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1. Introduction

Let s ∈ (0, 1) and Ω ⊂ R
N be a bounded domain with Lipschitz boundary

∂Ω. Consider also a Carathéodory function f : Ω × R → R. Recently, the
following semi-linear problem involving the fractional Laplacian has been the
subject of various investigations{

(−Δ)su = f(x, u) in Ω,

u = 0 in R
N\Ω.

The nonlocal operator (−Δ)s naturally arises in various fields, such as con-
tinuum mechanics, phase transition phenomena, population dynamics, game
theory and financial mathematics [1,4]. Existence [25,26], non-existence [23]
and regularity [5,22] have been studied intensively. In this paper, we consider
quasi-linear problems{

(−Δ)s
pu = f(x, u) in Ω,

u = 0 in R
N\Ω,

(1.1)
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containing a nonlocal nonlinear operator known as the fractional p-Laplacian,
which represents a natural extension of fractional Laplacian. For p ∈ (1,∞)
and u smooth enough,

(−Δ)s
p u(x) = 2 lim

ε↘0

∫
RN \Bε(x)

|u(x) − u(y)|p−2 (u(x) − u(y))
|x − y|N+sp

dy, x ∈ R
N .

We refer to [4] for the motivations that lead to the introduction of this op-
erator. So far, existence and regularity for the above problem have been
investigated [3,13–15,17,18] under the assumption that the function f is L∞-
Carathéodory, namely nonsingular in the x-dependence on ∂Ω. Our goal in
this paper is to get existence results for (1.1) when f involves singular weights.
It is worth noticing that this is new even for the plain fractional Laplacian.
This paper is motivated by [21] where the p-Laplace equation −Δpu = f(x, u)
was investigated with singular weights, namely Δpu = div(|∇u|p−2∇u) and
f satisfies the subcritical growth condition

|f(x, t)| ≤ h1(x) |t|q1−1 + · · · + hn(x) |t|qn−1 for a.a. x ∈ Ω and all t ∈ R,

(1.2)

for some qi ∈ [1, p∗) with p∗ := Np/(N − p) and measurable weights hi ≥ 0
which are possibly singular along the boundary ∂Ω. Admissible classes of
weights are introduced in [21], which are appropriate to use Hölder and Hardy
inequalities to show that the functional associated with (1.1) is well-defined
and the Palais–Smale condition holds at any energy level, allowing to obtain
several existence results. Previously, the semi-linear case was considered e.g.
in [7,8,24,27].

By introducing a suitable class of weights we will get results about ex-
istence, multiplicity and characterization of critical groups for any s ∈ (0, 1).
More precisely, in Theorem 3.4, we get a multiplicity result for f(x, u) =
h(x)|u|q−2u with q 	= p. Theorems 4.1, 4.2 and 4.8 are about the computation
of critical groups at zero of the functional associated with (1.1) when f(x, u)
is a sum of terms with singular weight enjoying proper summability. More-
over, in Proposition 3.2 we prove the boundedness of solutions for f(x, u) =
λh(x)|u|p−2u with h belonging to a suitable class. In Theorem 5.5, nontrivial
solutions are found under various conditions on f . Finally, in Theorem 6.2, we
establish the existence of infinitely many solutions when f(x, u) is odd in u.

The paper is organized as follows. In Sect. 2, we provide a suitable func-
tional framework for problem (1.1) and prove some preliminary results. In
Sect. 3, we consider related eigenvalue problems. In Sect. 4, we compute the
critical groups of the functional associated with (1.1). Section 5 is devoted to
show existence of nontrivial solutions via cohomological local splitting and
critical groups. Finally, in Sect. 6, we obtain the existence of infinitely many
solutions.

2. Functional framework and preliminaries

Throughout the paper we will assume that Ω ⊂ R
N is a bounded Lipschitz

domain with N ≥ 2.
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In this section, we provide the variational setting on a suitable function
space for (1.1), jointly with some preliminary results. We consider, for any
p ∈ (1,∞) and s ∈ (0, 1), the space

W s,p
0 (Ω) :=

{
u ∈ W s,p(RN ) : u = 0 in R

N\Ω
}
,

endowed with the standard Gagliardo norm

‖u‖ :=
(∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

. (2.1)

We observe that, as it can be readily seen, this norm is equivalent to the full
norm

u �→
(∫

RN

|u(x)|pdx +
∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

,

namely a Poincaré inequality holds in W s,p
0 (Ω). Let

p∗
s :=

Np

N − sp
,

with the agreement that p∗
s = ∞ if N ≤ sp. It is well-known that W s,p

0 (Ω) is a
uniformly convex reflexive Banach space, continuously embedded into Lq(Ω)
for all q ∈ [1, p∗

s ] if N > sp, for all 1 ≤ q < ∞ if N = sp and into L∞(Ω) for
N < sp. It is also compactly injected in Lq(Ω) for any q ∈ [1, p∗

s) if N ≥ sp
and into L∞(Ω) for N < sp. Furthermore, C∞

0 (Ω) is a dense subspace of
W s,p

0 (Ω) with respect to the norm (2.1). In particular, restrictions to Ω of
functions in W s,p

0 (Ω) belong to the closure of C∞
0 (Ω) in W s,p(Ω), i.e. with

respect to the localized norm

‖u‖W s,p
0 (Ω) :=

(∫
Ω

|u(x)|pdx +
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

.

This closure is often denoted with the same symbol W s,p
0 (Ω). Notice that

for the seminorm localized on Ω × Ω there is no Poincaré inequality with∫
Ω

|u|pdx if sp ≤ 1, cf. [3, Remark 2.4].
Next we state some Hardy-type inequalities from [6, Theorem 1.1 and

formula (17)], for the cases sp 	= 1 and [16, Theorem 6.5], for the particular
case sp = 1.

Theorem 2.1. (Hardy inequality) For any p ∈ (1,∞) and s ∈ (0, 1) the fol-
lowing facts hold:

• if sp > 1, then for any u ∈ W s,p
0 (Ω) we have∫

Ω

|u(x)|p
dist(x, ∂Ω)sp

dx ≤ C

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy,

where C is a positive constant depending only on Ω, N, p and s.
• if sp < 1, then for any u ∈ W s,p

0 (Ω) we have∫
Ω

|u(x)|p
dist(x, ∂Ω)sp

dx ≤ C ′
(∫

Ω

|u|p dx +
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)
,

where C ′ is a positive constant depending only on Ω, N, p and s.
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• if sp = 1, then for any u ∈ W s,p
0 (Ω) we have∫

Ω

|u(x)|p
dist(x, ∂Ω)sp

dx ≤ C ′′
∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy,

where C ′′ is a positive constant depending only on Ω, N, p and s.

As a by-product of the previous result, in any case, by (2.1) and the
related Poincaré inequality,∫

Ω

|u(x)|p
dist(x, ∂Ω)sp

dx ≤ C‖u‖p, for any u ∈ W s,p
0 (Ω),

where C is a positive constant depending only on Ω, N, p and s. Let us denote
by

ρ(x) := dist(x, ∂Ω), x ∈ Ω,

the distance from x ∈ Ω to ∂Ω and by | · |p the usual norm in the space Lp(Ω).
We consider the following classes of singular weights.

Definition 2.2. (Class of weights Aq) For q ∈ [1, p∗
s), let Aq denote the class

of measurable functions h such that h ∈ Lr(Ω) for some r ∈ (1,∞) satisfying
1
r + q

p∗
s

< 1.

Definition 2.3. (Class of weights Bq) For q ∈ [1, p∗
s), let Bq denote the class

of measurable functions h such that hρsa ∈ Lr(Ω) for some a ∈ [0, q − 1] and
r ∈ (1,∞) satisfying 1

r + a
p + q−a

p∗
s

< 1.

Clearly, Aq ⊂ Bq, by simply choosing a = 0. Explicitly, h belongs to
the above classes provided that there exist r > 1 and 0 ≤ a ≤ q − 1 with∫

Ω

|h(x)|rdx < ∞, with
1
r

+
q

p∗
s

< 1, (h ∈ Aq),∫
Ω

|h(x)|rρ(x)sardx < ∞, with
1
r

+
a

p
+

q − a

p∗
s

< 1, (h ∈ Bq).

If, for instance, we consider

h(x) = (1 − |x|)−β , Ω = B(0, 1),

then h ∈ Bq if β < sa + r−1 for some r > 1 and 0 ≤ a ≤ q − 1 with
1/r + a/p + (q − a)/p∗

s < 1.
The following lemma will be used frequently.

Lemma 2.4. Let h ∈ Bq. Then there holds∫
Ω

|h(x)||u|q−1|v|dx ≤ C‖u‖q−1|v|b, for every u, v ∈ W s,p
0 (Ω),

where b ∈ (1, p∗
s) is such that 1

r + a
p + q−a

b = 1.

Proof. If h ∈ Bq, we have∫
Ω

|h(x)||u|q−1|v|dx =
∫

Ω

|hρsa|
∣∣∣∣ u

ρs

∣∣∣∣
a

|u|q−1−a|v|dx

≤ |hρsa|r
∣∣∣∣ u

ρs

∣∣∣∣
a

p

|u|q−1−a
b |v|b.
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In light of Theorem 2.1 and W s,p
0 (Ω) ↪→ Lb(Ω) we get the conclusion. �

We now define the operator A : W s,p
0 (Ω) → W−s,p′

0 (Ω) as

〈A(u), v〉 :=
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dxdy,

for all u, v ∈ W s,p
0 (Ω).

A weak solution of problem (1.1) is a function u ∈ W s,p
0 (Ω) such that

〈A(u), v〉 =
∫

Ω

f(x, u)vdx, for all u, v ∈ W s,p
0 (Ω).

It is easy to see that A satisfies the following compactness condition [15,20]:
(S) If {un}n∈N ⊂ W s,p

0 (Ω) is such that un ⇀ u in W s,p
0 (Ω) and 〈A(un),

un − u〉 → 0 as n → ∞, then un → u in W s,p
0 (Ω) as n → ∞.

Assuming that f satisfies condition (1.2) for some exponents qi ∈ [1, p∗
s) and

hi ∈ Bqi
, in light of Lemma 2.4, there exists a constant C > 0 such that, for

all u, v ∈ W s,p
0 (Ω),∣∣∣∣

∫
Ω

f(x, u)v dx

∣∣∣∣ ≤
n∑

i=1

∫
Ω

hi(x)|u|qi−1|v|dx ≤ C

n∑
i=1

‖u‖qi−1|v|bi
≤ Cu‖v‖,

so that f(x, u) ∈ W−s,p′
0 (Ω). Weak solutions of (1.1) are thus critical points

of Φ : W s,p
0 (Ω) → R,

Φ(u) :=
1
p
‖u‖p −

∫
Ω

F (x, u)dx, F (x, t) :=
∫ t

0

f(x, s)ds.

By the property (S), we easily obtain the next lemma.

Lemma 2.5. (Palais–Smale condition) Assume that f satisfies (1.2) for some
qi ∈ [1, p∗

s) and hi ∈ Bqi
. Then any bounded sequence {un}n∈N ⊂ W s,p

0 (Ω)
such that Φ′(un) → 0 has a convergent subsequence. In particular, bounded
Palais–Smale sequences of Φ are precompact in W s,p

0 (Ω).

Proof. Since {un}n∈N is bounded in W s,p
0 (Ω), up to a subsequence, un ⇀ u

in W s,p
0 (Ω) and |un − u|bi

→ 0 as n → ∞ for i = 1, . . . , n, since bi ∈ (1, p∗
s).

Then, in light of Lemma 2.4, we get∣∣∣∣
∫

Ω

f(x, un)(un − u)dx

∣∣∣∣ ≤
n∑

i=1

∫
Ω

|hi(x)||un|qi−1|un

−u|dx ≤ C

n∑
i=1

‖un‖qi−1|un − u|bi
,

for some positive constant C. This yields

lim
n→∞

∫
Ω

f(x, un)(un − u)dx = 0,

via the boundedness of {un}n∈N in W s,p
0 (Ω) and un → u in Lbi(Ω) for any i.

Thus,

〈A(un), un − u〉 = 〈Φ′(un), un − u〉 +
∫

Ω

f(x, un)(un − u)dx → 0.
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Hence, un → u in W s,p
0 (Ω) as n → ∞, by means of (S). �

3. Eigenvalue problems

We consider the eigenvalue problem{
(−Δ)s

pu = λh(x)|u|p−2u in Ω,

u = 0 in R
N\Ω,

(3.1)

where h ∈ Ap is possibly sign-changing with |{x ∈ Ω : h(x) > 0}| > 0 and λ
is a real number. We consider the first eigenvalue, defined as follows

μ1 := inf
{

1
p
‖u‖p : u ∈ W s,p

0 (Ω),
∫

Ω

h(x)
p

|u|p dx = 1
}

.

We have the following

Theorem 3.1. Let h ∈ Bp. Then μ1 is attained by some nonnegative φ1 ∈
W s,p

0 (Ω). Furthermore, φ1 > 0 a.a. if h ≥ 0, and any two first eigenfunctions
are proportional.

Proof. Since h ∈ Bp, a standard argument yields the existence of an eigen-
function φ1 ≥ 0. In fact, notice that, if {un}n∈N ⊂ W s,p

0 (Ω) is weakly con-
vergent to some u, we have∣∣∣∣

∫
Ω

h(x)|un|pdx −
∫

Ω

h(x)|u|pdx

∣∣∣∣ ≤ C

∫
Ω

h(x)|un|p−1|un − u|dx

+C

∫
Ω

h(x)|u|p−1|un − u|dx

≤ C(‖un‖p−1 + ‖u‖p−1)|un − u|b
≤ C|un − u|b = on(1),

by Lemma 2.4 and since |un − u|b → 0 as n → ∞, where b ∈ (1, p∗
s) is such

that 1/r + a/p + (p − a)/b = 1, for some a ∈ [0, p − 1]. It follows from [2,
Theorem A.1] that φ1 > 0, provided h ≥ 0. The simplicity follows as in [12].
�

Next we show the boundedness of weak solutions by modifying the ar-
gument in [12].

Proposition 3.2. Let u be any eigenfunction of (3.1). Then u ∈ L∞(RN ).

Proof. The proof follows the line of [12]. We shall provide the details for the
sake of completeness.

Denoting u+ := max{u, 0}, it suffices to show that, for any weak solution
u ∈ W s,p

0 (Ω),

|u|∞ ≤ 1 provided that |u+|q ≤ δ, q :=
pr

r − 1
∈ (1, p∗

s), (3.2)

for some δ > 0. For each k ∈ N ∪ {0}, set wk := (u − (1 − 1/2k))+. Then
wk ∈ W s,p

0 (Ω) and

wk+1(x) ≤ wk(x) a.a., u(x) < (2k+1 − 1)wk(x) a.a. x ∈ {wk+1 > 0},
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and {wk+1 > 0} ⊆ {wk > 2−(k+1)}. Moreover, for a measurable v, we have
the inequality

|v(x) − v(y)|p−2(v+(x) − v+(y))(v(x) − v(y)) ≥ |v+(x) − v+(y)|p (3.3)

for a.a. x, y ∈ R
N . Applying (3.3) for v = u−(1−1/2k+1), we have v+ = wk+1

and

‖wk+1‖p ≤
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y)(wk+1(x) − wk+1(y))
|x − y|N+sp

dxdy

= λ

∫
{wk+1>0}

h(x)|u(x)|p−2u(x)wk+1(x)dx.

Whence, by the above stated properties, we get

‖wk+1‖p ≤ |λ|(2k+1 − 1)p−1

∫
{wk+1>0}

|h(x)||wk(x)|pdx.

By the Hölder inequality, we then obtain

‖wk+1‖p ≤ |λ|(2k+1 − 1)p−1|h|rUk, Uk := |wk|pq .
Let q̄ be such that q < q̄ < p∗

s. Using again Hölder inequality, we easily get

Uk+1 ≤ C‖wk+1‖p|{wk+1 > 0}| p(q̄−q)
qq̄

by the embedding W s,p
0 (Ω) ↪→ Lq̄(Ω). On the other hand, Chebychev’s in-

equality entails

|{wk+1 > 0}| ≤ |{wk > 2−(k+1)}| ≤ 2q(k+1)U
q/p
k .

Combining the previous inequality yields Uk+1 ≤ C|λ|(2k+1 − 1)p−1|h|r
2

p(q̄−q)(k+1)
q̄ U

1+ q̄−q
q̄

k , namely

Uk+1 ≤ C0b
kU1+α

k , k ∈ N, C0 > 0, α > 0, b > 1.

By [9, Lemma 4.7, Ch. II], this yields Uk → 0 as k → ∞ if U0 ≤ C0
− 1

α b− 1
α2 .

Hence, if we choose

|u+|q ≤ C0
− 1

pα b
− 1

pα2 =: δ,

which is made possible by a simple scaling argument due to the homogeneity
of the problem, we conclude Uk → 0 as k → ∞, namely |u|∞ ≤ 1, via Fatou’s
Lemma, concluding the proof. �

Next we consider the eigenvalue problem{
(−Δ)s

pu = λh(x)|u|q−2u in Ω,

u = 0 in R
N\Ω,

(3.4)

where q ∈ [1, p∗
s) and h ∈ Bq with |{x ∈ Ω : h(x) > 0}| > 0. We shall produce

a sequence of eigenvalues for problem (3.4), following the argument in [21].
Let

J(u) :=
∫

Ω

h(x)
q

|u|q dx, u ∈ W s,p
0 (Ω),
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and set (we use the notations of [20, Chapter 4])

Ψ(u) :=
1

J(u)
, u ∈ M, M :=

{
u ∈ W s,p

0 (Ω) :
1
p
‖u‖p = 1 and J(u) > 0

}
.

Then M is nonempty and positive eigenvalues and associated eigenfunctions
of (3.4) on M coincide with critical values and critical points of Ψ, respec-
tively. By Lemma 2.4, we have

0 < J(u) ≤ C‖u‖q ≤ C, for all u ∈ M,

for some constant C > 0, and hence λ1 := infu∈M Ψ(u) > 0. A slight variant
of Lemma 2.5 yields the following

Lemma 3.3. For all c ∈ R, Ψ satisfies the Palais–Smale condition, namely
every sequence {un}n∈N ⊂ M with Ψ(un) → c and Ψ′(un) → 0 has a subse-
quence converging to some u ∈ M.

Although one can obtain an increasing and unbounded sequence of criti-
cal values of Ψ via standard minimax schemes, we prefer to use a cohomologi-
cal index as in Perera [19], which provides additional topological information
about the associated critical points. Let us recall the definition of the Z2-
cohomological index of Fadell and Rabinowitz [10]. Let W be a Banach space.
For a symmetric subset M of W\{0}, let M = M/Z2 be the quotient space
of M with each u and −u identified, let f : M → RP∞ be the classifying
map of M , and let f∗ : H∗(RP∞) → H∗(M) be the induced homomorphism
of the Alexander-Spanier cohomology rings. Then the cohomological index of
M is defined by

i(M) =

{
sup

{
m ≥ 1 : f∗(ωm−1) 	= 0

}
, M 	= ∅,

0, M = ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) =
Z2[ω]. For example, the classifying map of the unit sphere Sm−1 in R

m,
m ≥ 1, is the inclusion RPm−1 ⊂ RP∞, which induces isomorphisms on Hq

for q ≤ m − 1, so i(Sm−1) = m. Let F denote the class of symmetric subsets
of M, and set

λk := inf
M∈F

i(M)≥k

sup
u∈M

Ψ(u), k ≥ 1.

Then {λk}k∈N is a sequence of positive eigenvalues of (3.4), λk ↗ +∞, and

i({u ∈ M : Ψ(u) ≤ λk}) = i({u ∈ M : Ψ(u) < λk+1}) = k (3.5)

if λk < λk+1, see [20, Propositions 3.52 and 3.53]. As a simple application,
we consider the problem{

(−Δ)s
pu = h(x)|u|q−2u in Ω,

u = 0 in R
N\Ω.

(3.6)

By arguing as in the proof of [21, Theorem 3.2], we have the following
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Theorem 3.4. Let q ∈ [1, p∗
s)\{p} and h ∈ Bq with |{x ∈ Ω : h(x) > 0}| > 0.

Then problem (3.6) admits a sequence of nontrivial weak solutions {un}n∈N ⊂
W s,p

0 (Ω) such that
(i) if q < p, then ‖un‖ → 0 as n → ∞,
(ii) if q > p, then ‖un‖ → ∞ as n → ∞.

4. Critical groups

In this section, we compute the critical groups at zero of the functional

Φ(u) =
1
p
‖u‖p − λ

p

∫
Ω

h(x)|u|pdx −
∫

Ω

G(x, u)dx, u ∈ W s,p
0 (Ω),

where G(x, t) =
∫ t

0
g(x, τ) dτ , which is associated with the problem{

(−Δ)s
pu = λh(x)|u|p−2u + g(x, u) in Ω,

u = 0 in R
N\Ω,

(4.1)

where λ ≥ 0 is a parameter, h ∈ Bp with |{x ∈ Ω : h(x) > 0}| > 0 and g
is a Carathéodory function on Ω × R satisfying the subcritical p-superlinear
growth condition

|g(x, t)| ≤
n∑

i=1

Ki(x)|t|qi−1 for a.a. x ∈ Ω and all t ∈ R (4.2)

for some qi ∈ (p, p∗
s) and Ki ∈ Bqi

. The critical groups of Φ at zero are given
by

Cq(Φ, 0) := Hq(Φ0 ∩ U,Φ0 ∩ U\{0}), q ≥ 0, (4.3)

where Φ0 := Φ−1((−∞, 0]), U is any neighborhood of 0, and H denotes the
Alexander-Spanier cohomology with Z2-coefficients. Following the steps in
[21], we can obtain

Theorem 4.1. (Critical groups I) Assume that h ∈ Bp with |{x ∈ Ω : h(x) >
0}| > 0, g satisfies (4.2) and 0 is an isolated critical point of Φ. Then we
have
(1) C0(Φ, 0) ≈ Z2 and Cq(Φ, 0) = 0 for q ≥ 1 in the following cases:

(a) 0 ≤ λ < λ1;
(b) λ = λ1 and G(x, t) ≤ 0 for a.a. x ∈ Ω and all t ∈ R.

(2) Ck(Φ, 0) 	= 0 in the following cases:
(a) λk < λ < λk+1;
(b) λ = λk < λk+1 and G(x, t) ≥ 0 for a.a. x ∈ Ω and all t ∈ R;
(c) λk < λk+1 = λ and G(x, t) ≤ 0 for a.a. x ∈ Ω and all t ∈ R.

In the absence of a direct sum decomposition, the main technical tool we
use to get an estimate of the critical groups is the notion of a cohomological
local splitting introduced in [20]. When sp > N , it suffices to assume the sign
conditions on G in Theorem 4.1 for small |t| by the imbedding W s, p

0 (Ω) ↪→
L∞(Ω).
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Theorem 4.2. (Critical groups II) Assume that sp > N , h ∈ Bp with |{x ∈
Ω : h(x) > 0}| > 0, g satisfies (4.2) with qi > p and 0 is an isolated critical
point of Φ. Then we have
(1) C0(Φ, 0) ≈ Z2 and Cq(Φ, 0) = 0 for q ≥ 1 if λ = λ1 and, for some

δ > 0, G(x, t) ≤ 0 for a.a. x ∈ Ω and |t| ≤ δ.
(2) Ck(Φ, 0) 	= 0 in the following cases:

(a) λ = λk < λk+1 and, for some δ > 0, G(x, t) ≥ 0 for a.a. x ∈ Ω
and |t| ≤ δ;

(b) λk < λk+1 = λ and, for some δ > 0, G(x, t) ≤ 0 for a.a. x ∈ Ω
and |t| ≤ δ.

As we will show next, the conclusions of Theorem 4.2 hold for sp ≤ N
when the weights h and Ki belong to suitable strengthened subclasses of Bp

and Bqi
, respectively.

Definition 4.3. (Class of weights B̃q) For sp ≤ N and q ∈ [1, p∗
s), we denote

by B̃q the class of functions K with Kρsa ∈ Lr(Ω) for some a ∈ [0, q − 1]
and r ∈ (1,∞) satisfying

1
r

+
a

p
+

q − 1 − a

p∗
s

<
sp

N
.

Remark 4.4. Note that B̃q = Bq when sp = N and B̃q ⊂ Bq when sp < N
since

1
p∗

s

+
sp

N
< 1.

We have the following

Lemma 4.5. Let sp ≤ N , q ∈ [1, p∗
s) and K ∈ B̃q. Then there exists τ > N/sp

such that ∣∣K(x) |u|q−1
∣∣
τ

≤ C‖u‖q−1

for all u ∈ W s,p
0 (Ω), for some constant C > 0.

Proof. Let 0 ≤ a ≤ q −1 and r > 1 be as in Definition 4.3. Then, there exists
b < p∗

s sufficiently close to p∗
s such that

1
r

+
a

p
+

q − 1 − a

b
<

sp

N
.

Then, choosing

τ :=
(

1
r

+
a

p
+

q − 1 − a

b

)−1

>
N

sp
,

by the Hölder inequality, we obtain∫
Ω

|K(x)|τ |u|(q−1) τ dx =
∫

Ω

|Kρsa|τ
∣∣∣∣ u

ρs

∣∣∣∣
aτ

|u|(q−1−a) τ dx

≤ |Kρsa|τr
∣∣∣∣ u

ρs

∣∣∣∣
aτ

p

|u|(q−1−a) τ
b .

In light of Theorem 2.1 and |u|b ≤ C‖u‖, the conclusion follows. �
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Solutions of (−Δ)s
pu = f(x) enjoy the useful Lq-estimate given next (cf.

[18, Lemma 2.3]).

Lemma 4.6. (Summability lemma) Let f ∈ Lq(Ω) for some 1 < q ≤ ∞ and
assume that u ∈ W s,p

0 (Ω) is a weak solution of the equation (−Δ)s
p u = f(x)

in Ω. Then

|u|r ≤ C |f |1/(p−1)
q , (4.4)

where

r :=

⎧⎪⎪⎨
⎪⎪⎩

N (p − 1) q

N − spq
, 1 < q <

N

sp
,

∞,
N

sp
< q ≤ ∞,

and C = C(N,Ω, p, s, q) > 0.

Assume that sp ≤ N , h ∈ B̃p and Ki ∈ B̃qi
. First we show that the

critical groups of Φ at zero depend only on the values of g(x, t) for small |t|.
Lemma 4.7. Let δ > 0 and let ϑ : R → [−δ, δ] be a smooth nondecreasing
function such that ϑ(t) = −δ for t ≤ −δ, ϑ(t) = t for −δ/2 ≤ t ≤ δ/2 and
ϑ(t) = δ for t ≥ δ. Set

Φ1(u) :=
1
p
‖u‖p − λ

p

∫
Ω

h(x)|u|pdx −
∫

Ω

G(x, ϑ(u))dx, u ∈ W s,p
0 (Ω).

If 0 is an isolated critical point of Φ, then it is also an isolated critical point
of Φ1 and

Cq(Φ, 0) ≈ Cq(Φ1, 0) ∀q.

Proof. By applying [21, Proposition 4.1] to the family of functionals

Φτ (u) :=
1
p
‖u‖p − λ

p

∫
Ω

h(x)|u|pdx −
∫

Ω

G(x, (1 − τ)u + τ ϑ(u))dx,

u ∈ W s,p
0 (Ω), τ ∈ [0, 1]

in a small ball Bε(0) = {u ∈ W s,p
0 (Ω) : ‖u‖ ≤ ε}, observing that each Φτ

satisfies the Palais–Smale condition over Bε(0) in light of Lemma 2.5 and
that the map [0, 1] � τ → Φτ ∈ C1(Bε(0),R) is continuous, we need to show
that for sufficiently small ε, Bε(0) contains no critical point of any Φτ other
than 0. Suppose uj → 0 in W s,p

0 (Ω), Φ′
τj

(uj) = 0, τj ∈ [0, 1] and uj 	= 0.
Then {

(−Δ)s
puj = λh(x)|uj |p−2uj + gj(x, uj) in Ω,

uj = 0 in R
N\Ω,

where

gj(x, t) := (1 − τj + τj ϑ′(t)) g(x, (1 − τj) t + τj ϑ(t)).

Following the proof of [21, Lemma 4.8] where we use Lemma 4.5 several times,
we obtain that uj ∈ L∞(Ω) and uj → 0 in L∞(Ω) by means of Lemma 4.6.
Then, for sufficiently large j ∈ N, |uj(x)| ≤ δ/2 for a.a. x ∈ Ω and hence
Φ′(uj) = Φ′

τj
(uj) = 0, contradicting the assumption that 0 was an isolated

critical point of Φ. �
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Lemma 4.7 and Theorem 4.1 immediately give

Theorem 4.8. (Critical groups III) Assume that sp ≤ N , h ∈ B̃p with |{x ∈
Ω : h(x) > 0}| > 0, g satisfies condition (4.2) with qi ∈ (p, p∗

s) and Ki ∈ B̃qi
,

and 0 is an isolated critical point of Φ. Then we have
(1) C0(Φ, 0) ≈ Z2 and Cq(Φ, 0) = 0 for q ≥ 1 if λ = λ1 and, for some

δ > 0, G(x, t) ≤ 0 for a.a. x ∈ Ω and |t| ≤ δ.
(2) Ck(Φ, 0) 	= 0 in the following cases:

(a) λ = λk < λk+1 and, for some δ > 0, G(x, t) ≥ 0 for a.a. x ∈ Ω
and |t| ≤ δ;

(b) λk < λk+1 = λ and, for some δ > 0, G(x, t) ≤ 0 for a.a. x ∈ Ω
and |t| ≤ δ.

5. Nontrivial solutions

We now investigate the existence of nontrivial solutions of the problem{
(−Δ)s

pu = λh(x)|u|p−2u + K(x)|u|q−2u + g(x, u) in Ω,

u = 0 in R
N\Ω,

(5.1)

where q ∈ (p, p∗
s), K ∈ Bq satisfies

inf
x∈Ω

K(x) > 0, (5.2)

and g satisfies (4.2) with each qi ∈ (p, q). Once again, we will first find suitable
subclasses of Bp and Bqi

for the weights h and Ki, respectively, to ensure
the Palais–Smale condition.

Definition 5.1. (Class of weights Bq
t ) For q ∈ (1, p∗

s) and t ∈ [1, q), let Bq
t

denote the class of functions K such that Kρsa ∈ Lr(Ω) for some a ∈ [0, t−1]
and r ∈ (1,∞) satisfying

1
r

+
a

p
+

t − a

q
≤ 1. (5.3)

Clearly, Bq
t ⊂ Bt.

Lemma 5.2. Let q ∈ [1, p∗
s), t ∈ [1, q) and K ∈ Bq

t . Then there exist 0 ≤ m <
p and, for any ε > 0, a constant C(ε) > 0 such that∫

Ω

|K(x)| |u|t dx ≤ C(ε)‖u‖m + ε|u|qq for every u ∈ W s,p
0 (Ω).

Proof. Denoting a and r as in Definition 5.1, by the Hölder inequality, we
have∫

Ω

|K(x)| |u|t dx =
∫

Ω

|Kρsa|
∣∣∣∣ u

ρs

∣∣∣∣
a

|u|t−a dx ≤ |Kρsa|r
∣∣∣∣ u

ρs

∣∣∣∣
a

p

|u|t−a
b ,

where 1/r+a/p+(t−a)/b = 1 and hence b ≤ q by (5.3). The last expression is
less than or equal to C‖u‖a|u|t−a

q due to |u|b ≤ C|u|q and Theorem 2.1. The
Young inequality implies that the latter is less than or equal to C(ε)‖u‖m +
ε|u|qq, where a/m + (t − a)/q = 1 when a > 0 and m = 0 when a = 0. Hence
0 ≤ m < p by means of (5.3). �
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Assuming that h ∈ Bq
p and Ki ∈ Bq

qi
, modifying the argument in the

proof of [21, Lemma 5.3], the associated functional

Φ(u) :=
1

p
‖u‖p − λ

p

∫
Ω

h(x)|u|pdx − 1

q

∫
Ω

K(x)|u|qdx −
∫
Ω

G(x, u)dx, u ∈ W s,p
0 (Ω),

where G(x, t) :=
∫ t

0
g(x, τ) dτ , satisfies the Palais–Smale condition.

Lemma 5.3. Any sequence {un}n∈N ⊂ W s,p
0 (Ω) such that {Φ(un)}n∈N is

bounded and Φ′(un) → 0 admits a convergent subsequence in W s,p
0 (Ω).

Concerning the structure of the sublevel sets Φα := {u ∈ W s,p
0 (Ω) :

Φ(u) ≤ α} for α < 0 with |α| large, one can follow the proofs of [21, Lemma
5.4 and 5.5] and get

Lemma 5.4. There exists α < 0 such that Φα is contractible in itself.

We now state the main existence result of this section.

Theorem 5.5. Assume that λ ≥ 0, q ∈ (p, p∗
s), h ∈ Bq

p with |{x ∈ Ω : h(x) >
0}| > 0, K ∈ Bq satisfies (5.2), and g satisfies (4.2) with Ki ∈ Bq

qi
for

i = 1, . . . , n. Then problem (5.1) has a nontrivial weak solution in each of the
following cases:
(1) λ /∈ {λk : k ≥ 1};
(2) G(x, t) ≥ 0 for a.a. x ∈ Ω and all t ∈ R;
(3) G(x, t) ≤ 0 for a.a. x ∈ Ω and all t ∈ R;
(4) sp > N and, for some δ > 0, G(x, t) ≥ 0 for a.a. x ∈ Ω and |t| ≤ δ;
(5) sp > N and, for some δ > 0, G(x, t) ≤ 0 for a.a. x ∈ Ω and |t| ≤ δ;
(6) sp ≤ N , h ∈ B̃p, Ki ∈ B̃qi

and, for some δ > 0, G(x, t) ≥ 0 for a.a.
x ∈ Ω and |t| ≤ δ;

(7) sp ≤ N , h ∈ B̃p, Ki ∈ B̃qi
and, for some δ > 0, G(x, t) ≤ 0 for a.a.

x ∈ Ω and |t| ≤ δ.

Proof. Suppose that 0 is the only critical point of Φ. Taking U = W s,p
0 (Ω) in

(4.3), we have

Cq(Φ, 0) = Hq(Φ0,Φ0\{0}).

Let α < 0 be as in Lemma 5.4. Since Φ has no other critical points and satisfies
the Palais–Smale condition by Lemma 5.3, Φ0 is a deformation retract of
W s,p

0 (Ω) and Φα is a deformation retract of Φ0\{0} by the second deformation
lemma. So

Cq(Φ, 0) ≈ Hq(W s,p
0 (Ω),Φα) = 0 ∀q

since Φα is contractible in itself, contradicting Theorems 4.1, 4.2, or Theorem
4.8. �

6. Multiplicity

In this section, we show the existence of infinitely many solutions via the
Fountain Theorem. Since W s,p

0 (Ω) is separable, there exist {en}n∈N ⊂ W s,p
0 (Ω)

and {fn}n∈N ⊂ W−s,p′
0 (Ω) with
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W s,p
0 (Ω) = span{en}∞

n=1, W−s,p′
0 (Ω) = span{fn}∞

n=1,

〈fi, ej〉 =

{
1 if i = j,

0 if i 	= j,

where 〈·, ·〉 is the duality pairing between W−s,p′
0 (Ω) and W s,p

0 (Ω) (see [29,
Section 17]). Let

Xn = span{en}, Yn =
n⊕

k=1

Xk, Zn =
∞⊕

k=n

Xk.

With Xn, Yn, Zn taken as the above, we have [28, Fountain Theorem]

Theorem 6.1. Let Φ ∈ C1(W s,p
0 (Ω),R) be even and suppose that there exist

ρn > γn > 0 such that

(H1) an = inf
u∈Zn, ‖u‖=γn

Φ(u) → +∞ as n → ∞;

(H2) bn = max
u∈Yn, ‖u‖=ρn

Φ(u) ≤ 0;

(H3) Φ satisfies the Palais–Smale condition at the level c for all c > 0.

Then Φ has a sequence of critical values tending to +∞.

Invoking this theorem, we obtain the existence of infinitely many solu-
tions for problem (5.1).

Theorem 6.2. Assume that q ∈ (p, p∗
s), h ∈ Bq

p with |{x ∈ Ω : h(x) > 0}| > 0,
K ∈ Bq satisfies (5.2), g satisfies (4.2) with Ki ∈ Bq

qi
and g(x,−u) =

−g(x, u). Then problem (5.1) admits a sequence {un}n∈N ⊂ W s,p
0 (Ω) of so-

lutions such that Φ(un) → +∞ as n → ∞.

Proof. Due to Lemma 5.3, we only need to verify conditions (H1) and (H2).
For (H1), let

β′
n := sup{|u|q : u ∈ Zn, ‖u‖ = 1}, β′′

n := sup{|u|b : u ∈ Zn, ‖u‖ = 1},

where b satisfies 1/r + a/p + (q − a)/b = 1, where a, r are as in Bq. Set
βn = max{β′

n, β′′
n}. Due to the compact injections W s,p

0 (Ω) ↪→↪→ Lb(Ω) and
W s,p

0 (Ω) ↪→↪→ Lq(Ω) we have that βn → 0 as n → ∞ in view of the abstract
result [11, Lemma 3.3]. Then there exists n0 ∈ N such that βn ≤ 1 for all
n ≥ n0. For each n ∈ N, define γn by γn := 1/

√
βn and hence, γn ≥ 1 for all

n ≥ n0 and γn → ∞ as n → ∞. For u ∈ Zn with ‖u‖ = γn, we have

Φ(u) ≥ 1
p
‖u‖p − |λ|

p

∫
Ω

|h||u|pdx − 1
q

∫
Ω

K|u|qdx −
n∑

i=1

1
qi

∫
Ω

|Ki||u|qidx.

(6.1)

By Lemma 5.2 for any ε > 0 there exist 0 ≤ mi < p and Ci(ε) > 0, i =
0, · · · , n, such that∫

Ω

|h||u|pdx ≤ ε‖u‖m0 + C0(ε)|u|qq,
∫

Ω

|Ki||u|qidx ≤ ε‖u‖mi + Ci(ε)|u|qq,
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and, see the proof of Lemma 2.4,∫
Ω

K|u|qdx ≤ C‖u‖a|u|q−a
b .

Applying these estimates with ε < 1
2(n+1)p we deduce from (6.1) that, for any

n ≥ n0,

Φ(u) ≥ 1
p
‖u‖p − C

q
‖u‖a|u|q−a

b − ε

n∑
i=0

‖u‖mi −
( n∑

i=0

Ci(ε)
)
|u|qq

≥ 1
p
‖u‖p − C

q
‖u‖a|u|q−a

b − (n + 1)ε‖u‖p −
( n∑

i=0

Ci(ε)
)
|u|qq

≥ 1
2p

‖u‖p − C

q
‖u‖a|u|q−a

b −
( n∑

i=0

Ci(ε)
)
|u|qq

≥ β
− p

2
n

2p
− C

q
β

q
2 −a
n −

( n∑
i=0

Ci(ε)
)
β

q
2
n → ∞,

as n → ∞ since 0 ≤ a < p+q
2 yielding (H1). For (H2), again by Lemma 5.2,

for u ∈ Yn we have

Φ(u) ≤ 1
p
‖u‖p +

|λ|
p

∫
Ω

|h||u|pdx − 1
q

∫
Ω

K|u|qdx +
n∑

i=1

1
qi

∫
Ω

|Ki||u|qidx

≤ 1
p
‖u‖p +

|λ|
q

(
Ĉ0(ε)‖u‖m0 + ε|u|qq

)

+
n∑

i=1

1
qi

(
Ĉi(ε)‖u‖mi + ε|u|qq

)
− 1

q
|u|qLq(K,Ω).

Since dim(Yn) < ∞, the norms ‖ · ‖, | · |q and | · |Lq(K,Ω) are equivalent. As
p,mi < q, choosing ε small enough the last estimate yields Φ(u) ≤ 0 for
all u ∈ Yn with ‖u‖ large enough. This completes (H2). The proof is now
complete. �
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