds

∣

∣〈ϑ(t), Au(t)〉
∣

∣ ≤ ‖ϑ(t)‖2 +
1

4
‖Au(t)‖2,

∣

∣〈ut(t), η
t〉M0

ε

∣

∣ ≤ Cρω‖A1/2ut(t)‖2 +
δ

12ρωε
‖ηt‖2

M0
ε
,

∣

∣〈A−1ut(t), η
t〉M0

ε

∣

∣ ≤ Cρ‖ut(t)‖2 +
δ

12ρε
‖ηt‖2

M0
ε
.

Moreover, integrating by parts, we get

ε〈ϑ(t), ηt
s〉M−1

ε
≤ Cσ‖ϑ(t)‖2 − 1

2σ

∫ ∞

0

µ′
ε(s)‖B1/2ηt(s)‖2ds.

Also, we have

∣

∣ε〈ϑt(t), η
t〉M−1

ε

∣

∣ ≤ 〈Aut(t), η
t〉M−1

ε
+

∥

∥

∥

∫ ∞

0

µε(s)B
1/2ηt(s)ds

∥

∥

∥

2

≤ Cσ‖A1/2ut(t)‖2 +
δ

12σε
‖ηt‖2

M0
ε
+ C‖ηt‖2

M0
ε
.

By the above inequalities, it follows

J (t) ≤ ρ− ν

4
‖Au(t)‖2 + Cρ2‖ut(t)‖2 + C

(

ρ2 +
σ2

ω

)

ω‖A1/2ut(t)‖2

+ (Cσ2 + ρ− ν)‖ϑ(t)‖2 +
( δ

4ε
+ Cσ

)

‖ηt‖2
M0

ε
− 1

2

∫ ∞

0

µ′
ε(s)‖B1/2ηt(s)‖2ds.

Therefore, we conclude that

d

dt
F(t) +

5ν − ρ

4
‖Au(t)‖2 + (ρ− ν − Cρ2)‖ut(t)‖2

+
(

ρ− ν − Cρ2 − Cσ2

ω

)

ω‖A1/2ut(t)‖2

+ (σ − 2ρ+ ν − Cσ2)‖ϑ(t)‖2 +
δ − Cσε

4ε
‖ηt‖2

M0
ε
≤ 0.

Choosing now ρ = ρ0ω, ν = ν0ω, and σ = σ0ω, yields

d

dt
F(t) + ω

5ν0 − ρ0

4
‖Au(t)‖2 + ω(ρ0 − ν0 − Cρ2

0)‖ut(t)‖2

+ ω(ρ0 − ν0 − Cρ2
0 − Cσ2

0)ω‖A1/2ut(t)‖2

+ ω(σ0 − 2ρ0 + ν0 − Cσ2
0)‖ϑ(t)‖2 +

δ − Cσ0ωε

4ε
‖ηt‖2

M0
ε
≤ 0.
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Then, fixing ρ0, ν0 and σ0 so small that (3.2) holds and

γ = min

{

5ν0 − ρ0

4
, ρ0 − ν0 − Cρ2

0 − Cσ2
0 , σ0 − 2ρ0 + ν0 − Cσ2

0,
δ − Cσ0

4

}

> 0,

in light of (3.2), it follows that

d

dt
F(t) +

ωγ

2
F(t) ≤ 0, ∀ t ≥ 0.

By the Gronwall lemma, using again (3.2), we get the assertion with Θ = γ
2

and ς = 4.

4 The Singular Limit Estimate

The main goal of this section is to establish, in the spirit of [2, 3] (see also [5]), a quan-
titative estimate of the closeness between the semigroups Sω,ε(t) and S0,0(t), when both
the parameters ω and ε tend to zero (or when ω = 0 and ε goes to zero), provided that
the initial data are taken inside a suitable bounded subset of the extended phase-space
H0

ω,ε. From now on, in the case ε > 0, we will always assume (2.3)-(2.4) and (3.1).
In order to properly compare the four component solution (ε > 0) with the three-

component solution (ε = 0), we need to introduce the lifting and projection maps

Lω,ε : H0
ω,0 → H0

ω,ε, Pω : H0
ω,ε → H0

ω,0, Qω,ε : H0
ω,ε → M0

ε,

defined, respectively, by

Lω,ε(u, ut, ϑ) =

{

(u, ut, ϑ, 0), if ε > 0,

(u, ut, ϑ), if ε = 0,

and
Pω(u, ut, ϑ, η) = (u, ut, ϑ) and Qω,ε(u, ut, ϑ, η) = η.

If z denotes the initial data, we prove the convergence of Sω,ε(t)z towards Lω,εS0,0(t)Pωz in
the H0

ω,ε-norm. To be more precise, the first three components of the solution PωSω,ε(t)z
are shown to converge to S0,0(t)Pωz in the H0

ω,0-norm, whereas the history component ηt

vanishes in the M0
ε-norm on all time intervals [τ, T ], with τ > 0, due to the presence of a

possibly nonvanishing initial history. In addition, when ω = 0, the coefficients appearing
in the estimate no longer depend on the time interval, so that in turn we obtain a closeness
control over the whole R+.

The main result of the section is

Theorem 4.1. For every R ≥ 0, T > 0, and z ∈ BH2
ω,ε

(R), there exist KR ≥ 0, indepen-

dent of T , and QR,T ≥ 0 such that

‖Sω,ε(t)z − Lω,εS0,0(t)Pωz‖H0
ω,ε

≤ ‖η0‖M0
ε
e−

δt
4ε +QR,T

√
ω +KR

4
√
ε,

for every t ∈ [0, T ].
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A meaningful and straightforward byproduct of Theorem 4.1 is

Corollary 4.2. For every R ≥ 0 and z ∈ BH2
0,ε

(R), there exists KR ≥ 0 such that

‖S0,ε(t)z − L0,εS0,0(t)P0z‖H0
0,ε

≤ ‖η0‖M0
ε
e−

δt
4ε +KR

4
√
ε,

for every t ≥ 0.

Before coming to the proof of Theorem 4.1, we must demonstrate a regularity result,
that is,

Lemma 4.3. Let m ≥ 0, R ≥ 0, and z ∈ BHm
ω,ε

(R). Then there exists MR ≥ 0 such that

‖Sω,ε(t)z‖Hm
ω,ε

≤MR, ∀ t ≥ 0.

Proof. We only give a formal inductive argument. For m = 0 the assertion readily follows
by multiplying the first equation of Pω,ε by ut in H0, the second by ϑ in H0, the third by
η in M0

ε and adding the resulting equations. Let m ≥ 1 and assume that the property
holds for m−1. Then, performing similar multiplications by Bmut in H0, by Bmϑ in H0,
and by η in Mm

ε , we obtain

1

2

d

dt
(‖Bm/2Au‖2 + (1 − cω)‖Bm/2ut‖2 + ω‖B(m+1)/2ut‖2) = 〈Aϑ,Bmut〉,

1

2

d

dt
‖Bm/2ϑ‖2 = −〈η, ϑ〉Mm

ε
− 〈Aut, B

mϑ〉,

1

2

d

dt
‖η‖2

Mm
ε

= 〈Tεη, η〉Mm
ε

+ 〈η, ϑ〉Mm
ε
.

Therefore, since operators A and B commute, and 〈Tεη, η〉Mm
ε
≤ 0 by virtue of (2.5) (see

also (2.7)), adding the above identities we get

d

dt
(‖Bm/2Au‖2 + (1 − cω)‖Bm/2ut‖2 + ω‖B(m+1)/2ut‖2 + ‖Bm/2ϑ‖2 + ‖η‖2

Mm
ε
) ≤ 0,

which yields the assertion thanks to the induction assumption and on account of the
equivalence between the norms ‖Am/2 · ‖ and ‖Bm/2 · ‖.

4.1 Proof of Theorem 4.1

Let R ≥ 0, T > 0, and z = (u0, u1, ϑ0, η0) ∈ BH2
ω,ε

(R). It is easy to realize that the
assertion follows once we prove that there exist KR ≥ 0, independent of T , and QR,T ≥ 0
such that

‖PωSω,ε(t)z − S0,0(t)Pωz‖H0
ω,0

≤ QR,T

√
ω +KR

4
√
ε, (4.1)

‖Qω,εSω,ε(t)z‖M0
ε
≤ ‖η0‖M0

ε
e−

δt
4ε +KR

√
ε, (4.2)
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for every t ∈ [0, T ]. Throughout the proof, we shall denote by C ≥ 0 a generic constant
which may even vary from line to line and may depend on R, but it is independent of T ,
ω, and ε. Let us set

ū(t) = û(t) − u(t), ūt(t) = ût(t) − ut(t),

ϑ̄(t) = ϑ̂(t) − ϑ(t), η̄t = η̂t − ηt,

where (û, ût, ϑ̂, η̂) denotes the solution to Pω,ε with initial data z, while (u, ut, ϑ) stands
for the solution to P0,0 with initial data Pωz. Besides, ηt is the solution at time t of the
following Cauchy problem in M0

ε

{

ηt = Tεη + ϑ, t > 0,

η0 = η0,

which reconstructs the missing component of S0,0(t) (see [2]). Then, we can easily check
that (ū, ūt, ϑ̄, η̄) solves































ūtt + ωAūtt + ωAutt + A(Aū− ϑ̄) = 0,

ϑ̄t +

∫ ∞

0

µε(s)Bη̂(s)ds−Bϑ+ Aūt = 0,

η̄t = Tεη̄ + ϑ̄,

(ū(0), ūt(0), ϑ̄(0), η̄0) = (0, 0, 0, 0).

By multiplying the first equation of system Pω,ε by ūt in H0, the second by ϑ̄ in H0, and
the third by η̄ in M0

ε, we obtain, respectively,

1

2

d

dt

(

‖Aū‖2 + ‖ūt‖2 + ω‖A1/2ūt‖2
)

+ ω〈A1/2utt, A
1/2ūt〉 − 〈A1/2ϑ̄, A1/2ūt〉 = 0,

1

2

d

dt
‖ϑ̄‖2 + 〈η̂, ϑ̄〉M0

ε
− 〈B1/2ϑ,B1/2ϑ̄〉 + 〈A1/2ūt, A

1/2ϑ̄〉 = 0,

1

2

d

dt
‖η̄‖2

M0
ε
− 〈Tεη̄, η̄〉M0

ε
− 〈η̄, ϑ̄〉M0

ε
= 0.

Taking (2.7) and (3.1) into account, and adding the above identities, we end up with

d

dt

(

‖Aū‖2 + ‖ūt‖2 + ω‖A1/2ūt‖2 + ‖ϑ̄‖2 + ‖η̄‖2
M0

ε

)

≤ 2I + 2J,

where we have set

J(t) = −ω〈A1/2utt(t), A
1/2ūt(t)〉 = −ω〈utt(t), Aūt(t)〉,

I(t) = −
∫ ∞

0

µε(s)〈B1/2η(s), B1/2ϑ̄(t)〉ds+ 〈B1/2ϑ(t), B1/2ϑ̄(t)〉 =

5
∑

j=1

Ij(t),
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being the Ijs defined by

I1(t) =

∫ ∞

√
ε

sµε(s)
〈

ϑ(t), Bϑ̄(t)
〉

ds,

I2(t) = −
∫ ∞

√
ε

µε(s)
〈

B1/2ηt(s), B1/2ϑ̄(t)
〉

ds,

I3(t) = −
∫

√
ε

min{√ε,t}
µε(s)

〈

B1/2η0(s− t), B1/2ϑ̄(t)
〉

ds,

I4(t) =

∫

√
ε

min{√ε,t}
(s− t)µε(s)

〈

ϑ(t), Bϑ̄(t)
〉

ds,

I5(t) =

∫

√
ε

0

µε(s)

[
∫ min{s,t}

0

〈

ϑ(t) − ϑ(t− y), Bϑ̄(t)
〉

dy

]

ds.

We turn to the estimate of the above terms. Notice that by Lemma 4.3 we have

‖A2û(t)‖ + ‖Aût(t)‖ + ‖Bϑ̂(t)‖ ≤ C, (4.3)

‖A2u(t)‖ + ‖Aut(t)‖ + ‖Bϑ(t)‖ ≤ C. (4.4)

Moreover, from the exponential stability of S0,0(t), there exists κ > 0 such that

‖Au(t)‖ + ‖ut(t)‖ + ‖ϑ(t)‖ ≤ Ce−κt, ∀ t ≥ 0. (4.5)

From the equation for ϑ of system P0,0, we obtain by comparison

‖ϑt(t)‖ ≤ c‖ϑ(t)‖ + ‖Aϑ(t)‖ + ‖Aut(t)‖. (4.6)

Besides, adding the equations for u and ϑ of system P0,0 yields

utt = −Aut − A2u− ϑt − cϑ,

so that we have

‖utt(t)‖ ≤ ‖Aut(t)‖ + ‖A2u(t)‖ + ‖ϑt(t)‖ + c‖ϑ(t)‖. (4.7)

Then, by combining (4.4), (4.6), and (4.7), there holds

‖utt(t)‖ ≤ C.

As a consequence, recalling again (4.3) and (4.4), we get

J(t) = −ω〈utt(t), Aūt(t)〉 ≤ ω‖utt(t)‖‖Aūt(t)‖ ≤ Cω.

For the treatment of the terms Ijs, we proceed as in [2] but strengthening the estimates
in light of the decay furnished by (4.5). Thus observe that, using the exponential decay
implied by (3.1), we have

∫ ∞

√
ε

sµε(s)ds ≤ Cε, ∀ ε > 0, (4.8)

∫ ∞

√
ε

µε(s)ds ≤ C
√
ε, ∀ ε > 0. (4.9)
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Hence, by (4.3)-(4.5) and (4.8), we immediately infer

I1(t) ≤ Cε‖Bϑ̄(t)‖‖ϑ(t)‖ ≤ Cεe−κt

Let us now prove that there holds

‖ηt‖2
M0

ε
≤ Ce−

δt
ε + C

√
ε e−κt, ∀ t ≥ 0, (4.10)

Indeed, arguing as in the proof of [2, Lemma 5.4], it is readily seen that

‖ηt‖M1
ε
≤ Ce−

δt
4ε + C

√
ε, ∀ t ≥ 0.

On the other hand, by multiplying the equation for η times η in M0
ε, in light of (4.5), we

infer

d

dt
‖ηt‖2

M0
ε
+
δ

ε
‖ηt‖2

M0
ε
≤ ‖ϑ(t)‖

∫ ∞

0

µε(s)‖Bηt(s)‖ds

≤ 1√
ε
‖ϑ(t)‖‖ηt‖M1

ε

≤ C√
ε
e−(κ+ δ

4ε
)t + Ce−κt,

which yields (4.10) by the Gronwall Lemma. Now, thanks to (4.3), (4.4), (4.9), and (4.10),
we obtain

I2(t) ≤ C

∫ ∞

√
ε

µε(s)‖B1/2ηt(s)‖ds

≤ C
√
ε‖ηt‖M0

ε
≤ C

√
ε e−

δt
2ε + C

√
ε e−

κ
2
t.

Using (3.1) once again and taking advantage of (4.3), (4.4), we get, for t <
√
ε,

I3(t) ≤ C

∫

√
ε

t

µε(s)‖B1/2η0(s− t)‖ds

≤ Ce−
δt
ε

(
∫ ∞

0

µε(s)ds

)1/2

‖η0‖M0
ε
≤ C√

ε
e−

δt
ε .

Arguing in a similar fashion and using (2.6),

I4(t) ≤ Ce−
δt
ε

∫ ∞

0

sµε(s)ds = Ce−
δt
ε .

Observe now that, on account of (4.4)-(4.7), we have

‖ϑ(t) − ϑ(t− y)‖ ≤ ‖S0,0(t− y)(S0,0(y)Pωz − Pωz)‖H0
0,0

≤ Ce−κt

∫ y

0

‖S0,0 t(ξ)‖H0
0,0
dξ

≤ Ce−κty,
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for any y ∈ [0, t], with t ∈ [0, T ]. Hence, by (4.3) and (4.4), we infer, for every t ∈ [0, T ],

I5(t) ≤ ‖Bϑ̄(t)‖
∫

√
ε

0

µε(s)

∫ min{s,t}

0

‖ϑ(t) − ϑ(t− y)‖dyds ≤ C
√
ε e−κt.

Therefore, by collecting the previous inequalities, we end up with

d

dt

(

‖Aū‖2 + ‖ūt‖2 + ω‖A1/2ūt‖2 + ‖ϑ̄‖2 + ‖η̄‖2
M0

ε

)

≤ C

(

ω +
√
εe−

κ
2
t +

1√
ε
e−

δt
2ε

)

.

Notice that, for every t ∈ [0, T ],

∫ t

0

[√
ε e−

κ
2
ξ +

1√
ε
e−

δξ
2ε

]

dξ ≤ C
√
ε ,

Consequently, by integrating the above differential inequality on [0, T ] we find QR,T ≥ 0
and KR ≥ 0 independent of T such that

‖Aū‖2 + ‖ūt‖2 + ω‖A1/2ūt‖2 + ‖ϑ̄‖2 ≤ KR

√
ε+QR,Tω, ∀ t ∈ [0, T ], (4.11)

which proves (4.1). Besides, by mimicking the proof of [2, Lemma 5.4], we easily recover
inequality (4.2). The proof is now complete.
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