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Abstract. We study a class of semi-linear problems involving the frac-
tional Laplacian under subcritical or critical growth assumptions. We
prove that, for the corresponding functional, local minimizers with respect
to a C0-topology weighted with a suitable power of the distance from the
boundary are actually local minimizers in the natural Hs-topology.
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1. Introduction and main result

Let Ω be a bounded domain in R
N , N � 2, with C1,1 boundary ∂Ω, and

s ∈ (0, 1). We consider the following boundary value problem driven by the
fractional Laplacian operator{

(−Δ)s u = f(x, u) in Ω
u = 0 in R

N \ Ω.
(1.1)

The fractional Laplacian operator is defined by

(−Δ)su(x) := C(N, s) lim
ε↘0

∫
RN \Bε(x)

u(x) − u(y)
|x − y|N+2s

dy, x ∈ R
N ,

where C(N, s) is a suitable positive normalization constant. The nonlinearity
f : Ω×R → R is a Carathéodory mapping which satisfies the growth condition

|f(x, t)| � a(1 + |t|q−1) a.e. in Ω and forall t ∈ R (a > 0, 1 � q � 2∗
s) (1.2)
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(here 2∗
s := 2N/(N −2s) is the fractional critical exponent). Condition (1.2) is

referred to as a subcritical or critical growth if q < 2∗
s or q = 2∗

s , respectively.
For existence and multiplicity results for problem (1.1) via variational

methods, see [25–28]. Concerning regularity and non-existence of solutions, we
refer the reader to [6,7,9,22–24] and to the references therein. Although the
fractional Laplacian operator (−Δ)s, and more generally pseudodifferential
operators, have been a classical topic of functional analysis since long ago,
the interest for such operator has constantly increased in the last few years.
Nonlocal operators such as (−Δ)s naturally arise in continuum mechanics,
phase transition phenomena, population dynamics and game theory, as they
are the typical outcome of stochastical stabilization of Lévy processes, see e.g.
the work of Caffarelli [8] and the references therein.

Problem (1.1) admits a variational formulation. For any measurable func-
tion u : RN → R we define the Gagliardo seminorm by setting

[u]2s :=
∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dx dy,

and we introduce the fractional Sobolev space

Hs(RN ) = {u ∈ L2(RN ) : [u]s < ∞},

which is a Hilbert space. We also define a closed subspace

X(Ω) = {u ∈ Hs(RN ) : u = 0 a.e. in R
N \ Ω}. (1.3)

Due to the fractional Sobolev inequality, X(Ω) is a Hilbert space with inner
product

〈u, v〉X =
∫
R2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy, (1.4)

which induces a norm ‖ · ‖X = [ · ]s. Set for all u ∈ X(Ω)

Φ(u) :=
‖u‖2

X

2
−

∫
Ω

F (x, u) dx,

where

F (x, t) =
∫ t

0

f(x, τ) dτ, x ∈ Ω, t ∈ R.

Then, Φ ∈ C1(X(Ω)) and all its critical points are (up to a normalization con-
stant depending on s and N , which we will neglect henceforth) weak solutions
of (1.1), namely they satisfy

〈u, v〉X =
∫

Ω

f(x, u)v dx, for all v ∈ X(Ω). (1.5)

In the framework of variational methods, local minimizers of the energy Φ
play a fundamental rôle. In a number of situations, one singles out partic-
ular solutions arising as constrained minimizers of the energy functional in
order-defined subsets of X(Ω). Since usually the latters have empty interior,
it is a nontrivial task to prove that such constrained minimizers are actually
unconstrained local minimizers of the energy in the whole X(Ω).
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This issue was analyzed by Brezis and Nirenberg [5] for the semilinear
problem {

−Δu = f(x, u) in Ω
u = 0 on ∂Ω.

(1.6)

They observe that the C1(Ω) topology gives rise to nonempty interiors for most
of such order-defined subsets. By the Hopf lemma, constrained minimizers
solutions can be seen to lie in the C1-interior of the constraint set. The key
point which they proved is that local minima with respect to the C1-topology
remain so in the H1-one, despite the latter being much weaker than the former.
Thus the constrained minimization procedure gives rise to solutions which are
also unconstrained local minimizers.

This method was not only fruitfully applied to obtain a huge number of
multiplicity results for the semilinear problem (1.6), but also extended to cover
a wide range of variational equations.

In the present paper, we aim to develop all the tools needed to reproduce
this technique in the fractional setting. In doing so we will gather a number
of more or less known results for the fractional Laplacian, including weak and
strong maximum principles, a Hopf lemma, and a priori estimates for the weak
solution of problems of the type (1.1). We will provide a proof for those results
for which only a statement was available, or strengthen the conclusions with
respect to existing literature. In some cases, we will generalize results known
only for special cases such as linear problems, eigenvalue problems, or positive
solutions. Detailed discussion will be made for each result. We will then prove
that being a local minimizer for Φ with respect to a suitable weighted C0-
norm, is equivalent to being an X(Ω)-local minimizer. Particular attention
will be paid to the critical case, i.e., q = 2∗

s in (1.2), which presents a twofold
difficulty: a loss of compactness which prevents minimization of Φ, and the lack
of uniform a priori estimates for the weak solutions of (1.1). Finally we will give
three different applications of this result to nonlocal semilinear problem: a sub-
supersolution principle for local minimizers, a multiplicity result for singular
nonlinearities, and a multiplicity result for smooth ones.

In order to state the local minimization result, we now describe the nat-
ural topology corresponding the C1-one above. Define δ : Ω → R+ by

δ(x) := dist(x,RN \ Ω), x ∈ Ω, (1.7)

and consider problem (1.1) with f(x, u) = f(x) and f ∈ L∞(Ω). Ros Oton
and Serra in [22] proved that a solution u to (1.1) is such that u/δs ∈ Cα(Ω).
Thus, a natural topology for the fractional problem (1.1) seems to be the one
of

C0
δ (Ω) =

{
u ∈ C0(Ω) :

u

δs
admits a continuous extension to Ω

}
with norm ‖u‖0,δ = ‖u/δs‖∞. Our main result establishes that indeed local
minimizers of Φ in C0

δ (Ω) and in X(Ω) coincide:
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Theorem 1.1. Let Ω be a bounded C1,1 domain, f : Ω×R → R a Carathéodory
function satisfying (1.2), and u0 ∈ X(Ω). Then, the following assertions are
equivalent:

(i) there exists ρ > 0 such that Φ(u0 + v) � Φ(u0) for all v ∈ X(Ω)∩C0
δ (Ω),

‖v‖0,δ � ρ,
(ii) there exists ε > 0 such that Φ(u0+v) � Φ(u0) for all v ∈ X(Ω), ‖v‖X � ε.

Notice that, contrary to the result of [5] in the local case s = 1, there is
no relationship between the topologies of X and C0

δ (Ω).
The paper has the following structure: in Sect. 2 we establish some pre-

liminary results, including the weak and strong maximum principles, and a
fractional Hopf lemma; in Sect. 3 we prove a priori bounds for non-local prob-
lems, both in the subcritical and the critical cases; in Sect. 4 we prove Theorem
1.1; in Sect. 5 we give some applications of our main result; and in Sect. 6 we
discuss possible extensions and developments.

Remark 1.2. After completing the present work, we became aware of an in-
teresting paper of Barrios et al. [2], where a special case of Theorem 1.1 is
obtained and used to study fractional boundary value problems involving pure
power type nonlinearities with critical growth.

2. Preliminary results

In this section we will state and prove some basic results about weak (su-
per)solutions of non-local boundary value problems.

For δ as in (1.7), we define the weighted Hölder-type spaces (α ∈ (0, 1))

C0
δ (Ω) :=

{
u ∈ C0(Ω) :

u

δs
admits a continuous extension to Ω

}
,

C0,α
δ (Ω) :=

{
u ∈ C0(Ω) :

u

δs
admits a α−Hölder continuous extension to Ω

}
,

(2.1)
endowed with the norms

‖u‖0,δ :=
∥∥∥ u

δs

∥∥∥
∞

, ‖u‖α,δ := ‖u‖0,δ + sup
x,y∈Ω, x �=y

|u(x)/δ(x)s − u(y)/δ(y)s|
|x − y|α ,

respectively. Clearly, any function u ∈ C0
δ (Ω) vanishes on ∂Ω, so it can be

naturally extended by 0 on R
N \Ω. In this way, we will always consider elements

of C0
δ (Ω) as defined on the whole R

N . Moreover, by virtue of Ascoli’s theorem,
the embedding C0,α

δ (Ω) ↪→ C0
δ (Ω) is compact.

The Hilbert space X(Ω) has been defined in (1.3), with inner product
(1.4). The embedding X(Ω) ↪→ Lq(Ω) is continuous for all q ∈ [1, 2∗

s ] and
compact if q ∈ [1, 2∗

s) (see [13, Theorem 7.1]). We will set

X(Ω)+ = {u ∈ X(Ω) : u � 0 a.e. in Ω},

the definition of Hs(RN )+ being analogous. For all t ∈ R we set

t± = max{±t, 0}.
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Besides, for all x ∈ R
N , r > 0 we denote by Br(x) (respectively, Br(x)) the

open (respectively, closed) ball of radius r centered at x in R
N . Similarly,

BX
ρ (u), B

X

ρ (u) (Bδ
ρ(u), B

δ

ρ(u)) will denote an open and a closed ball, respec-
tively, in X(Ω) (in C0

δ (Ω)) centered at u with radius ρ. Finally, C will denote
a positive constant whose value may change case by case.

We consider the following linear equation with general Dirichlet condi-
tion: {

(−Δ)su = f in Ω
u = g in R

N \ Ω,
(2.2)

where f ∈ L∞(Ω) and g ∈ Hs(RN ). We say that u ∈ Hs(RN ) is a weak
supersolution of (2.2) if u � g a.e. in R

N \ Ω and the following holds for all
v ∈ X(Ω)+: ∫

R2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy �
∫

Ω

fv dx.

The definition of a weak subsolution is analogous. Clearly, u ∈ Hs(RN ) is a
weak solution of (2.2) if it is both a weak supersolution and a weak subsolution
(this definition of a weak solution agrees with (1.5)). These definitions will be
used throughout the paper.

From [12, proof of Theorem 1.1, Remark 4.2] we have the following bound.

Theorem 2.1. Let u ∈ Hs(RN ) be a weak subsolution of (2.2) with f = 0.
Then, there exists a constant C = C(N, s) such that for any k ∈ R, x0 ∈ Ω,
r > 0 such that Br(x0) ⊆ Ω, we have

ess sup
Br/2(x0)

u � k + Tail((u − k)+;x0, r/2) + C

(
−
∫

Br(x0)

(u − k)2+ dx

) 1
2

,

where the nonlocal tail of v ∈ Hs(RN ) at x0 is defined by

Tail(v;x0, r) := r2s

∫
RN \Br(x0)

|v(x)|
|x − x0|N+2s

dx.

The following lemma follows slightly modifying the proof of [22, Lemma
3.2]:

Lemma 2.2. If 0 < r < R, f = 0, and g ∈ Hs(RN ) is such that

g(x) =

{
1 if x ∈ Br(0)
0 if x ∈ R

N \ BR(0),

then there exist c = c(r,R) > 0 and a weak solution ϕ ∈ Hs(RN ) of (2.2) with
f = 0 in the domain BR(0) \ Br(0), such that a.e. in R

N

ϕ(x) � c(R − |x|)s
+.

In the following sections we will use the following fundamental regularity
estimate proved in [22, Theorem 1.2].
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Theorem 2.3. Let u be a weak solution of (2.2) with f ∈ L∞(Ω), g = 0.
Then there exist α ∈ (0,min{s, 1 − s}) such that u ∈ C0,α

δ (Ω) (see (2.1)) and
C = C(Ω, N, s) such that

‖u‖α,δ � C‖f‖∞.

We now prove a weak maximum principle for weak supersolutions of
problem (2.2). While the non-negativity result is well known, we could not
find a statement of the semicontinuity property in the literature.

Theorem 2.4. If u ∈ Hs(RN ) is a weak supersolution of (2.2) with f = 0 and
g ∈ Hs(RN )+, then u � 0 a.e. in Ω and u admits a lower semi-continuous
representative in Ω.

Proof. First we prove that u ∈ Hs(RN )+. Since u � g � 0 a.e. in R
N \ Ω, we

have u− ∈ X(Ω)+. So, the elementary inequality (a − b)(a− − b−) � −(a− −
b−)2, a, b ∈ R, yields

0 �
∫
R2N

(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+2s

dx dy � −[u−]2s,

hence u− = 0, namely u ∈ Hs(RN )+. Now we find a lower semi-continuous
function u∗ such that u(x) = u∗(x) a.e. in Ω. Set for all x0 ∈ R

N

u∗(x0) = ess liminf
x→x0

u(x0).

Since u ∈ Hs(RN )+ we have u∗ � 0 a.e. and u∗ is lower semi-continuous
in Ω. Now assume that x0 ∈ Ω is a Lebesgue point for u and define u(x0)
accordingly, noting that

u(x0) := lim
r→0+

−
∫

Br(x0)

u dx � lim
r→0+

ess inf
Br(x0)

u = u∗(x0).

To prove the reverse inequality, we apply Theorem 2.1 to the function −u
(which is a weak subsolution of (2.2)) with k = −u(x0) and get

ess sup
Br/2(x0)

(−u) � −u(x0) + Tail((u(x0) − u)+;x0, r/2)

+C
(
−
∫

Br(x0)

(u(x0) − u(x))2+ dx
) 1

2
.

Letting r → 0+, since x0 is a Lebesgue point we have

lim
r→0+

(
−
∫

Br(x0)

(u(x0) − u(x))2+ dx
) 1

2
= 0.

Besides, by the Hölder inequality we have

Tail((u(x0) − u)+;x0, r/2)

� r2s
( ∫

RN \Br(x0)

(u(x0) − u(x))2+
|x0 − x|N+2s

dx
) 1

2
( ∫

RN \Br(x0)

1
|x0 − x|N+2s

dx
) 1

2

� Crs
( ∫

RN

(u(x0) − u(x))2

|x0 − x|N+2s
dx

) 1
2 → 0 as r → 0+,
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since, being u ∈ Hs(RN ), the integral is finite for a.e. x0 ∈ Ω. So we have

lim
r→0+

ess sup
Br/2(x0)

(−u) � −u(x0),

i.e. u∗(x0) � u(x0) for a.e. Lebesgue point x0 ∈ Ω for u, and hence for a.e.
x0 ∈ Ω. �

Henceforth any weak supersolution to (2.2), with f = 0, will be identified
with its lower semi-continuous regularization, and any weak subsolution with
its upper semi-continuous regularization, so that their value at any point is
well defined.

By means of Theorem 2.4 and Lemma 2.2 we can prove the following
strong maximum principle.

Theorem 2.5. If u ∈ Hs(RN )\{0} is a weak supersolution of (2.2) with f = 0
and g � 0 a.e. in R

N , then u > 0 in Ω.

Proof. We argue by contradiction, assuming that u vanishes at some point of
Ω. We recall that, by Theorem 2.4, u � 0 in Ω and u is lower semi-continuous.
So, assuming without loss of generality that Ω is connected, the set

Ω+ = {x ∈ Ω : u(x) > 0}
is open, nonempty and has a boundary in Ω. Pick x1 ∈ ∂Ω+ ∩ Ω and set
δ(x1) =: 2R > 0. By lower semi-continuity and u � 0, we get u(x1) = 0. We
can find x0 ∈ Ω+ ∩ BR(x1), and some r ∈ (0, R) such that u(x) � u(x0)/2 for
all x ∈ Br(x0). Let ϕ ∈ Hs(RN ) be as in Lemma 2.2, and set for all x ∈ R

N

w(x) = u(x) − u(x0)
2

ϕ(x − x0).

It is easily seen that w ∈ Hs(RN ) is a weak supersolution of (2.2) in the
domain BR(x0) \ Br(x0), with g = 0. Hence, by Theorem 2.4 we have w � 0
a.e. in BR(x0) \ Br(x0). In particular, noting that x1 ∈ BR(x0) \ Br(x0), we
see that

u(x1) � u(x0)
2

ϕ(x1 − x0) � u(x0)
2

c(R − |x1 − x0|)s
+ > 0

by Lemma 2.2, a contradiction. �
Remark 2.6. It is worth noting that strong maximum principle type results
for the fractional Laplacian were already known. A statement for smooth s-
harmonic functions can be found in [10, Proposition 2.7]. The strong maximum
principle was proved by Silvestre for distributional supersolutions but under a
stronger semicontinuity and compactness condition, see [30, Proposition 2.17].
In [19, Lemma 12] the strong maximum principle was proved for viscosity
supersolutions of the fractional p-Laplacian in the case s < 1 − 1/p. Recently
in [3, Theorem A.1] a weaker statement (u > 0 almost everywhere without
semicontinuity assumptions) has been proved through a logarithmic lemma
for weak supersolutions of the fractional p-Laplacian.

We can now prove a fractional Hopf lemma. This has been first stated by
Caffarelli et al. [10, Proposition 2.7] for smooth s-harmonic functions.
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Lemma 2.7. If u ∈ Hs(RN ) \ {0} is a weak supersolution of (2.2) with f = 0
and g � 0 a.e. in R

N , then there exists C = C(u) > 0 such that u(x) � Cδ(x)s

for all x ∈ Ω.

Proof. Let

Ωh = {x ∈ Ω : δ(x) � h}.

We know from Theorems 2.4, 2.5 that u is lower semi-continuous and u(x) > 0
in Ω. Hence, by reducing C > 0 if necessary, we only need to prove the lower
bound on Ωh, where it holds

inf
Ω\Ωh

u = mh > 0. (2.3)

By classical results (see Aikawa et al. [1]) we know that C1,1-regularity of ∂Ω
provides a uniform interior sphere condition. This in turn implies that there
exists a sufficiently small h > 0 such that if l ∈ (0, 2h] and x ∈ Ω2h

δ(x) = l ⇔ Bl(x) ⊆ Ω (2.4)

and the metric projection Π : Ω2h → ∂Ω is well defined. We fix such an h and
for arbitrary x0 ∈ Ωh set x1 = Π(x0), x2 = x1 − 2hν(x1), where ν : ∂Ω → R

N

is the outward unit vector. Then δ(x2) � 2h by construction and through (2.4)
we have B2h(x2) ⊆ Ω, which forces δ(x2) = 2h. Let ϕ ∈ Hs(RN ) be defined
as in Lemma 2.2 with R = 2h and r = h and set v(x) = mhϕ(x − x2) as per
(2.3). For all x ∈ Bh(x2) ⊆ Ω \ Ωh we have

u(x) � mh = v(x),

so u − v is a weak supersolution of (2.2) in B2h(x2) \ Bh(x2) with f = g = 0.
By Theorem 2.4 we have u � v in B2h(x2) \ Bh(x2). In particular, we have

u(x0) � v(x0) � C
(
2h − |x0 − x2|

)s = Cδ(x0)s,

with C > 0 depending on h, mh and Ω, which concludes the proof. �

3. A priori bounds

In this section we prove some a priori bounds for the weak solutions of problem
(1.1), both in the subcritical and critical cases. We will use an adaptation of
the classical Moser iteration technique. A similar method was used by Brasco
et al. [4, Theorem 3.3] for the first eigenfunctions of the fractional Laplacian (in
fact, for a more general, nonlinear operator, see Sect. 6 below), while most L∞-
bounds for nonlocal equations are based on a different method, see [15,17,29].
A fractional version of De Giorgi’s iteration method was developed by Mingione
[21]. We introduce some notation: for all t ∈ R and k > 0, we set

tk = sgn(t)min{|t|, k}. (3.1)

The Moser method in the fractional setting is based on the following elemen-
tary inequality:
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Lemma 3.1. For all a, b ∈ R, r � 2, and k > 0 we have

(a − b)(a|a|r−2
k − b|b|r−2

k ) � 4(r − 1)
r2

(a|a|
r
2 −1

k − b|b|
r
2 −1

k )2.

Proof. By the symmetry of the inequality, we may assume a � b. We set for
all t ∈ R

h(t) =

⎧⎨
⎩

sgn(t)|t| r
2 −1 if |t| < k

2
r
sgn(t)k

r
2 −1 if |t| � k.

It is readily seen that∫ a

b

h(t) dt =
2
r
(a|a|

r
2 −1

k − b|b|
r
2 −1

k )

and, since 4(r − 1) � r2, a similar computation gives∫ a

b

h(t)2 dt � 1
r − 1

(a|a|r−2
k − b|b|r−2

k ).

Now, the Schwartz inequality yields( ∫ a

b

h(t) dt
)2

� (a − b)
∫ a

b

h(t)2 dt,

which is the conclusion. �
We prove an L∞-bound on the weak solutions of (1.1) (in the subcritical

case such bound is uniform):

Theorem 3.2. If f satisfies (1.2), then for any weak solution u ∈ X(Ω) of (1.1)
we have u ∈ L∞(Ω). Moreover, if q < 2∗

s in (1.2), then there exists a function
M ∈ C(R+), only depending on the constants in (1.2), N , s and Ω, such that

‖u‖∞ � M(‖u‖2∗
s
).

Proof. Let u ∈ X(Ω) be a weak solution of (1.1) and set γ = (2∗
s/2)1/2. For all

r � 2, k > 0, the mapping t �→ t|t|r−2
k is Lipschitz in R, hence u|u|r−2

k ∈ X(Ω).
We apply the fractional Sobolev inequality, Lemma 3.1, test (1.5) with u|u|r−2

k ,
and we use (1.2) to obtain

‖u|u|
r
2 −1

k ‖2
2∗

s
� C‖u|u|

r
2 −1

k ‖2
X � Cr2

r−1 〈u, u|u|r−2
k 〉X

� Cr
∫
Ω

|f(x, u)||u||u|r−2
k dx

� Cr
∫
Ω

(
|u||u|r−2

k + |u|q|u|r−2
k

)
dx,

(3.2)

for some C > 0 independent of r � 2 and k > 0. Applying the Fatou Lemma
as k → ∞ yields

‖u‖γ2r � Cr
1
r

( ∫
Ω

(
|u|r−1 + |u|r+q−2

)
dx

) 1
r

(3.3)

(where the right hand side may be ∞). Our aim is to develop from (3.3) a
suitable bootstrap argument to prove that u ∈ Lp(Ω) for all p � 1. We define
recursively a sequence {rn} by choosing μ > 0 and setting

r0 = μ, rn+1 = γ2rn + 2 − q.
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The only fixed point of t → γ2t + 2 − q is

μ0 =
q − 2
γ2 − 1

,

so we have rn → +∞ iff μ > μ0. We now split the proof into the subcritical
and critical cases.
• Subcritical case: q < 2∗

s. We fix

μ = 2∗
s + 2 − q > max{2, μ0}, (3.4)

and bootstrap on the basis of (3.3). Since r0 + q − 2 = 2∗
s, we have u ∈

Lr0+q−2(Ω) (in particular u ∈ Lr0−1(Ω)). Hence, choosing r = r0 in (3.3),
we obtain a finite right hand side, so u ∈ Lγ2r0(Ω) = Lr1+q−2(Ω), and so
on. Iterating this argument and noting that r �→ r1/r is bounded in [2,∞),
for all n ∈ N we have u ∈ Lγ2rn(Ω) and

‖u‖γ2rn
� H(n, ‖u‖2∗

s
)

(henceforth, H will denote a continuous function of one or several real vari-
ables, whose definition may change case by case). By (3.4) we know that
γ2rn → ∞ as n → ∞, so for all p � 1 we can find n ∈ N such that γ2rn � p.
Applying Hölder inequality, for all p � 1 we have u ∈ Lp(Ω) and

‖u‖p � H(p, ‖u‖2∗
s
). (3.5)

The Lp-bound above is not yet enough to prove our assertion, as the right
hand side may not be bounded as p → ∞. Thus, we need to improve (3.5)
to a uniform Lp-bound. Set γ′ = γ/(γ − 1) and notice that from (3.5) and
Hölder inequality it follows

‖1 + |u|q−1‖γ′ � H(‖u‖2∗
s
).

Therefore, for any r � 2 we have∫
Ω

(
|u|r−1 + |u|r+q−2

)
dx � ‖1 + |u|q−1‖γ′‖|u|r−1‖γ � H(‖u‖2∗

s
)‖u‖r−1

γ(r−1)

� H(‖u‖2∗
s
)|Ω| 1

γr ‖u‖r−1
γr .

Noting that r �→ |Ω|1/(γr) is bounded in [2,∞), we see that∫
Ω

(
|u|r−1 + |u|r+q−2

)
dx � H(‖u‖2∗

s
)‖u‖r−1

γr .

The inequality above can be used in (3.3) to obtain the following estimate:

‖u‖r
γ2r � H(‖u‖2∗

s
)‖u‖r−1

γr .

Setting v = u/H(‖u‖2∗
s
) and r = γn−1 (γn−1 � 2 for n ∈ N big enough), we

have the following nonlinear recursive relation:

‖v‖γn+1 � ‖v‖1−γ1−n

γn

which, iterated, provides

‖v‖γn � ‖v‖Πn−2
i=0 (1−γ−i)

γ n ∈ N.
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It is easily seen that the sequence (Πn−2
i=0 (1 − γ−i)) is bounded in R, so for

all n ∈ N we have

‖v‖γn � H(‖u‖2∗
s
).

Going back to u, and recalling that γn → ∞ as n → ∞, we find M ∈ C(R+)
such that for all p � 1

‖u‖p � M(‖u‖2∗
s
),

i.e., from classical results in functional analysis, u ∈ L∞(Ω) and

‖u‖∞ � M(‖u‖2∗
s
). (3.6)

• Critical case: q = 2∗
s. We start from (3.2), with r = q + 1 > 2, and fix σ > 0

such that Crσ < 1/2. Then there exists K0 > 0 (depending on u) such that(∫
{|u|>K0}

|u|q dx

)1− 2
q

� σ. (3.7)

By Hölder inequality and (3.7) we have∫
Ω

|u|q|u|r−2
k dx � Kq+r−2

0 |{|u| � K0}| +
∫

{|u|>K0}
|u|q|u|r−2

k dx

� Kq+r−2
0 |Ω| +

( ∫
Ω

(u2|u|r−2
k )

q
2 dx

) 2
q
( ∫

{|u|>K0}
|u|q dx

)1− 2
q

� Kq+r−2
0 |Ω| + σ‖u|u|

r
2 −1

k ‖2
q.

Recalling that Crσ < 1/2, and that (3.2) holds, we obtain
1
2
‖u|u|

q−1
2

k ‖2
q � Cr

(
‖u‖q

q + K2q−1
0 |Ω|

)
.

Letting k → ∞, we have

‖u‖ q(q+1)
2

� H̃(K0, ‖u‖q)

(where, as above, H̃ is a continuous function). Now the bootstrap argument
can be applied through (3.3), starting with

r0 = μ =
q(q + 1)

2
+ 2 − q > μ0 = 2,

since u ∈ Lr0+q−2(Ω). The rest of the proof follows verbatim, providing in
the end u ∈ L∞(Ω) and

‖u‖∞ � M̃(K0, ‖u‖2∗
s
) (3.8)

for a convenient function M̃ ∈ C(R2).
�

Remark 3.3. In the critical case q = 2∗
s , the uniform L∞-estimate (3.6) cannot

hold true. We introduce the fractional Talenti functions by setting for all ε > 0
and z ∈ R

N

Tε,z(x) =
( ε

ε2 + |x − z|2
)N−2s

2
.
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It is readily seen that there exists Γ(N, s) > 0 such that, for all ε > 0 and
z ∈ R

N , Γ(N, s)Tε,z is a positive solution of the fractional equation

(−Δ)su = u
N+2s
N−2s inR

N , (3.9)

Actually, in the local case s = 1, Chen et al. [11] have proved that Tε,z are
the only positive solutions of (3.9). We have ‖Tε,z‖∞ → ∞ as ε → 0 and, by
rescaling, it follows that ‖Tε,z‖2∗

s
is independent of ε. If z ∈ Ω, ε is very small

(so that almost all the mass of Tε,z is contained in Ω) and we truncate Tε,z

so that it is set equal to zero outside Ω, we would find that (3.6) is violated
as ε → 0. Thus, it seems that the non-uniform estimate (3.8), involving a
real number K0 > 0 such that (3.7) holds for a convenient σ > 0, cannot be
improved in general.

4. Proof of Theorem 1.1

Proof that (i) implies (ii). We shall divide the proof into several steps:
Case u0 = 0. We note that Φ(u0) = 0, so our hypothesis rephrases as

inf
u∈X(Ω)∩B

δ
ρ(0)

Φ(u) = 0. (4.1)

Again, we consider separately the subcritical and critical cases.

• Subcritical case: q < 2∗
s. We argue by contradiction, assuming that there

exists a sequence (εn) in (0,∞) such that εn → 0 and for all n ∈ N

inf
u∈B

X
εn

(0)

Φ(u) = mn < 0.

By (1.2) and the compact embedding X(Ω) ↪→ Lq(Ω), the functional Φ is
sequentially weakly lower semicontinuous in X(Ω), hence mn is attained at
some un ∈ B

X

εn
(0) for all n ∈ N. We claim that, for all n ∈ N, there exists

μn � 0 such that for all v ∈ X(Ω)

〈un, v〉X −
∫

Ω

f(x, un)v dx = μn〈un, v〉X . (4.2)

Indeed, if un ∈ BX
εn

(0), then un is a local minimizer of Φ in X(Ω), hence a
critical point, so (4.2) holds with μn = 0. If un ∈ ∂BX

εn
(0), then un minimizes

Φ restricted to the C1-Banach manifold{
u ∈ X(Ω) :

‖u‖2
X

2
=

ε2
n

2

}
,

so we can find a Lagrange multiplier μn ∈ R such that (4.2) holds. More
precisely, testing (4.2) with −un and recalling that Φ(u) � Φ(un) for all
u ∈ BX

εn
(0), we easily get

0 � Φ′(un)(−un) = −μn‖un‖2
X ,

hence μn � 0.
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Setting Cn = (1−μn)−1 ∈ (0, 1], we see that for all n ∈ N the function
un ∈ X(Ω) is a weak solution of the auxiliary boundary value problem{

(−Δ)s u = Cnf(x, u) in Ω
u = 0 in R

N \ Ω,

where the nonlinearity satisfies (1.2) uniformly with respect to n ∈ N. By
Theorem 3.2 (and recalling that (un) is bounded in L2∗

s (Ω)), there exists
M > 0 such that for all n ∈ N we have un ∈ L∞(Ω) with ‖un‖∞ � M .
This, in turn, implies that for all n ∈ N

‖Cnf(·, un(·))‖∞ � a(1 + Mq−1).

Now we apply Theorem 2.3, which assures the existence of α > 0 and
C > 0 such that, for all n ∈ N, we have un ∈ C0,α

δ (Ω) with ‖un‖α,δ �
Ca(1 + Mq−1). By the compact embedding C0,α

δ (Ω) ↪→ C0
δ (Ω), up to a

subsequence, we see that (un) is strongly convergent in C0
δ (Ω), hence (by

a simple computation) (un) is uniformly convergent in Ω. Since un → 0 in
X(Ω), passing to a subsequence, we may assume u(x) → 0 a.e. in Ω, so
we deduce un → 0 in C0

δ (Ω). In particular, for n ∈ N big enough we have
‖un‖0,δ � ρ together with

Φ(un) = mn < 0,

a contradiction to (4.1).
• Critical case: q = 2∗

s. We need to overcome a twofold difficulty, as the critical
growth both prevents compactness (and hence the existence of minimizers
of Φ on closed balls of X(Ω)), and does not allow to get immediately a
uniform estimate on the L∞-norms of solutions of the auxiliary problem.
Again we argue by contradiction, assuming that there exist sequences (εn)
in (0,∞) and (wn) in X(Ω) such that for all n ∈ N we have wn ∈ B

X

εn
(0)

and Φ(wn) < 0. For all k > 0 we define fk, Fk : Ω × R → R by setting for
all (x, t) ∈ Ω × R

fk(x, t) = f(x, tk), Fk(x, t) =
∫ t

0

fk(x, τ) dτ

(tk defined as in (3.1)). Accordingly, we define the functionals Φk ∈ C1

(X(Ω)) by setting for all u ∈ X(Ω)

Φk(u) =
‖u‖2

X

2
−

∫
Ω

Fk(x, u) dx.

By the dominated convergence Theorem, for all u ∈ X(Ω) we have Φk(u) →
Φ(u) as k → ∞. So, for all n ∈ N we can find kn � 1 such that Φkn

(wn) < 0.
Since fk has subcritical growth, for all n ∈ N there exists un ∈ B

X

εn
(0) such

that

Φkn
(un) = inf

u∈B
X
εn

(0)

Φkn
(u) � Φkn

(wn) < 0.
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As in the previous case we find a sequence (Cn) in (0, 1] such that un is a
weak solution of {

(−Δ)s u = Cnfkn
(x, u) in Ω

u = 0 in R
N \ Ω,

and the nonlinearities Cnfkn
satisfy (1.2) uniformly with respect to n ∈ N.

We recall that un → 0 in X(Ω), hence in L2∗
s (Ω). So, (3.7) holds with K0 = 0

and n ∈ N big enough. Therefore, Theorem 3.2 assures that un ∈ L∞(Ω)
and that ‖un‖∞ � M for some M > 0 independent of n ∈ N. Now we can
argue as in the subcritical case, proving that (up to a subsequence) un → 0
in C0

δ (Ω) and uniformly in Ω. In particular, for n ∈ N big enough we have
‖un‖0,δ � ρ and ‖un‖∞ � 1, hence

Φ(un) = Φkn
(un) < 0,

a contradiction to (4.1).
Case u0 �= 0. For all v ∈ C∞

c (Ω), we have in particular v ∈ X(Ω) ∩
C0

δ (Ω), so the minimality ensures

Φ′(u0)(v) = 0, v ∈ C∞
c (Ω). (4.3)

Since C∞
c (Ω) is a dense subspace of X(Ω) (see Fiscella et al. [14]) and

Φ′(u0) ∈ X(Ω)∗, equality (4.3) holds in fact for all v ∈ X(Ω), i.e., u0 is
a weak solution of (1.1). By Theorem 3.2, we have u0 ∈ L∞(Ω), hence
f(·, u0(·)) ∈ L∞(Ω). Now Theorem 2.3 implies u0 ∈ C0

δ (Ω). We set for all
(x, t) ∈ Ω × R

F̃ (x, t) = F (x, u0(x) + t) − F (x, u0(x)) − f(x, u0(x))t,

and for all v ∈ X(Ω)

Φ̃(v) =
‖v‖2

X

2
−

∫
Ω

F̃ (x, v) dx.

Clearly we have Φ̃ ∈ C1(X(Ω)) and the mapping f̃ : Ω ×R → R defined by
f̃(x, t) = ∂tF̃ (x, t) satisfies a growth condition of the type (1.2). Besides, by
(4.3), we have for all v ∈ X(Ω)

Φ̃(v) =
1
2
(
‖u0 + v‖2

X − ‖u0‖2
X

)
−

∫
Ω

(
F (x, u0 + v) − F (x, u0)

)
dx

= Φ(u0 + v) − Φ(u0),

in particular Φ̃(0) = 0. Our hypothesis thus rephrases as

inf
v∈X(Ω)∩B

δ
ρ(0)

Φ̃(v) = 0

and by the previous cases, we can find ε > 0 such that for all v ∈ X(Ω),
‖v‖X � ε, we have Φ̃(v) � 0, namely Φ(u0 + v) � Φ(u0).



Vol. 22 (2015) Hs versus C0-weighted minimizers 491

Proof that (ii) implies (i). Suppose by contradiction that there exists a
sequence (un) which converges to u0 in C0

δ (Ω) and Φ(un) < Φ(u0). Observe
that ∫

Ω

F (x, un) dx →
∫

Ω

F (x, u0) dx,

and this, together with Φ(un) < Φ(u0), implies that

lim sup
n

‖un‖2
X � ‖u0‖2

X . (4.4)

In particular (un) is bounded in X(Ω) and, up to a subsequence, it converges
weakly and pointwisely to u0. By semicontinuity, (4.4) forces ‖un‖X → ‖u0‖X ,
thus un → u0 in X as n → ∞, which concludes the proof. �

5. Applications

In this section we present some existence and multiplicity results for the solu-
tions of problem (1.1), under (1.2) plus some further conditions. In the proofs
of such results, Theorem 1.1 will play an essential rôle.

Our first result ensures that, if problem (1.1) admits a weak subsolution
and a weak supersolution, then it admits a solution which is also a local min-
imizer of the energy functional. We define weak super- and subsolutions of
(1.1) as in Sect. 2.

Theorem 5.1. Let f : Ω × R → R be a Carathéodory function satisfying (1.2)
and f(x, ·) be nondecreasing in R for a.a. x ∈ Ω. Suppose that u, u ∈ Hs(RN )
are a weak supersolution and a weak subsolution, respectively, of (1.1) which
are not solutions. Then, there exists a solution u0 ∈ X(Ω) of (1.1) such that
u � u0 � u a.e. in Ω and u0 is a local minimizer of Φ on X(Ω).

Proof. We first observe that u � u a.e. in R
N . Indeed, by monotonicity of

f(x, ·), u − u is easily seen to be a weak supersolution of (2.2) with f = g = 0
and Theorem 2.4 forces u − u � 0. We set for all (x, t) ∈ Ω × R

f̃(x, t) :=

⎧⎪⎨
⎪⎩

f(x, u(x)) if t � u(x)
f(x, t) if u(x) < t < u(x)
f(x, u(x)) if t � u(x)

F̃ (x, t) :=
∫ t

0

f̃(x, τ) dτ

and for all u ∈ X(Ω)

Φ̃(u) :=
‖u‖2

X

2
−

∫
Ω

F̃ (x, u) dx.

The functional Φ̃ ∈ C1(X(Ω)) is sequentially weakly lower semicontinuous and
coercive, since monotonicity of f(x, ·), (1.2) and Hölder inequality imply for
all u ∈ X(Ω)∫

Ω

F̃ (x, u) dx �
∫

Ω

(
|f(x, u)|+|f(x, u)|

)
|u| dx � C(1+‖u‖q−1

q + ‖u‖q−1
q )‖u‖X .
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Let u0 ∈ X(Ω) be a global minimizer of Φ̃, which therefore solves{
(−Δ)s u0 = f̃(x, u0) in Ω
u0 = 0 in R

N \ Ω.

By testing the above equation with (u0 − u)+ and (u0 − u)−, respectively, we
easily see that u � u0 � u in Ω. Again by monotonicity and the definition of
f̃ , we have, in the weak sense,

(−Δ)s(u − u0) � f(x, u) − f̃(x, u0) � 0

in Ω, while u − u0 � 0 in R
N \ Ω, so u − u0 is a weak supersolution of (2.2),

nonnegative by Theorem 2.4. It holds u − u0 �= 0, otherwise we would have
u ∈ X(Ω) and, in the weak sense,

(−Δ)su = f̃(x, u) = f(x, u)

in Ω, against our hypotheses on u. By Lemma 2.7, we have (u − u0)/δs � C
in Ω for some C > 0. Similarly we prove that (u0 − u)/δs � C in Ω. Thus, u0

is a solution of (1.1).
Now we prove that u0 is a local minimizer of Φ. By Theorems 3.2 and

2.3 we have u0 ∈ C0
δ (Ω). For any u ∈ B

δ

C/2(u0) we have in Ω

u − u

δs
=

u − u0

δs
+

u0 − u

δs
� C − C

2
,

in particular u − u > 0 in Ω. Similarly, u − u > 0 in Ω, so Φ̃ agrees with Φ in
B

δ

C/2(u0)∩X(Ω) and u0 turns out to be a local minimizer of Φ in C0
δ (Ω)∩X(Ω).

Now, Theorem 1.1 implies that u0 is a local minimizer of Φ in X(Ω) as well. �

We present now a multiplicity theorem for problem (1.1), whose proof
combines Theorem 1.1, spectral properties of (−Δ)s and Morse-theoretical
methods (the fully nonlinear case is examined in [17, Theorem 5.3]). In what
follows, 0 < λ1,s < λ2,s � . . . will denote the eigenvalues of (−Δ)s in X(Ω)
(see [26]).

Theorem 5.2. Let f : Ω × R → R be a Carathéodory function satisfying
(i) |f(x, t)| � a(1 + |t|q−1) a.e. in Ω and for all t ∈ R (a > 0, 1 < q < 2∗

s);
(ii) f(x, t)t � 0 a.e. in Ω and for all t ∈ R;

(iii) lim
t→0

f(x, t) − b|t|r−2t

t
= 0 uniformly a.e. in Ω (b > 0, 1 < r < 2);

(iv) lim sup
|t|→∞

2F (x, t)
t2

< λ1,s uniformly a.e. in Ω.

Then problem (1.1) admits at least three non-zero solutions.

Proof. We define Φ ∈ C1(X(Ω)) as in the Introduction. From (ii),(iii) we
immediately see that 0 is a critical point of Φ, which is not a local minimizer
by [17, Lemma 5.5]. We introduce two truncated energy functionals, setting
for all (x, t) ∈ Ω × R

f±(x, t) = f(x,±t±), F±(x, t) =
∫ t

0

f±(x, τ) dτ
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and for all u ∈ X(Ω)

Φ±(u) =
‖u‖2

X

2
−

∫
Ω

F±(x, u) dx.

Clearly f+ satisfies (1.2). It can be easily seen (see [17, Lemma 5.5]) that there
exists u+ ∈ X(Ω) \ {0} such that

Φ+(u+) = inf
u∈X(Ω)

Φ+(u).

Then, taking into account Theorem 2.4 and (ii), u+ is a nonnegative weak
solution to (1.1). By Theorem 3.2, we have u+ ∈ L∞(Ω), so by Theorem 2.3
we deduce u+ ∈ C0

δ (Ω). Moreover, again by (ii), u+ is a weak supersolution of
problem (2.2) with f = g = 0, hence by Lemma 2.7 u+/δs > 0 in Ω. Now [17,
Lemma 5.1] implies that u+ ∈ int(C+), where

C+ = {u ∈ C0
δ (Ω) : u(x) � 0 in Ω}

and the interior is defined with respect to the C0
δ (Ω)-topology. Let ρ > 0 be

such that Bδ
ρ(u+) ⊂ C+. Since Φ and Φ+ agree on C+ ∩ X(Ω),

Φ(u+ + v) � Φ(u+), v ∈ Bδ
ρ(0) ∩ X(Ω)

and by Theorem 1.1, u+ is a strictly positive local minimizer for Φ in X(Ω).
Similarly, looking at Φ−, we can detect another strictly negative local mini-
mizer u− ∈ −int(C+) of Φ. Now, a Morse-theoretic argument shows that there
exists a further critical point ũ ∈ X(Ω) of Φ with u /∈ {0, u±} (see the proof
of [17, Theorem 5.3]). �

We conclude this section with a fractional version of a classical multiplic-
ity result for semilinear problems based on Morse theory:

Theorem 5.3. Let f ∈ C1(R) satisfy

(i) |f ′(t)| � a(1 + |t|q−2) for all t ∈ R (a > 0, 1 < q � 2∗
s);

(ii) f(t)t � 0 and for all t ∈ R;
(iii) f ′(0) > λ2,s and f ′(0) is not an eigenvalue of (−Δ)s in X(Ω);

(iv) lim sup
|t|→∞

f(t)
t

< λ1,s.

Then problem (1.1) admits at least four non-zero solutions.

Proof. Due to (i), we have Φ ∈ C2(X(Ω)), and by (iv) Φ is coercive. By (iii),
we know that 0 is a nondegenerate critical point of Φ with Morse index m � 2
(see Li et al. [18, Proposition 1.1]). Therefore, reasoning as in the proof of
Theorem 5.2, we find two local minimizers u± ∈ ±C+ for Φ, with u+ > 0 and
u− < 0 in Ω. Now, the Hess–Kato Theorem and a Morse-theoretic argument
provide two further critical points u0, u1 ∈ X(Ω) \ {0, u±} (as in Liu and Liu
[20, Theorem 1.3]). �
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6. Final comments and open questions

Let p ∈ (1,∞) and s ∈ (0, 1). Recently, in [17], quasi-linear problems involving
the fractional p-Laplacian operator were investigated by applying techniques
of Morse theory to the functional

Φ(u) =
1
p

∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dx dy −
∫

Ω

F (x, u) dx,

over the space of functions u ∈ W s,p(RN ) with u = 0 outside Ω. Critical points
of Φ give rise to nonlinear equations whose leading term is the fractional p-
Laplacian, namely (up to a multiplicative constant)

(−Δ)s
pu(x) = lim

ε→0+

∫
RN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

dy.

Recent contributions on the subject of the fractional p-Laplacian operator are
also contained in [8,12,15,19].

A natural question is whether a counterpart of Theorem 1.1 holds in
this nonlinear setting. This would provide a nonlocal version of the results
of Garc̀ıa Azorero et al. [16], which extend the Brezis–Nirenberg theorem on
local minimizers to nonlinear operators of the p-Laplacian type. Notice that
the Moser iteration used in the proof of Theorem 3.2 seems flexible enough
to carry over in the nonlinear case (with [4, Lemma C.2] replacing Lemma
3.1). Hence, the main difficulty seems to be the proof of a boundary regularity
estimate for the boundedly inhomogeneous fractional p-Laplacian equation as
the one of Theorem 2.3.

Another point of interest lies in the fractional Hopf Lemma. As seen in
Sect. 5, the main point in focusing to C0

δ (Ω) local minimizers is the fact that
many order-related subsets of X(Ω) turn out to have nonempty interior with
respect to the C0

δ (Ω)-topology. As mentioned in the Introduction, this is in
strong contrast with the features of the topology of X(Ω), and the main tool
to exploit this difference is Lemma 2.7. It would be therefore interesting to
explore the validity of such a statement for more general nonlocal operators,
and for the fractional p-Laplacian in particular.

Finally, it is worth noting that in [5], the sub-supersolution principle
analogous to Theorem 5.1 is proved under a more general hypothesis on the
nonlinearity f(x, t), namely

There exists k � 0 such that for a.e.
x ∈ Ω the map t �→ f(x, t) + kt is non-decreasing.

While we considered in Theorem 5.1 only non-decreasing nonlinearities, it
seems that with little effort one can obtain the tools needed to treat the latter,
more general, case. Indeed, it suffices to prove, for the operator (−Δ)su + ku,
k � 0, all the corresponding results of Sect. 2.
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