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1. Introduction and main result

This paper is devoted to the study of some fine boundary regularity properties of the 
weak solution to the following problem:

{
(−Δ)sp u = f in Ω
u = 0 in Ωc.

(1.1)

Here, and throughout the paper, Ω ⊂ RN (N > 1) is a bounded domain with a C1,1

boundary ∂Ω, Ωc = RN \Ω, s ∈ ]0, 1[, p ∈ ]1, ∞[ are real numbers, and f ∈ L∞(Ω). The 
leading operator is the s-fractional p-Laplacian, defined as the gradient of the energy

J(u) = 1
p

¨

RN×RN

|u(x) − u(y)|p
|x− y|N+ps

dx dy

in the space

W s,p
0 (Ω) =

{
u ∈ Lp(RN ) : J(u) < ∞, u = 0 in Ωc

}
.

When restricted to conveniently smooth functions, such operator can be rephrased point-
wisely as

(−Δ)sp u(x) = 2 lim
ε→0+

ˆ

Bc
ε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x− y|N+ps

dy,

i.e., as a singular integral operator of fractional order s and summability power p, which 
for p = 2 reduces to the Dirichlet fractional Laplacian (−Δ)s (up to a multiplicative 
constant). For a deep discussion on various notions (weak, viscous and strong) of solutions 
to (1.1), see [19]. A useful comparison principle for (−Δ)sp has been proved in [24], a 
Hopf’s lemma in [5] and some strong comparison principles in [18], while its spectral 
properties are studied in [9,17,24].

The interior regularity theory for problem (1.1) is well developed. The linear case p = 2
is quite classical and Schauder estimates are available in the form f ∈ Cα ⇒ u ∈ C2s+α

whenever 2s + α is not an integer (see [28]). In the general case p �= 2 the situation 
is more involved. The first results are [6,7], dealing with local regularity and Harnack 
inequalities when f = 0 in (1.1). In the inhomogeneous case [3,14,15,21,23] contain local 
Hölder regularity estimates under various integrability assumptions on f , however the 
dependence of the Hölder exponent is not specified and not optimal. The papers [1,30]
deal with the degenerate case p � 2 and show higher fractional differentiability of u
when fractional differentiability of the forcing term is assumed. In [25] higher fractional 
differentiability is obtained for any p > 1 under summability assumptions on f . Finally, 
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still in the case p � 2, the optimal Hölder exponent for the solution of (1.1) is obtained 
in [2], giving e.g. u ∈ Cp′s

loc (Ω) when f ∈ L∞(Ω) and p′s < 1.
The boundary regularity for problem (1.1) is more delicate. As a comparison, consider 

its local counterpart

{
−Δpu = f in Ω
u = 0 on ∂Ω,

(1.2)

(formally obtained by letting s → 1− in (1.1)). It is well known that, for example, 
u ∈ C1,α

loc (Ω) whenever f is bounded, and nothing more can be expected, regardless of 
the smoothness of f . This regularity can easily be extended up to the boundary, as 
follows. One straightens the boundary near x0 ∈ ∂Ω and consider the odd reflection of 
the resulting u: as it turns out, it solves a similar equation in a larger domain containing 
x0 in its interior, therefore satisfying the previous local regularity estimates. Boundary 
regularity for a wider class of nonlinear local operators is proved in [22].

The odd reflection trick then shows that in general the interior and boundary regular-
ity for (1.2) coincide. This is no longer true for the fractional problem (1.1). For instance, 
the function u(x) = (1 − |x|2)s+ solves (1.1) for Ω = B1, p = 2 and f = const. in Ω. 
Its interior regularity is C∞ (as the Schauder theory a priori forces for C∞ right-hand 
sides), but its boundary regularity is only Cs. Thus, we see that there is no obvious 
way to reproduce the odd reflection trick to deduce boundary regularity for (1.1), since 
actually boundary and interior regularity are quantitatively different.

The first result dealing with the boundary regularity for problem (1.1) is contained 
in [28] for p = 2, where it is proved that u ∈ Cs(RN ) whenever the non-homogeneous 
term is bounded. In the nonlinear case, [14,15] contain a global Hölder continuity result, 
with an unspecified Hölder exponent (see also [20] for a refinement and generalization
when f = 0). Coupling the barrier argument contained in [14] with the optimal interior 
regularity of [2] provides the optimal regularity u ∈ Cs(RN ) when p � 2. Notice that 
the construction of the barrier in [14] only requires that ∂Ω is Lipschitz continuous and 
satisfies the exterior ball condition, matching the probably minimal regularity of the 
boundary assumed in [28] in the linear case. The same is expected to be true in the 
case p ∈ ]1, 2[, but the optimal (or, at least Cs) interior regularity in this framework is 
missing.

Still, even in the linear case, there is much more to be said. Despite the optimal 
regularity u ∈ Cs(Ω) rules out in general the existence of the classical normal derivative, 
in the seminal paper [28] a regularity result for the s-normal derivative

∂u

∂νs
(x0) := lim

t→0+

u(x0 + tνx0)
ts

,

where νx0 denotes the inner normal to ∂Ω at x0 ∈ ∂Ω. More precisely, they proved that, 
if when p = 2 and ∂Ω is C1,1, then any solution u of (1.1) satisfies
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∥∥∥∥ u

ds
Ω

∥∥∥∥
Cα(Ω)

≤ C‖f‖L∞(Ω), dΩ(x) := dist(x, ∂Ω)

for some α = α(N, s, Ω) ∈ ]0, 1[, C = C(N, s, Ω) > 0.
The latter can also be seen as a weighted Hölder regularity result and it provided 

several applications to overdetermined problems [8], nonlinear analysis [12,13], free 
boundary problems [4] and integration by parts formula [29]. For further references and 
related results we refer to the survey article [27].

Our main contribution is an analogous fine boundary regularity result for the weak 
solution to (1.1) in the degenerate case p � 2.

Theorem 1.1. Let p � 2, Ω be a bounded domain with C1,1 boundary and dΩ(x) :=
dist(x, ∂Ω). There exist α ∈ ]0, s] and C > 0, depending on N , p, s, and Ω, such that for 
all f ∈ L∞(Ω) the weak solution u ∈ W s,p

0 (Ω) to problem (1.1) satisfies u/ds
Ω ∈ Cα(Ω)

and ∥∥∥ u

ds
Ω

∥∥∥
Cα(Ω)

� C‖f‖
1

p−1
L∞(Ω).

With the result above we hope to provide nonlocal regularity theory with an analog 
of Lieberman’s C1,α(Ω) regularity theorem for the (local) p-Laplacian [22]. We privilege 
weak solutions (e.g., with respect to viscosity solutions, see [23]) mainly because we 
consider problem (1.1) in a variational perspective. A useful application of Theorem 1.1
is given in [16], yielding the equivalence of Sobolev and weighted Hölder local minimizers 
for the energy functional of a nonlinear boundary value problem driven by (−Δ)sp (similar 
results are proved in [13] for the linear case p = 2, and in [10] for the local p-Laplacian).

The singular case p ∈ ]1, 2[ of Theorem 1.1 remains open, but it can probably be dealt 
with through suitable variations of the techniques presented here. Another interesting 
issue is related to the case of unbounded reactions. In fact, the C1,α(Ω) result for problem 
(1.2) can be achieved even when f ∈ Lq(Ω) for some q > N , so one can conjecture that 
Theorem 1.1 above also holds for sufficiently summable right hand side. However, our 
approach extensively uses the boundedness of the reaction and it is not apparent how to 
deal with unbounded f ’s.

Sketch of proof. Our aim is a weak Harnack inequality for the function u/ds
Ω, and in 

particular a pointwise control of u/ds
Ω in terms of an integral quantity. Our strategy is 

to exploit the nonlocality of the operator and define the following nonlocal excess:

Ex(u, k,R, x0) = −
ˆ

B̃R,x0

∣∣∣ u

ds
Ω
− k

∣∣∣ dx,
with k ∈ R, R > 0, and B̃R,x0 being a small ball of radius comparable to R, placed 
at distance greater than R in the inner normal direction from x0 ∈ ∂Ω (see Fig. 1 and 
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properties (2.2) for a precise definition). We call it nonlocal because it turns out that, 
given a bound on (−Δ)sp u, the pointwise behavior of u/ds

Ω inside BR(x0) ∩Ω is controlled 
by the magnitude of the excess of u in B̃R,x0 , which takes into account the behavior of 
u/ds

Ω outside of BR(x0) ∩ Ω.
In order to describe the scheme of the proof, consider the case of Ω being the half-

space RN
+ = {xN > 0}, x0 = 0, R = 1, and D1 = B1 ∩ RN

+ . We are going to prove two 
types of weak Harnack inequalities. The first one is for supersolutions and reads

{
(−Δ)sp u � 0 in D1

u � ds
Ω in RN

+
=⇒ inf

B1/4∩RN
+

( u

ds
Ω
− 1

)
� σEx(u). (1.3)

Here eN = (0, . . . , 1), B1/4 is centered at 0 and σ is a positive constant depending 
only on N, p, and s. Besides, the translated ball eN + B1/4 corresponds to B̃1 and we 
have set

Ex(u) = Ex(u, 1, 1, 0) = −
ˆ

eN+B1/4

( u

ds
Ω
− 1

)
dx.

The second one regards subsolutions and is

{
(−Δ)sp u � 0 in D1

u � ds
Ω in RN

+
=⇒ inf

B1/4∩RN
+

(
1 − u

ds
Ω

)
� σEx(u). (1.4)

Note that in both cases we have a precise sign information on the difference u/ds
Ω − 1 in 

the translated ball. The similarity of the two statements is misleading, since, as will be 
seen later, the latter is actually considerably more difficult to prove than the former.

The reason why these kinds of nonlocal weak Harnack inequalities hold lies in the 
following nonlocal superposition principle, which in a different form was proved in [14]. 
Given a regular function w and a perturbation u, define

w̃u = w + (u− w)χB̃1

Then, under some mild control of w in terms of ds
Ω on B̃1, we have

⎧⎨⎩u � w in B̃1 =⇒ (−Δ)sw̃ � (−Δ)sw − cEx(u) in D1

u � w in B̃1 =⇒ (−Δ)sw̃ � (−Δ)sw + cEx(u) in D1
(1.5)

for some c = c(N, p, s) > 0.
Our strategy for proving, e.g., (1.3) can then be roughly described as follows:
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(i) Build a one parameter family of basic barrier wλ (λ ∈ R) obeying the bounds⎧⎪⎪⎨⎪⎪⎩
|(−Δ)sp wλ| � Cλ in B̃1

wλ � (1 + λ)ds
Ω in D1/4

wλ � ds
Ω in Dc

1

(1.6)

(ii) Choose λ � Ex(u) so that the nonlocal superposition principle (1.5) ensures

(−Δ)sp w̃λ � 0 � (−Δ)sp u in D1,

and thanks to the global control wλ � u in Dc
1, deduce that w̃λ is an actual lower 

barrier for u. Thus, by comparison, w = wλ � u in D1/4.
(iii) Conclude from the second condition in (1.6) that

u

ds
Ω
− 1 � w

ds
Ω
− 1 � λ � Ex(u) in D1/4.

Most of the paper will thus be devoted to the construction of the family of basic 
barriers satisfying (1.6). As it turns out, the construction will depend on the size of 
Ex(u), and we will need three different kinds of barriers. More precisely, for small values 
of Ex(u) (and thus of λ), we will build the barrier wλ starting from ds

Ω (which in the 
case of a half-space obeys (−Δ)sp ds

Ω = 0) and performing a C1,1-small diffeomorphism 
of the domain supported in D1, to get the first condition in (1.6). A similar construction 
yields the upper barrier to prove (1.4) in the case of small excess.

For large values of Ex(u), the lower barrier will be a multiple (of order � λ) of the 
torsion function {

(−Δ)sp v = 1 in D1/2

v = 0 in Dc
1/2,

which, thanks to a Hopf type lemma and the size of Ex(u) � λ, fulfills the second bound 
in (1.6).

Unfortunately, when we are looking for the corresponding basic upper barrier wλ for 
large Ex(u) � λ, namely ⎧⎪⎪⎨⎪⎪⎩

|(−Δ)sp wλ| � Cλ in B̃1

wλ � (1 − λ)ds
Ω in D1/4

wλ � ds
Ω in Dc

1

(in order to prove the weak Harnack inequality for subsolutions (1.4)), the previous con-
struction fails. Indeed, when λ > 1, wλ/ds

Ω must change sign near ∂Ω ∩ (D1 \D1/4) and, 
even in the case of a half-space, we lack explicit examples of functions with bounded 
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(−Δ)sp having such behavior. To get around this difficulty we employ an abstract con-
struction chiefly based on the Lewy-Stampacchia inequality, building an upper barrier 
which solves a double obstacle problem. This ensures that, for large excess, the solution 
u is nonpositive in D1/2, and now the torsion function argument applies providing the 
desired bounds.

Finally, we localize (1.3) and (1.4), requiring the pointwise bounds to hold only in 
D2. This is done by looking at the truncations of u below or above ds

Ω and, due to 
the nonlocality of the operator, it produces additional non-homogeneous terms (usually 
called tails in the literature) which in the case p � 2 are quite delicate to care of (see 
Remark 2.8 in this respect). Having the local version of the weak Harnack inequality 
finally gives the desired Hölder continuity through well known techniques, originally 
developed in [28] for the linear case.

Notation. Throughout the paper, dependence on N , p, s will often be omitted. Positive 
constants will be denoted by C1, C2, . . . . When measurable functions are involved, the 
expression ‘in Ω’ will always mean ‘a.e. in Ω’ (and similar). We will regularly set ap−1 =
|a|p−2a for all a ∈ R. The positive order cone of a function space X is denoted X+. 
For all function f , we denote by f+ its positive part. Functions defined in a domain 
U ⊂ RN will be identified with their extensions to RN vanishing in U c. The minimum 
(resp. maximum) of two functions f , g is denoted by f ∧ g (resp. f ∨ g). Though our 
main theorem is only proved for p � 2, all the intermediate results will, unless otherwise 
stated, hold for any p > 1.

2. Preliminaries

As we said in Section 1, Ω ⊂ RN will always be a bounded domain with a C1,1

boundary ∂Ω. For all x ∈ RN and R > 0 we set

BR(x) =
{
y ∈ RN : |x− y| < R

}
, DR(x) = BR(x) ∩ Ω

(we omit the x-dependence if x = 0, i.e., we set BR(0) = BR, DR(0) = DR). We define 
a distance function by setting for all x ∈ RN

dΩ(x) = inf
y∈Ωc

|x− y|.

Clearly dΩ : RN → R+ is 1-Lipschitz continuous. By the C1,1-regularity of ∂Ω, Ω has 
the interior sphere property, namely there exists R > 0 s.t. for all x ∈ ∂Ω we can find 
y ∈ Ω s.t. B2R(y) ⊆ Ω is tangent to ∂Ω at x (in some results this weaker property alone 
will suffice). We denote by ρ > 0 the supremum of such R’s, i.e.

ρ = ρ(Ω) = sup
{
R : ∀x ∈ ∂Ω ∃B2R ⊆ Ω s.t. x ∈ ∂B2R

}
> 0 (2.1)

and define the neighborhood of ∂Ω by setting
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x

Ω
B̃x,R

DR

2R

R

Fig. 1. The ball B̃x,R, with center in the normal direction.

Ωρ =
{
x ∈ Ω : dΩ(x) < ρ

}
.

By the choice of ρ, the metric projection ΠΩ : Ωρ → ∂Ω is well defined and is C1,1 if ∂Ω
is C1,1. Moreover (see Fig. 1), for all x ∈ ∂Ω and R ∈ ]0, ρ[ there exists a ball B̃x,R of 
radius R/4 s.t.

B̃x,R ⊂ D2R(x) \D3R/2(x), inf
y∈B̃x,R

dΩ(y) � 3R
2 . (2.2)

We recall now the definitions of the main function spaces that we shall use in this 
paper. For all measurable u : RN → R we set

[u]ps,p =
¨

RN×RN

|u(x) − u(y)|p
|x− y|N+ps

dx dy,

and we define the fractional Sobolev space

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p < ∞

}
,

which is a Banach space with respect to the norm ‖u‖s,p = [u]s,p + ‖u‖Lp(RN ), with 
C∞

c (RN ) as a dense subspace. We also set

W s,p
0 (Ω) =

{
u ∈ W s,p(RN ) : u = 0 in Ωc

}
(equivalent to the definition given in Section 1), the latter being a uniformly convex, 
separable Banach space with the norm [u]s,p. The dual space of W s,p

0 (Ω) is denoted by 
W−s,p′(Ω). We will also use the following function space:

W̃ s,p(Ω) =
{
u ∈ Lp

loc(R
N ) : ∃ Ω′ � Ω s.t. u ∈ W s,p(Ω′) and

ˆ |u(x)|p−1

(1 + |x|)N+ps
dx < ∞

}
.

RN



A. Iannizzotto et al. / Journal of Functional Analysis 279 (2020) 108659 9
Such space plays an important rôle in the study of our problem, since by [14, Lemma 
2.3] for all u ∈ W̃ s,p(Ω) we have (−Δ)sp u ∈ W−s,p′(Ω). We also set, for any open subset 
U ⊂ Ω,

W̃ s,p
0 (U) =

{
u ∈ W̃ s,p(U) : u(x) = 0 in Ωc

}
(note that u does not necessarily vanish in all of U c). We define a notion of nonlocal tail
(slightly different from that introduced in [7]) by setting for all measurable u : RN → R, 
R > 0, and q � 1

tailq(u,R) =
[ ˆ

Ω∩Bc
R

|u(x)|q
|x|N+s

dx
] 1

q

. (2.3)

All equations and inequalities involving (−Δ)sp are meant in the weak sense, unless 
explicitly stated: e.g., for u ∈ W s,p

0 (Ω) and f ∈ L∞(Ω), we say that (−Δ)sp u = f in Ω, if

¨

RN×RN

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))
|x− y|N+ps

dx dy =
ˆ

Ω

f(x)ϕ(x) dx for all ϕ ∈ W s,p
0 (Ω).

Similarly, we say that (−Δ)sp u � f in Ω if for all ϕ ∈ W s,p
0 (Ω)+

¨

RN×RN

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))
|x− y|N+ps

dx dy �
ˆ

Ω

f(x)ϕ(x) dx.

We will also use the space of α-Hölder continuous functions

Cα(Ω) =
{
u ∈ C(Ω) : [u]Cα(Ω) < ∞

}
,

where

[u]Cα(Ω) = sup
x,y∈Ω, x �=y

|u(x) − u(y)|
|x− y|α ,

which is a Banach space endowed with the norm

‖u‖Cα(Ω) = ‖u‖L∞(Ω) + [u]Cα(Ω).

In the rest of the section we will list some useful technical results on solutions to (1.1)
type problems on several domains: for simplicity, we always denote the domain by Ω, 
but in the forthcoming sections these results will also be applied to different domains.

We begin with the following weak comparison principle (see [24, Lemma 9], [14, Propo-
sition 2.10]):
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Proposition 2.1 (Comparison principle). Let u, v ∈ W̃ s,p(Ω) satisfy

{
(−Δ)sp u � (−Δ)sp v in Ω
u � v in Ωc.

Then u � v in RN .

Our first result is a simple estimate on the solution to the torsion equation in a ball: 
for all R > 0, we denote by uR ∈ W s,p

0 (BR) the (unique) solution to

{
(−Δ)sp uR = 1 in BR

uR = 0 in Bc
R.

(2.4)

Lemma 2.2. There exists C1 = C1(N, p, s) > 1 such that for all R > 0, x ∈ RN

R
s

p−1

C1
ds
BR

(x) � uR(x) � C1R
s

p−1 ds
BR

(x).

Proof. First assume R = 1. By the strong maximum principle (see [26, Lemma 2.3]), we 
have u1 > 0 in B1, while by [14, Theorem 4.4] there exists C1 > 0 s.t.

u1 � C1ds
B1

in RN . (2.5)

By [14, Theorem 3.6] we can find r ∈ ]0, 1[, M > 0 such that |(−Δ)sp ds
B1

| � M in B1\Br. 
Set m = infBr

u1 > 0 and for all x ∈ RN

w(x) = min
{
m,M− 1

p−1
}
ds
B1

(x).

Then we have {
(−Δ)sp w � (−Δ)sp u1 in B1 \Br

w � u1 in (B1 \Br)c.

Proposition 2.1 yields w � u1 in RN . So, for C1 even bigger if necessary in (2.5), we 
improve to

ds
B1

C1
� u1 � C1ds

B1
in RN . (2.6)

Now take an arbitrary R > 0 and set for all x ∈ RN

v(x) = uR(Rx)
′ .
Rp s
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Then v ∈ W s,p
0 (B1) and by the homogeneity and scaling properties of (−Δ)sp (see [14, 

Proposition 2.9 (i) (ii)]) we have

{
(−Δ)sp v = 1 in B1

v = 0 in Bc
1.

By uniqueness v = u1. Since dBR
(Rx) = RdB1(x), by (2.6) we have for all x ∈ RN

ds
BR

(Rx)
C1Rs

� uR(Rx)
Rp′s

�
C1ds

BR
(Rx)

Rs
,

hence the conclusion. �
The previous estimate allows us to use uR as a barrier to prove a Hopf type lemma 

for the torsion equation in a general domain:

{
(−Δ)sp u = 1 in Ω
u = 0 in Ωc.

(2.7)

Lemma 2.3 (Hopf’s lemma). Let u ∈ W s,p
0 (Ω) solve (2.7) and Ω satisfy the interior sphere 

property (2.1). Then

u(x) � 1
C1

ρ
s

p−1 ds
Ω(x) for all x ∈ RN ,

where C1 = C1(N, p, s) > 1 is given in the previous Lemma.

Proof. First, fix x ∈ Ωρ. Then we can find a ball B ⊆ Ω of radius 2ρ, tangent to ∂Ω at 
ΠΩ(x) and such that dΩ(x) = dB(x). Let v ∈ W s,p

0 (B) solve

{
(−Δ)sp v = 1 in B

v = 0 in Bc.

So we have {
(−Δ)sp v � (−Δ)sp u in B

v � u in Bc.

By Proposition 2.1 we have v � u in RN . By Lemma 2.2 and dΩ(x) = dB(x), we infer

u(x) � v(x) � (2ρ)
s

p−1

ds
Ω(x). (2.8)
C1



12 A. Iannizzotto et al. / Journal of Functional Analysis 279 (2020) 108659
Now assume x ∈ Ω \ Ωρ, and set R = dΩ(x) � ρ. The ball B′ = BR(x) is contained 
in Ω and dB′(x) = R = dΩ(x). Considering the torsion function v′ of B′ and applying 
Proposition 2.1, we deduce through Lemma 2.2

u(x) � v′(x) � R
s

p−1

C1
ds
B′(x) = R

s
p−1

C1
Rs � ρ

s
p−1

C1
ds

Ω(x). (2.9)

From (2.8) and (2.9) we conclude. �
Another property of problem (2.7) is that its solution is a subsolution all over RN :

Lemma 2.4. Let Ω be bounded and u ∈ W s,p
0 (Ω) solve (2.7). Then (−Δ)sp u � 1 in RN .

Proof. Set for all v ∈ W s,p(RN ) ∩ L1(RN )

J1(v) =
[v]ps,p
p

−
ˆ

RN

v(x) dx,

(achieving its minimum on W s,p
0 (Ω) at u) and consider the constrained minimization 

problem

inf
v�u

J1(v). (2.10)

For any v it holds J1(v+) � J1(v). Moreover, v � u implies v+ ∈ W s,p
0 (Ω), hence

J1(u) � inf
v�u

J1(v) = inf
v�u

J1(v+) � inf
W s,p

0 (Ω)
J1 = J1(u).

Thus u solves (2.10) as well. The variational inequality associated to (2.10) reads

〈J ′
1(u), v − u〉 � 0 for all v ∈ W s,p(RN ) ∩ L1(RN ), v � u

and setting v = u − ϕ, we get

〈J ′
1(u), ϕ〉 � 0 for all ϕ ∈ C∞

c (RN ), ϕ � 0,

i.e., (−Δ)sp u � 1 in all of RN , concluding the proof. �
We define a partial ordering on the dual space W−s,p′(Ω) through the positive cone

W−s,p′
(Ω)+ =

{
L ∈ W−s,p′

(Ω) : 〈L,ϕ〉 � 0 for all ϕ ∈ W s,p
0 (Ω)+

}
.

By the Riesz theorem and the density of C∞
c (Ω) in W s,p

0 (Ω), any L ∈ W−s,p′(Ω)+ can 
be faithfully represented as a (positive) Radon measure on Ω (see the discussion in [11, 
p. 265]). Then, the order dual of w is defined as
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W−s,p′

� (Ω) =
{
L1 − L2 : L1, L2 ∈ W−s,p′

(Ω)+
}
.

Such space inherits a lattice structure defined by duality through the lattice structure 
of W s,p

0 (Ω), as shown in [11, p. 260]. We now give a slight generalization of the Lewy-
Stampacchia type inequality [11, Theorem 2.4] which is needed to treat double obstacle 
problems with obstacle not lying in W s,p

0 (Ω). The proof is well known and we describe 
it for sake of completeness, specializing to the case of the operator (−Δ)sp.

Lemma 2.5 (Lewy-Stampacchia). Let Ω ⊆ RN be bounded, ϕ, ψ ∈ W s,p
loc (RN ) be such that

(i) (−Δ)sp ϕ, (−Δ)sp ψ ∈ W−s,p′

� (Ω)
(ii) [ϕ, ψ] :=

{
v ∈ W s,p

0 (Ω) : ϕ � v � ψ
}
�= ∅

Then there exists a unique solution u ∈ W s,p
0 (Ω) to the problem

min
v∈[ϕ,ψ]

[v]ps,p/p,

and it satisfies

0 ∧ (−Δ)sp ψ � (−Δ)sp u � 0 ∨ (−Δ)sp ϕ in Ω.

Proof. The existence and uniqueness statements for the minimization problem follow 
from the strict convexity and coercivity of v �→ [v]ps,p. The function u ∈ [ϕ, ψ] is a 
minimizer iff it satisfies for all v ∈ [ϕ, ψ]

〈(−Δ)sp u, v − u〉 � 0. (2.11)

We prove now that

(−Δ)sp u � 0 ∨ (−Δ)sp ϕ in Ω. (2.12)

Recall from [11, Remark 3.3 and p. 261] that v �→ [v]ps,p/p is sub-modular and strictly 
convex, hence its differential (−Δ)sp is a strictly T -monotone map, i.e.

〈(−Δ)sp u− (−Δ)sp v, (u− v)+〉 > 0 unless v � u. (2.13)

By condition (i), the strictly convex, coercive functional

J2 : W s,p
0 (Ω) → R, J2(v) =

[v]ps,p
p

− 〈(−Δ)sp ϕ ∨ 0, v〉,

is well defined, and we thus let w be the unique solution of the following problem

min J2(v), ] −∞, u] :=
{
v ∈ W s,p

0 (Ω) : v � u
}
,

v∈ (∞,u]
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which therefore solves for all v ∈ ] −∞, u]

〈J ′
2(w), v − w〉 � 0. (2.14)

We claim that u � w, and then necessarily u = w. Condition (ii) forces ϕ � 0 in Ωc, 
therefore w ∨ ϕ ∈ W s,p

0 (Ω). Choosing v = w ∨ ϕ = w + (ϕ − w)+ gives

0 � 〈J ′
2(w), (ϕ− w)+〉 = 〈(−Δ)sp w − (0 ∨ (−Δ)sp ϕ), (ϕ− w)+〉

� 〈(−Δ)sp w − (−Δ)sp ϕ, (ϕ− w)+〉.

By (2.13), this implies ϕ � w and, by w � u, a fortiori w ∈ [ϕ, ψ]. Choosing v = w∨u =
w + (u − w)+ as a test function in (2.14) gives

0 � 〈J ′
2(w), (u− w)+〉 = 〈(−Δ)sp w − (0 ∨ (−Δ)sp ϕ), (u− w)+〉 � 〈(−Δ)sp w, (u− w)+〉,

while letting v = w ∧ u = u − (u − w)+ in (2.11), provides

0 � 〈(−Δ)sp u,−(u− w)+〉.

Summing up we obtain

0 � 〈(−Δ)sp w − (−Δ)sp u, (u− w)+〉,

thus (2.13) entails u � w and therefore w = u. This enforces (2.14) for u, then for all 
z ∈ W s,p

0 (Ω)+, setting v = u − z ∈ ] −∞, u] we get

〈(−Δ)sp u, z〉 � 〈(−Δ)sp ϕ ∨ 0, z〉,

proving (2.12). The first inequality of the thesis is achieved through a similar argu-
ment. �

A major tool in our proofs is the following nonlocal superposition principle:

Proposition 2.6 (Superposition principle). Let Ω be bounded, u ∈ W̃ s,p(Ω), v ∈ L1
loc(RN ), 

V = supp(u − v) satisfy

(i) Ω � RN \ V ;

(ii)
ˆ

V

|v(x)|p−1

(1 + |x|)N+ps
dx < ∞.

Set for all x ∈ RN

w(x) =
{
u(x) if x ∈ V c

v(x) if x ∈ V .
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Then w ∈ W̃ s,p(Ω) and satisfies in Ω

(−Δ)sp w(x) = (−Δ)sp u(x) + 2
ˆ

V

(u(x) − v(y))p−1 − (u(x) − u(y))p−1

|x− y|N+ps
dy.

Proof. We can rephrase w = u +(v−u)χV , which implies w ∈ W̃ s,p(Ω). By [14, Lemmas 
2.3, 2.8] we have (−Δ)sp w ∈ W−s,p′(Ω), moreover for all ϕ ∈ W s,p

0 (Ω)

〈(−Δ)sp w,ϕ〉 = 〈(−Δ)sp u, ϕ〉 +
ˆ

Ω

h(x)ϕ(x) dx,

where for all Lebesgue point x ∈ V of u we have set

h(x) = 2
ˆ

V

(u(x) − v(y))p−1 − (u(x) − u(y))p−1

|x− y|N+ps
dy.

This concludes the proof. �
We conclude this section with a key estimate for a function which is locally bounded 

by a suitable multiple of ds
Ω (here we first require that p � 2). The passage from a 

global bound to a local bound can be delicate for a nonlocal operator such as (−Δ)sp. 
While technical, the next proposition shows the main reason why the degeneracy of the 
operator forces, in the following sections, a peculiar decomposition of the right hand side 
(see Remark 2.8 below).

Proposition 2.7. Let Ω be bounded, p � 2 and u ∈ W̃ s,p
0 (DR) satisfy (−Δ)sp u ∈

W−s,p′

� (DR):

(i) Suppose u � mds
Ω in D2R. There exists C2 = C2(N, p, s) > 0 and for all ε > 0 a 

constant Cε = Cε(N, p, s, ε) > 0 such that in DR

(−Δ)sp
(
u ∨mds

Ω) � (−Δ)sp u− ε

Rs

∥∥∥ u

ds
Ω
−m

∥∥∥p−1

L∞(DR)

− Cεtailp−1

((
m− u

ds
Ω

)
+
, 2R

)p−1

− C2|m|p−2tail1
((

m− u

ds
Ω

)
+
, 2R

)
;

(ii) Suppose u � Mds
Ω in D2R. There exists C ′

2 = C ′
2(N, p, s) > 0 and for all ε > 0 a 

constant C ′
ε = C ′

ε(N, p, s, ε) > 0 such that in DR
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(−Δ)sp
(
u ∧Mds

Ω) � (−Δ)sp u + ε

Rs

∥∥∥M − u

ds
Ω

∥∥∥p−1

L∞(DR)

+ C ′
εtailp−1

(( u

ds
Ω
−M

)
+
, 2R

)p−1

+ C ′
2|M |p−2tail1

(( u

ds
Ω
−M

)
+
, 2R

)
.

Proof. We prove (i). We may assume u/ds
Ω−m ∈ L∞(DR), otherwise there is nothing to 

prove. We will use the following elementary inequality: since p � 2, there exists Cp > 0
such that for all a, b, c ∈ R

(a− b)p−1 − (c− b)p−1 � Cp(|a|p−2 + |b|p−2)|a− c| + Cp|a− c|p−1. (2.15)

Indeed, by Lagrange’s theorem and convexity, we have

(a− b)p−1 − (c− b)p−1 � Cp(|a|p−2 + |b|p−2 + |c|p−2)|a− c|
� Cp

(
|a|p−2 + |b|p−2 + C ′

p(|c− a|p−2 + |a|p−2)
)
|a− c|,

which implies (2.15). Set w = u ∨mds
Ω. Since {u < mds

Ω} ⊆ Dc
2R is bounded away from 

DR, we can apply Proposition 2.6 and get for all x ∈ DR

(−Δ)sp w(x) = (−Δ)sp u(x) + 2
ˆ

{u<mds
Ω}

(u(x) −mds
Ω(y))p−1 − (u(x) − u(y))p−1

|x− y|N+ps
dy

= (−Δ)sp u(x) − 2
ˆ

{u<mds
Ω}

(mds
Ω(y) − u(x))p−1 − (u(y) − u(x))p−1

|x− y|N+ps
dy.

(2.16)

We use (2.15) to estimate the numerator of the integrand, recalling also that dΩ(x) � R, 
u(x) � mds

Ω(x), R < dΩ(y) � |y|, and u(y) < mds
Ω(y):

(mds
Ω(y) − u(x))p−1 − (u(y) − u(x))p−1

� Cp

(
|mds

Ω(y)|p−2 + |u(x)|p−2)|mds
Ω(y) − u(y)| + Cp|mds

Ω(y) − u(y)|p−1

� Cp

(
|m|p−2d(p−2)s

Ω (y) + |m|p−2R(p−2)s + (u(x) −mds
Ω(x))p−2)(mds

Ω(y) − u(y))

+ Cp(mds
Ω(y) − u(y))p−1

� C|m|p−2|y|(p−2)s(mds
Ω(y) − u(y)) + ε(u(x) −mds

Ω(x))p−1 + Cε(mds
Ω(y) − u(y))p−1,

where in the end we have also used Young’s inequality with exponents q = (p −1)(p −2)−1

and q′ = p −1. Here C > 0 depends only on N , p, s, while Cε > 0 also depends on ε > 0. 
Now, by means of the inequality above and the relations |x − y| � |y|/2 � R, we can 
estimate the integral in (2.16), getting



A. Iannizzotto et al. / Journal of Functional Analysis 279 (2020) 108659 17
ˆ

{u<mds
Ω}

(mds
Ω(y) − u(x))p−1 − (u(y) − u(x))p−1

|x− y|N+ps
dy

� ε

ˆ

{u<mds
Ω}

(u(x) −mds
Ω(x))p−1

|x− y|N+ps
dy + Cε

ˆ

{u<mds
Ω}

(mds
Ω(y) − u(y))p−1

|x− y|N+ps
dy

+ C|m|p−2
ˆ

{u<mds
Ω}

|y|(p−2)s(mds
Ω(y) − u(y))

|x− y|N+ps
dy

� ε
∥∥∥m− u

ds
Ω

∥∥∥p−1

L∞(DR)

ˆ

Dc
2R

R(p−2)s

|y|N+ps
dy + Cε

ˆ

Dc
2R

(
m− u(y)

ds
Ω(y)

)p−1

+

dy

|y|N+s

+ C|m|p−2
ˆ

Dc
2R

(
m− u(y)

ds
Ω(y)

)
+

dy

|y|N+s

� ε

Rs

∥∥∥ u

ds
Ω
−m

∥∥∥p−1

L∞(DR)
+ Cεtailp−1

((
m− u

ds
Ω

)
+
, 2R

)p−1
+ C2tail1

((
m− u

ds
Ω

)
+
, 2R

)
where we may take, if necessary, ε > 0 even smaller and Cε > 0 even bigger, plus some 
C2(N, p, s). Plugging the last inequality into (2.16) (and replacing ε with ε/2), we achieve 
(i). The argument for (ii) is immediate, by replacing u with −u and m with −M . �
Remark 2.8. Before going further, a short discussion is in order. Proposition 2.7 provides 
bounds of the fractional p-Laplacians of truncated functions, which involve two tail 
terms with different exponents, namely tailp−1 and tail1. One of the main issues in 
the forthcoming sections will be to estimate inductively such tail terms, taking into 
account that they behave differently when R → 0+, with tail1 being asymptotically larger 
than tailp−1. In adjusting those estimates, the quantities |m|p−2, |M |p−2 multiplying the 
term tail1 in (i), (ii) respectively, will play a fundamental rôle. That is why we will 
emphasize the m-dependence of the right hand side for supersolutions (respectively, its 
M -dependence for subsolutions). Precisely, we shall prove a lower bound for a function 
u satisfying {

(−Δ)sp u � −K −mp−2H in DR

u � mds
Ω in RN ,

and an upper bound for a function u satisfying{
(−Δ)sp u � K + Mp−2H in DR

u � Mds
Ω in RN ,

respectively, with convenient K, H, m, M � 0. As we will see, the upper and lower bounds 
require substantially different approaches.
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3. The lower bound

This section is devoted to the study of supersolutions of (1.1) type problems on special 
domains, locally bounded from below by a multiple of ds

Ω. For such supersolutions we aim 
at proving a lower bound for the quotient u/ds

Ω near the boundary (see Proposition 3.7
below).

First, we assume that the supersolution u is globally bounded from below by mds
Ω

and rephrase the lower bound on (−Δ)sp u as −K −mp−2H. Precisely, we assume p � 2, 
0 ∈ ∂Ω (for simplicity of notation), R ∈ ]0, ρ/4[, and consider u ∈ W̃ s,p(DR) satisfying 
for some K, H, m � 0 {

(−Δ)sp u � −K −mp−2H in DR

u � mds
Ω in RN .

(3.1)

A major rôle in determining the behavior of u/ds
Ω in a semi-disc DR(x0) is played by 

the following nonlocal excess

Ex(u, k,R, x0) = −
ˆ

B̃x0,R

∣∣∣∣ u(x)
ds

Ω(x) − k

∣∣∣∣ dx, (3.2)

where B̃x0,R is defined as in (2.2). As we will frequently assume x0 = 0, the dependence 
on the latter will be omitted. We begin by proving a lower bound for the case of large 
values of the excess, which highlights the nonlocal feature of the equation.

Lemma 3.1. Let u ∈ W̃ s,p(DR) solve (3.1), p � 2 and Ω satisfy (2.1). Then there exist 
θ1 = θ1(N, p, s) � 1, C3 = C3(N, p, s) > 1, σ1 = σ1(N, p, s) ∈ ]0, 1] s.t. for all R ∈ ]0, ρ/4[

Ex(u,m,R) � mθ1 =⇒ inf
DR/2

( u

ds
Ω
−m

)
� σ1Ex(u,m,R) − C3(KRs)

1
p−1 − C3HRs.

Proof. Set

AR =
⋃{

Br(y) : y ∈ RN , r � R

8 , Br(y) ⊂ DR

}
.

By the regularity of ∂Ω stated in (2.1) and R < ρ/4, AR ⊂ RN is a bounded domain 
satisfying the interior sphere condition with radius ρAR

� R/16 (see Fig. 2). Moreover 
we claim that

dΩ � CdAR
in DR/2. (3.3)

First note that D3R/4 ⊆ AR implies dD3R/4 � dAR
in RN . Furthermore, for all x ∈ DR/2

we have
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Ω

AR

R

3R/4

Fig. 2. The regularized set AR in gray.

dΩ(x) � |x− ΠΩ(ΠD3R/4(x))| � |x− ΠD3R/4(x)| + |ΠD3R/4(x) − ΠΩ(ΠD3R/4(x))|.

To proceed, we distinguish two cases:

(a) if ΠD3R/4(x) ∈ ∂Ω, then ΠΩ(ΠD3R/4(x)) = ΠD3R/4(x) and so

dΩ(x) � dD3R/4(x) � dAR
(x);

(b) if ΠD3R/4(x) /∈ ∂Ω, then we have |ΠD3R/4(x)|, |ΠΩ(ΠD3R/4(x))| � R and dD3R/4(x) �
R/4, which in turn implies

dΩ(x) � dD3R/4(x) + |ΠD3R/4(x)| + |ΠΩ(ΠD3R/4(x))| � 9dD3R/4(x) � 9dAR
(x).

Both cases lead to (3.3). We will also use the following elementary inequality from [14, 
Eq. (2.7)]: since p � 2, for all a ∈ R, b � 0 we have

(a + b)p−1 − ap−1 � 22−pbp−1. (3.4)

Let v ∈ W s,p
0 (AR) be the solution of the torsion problem

{
(−Δ)sp v = 1 in AR

v = 0 in Ac
R.

By Lemma 2.4 we have (−Δ)sp v � 1 in RN . Besides, by Lemma 2.3 and (3.3) we have

v � R
s

p−1

C
ds

Ω in DR/2. (3.5)

Pick λ > 0 (to be determined later) and set
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w(x) =

⎧⎨⎩
λ

R
s

p−1
v(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R,

where B̃R is defined as in (2.2). We note that dist (B̃R, DR) > 0, so we can apply 
Proposition 2.6. Also using homogeneity of (−Δ)sp, (3.4), and the relations dΩ(y) < 3R/2, 
|x − y| > 3R/4, we get for all x ∈ DR

(−Δ)sp w(x) = (−Δ)sp
( λ

R
s

p−1
v(x)

)
+ 2

ˆ

B̃R

(w(x) − u(y))p−1 − wp−1(x)
|x− y|N+ps

dy

� λp−1

Rs
− 1

C

ˆ

B̃R

u(y)p−1

|x− y|N+ps
dy

� λp−1

Rs
− 1

C

ˆ

B̃R

(u(y) −mds
Ω(y))p−1

|x− y|N+ps
dy.

Observe that by the property (2.2) of B̃R

ˆ

B̃R

(u(y) −mds
Ω(y))p−1

|x− y|N+ps
dy �

ˆ

B̃R

( u(y)
ds

Ω(y) −m
)p−1 ds(p−1)

Ω (y)
|x− y|N+ps

dy

� (3/2R)s(p−1)

(R/2)N+ps

ˆ

B̃R

( u(y)
ds

Ω(y) −m
)p−1

dy,

and thus by Hölder inequality and the fact that u � mds
Ω in B̃R,

(−Δ)sp w(x) � λp−1

Rs
− 1

CRs
−
ˆ

B̃R

( u(y)
ds

Ω(y) −m
)p−1

dy � λp−1

Rs
− Ex(u,m,R)p−1

CRs
.

Choosing

λ = Ex(u,m,R)
(2C2)

1
p−1

, (3.6)

we have

(−Δ)sp w � −Ex(u,m,R)p−1

2CRs
in DR. (3.7)

Now we choose the constants, setting

θ1 = 1 = 2C(2C2)
1

p−1 , C3 = σ1 max
{
(4C)

1
p−1 , 4Cθ2−p

1
}
.

σ1
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Clearly θ1, C3 � 1 � σ1 > 0 only depend on N , p, s. Assuming

Ex(u,m,R) � mθ1, (3.8)

we claim that

inf
DR/2

( u

ds
Ω
−m

)
� σ1Ex(u,m,R) − C3(KRs)

1
p−1 − C3HRs.

Two cases may occur:

(a) If σ1Ex(u, m, R) � C3(KRs)
1

p−1 + C3HRs, then the claim is immediate being the 
left hand side non-negative.

(b) If σ1Ex(u, m, R) > C3(KRs)
1

p−1 +C3HRs, then from the definitions above and (3.8)
we have

Ex(u,m,R)p−1 �

⎧⎪⎨⎪⎩
(C3

σ1

)p−1
KRs � 4CKRs

(mθ1)p−2Ex(u,m,R) � (mθ1)p−2C3

σ1
HRs � 4Cmp−2HRs,

and by summing up

Ex(u,m,R)p−1 � 2CRs(K + mp−2H).

Now by (3.1), (3.7), and recalling that w = χB̃R
u in Dc

R, we have

{
(−Δ)sp w � −K −mp−2H � (−Δ)sp u in DR

w � u in Dc
R.

By Proposition 2.1 we have w � u in RN . In particular, for all x ∈ DR/2, recalling 
(3.5) and the definition of λ in (3.6), we have

u(x) � λ

R
s

p−1
v(x) � Ex(u,m,R)

C(2C2)
1

p−1
ds

Ω(x).

Thus, by (3.8) again

inf
DR/2

( u

ds
Ω
−m

)
� Ex(u,m,R)

( 1
C(2C2)

1
p−1

− 1
θ1

)
= σ1Ex(u,m,R).

In both cases the proof is concluded. �
Remark 3.2. In Lemma 3.1 we bound u/ds

Ω from below by means of the sum of three 
terms, one of which depends on u while the others do not, and the latter are in fact 
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dropped unless the sum is negative. This strategy will be used several times in the 
following results.

The next result is a change of variables lemma for (−Δ)sp, strictly related to the dis-
cussion on the boundedness of the fractional p-Laplacians of distance functions developed 
in [14, Section 3]. Here GLN denotes the group of all invertible matrices in RN×N , and 
|A| denotes any matrix norm. For all A ∈ GLN , x ∈ Ω, and ε > 0 we set

gε(A, x) =
ˆ

Bc
ε(x)

(ds
Ω(x) − ds

Ω(y))p−1

|A(x− y)|N+ps
dy. (3.9)

We need some more notation for this result: for all U, V ⊂ RN we denote the Hausdorff 
distance between U and V by

distH(U, V ) = max
{

sup
x∈U

dist(x, V ), sup
y∈V

dist(y, U)
}
,

and the symmetric difference by

UΔV = (U \ V ) ∪ (V \ U).

Finally, for all U ⊂ RN we denote by HN−1(U) the (N − 1)-dimensional Hausdorff 
measure of U .

Lemma 3.3. If ∂Ω is C1,1, there exist δ = δ(N) > 0, C4 = C4(N, p, s, Ω) > 0 and g0 s.t.

(i) gε → g0 in L∞
loc(Bδ(I) × Ωρ/2), as ε → 0+;

(ii) ‖g0‖L∞(Bδ(I)×Ωρ/2) � C4.

Proof. Since GLN is an open subset of RN×N , we can find δ > 0 (only depending on 
N) s.t. B2δ(I) ⊂ GLN . Choose A ∈ Bδ(I), C = C(N) > 0 such that |A|, |A−1| �
C. By translation invariance and boundedness of Ωρ/2, we may assume 0 ∈ ∂Ω and 
prove that gε → g0 locally uniformly in Bδ(I) × Dρ/2 as ε → 0+, for some g0 with 
‖g0‖L∞(Bδ(I)×Dρ/2) � C (allowing C > 0 to grow bigger and eventually depend on N , p, 
s, and Ω). As the estimates will be uniform with respect to A ∈ Bδ(I), we will omit the 
dependence on A for simplicity.

Observe that restricting the domain of integration in (3.9) to D3ρ/4 ∩ Bc
ε(x) has the 

sole effect of adding an equi-bounded term to both gε and g0, so that we can actually 
prove the statement for

g̃ε(x) =
ˆ

D ∩Bc(x)

(ds
Ω(x) − ds

Ω(y))p−1

|A(x− y)|N+ps
dy.
3ρ/4 ε
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Since ∂Ω is of class C1,1, there exists a diffeomorphism Φ ∈ C1,1(RN , RN ) such that 
Φ(0) = 0, dΩ(x) = (x′

N )+ for all x ∈ Dρ/2, x′ = Φ(x), and Φ(D3ρ/4) ⊆ D′
ρ′ where 

ρ′ = ρ′(Ω) > 0 and

D′
ρ′ =

{
x′ ∈ RN : |x′| < ρ′, x′

N > 0
}
.

Moreover we may assume (taking C > 0 bigger if necessary) that for all x ∈ Dρ, x′ ∈ D′
ρ′

1
C

� |DΦ(x)|, |DΦ−1(x′)| � C. (3.10)

Now fix x ∈ Dρ/2 and set

x′ = Φ(x), Mx = DΦ−1(x′) = (DΦ(x))−1.

Given ε ∈ ]0, ρ/4[ we act on g̃ε(x) with the change of variables y′ = Φ(y) to get

g̃ε(x) =
ˆ

Φ(D3ρ/4∩Bc
ε(x))

((x′
N )s+ − (y′N )s+)p−1

|A(Φ−1(x′) − Φ−1(y′))|N+ps
|detDΦ−1(y′)| dy′

=
ˆ

Φ(D3ρ/4∩Bc
ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′,

where we have set

K(x′, y′) = |AMx(x′ − y′)|N+ps|detDΦ−1(y′)|
|A(Φ−1(x′) − Φ−1(y′))|N+ps

.

Again we can add a bounded term to g̃ε and instead consider

hε(x) =
ˆ

Φ(Bc
ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′. (3.11)

By (3.10) we have for all x′ ∈ D′
ρ′ , y′ ∈ Φ(Bc

ε(x))

1
C

� K(x′, y′) � C.

We introduce a linearized operator Lx : RN → RN by setting for all y ∈ RN

Lx(y) = Φ(x) + DΦ(x)(y − x),

which by Taylor expansion and Φ ∈ C1,1(RN ) satisfies for all y ∈ RN
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|Lx(y) − Φ(y)| � C|x− y|2.

In turn, this implies the geometric inequality

dε := distH
(
Φ(Bε(x)), Lx(Bε(x))

)
� Cε2.

Set

Δε(x) = Φ(Bc
ε(x))ΔLx(Bc

ε(x)),

then by the inequality above and Φ(Bε(x))ΔLx(Bε(x)) ⊆ Bdε
(∂Lx(Bε(x))) we have

|Δε(x)| � CHN−1(∂Lx(Bc
ε(x)))ε2 � CεN+1. (3.12)

We split (3.11) as:

hε(x) =
[ ˆ

Φ(Bc
ε(c))\Lx(Bc

ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′

−
ˆ

Lx(Bc
ε(x))\Φ(Bc

ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′

]

+
ˆ

Lx(Bc
ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′

= h1
ε(x) + h2

ε(x),

and we estimate separately h1
ε(x) and h2

ε(x). By s-Hölder continuity of the function 
y′ → (y′N )s+, estimates on |Mx|, (3.12), and direct integration we have

|h1
ε(x)| � C

ˆ

Δε(x)

|(x′
N )s+ − (y′N )s+|p−1

|AMx(x′ − y′)|N+ps
dy′

� C|A−1|N+ps

ˆ

Δε(x)

dy′

|x′ − y′|N+s
� C|Δε(x)|

εN+s
� Cε1−s,

which by s ∈ ]0, 1[ implies

h1
ε → 0 in L∞(Dρ/2) as ε → 0+. (3.13)

Now we turn to h2
ε(x), which we split further:
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h2
ε(x) =

ˆ

Lx(Bc
ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
|detMx| dy′

+
ˆ

Lx(Bc
ε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
(K(x′, y′) − |detMx|) dy′

= h3
ε(x) + h4

ε(x).

We first deal with h3
ε(x), using the change of variables z′ = Mx(x′ − y′) and setting 

x′′ = Mxx
′, λ = |M−T

x eN |, and v′ = λ−1M−T
x eN :

h3
ε(x) =

ˆ

Bc
ε

(
((M−1

x x′′) · eN )s+ − (M−1
x (x′′ − z′) · eN )s+

)p−1

|Az′|N+ps
dz′

= λ(p−1)s
ˆ

Bc
ε

(
(x′ · v′)s+ − ((x′ − z′) · v′)s+

)p−1

|Az′|N+ps
dz′.

By rotational invariance and [14, Lemma 3.2], we have

h3
ε → 0 in L∞

loc(Dρ/2) as ε → 0+ (3.14)

(this is where the convergence turns locally uniform instead of uniform). To estimate 
h4
ε(x), we can again add a bounded term and consider instead

h5
ε(x) :=

ˆ

Lx(B1(x))\Lx(Bε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
(K(x′, y′) − |detMx|) dy′.

By [14, Eq. (3.7)] we have∣∣K(x′, y′) − |detMx|
∣∣ � C|x′ − y′| for all x′ ∈ D′

ρ′ , y′ ∈ Lx(Bc
ε(x))

and using Hölder continuity, we have

|(x′
N )s+ − (y′N )s+|p−1

|AMx(x′ − y′)|N+ps
|K(x′, y′) − |detMx|| � C

|x′ − y′|(p−1)s+1

|AMx(x′ − y′)|N+ps
� C

|x′ − y′|N+s−1 ,

and the latter function lies in L1(Lx(B1(x))). Now, letting

h5(x) :=
ˆ

Lx(B1(x))\Lx(Bε(x))

((x′
N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
(K(x′, y′) − |detMx|) dy′,

we have, via direct integration and Lx(B1(x)) ⊆ BC(x′),
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|h5(x)| � C

ˆ

Lx(B1(x))\Lx(Bε(x))

dy′

|x′ − y′|N+s−1 ,

and similarly, by Lx(Bε(x)) ⊆ BCε(x′) (see (3.10)),

|h5
ε(x) − h5(x)| � C

ˆ

Lx(Bε(x))

dy′

|x′ − y′|N+s−1 � Cε1−s.

Again by s ∈ ]0, 1[, we deduce that h5
ε → h5 in L∞

loc(Dρ/2) as ε → 0+. Taking into account 
the several splittings and (3.13), (3.14), we obtain the claim. �

By virtue of the previous result, we are able to construct our first barrier:

Lemma 3.4 (Barrier/1). Let ∂Ω be C1,1, R ∈ ]0, ρ/4[, ϕ ∈ C∞
c (B1) such that 0 � ϕ � 1

in B1, and for all λ ∈ R, x ∈ RN set

wλ(x) =
(
1 + λϕ

(2x
R

))
ds

Ω(x).

Then, there exist λ1 = λ1(N, p, s, Ω, ϕ) > 0, C5 = C5(N, p, s, Ω, ϕ) > 0 such that for all 
|λ| � λ1

|(−Δ)sp wλ| � C5

(
1 + |λ|

Rs

)
in DR/2.

Proof. For λ = 0, the conclusion follows from [14, Theorem 3.6]. So, let λ ∈ R satisfy

0 < |λ| � 1
2‖ϕ‖L∞(B1)

.

Set for all x ∈ RN

ψλ(x) = 1
λ

((
1 + λϕ

(2x
R

)) 1
s − 1

)
,

so ψλ ∈ C∞
c (BR/2) and for all x ∈ RN

1 + λϕ
(2x
R

)
= (1 + λψλ(x))s.

Moreover, by the chain rule there exists C > 0 (depending on N , p, s, Ω, and ϕ) such 
that for all x ∈ RN

|ψλ(x)| + R|Dψλ(x)| + R2|D2ψλ(x)| � CχBR/2(x). (3.15)

Since ΠΩ ∈ C1,1(BR, ∂Ω), by taking |λ| > 0 even smaller if necessary, we may set
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Φλ(x) = x + λψλ(x)(x− ΠΩ(x)),

thus defining a diffeomorphism Φλ ∈ C1,1(RN , RN ) such that Φλ(Ω) = Ω, Φλ(x) = x for 
all x ∈ Bc

R/2, and ΠΩ(Φλ(x)) = ΠΩ(x) for all x ∈ DR. Besides we define Ψλ = Φ−1
λ ∈

C1,1(RN , RN ). The key point is that wλ is actually equivalent to a distance function, up 
to the diffeomorphism Φλ of the domain. Indeed, with these notations, we have for all 
x ∈ DR

wλ(x) = (1 + λψλ(x))s|x− ΠΩ(x)|s = |Φλ(x) − ΠΩ(x)|s

= |Φλ(x) − ΠΩ(Φλ(x))|s = ds
Ω(Φλ(x)).

(3.16)

We begin collecting some estimates on the first and second order derivatives of Φλ, Ψλ

that will be used later. For all x, x′ ∈ RN we claim

|DΦλ(x) − I| � C|λ|χBR/2(x), |DΨλ(x′) − I| � C|λ|χBR/2(x
′). (3.17)

Indeed, recall that Φλ = Ψλ = I in Bc
R/2. Instead, for all x ∈ BR/2, i, k ∈ {1, . . . N}

∂iΦk
λ(x) − δik = λ

[
∂iψλ(x)(x− ΠΩ(x))k + ψλ(x)(δik − ∂iΠk

Ω(x))
]

(where ξk denotes the k-th component of ξ ∈ RN , δik is the Kronecker symbol and ∂i
is the partial derivative with respect to xi). By (3.15), this implies the first inequality 
in (3.17). By further reducing |λ| > 0 if necessary, the latter yields |(DΦλ(x))−1| � C, 
hence, setting x′ = Φλ(x),

|DΨλ(x′) − I| = |(DΦλ(x))−1(I −DΦλ(x))| � C|λ|χBR/2(x) = C|λ|χBR/2(x
′),

(since Φλ(BR/2) = BR/2), which concludes the proof of (3.17).
Regarding the second-order derivatives, for a.e. x, x′ ∈ RN we claim

|D2Φλ(x)| � C|λ|
R

χBR/2(x), |D2Ψλ(x′)| � C|λ|
R

χBR/2(x
′). (3.18)

Indeed, for a.e. x ∈ BR/2, i, j, k ∈ {1, . . . N} we have

∂ijΦk
λ(x) = λ

[
∂ijψλ(x)(x− ΠΩ(x))k + ∂iψλ(x)(δjk − ∂jΠk

Ω(x))

+ ∂jψλ(x)(δik − ∂iΠk
Ω(x)) + ψλ(x)∂ijΠk

Ω(x)
]
,

which by (3.15) implies the first estimate in (3.18). Regarding the second one, observe 
that D2Ψλ = 0 in Bc

R/2, while for Φλ(x) = x′ ∈ BR/2, the chain rule gives, almost 
everywhere,
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∂ijΨk
λ(x′) = −∂βγΦα

λ(x)∂iΨβ
λ(x′)∂jΨγ

λ(x′)∂αΨk
λ(x′),

with the sum over repeated indexes convention. Due to the estimate for D2Φλ and (from 
(3.17)) ‖DΨλ‖∞ � C when |λ| is sufficiently small, we infer the second inequality in 
(3.18).

Now set for all ε > 0, x ∈ RN

gε,λ(x) =
ˆ

{|Φλ(x)−Φλ(y)|�ε}

(ds
Ω(Φλ(x)) − ds

Ω(Φλ(y)))p−1

|x− y|N+ps
dy.

We claim that there exist λ1, C > 0, depending only N , p, s, Ω, and ϕ, such that for 
every 0 < |λ| < λ1 there exists g0,λ ∈ L∞(DR/2) with the properties

‖g0,λ‖L∞(DR/2) � C
(
1 + |λ|

Rs

)
, gε,λ → g0,λ in L∞

loc(DR/2), as ε → 0+. (3.19)

The path to (3.19) begins with the change of variables x′ = Φλ(x), y′ = Φλ(y) (note 
that by the previous discussion x′ ∈ DR/2 whenever x ∈ DR/2) and defining

K(x′, y′) := |DΨλ(x′)(x′ − y′)|N+ps

|Ψλ(x′) − Ψλ(y′)|N+ps
|detDΨλ(y′)|,

so that for all x ∈ DR/2 we can rephrase

gε,λ(x) =
ˆ

Bc
ε(x′)

(ds
Ω(x′) − ds

Ω(y′))p−1

|DΨλ(x′)(x′ − y′)|N+ps
K(x′, y′) dy′

=
ˆ

Bc
ε(x′)

(ds
Ω(x′) − ds

Ω(y′))p−1

|DΨλ(x′)(x′ − y′)|N+ps
|detDΨλ(x′)| dy′

+
ˆ

Bc
ε(x′)

(ds
Ω(x′) − ds

Ω(y′))p−1

|DΨλ(x′)(x′ − y′)|N+ps
(K(x′, y′) − |detDΨλ(x′)|) dy′

= g1
ε,λ(x) + g2

ε,λ(x).

By (3.17) and Lemma 3.3, taking if necessary |λ| > 0 even smaller, the claim (3.19) is 
true for g1

ε,λ, with corresponding g1
0,λ obeying ‖g1

0,λ‖L∞(DR/2) � C. Regarding g2
ε,λ, we 

split as follows:

K(x′, y′) − |detDΨλ(x′)| = |DΨλ(x′)(x′ − y′)|N+ps

|Ψλ(x′) − Ψλ(y′)|N+ps

(
|detDΨλ(y′)| − |detDΨλ(x′)|

)
+

( |DΨλ(x′)(x′ − y′)|N+ps

|Ψλ(x′) − Ψλ(y′)|N+ps
− 1

)
|detDΨλ(x′)|

= K1(x′, y′) + K2(x′, y′).
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We first estimate K1(x′, y′), by applying the triangle inequality, Jacobi’s formula for the 
derivative of a determinant, and estimates (3.17), (3.18):

|K1(x′, y′)| � ‖DΦλ‖N+ps
L∞(RN )‖DΨλ‖N+ps

L∞(RN )

∣∣detDΨλ(y′) − detDΨλ(x′)
∣∣

� C
∣∣∣ 1ˆ

0

d

dt
detDΨλ(x′ + t(y′ − x′)) dt

∣∣∣
� C

1ˆ

0

‖DΨλ‖N−1
L∞(RN )|D

2Ψλ(x′ + t(y′ − x′))||x′ − y′| dt

� C|λ|
R

|x′ − y′|
1ˆ

0

χBR/2(x
′ + t(y′ − x′)) dt

� C|λ|
R

|x′ − y′|min
{

1, R

|x′ − y′|
}

� C|λ|min
{ |x′ − y′|

R
, 1
}
,

where the calculations above are justified for a.e. y′ ∈ RN since, by a well known property, 
Sobolev functions (detDΨλ in our case) are absolutely continuous on almost every line. 
Similarly, to estimate K2(x′, y′) we argue as in [14, Lemma 3.4], applying (3.17), (3.18), 
and Taylor’s expansion with integral remainder:

|K2(x′, y′)| � C
( |DΨλ(x′)(x′ − y′)|2
|Ψλ(x′) − Ψλ(y′)|2 − 1

)
� C

∣∣Ψλ(x′) − Ψλ(y′) + DΨλ(x′)(x′ − y′)
∣∣ ∣∣Ψλ(x′) − Ψλ(y′) −DΨλ(x′)(x′ − y′)

∣∣
|Ψλ(x′) − Ψλ(y′)|2

�
C‖DΦλ‖2

L∞(RN )

|x′ − y′|2
(
2‖DΨλ‖L∞(RN )|x′ − y′|

)∣∣∣ 1ˆ

0

(1 − t) d
2

dt2
Ψλ(x′ + t(y′ − x′)) dt

∣∣∣
� C

|x′ − y′|

1ˆ

0

|λ||x′ − y′|2
R

χBR/2(x
′ + t(y′ − x′)) dt

� C|λ||x′ − y′|
R

min
{

1, R

|x′ − y′|
}

� C|λ|min
{ |x′ − y′|

R
, 1
}
.

Summing up the last relations, we have for all x′ ∈ DR/2 and a.e. y′ ∈ RN

∣∣K(x′, y′) − |detDΨλ(x′)|
∣∣ � C|λ|min

{ |x′ − y′|
R

, 1
}
.

Set
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h(x′, y′) = |ds
Ω(x′) − ds

Ω(y′)|p−1

|DΨλ(x′)(x′ − y′)|N+ps

∣∣K(x′, y′) − |detDΨλ(x′)|
∣∣,

so that

g2
ε,λ(x) =

ˆ

Bc
ε(x′)

h(x′, y′) dy′.

Using the previous estimate and the s-Hölder continuity of ds
Ω, we get for all x′ ∈ DR/2

‖h(x′, ·)‖L1(RN ) � C|λ|
ˆ

RN

|ds
Ω(x′) − ds

Ω(y′)|p−1

|DΨλ(x′)(x′ − y′)|N+ps
min

{ |x′ − y′|
R

, 1
}
dy′

� C|λ|‖DΦλ‖N+ps
L∞(RN )

ˆ

RN

1
|x′ − y′|N+s

min
{ |x′ − y′|

R
, 1
}
dy′

� C|λ|
[ ˆ

{|z′|<R}

dz′

|z′|N+s−1 +
ˆ

{|z′|�R}

dz′

|z′|N+s

]
� C|λ|

Rs
.

By an entirely similar argument to the one used to deal with h5 in the previous 
Lemma, we obtain the claim (3.19) for g2

ε,λ as well, with corresponding g2
0,λ obeying 

‖g2
0,λ‖L∞(DR/2) � C|λ|/Rs. Finally, recalling (3.16) and applying [14, Corollary 2.7], we 

conclude that, whenever |λ| � λ1,

(−Δ)sp wλ(x) = lim
ε→0+

gε,λ(x),

and therefore

|(−Δ)sp wλ| � ‖g0,λ‖L∞(DR/2) � C5

(
1 + |λ|

Rs

)
in DR/2,

for convenient λ1, C5 > 0 depending on N , p, s, Ω, and ϕ. �
Remark 3.5. In the case when Ω is a half space, we get the cleaner estimate

|(−Δ)sp wλ| � C

Rs
|λ| in DR/2,

for all sufficiently small |λ| depending on ϕ.

The next result yields a lower bound on the supersolution of (3.1) similar to that 
given in Lemma 3.1, but for small excess (defined in (3.2)):

Lemma 3.6. Let ∂Ω be C1,1, u ∈ W̃ s,p(DR) solve (3.1) and p � 2. Then, for all θ � 1
there exist Cθ = Cθ(N, p, s, Ω, θ) > 1, σθ = σθ(N, p, s, Ω, θ) ∈ ]0, 1] s.t. for all R ∈ ]0, ρ/4[
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Ex(u,m,R) � mθ

=⇒ inf
DR/2

( u

ds
Ω
−m

)
� σθEx(u,m,R) − Cθ(mp−1 + K)

1
p−1R

s
p−1 − CθHRs.

Proof. Let ϕ ∈ C∞
c (B1) be s.t. 0 � ϕ � 1, ϕ = 1 in B1/2, and set for all λ > 0, x ∈ RN

wλ(x) = m
(
1 + λϕ

( x

R

))
ds

Ω(x).

Then wλ ∈ W s,p(DR) and satisfies

inf
B̃R

wλ � m
(3R

2

)s

, sup
DR

wλ � m(1 + λ)Rs, (3.20)

where B̃R is defined as in (2.2). By homogeneity and Lemma 3.4 (with R in the place of 
R/2) we can find λ1 > 0 and C5 > 1 such that for all λ ∈ ]0, λ1]

(−Δ)sp wλ � C5m
p−1

(
1 + λ

Rs

)
in DR. (3.21)

With no loss of generality we may assume

0 < λ1 � min
{

1, (3/2)s − 1
2

}
.

Now set for all x ∈ RN

vλ(x) =
{
wλ(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R.

Clearly, since B̃R is bounded and at a positive distance from DR, we can apply Propo-
sition 2.6 and deduce that vλ ∈ W̃ s,p(DR) and for all x ∈ DR

(−Δ)sp vλ(x) = (−Δ)sp wλ(x)+2
ˆ

B̃R

(wλ(x) − u(y))p−1 − (wλ(x) − wλ(y))p−1

|x− y|N+ps
dy. (3.22)

We need to estimate the integral in (3.22). We note that, for all x ∈ DR and y ∈ B̃R, by 
(3.1) we have u(y) � mds

Ω(y) � wλ(y). Using (3.20), we have as well

u(y) − wλ(x) � wλ(y) − wλ(x) � mRs

2

((3
2

)s

− 1
)
.

By Lagrange’s theorem we deduce

(u(y) − wλ(x))p−1 − (wλ(y) − wλ(x))p−1 � mp−2R(p−2)s
(u(y) −mds

Ω(y)).

C
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Plugging (3.21) and these estimates into (3.22) and recalling the properties (2.2) of B̃R, 
we get

(−Δ)sp vλ(x) � C5m
p−1

(
1 + λ

Rs

)
− 2m

p−2R(p−2)s

C

ˆ

B̃R

u(y) −mds
Ω(y)

|x− y|N+ps
dy

� C5m
p−1

(
1 + λ

Rs

)
− 2mp−2

CRs
−
ˆ

B̃R

( u(y)
ds

Ω(y) −m
)
dy

� Cmp−1 + mp−2

Rs

(
Cλm− Ex(u,m,R)

C

)
,

for all x ∈ DR. We then want to find suitable σθ, Cθ, λ s.t. either the thesis is trivial, or

Cmp−1 + mp−2

Rs

(
Cλm− Ex(u,m,R)

C

)
� −K −mp−2H,

allowing by comparison to infer u � wλ in DR. As it turns out, this reduces to an 
elementary set of inequalities, which can be solved for λ being the right quantity to get 
the conclusion.

We thus fix θ � 1, set

σθ = λ1

2θC2 , Cθ = σθ max
{
4C, (4C2θp−2)

1
p−1

}
, λ = σθEx(u,m,R)

m
,

and assume

Ex(u,m,R) � mθ. (3.23)

By the choice of constants and (3.23) we have

λ � λ1

2C2 < λ1, Cλm � Ex(u,m,R)
2C ,

so by the estimate above

(−Δ)sp vλ � Cmp−1 − mp−2Ex(u,m,R)
2CRs

in DR. (3.24)

Being the left-hand side of the thesis non-negative by assumption, we can suppose

σθEx(u,m,R) � Cθ(mp−1 + K)
1

p−1R
s

p−1 + CθHRs.

In particular, by the choice of Cθ and (3.23) (recall that C � 1 � σθ)
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Ex(u,m,R)p−1 � Cp−1
θ (mp−1 + K)Rs

σp−1
θ

� 4C2θp−2(mp−1 + K)Rs

� 4CEx(u,m,R)p−2

mp−2 (Cmp−1 + K)Rs.

The last two inequalities lead to

mp−2Ex(u,m,R) �

⎧⎪⎨⎪⎩
4C(Cmp−1 + K)Rs

Cθ

σθ
mp−2HRs � 4Cmp−2HRs,

and by summing up to

mp−2Ex(u,m,R) � 2C(Cmp−1 + K + mp−2H)Rs.

Thus, by (3.24) and (3.1) we have{
(−Δ)sp vλ � −K −mp−2H � (−Δ)sp u in DR

vλ � u in Dc
R,

which by Proposition 2.1 implies vλ � u in RN . In particular, recalling the definitions 
of wλ and λ, for all x ∈ DR/2 we have

u(x)
ds

Ω(x) −m � wλ(x)
ds

Ω(x) −m = mλ � σθEx(u,m,R),

which gives the conclusion. �
Finally, we localize the global bound from below in (3.1) and prove the main result 

of this section, i.e., the lower bound on supersolutions of (1.1) type problems locally
bounded from below by a multiple of ds

Ω. Precisely, we deal, for some K̃, m � 0, with 
the problem {

(−Δ)sp u � −K̃ in DR

u � mds
Ω in D2R.

(3.25)

Proposition 3.7 (Lower bound). Let ∂Ω be C1,1, u ∈ W̃ s,p
0 (DR) solve (3.25) and p � 2. 

There exist σ2 = σ2(N, p, s, Ω) ∈ ]0, 1], C6 = C6(N, p, s, Ω) > 1 and, for all ε > 0, a 
constant C̃ε = C̃ε(N, p, s, Ω, ε) > 0 such that for all R ∈ ]0, ρ/4[

inf
DR/2

( u

ds
Ω
−m

)
� σ2Ex(u,m,R) − ε

∥∥∥ u

ds
Ω
−m

∥∥∥
L∞(DR)

− C6tail1
((

m− u

ds
Ω

)
+
, 2R

)
Rs

− C̃ε

[
m + K̃

1
p−1 + tailp−1

((
m− u

s

)
, 2R

)]
R

s
p−1 .
dΩ +
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Proof. We may assume u/ds
Ω −m ∈ L∞(DR), otherwise there is nothing to prove. We 

set v = u ∨mds
Ω and fix ε > 0. By (3.25) and Proposition 2.7 (i) (with εp−1 replacing ε) 

there exists Cε, C2 > 0 with C2 depending on N , p, s, and Cε also depending on ε, such 
that in DR

(−Δ)sp v � −K̃ − εp−1

Rs

∥∥∥ u

ds
Ω
−m

∥∥∥p−1

L∞(DR)
− Cεtailp−1

((
m− u

ds
Ω

)
+
, 2R

)p−1

− C2m
p−2tail1

((
m− u

ds
Ω

)
+
, 2R

)
=: −K −mp−2H,

where we have set

K = K̃ + εp−1

Rs

∥∥∥ u

ds
Ω
−m

∥∥∥p−1

L∞(DR)
+ Cεtailp−1

((
m− u

ds
Ω

)
+
, 2R

)p−1
,

H = C2tail1
((

m− u

ds
Ω

)
+
, 2R

)
.

Thus, v satisfies (3.1) with K, H, m � 0 defined as above. By Lemma 3.1 we can find 
constants 0 < σ1 � 1 � θ1, C3 (depending on N , p, s) s.t.

Ex(v,m,R) � mθ1 =⇒ inf
DR/2

( v

ds
Ω
−m

)
� σ1Ex(v,m,R) − C3(KRs)

1
p−1 − C3HRs.

Next, choose θ = θ1 � 1 in Lemma 3.6. Then, there exist 0 < σθ1 � 1 � Cθ1 s.t.

Ex(v,m,R) � mθ1

=⇒ inf
DR/2

( v

ds
Ω
−m

)
� σθ1Ex(v,m,R) − Cθ1(mp−1 + K)

1
p−1R

s
p−1 − Cθ1HRs.

Set σ2 ∈ ]0, 1[, C > 1 defined as

σ2 = min
{
σ1, σθ1

}
, C = max

{
C3, Cθ1

}
,

hence depending only on N , p, s, and Ω. In both cases, since v = u in D2R ⊃ B̃R,

inf
DR/2

( u

ds
Ω
−m

)
� σ2Ex(u,m,R) − C(mp−1 + K)

1
p−1R

s
p−1 − CHRs.

By (3.25) and the definitions of K, H, we have

inf
DR/2

( u

ds
Ω
−m

)
� σ2Ex(u,m,R) − C(mp−1 + K)

1
p−1R

s
p−1 − CHRs

� σ2Ex(u,m,R) − Cε
∥∥∥ u

ds
Ω
−m

∥∥∥
L∞(DR)

− Ctail1
((

m− u

ds
Ω

)
+
, 2R

)
Rs

− C
[
m + K̃

1
p−1 + Cεtailp−1

((
m− u

ds
Ω

)
+
, 2R

)]
R

s
p−1 ,
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which gives the claim (by renaming ε and the constants involved). �
4. The upper bound

This section is devoted to proving an upper bound for the quotient u/ds
Ω, where u is a 

subsolution of a (1.1) type problem on a special domain, locally bounded from above by 
a multiple of ds

Ω. The upper bound differs substantially from the lower one, as for large 
values of the corresponding nonlocal excess, the function u will change sign along the 
boundary, which of course agrees with u being bounded from above by a positive multiple 
of ds

Ω. The difficulty comes then from the degeneracy of (−Δ)sp, as u will have vanishing 
normal s-derivative at some boundary point, and any barrier for u forcing such transition 
will present the same phenomenon and thus require a more delicate construction.

Throughout, we will assume 0 ∈ ∂Ω, R ∈ ]0, ρ/4[ with ρ defined in (2.1). As in 
Section 3, we first consider a function u ∈ W̃ s,p(DR) satisfying{

(−Δ)sp u � K + Mp−2H in DR

u � Mds
Ω in RN ,

(4.1)

for some M, K, H � 0. We begin by constructing an explicit barrier:

Lemma 4.1 (Barrier/2). Let ∂Ω be C1,1, R ∈ ]0, ρ/4[ and x̄ ∈ DR/2. Then there exist 
v ∈ W s,p

0 (Ω) ∩ C(RN ) and C ′
3 = C ′

3(N, p, s, Ω) > 1 such that

(i) |(−Δ)sp v| �
C ′

3
Rs

in D2R;
(ii) v(x̄) = 0;
(iii) v � ds

Ω
C ′

3
in Dc

R;

(iv) |v| � C ′
3R

s in D2R.

Proof. We will construct the barrier as a solution of a double obstacle problem, and to 
this end we divide the proof in several steps.

Step 1 (geometry). Set

ER =
⋃{

Br(y) : y ∈ Ω, r � R

8 , Br(y) ⊂ D4R \D3R/4

}
.

By the regularity of ∂Ω stated in (2.1) and R < ρ/4, ER ⊂ Ω is a bounded domain with 
the interior sphere property with radius ρER

� R/16 (see Fig. 3). We claim that

dΩ � CdER
in D3R \DR. (4.2)

Indeed, fix a point x ∈ D3R \DR. Since dER
(x) � R/8 and
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Fig. 3. The regularized set ER in gray; in the dotted part we have dΩ � CdER
.

dDc
7R/8

(x) � 3R + R

4 � 26 dER
(x),

we have dDc
7R/8

(x) � CdER
(x). By the triangle inequality and R < ρ/4 we have

dΩ(x) = |x− ΠΩ(x)| � |x− ΠΩ(ΠDc
7R/8

(x))|

� |x− ΠDc
7R/8

(x)| + |ΠDc
7R/8

(x) − ΠΩ(ΠDc
7R/8

(x))|.

We distinguish two cases:

(a) if ΠDc
7R/8

(x) ∈ ∂Ω, then

dΩ(x) � dDc
7R/8

(x) � CdER
(x);

(b) if ΠDc
7R/8

(x) /∈ ∂Ω, then |ΠDc
7R/8

(x)| = 7R/8, which in turn implies |ΠΩ(ΠDc
7R/8

(x))|
� R and so

dΩ(x) � dDc
7R/8

(x) + R + 7R
8 � CdER

(x) + 15R
8 � CdER

(x).

In both cases we get (4.2).

Step 2 (lower obstacle). Let ϕ̃ ∈ W s,p
0 (ER) be the solution of the torsion problem{

(−Δ)sp ϕ̃ = 1 in ER

ϕ̃ = 0 in Ec
R.

By Lemma 2.4 we have (−Δ)sp ϕ̃ � 1 in RN , while Lemma 2.3 and the estimate on ρER

imply

ϕ̃ � R
s

p−2

ds
E in RN ,
C R
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with some C > 0 depending on N , p, s. As in Section 2, we denote by u4R ∈ W s,p
0 (B4R)

the solution to the torsion equation (2.4) in B4R. So, since ER ⊂ B4R, we have{
(−Δ)sp ϕ̃ � (−Δ)sp u4R in B4R

ϕ̃ � u4R in Bc
4R.

By Proposition 2.1 and Lemma 2.2 we have

ϕ̃ � u4R � CR
s

p−1 ds
B4R

� CRp′s in RN .

We set ϕ = R− s
p−1 ϕ̃ ∈ W s,p

0 (ER), so by [14, Lemma 2.9 (i)] and the inequalities above 
we have

(−Δ)sp ϕ =
(−Δ)sp ϕ̃

Rs
� 1

Rs
in RN , (4.3)

as well as

ϕ � CR
(
p′− 1

p−1
)
s = CRs in RN . (4.4)

Now, by (4.2) and Lemma 2.3 we have

ϕ �
ds
ER

C
� ds

Ω
C

in D3R \DR. (4.5)

Step 3 (upper obstacle). Pick λ > 0 (to be determined later) and set for all x ∈ RN

ψ(x) = λ

R
s

p−1

(
max
RN

uR/8 − uR/8(x− x̄)
)
,

where uR/8 ∈ W s,p
0 (BR/8) solves (2.4) in BR/8. Clearly ψ ∈ W̃ s,p(Ω), ψ � 0 and ψ(x̄) = 0

(since uR/8 is radially decreasing in BR/8). We claim that for all λ(N, p, s, Ω) > 0 big 
enough

ψ � ϕ in RN . (4.6)

Indeed, fix x ∈ RN . Two cases may occur:

(a) if x ∈ D3R/4, then ϕ(x) = 0, while ψ(x) � 0;
(b) if x ∈ Dc

3R/4, then |x − x̄| > R/8, hence uR/8(x − x̄) = 0, while by Lemma 2.4

max
RN

uR/8 � R
s

p−1

C
max
RN

ds
BR/8

� Rp′s

C
,

which in turn implies ψ(x) � λRs/C. By using (4.4), we have ϕ(x) � ψ(x) for large 
enough λ.
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In both cases we have (4.6) for some λ(N, p, s, Ω) > 0 which will be fixed henceforth. By 
[14, Lemma 2.9 (i)] and Lemma 2.4 we have

(−Δ)sp ψ � − C

Rs
in RN . (4.7)

One last property of ψ is that

ψ � CRs in RN , (4.8)

which follows from the upper bound in Lemma 2.2:

ψ � C

R
s

p−1
max
RN

uR/8 � C max
RN

ds
BR/8

� CRs.

Step 4 (the barrier). Consider the constrained minimization problem

min
{
[u]ps,p : u ∈ W s,p

0 (Ω), ϕ � u � ψ in RN
}
. (4.9)

By Lemma 2.5, problem (4.9) has a solution ṽ ∈ W s,p
0 (Ω), which satisfies

0 ∧ (−Δ)sp ψ � (−Δ)sp ṽ � 0 ∨ (−Δ)sp ϕ in Ω.

By (4.3), (4.7) we have

|(−Δ)sp ṽ| � C

Rs
in D2R. (4.10)

Besides, since ϕ(x̄) = ψ(x̄) = 0 we deduce ṽ(x̄) = 0, while (4.8) implies

0 � ṽ � CRs in RN . (4.11)

Moreover, by (4.5) we have

ṽ � ds
Ω
C̃

in D3R \DR, (4.12)

for some C̃ = C̃(N, p, s, Ω) > 0. Still, ṽ is not the desired function as it only satisfies the 
lower bound (4.12) in D3R \DR. So we need to extend (4.12) to the larger set Dc

R while 
keeping the other properties. Set for all x ∈ RN

v(x) =

⎧⎨⎩ṽ(x) if x ∈ D3R

ṽ(x) ∨ ds
Ω(x) if x ∈ Dc

3R.
C̃
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Clearly v ∈ W s,p
0 (Ω) satisfies (ii) and (iv), since, by (4.12), we are changing ṽ only 

outside of D3R. Moreover, (iii) now holds by construction. So, it remains to check (i)
for v. By Proposition 2.6 we have for all x ∈ D2R

(−Δ)sp v(x) = (−Δ)sp ṽ(x)+2
ˆ

Dc
3R∩{ṽ<ds

Ω/C̃}

(ṽ(x) − ds
Ω(y)/C̃)p−1 − (ṽ(x) − ṽ(y))p−1

|x− y|N+ps
dy.

(4.13)
By the monotonicity of t �→ tp−1 the integrand is negative and (4.10) yields

(−Δ)sp v � C ′
3

Rs
in D2R.

On the other hand, for all x ∈ D2R, y ∈ Dc
3R we have by (4.11)

∣∣∣ṽ(x) − ds
Ω(y)
C̃

∣∣∣ � C(Rs + |y|s) � C|y|s

and

|ṽ(x) − ṽ(y)| � CRs � C|y|s.

Since |x − y| � |y|/3 for all x ∈ D2R, y ∈ Dc
3R, plugging these inequalities into (4.13)

gives

(−Δ)sp v � −C ′
3

Rs
− C

ˆ

Dc
3R

dy

|y|N+s
dy � −C ′

3
Rs

in D2R,

for a possibly larger C ′
3 > 1 (depending on N , p, s, Ω), concluding the proof of (i). �

The next result shows that, if a subsolution of (4.1) is small enough in B̃R, then it is 
actually negative in DR/2:

Lemma 4.2. Let ∂Ω be C1,1, R ∈ ]0, ρ/4[, p � 2 and u ∈ W̃ s,p(DR) satisfy (4.1). Then 
there exists C ′

4 = C ′
4(N, p, s, Ω) > 1 such that

Ex(u,M,R) � C ′
4
(
M + (KRs)

1
p−1 + HRs

)
=⇒ sup

DR/2

u � 0.

Proof. Fix x̄ ∈ DR/2, and let v ∈ W s,p
0 (Ω) be the barrier in the previous Lemma. Set

w(x) =
{
C ′

3Mv(x) if x ∈ B̃c
R

u(x) if x ∈ B̃ ,
R
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for all x ∈ RN , C ′
3 > 1 being as in Lemma 4.1. Recall that dist (DR, B̃R) > 0. By 

Proposition 2.6, [14, Lemma 2.9 (i)], inequality (3.4), and Lemma 4.1 (i), (iii), for all 
x ∈ DR we have

(−Δ)sp w(x) = (−Δ)sp (C ′
3Mv(x))

+ 2
ˆ

B̃r

(C ′
3Mv(x) − u(y))p−1 − (C ′

3Mv(x) − C ′
3Mv(y))p−1

|x− y|N+ps
dy

� (C ′
3M)p−1(−Δ)sp v(x) + 1

C

ˆ

B̃R

(C ′
3Mv(y) − u(y))p−1

|x− y|N+ps

� −CMp−1

Rs
+ 1

CRps
−
ˆ

B̃R

(Mds
Ω(y) − u(y))p−1 dy.

By the properties (2.2) of B̃R, Hölder’s inequality (recall that p � 2), and u � Mds
Ω in 

B̃R we infer

−
ˆ

B̃R

(Mds
Ω(y) − u(y))p−1 dy � Rs(p−1)

C
−
ˆ

B̃R

(
M − u(y)

ds
Ω(y)

)p−1
dy � Rs(p−1)

C
Ex(u,M,R)p−1,

so that

(−Δ)sp w � −CMp−1

Rs
+ Ex(u,M,R)p−1

CRs
in DR, (4.14)

for some C � C ′
3. Now set

C ′
4 = (3C2)

1
p−1 � (3C)

1
p−1 ,

which only depends on N , p, s, and Ω. Assume

Ex(u,M,R) � C ′
4
(
M + (KRs)

1
p−1 + HRs

)
. (4.15)

A straightforward computation leads from (4.15) to the following inequalities

Ex(u,M,R)p−1 �

⎧⎪⎪⎨⎪⎪⎩
(C ′

4M)p−1 � 3C2Mp−1

(C ′
4)p−1KRs � 3CKRs

(C ′
4M)p−2Ex(u,M,R) � 3CMp−2HRs,

and hence to

Ex(u,M,R)p−1 � C2Mp−1 + CKRs + CMp−2HRs.
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So, by (4.14) we have

(−Δ)sp w � K + Mp−2H � (−Δ)sp u in DR.

Besides, we have u � w in Dc
R: indeed, if x ∈ B̃R there is nothing to prove. If x ∈ Dc

R\B̃R, 
by (4.1) and Lemma 4.1 (iii) we have

u(x) � Mds
Ω(x) � C ′

3Mv(x) = w(x).

Summarizing, we obtained {
(−Δ)sp u � (−Δ)sp w in DR

u � w in Dc
R.

By Proposition 2.1 we have u � w in RN . In particular, by Lemma 4.1 (ii) we get 
u(x̄) � 0. By arbitrariness of x̄ ∈ DR/2, the proof is concluded. �

Now we can prove our upper bounds on subsolutions. First we prove an upper bound 
for large values of Ex(u, M, R):

Lemma 4.3. Let ∂Ω be C1,1, p � 2 and u ∈ W̃ s,p(DR) satisfy (4.1). Then there exist 
θ′1 = θ′1(N, p, s, Ω) � 1, σ′

1 = σ′
1(N, p, s, Ω) ∈ ]0, 1], and C ′

5 = C ′
5(N, p, s, Ω) > 1 such 

that for all R ∈ ]0, ρ/4[

Ex(u,M,R) � Mθ′1 =⇒ inf
DR/4

(
M − u

ds
Ω

)
� σ′

1Ex(u,M,R) − C ′
5(KRs)

1
p−1 − C ′

5HRs.

Proof. We set

HR =
⋃{

Br(y) : y ∈ D3R/8, r � R

16 , Br(y) ⊂ D3R/8

}
.

By (2.1), HR satisfies the interior sphere property with radius ρHR
� R/32. Moreover,

dΩ � CdHR
in DR/4 (4.16)

for some C > 1 (this is proved exactly as (3.3), changing the radii). Let ϕ solve{
(−Δ)sp ϕ = 1 in HR

ϕ = 0 in Hc
R.

(4.17)

By Lemma 2.4 we have (−Δ)sp ϕ � 1 in RN . Besides we have

R
s

p−1

ds
Ω � ϕ � CRp′s in DR/4, (4.18)
C



42 A. Iannizzotto et al. / Journal of Functional Analysis 279 (2020) 108659
the first inequality coming from Lemma 2.3 and (4.16), while the second is proved as in 
Lemma 4.1 by comparing ϕ to uR/2. Now pick λ > 0 (to be determined later) and set 
for all x ∈ RN

v(x) =

⎧⎨⎩− λ

R
s

p−1
ϕ(x) if x ∈ DR/2

Mds
Ω(x) if x ∈ Dc

R/2.

Clearly v ∈ W̃ s,p(HR) and dist (Dc
R/2, HR) > 0. So we can apply Proposition 2.6 which, 

along with [14, Lemma 2.9 (i)], (4.17) and some direct calculations, yields for all x ∈
HR ⊂ DR/2

(−Δ)sp v(x) = −λp−1

Rs
(−Δ)sp ϕ(x)

+ 2
ˆ

Dc
R/2

(−λR− s
p−1ϕ(x) −Mds

Ω(y))p−1 − (−λR− s
p−1ϕ(x))p−1

|x− y|N+ps
dy

� −λp−1

Rs
− C

ˆ

Dc
R/2

λp−1R−sϕp−1(x) + Mp−1d(p−1)s
Ω (y)

|x− y|N+ps
dy.

Therefore, using C|y−x| > |y| for x ∈ HR and y ∈ Bc
R/2, (4.18) and dΩ(y) � |y|, we get

(−Δ)sp v(x) � −λp−1

Rs
− C(λp−1 + Mp−1)

ˆ

Bc
R/2

R(p−1)s + |y|(p−1)s

|y|N+ps
dy

� −C
λp−1 + Mp−1

Rs
,

(4.19)

for x ∈ HR. Further, set for all x ∈ RN

w(x) =
{
v(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R,

where B̃R is defined in (2.2). By Proposition 2.6, w ∈ W̃ s,p(HR) and for all x ∈ HR
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(−Δ)sp w(x) = (−Δ)sp v(x) + 2
ˆ

B̃R

(v(x) − u(y))p−1 − (v(x) −Mds
Ω(y))p−1

|x− y|N+ps
dy

� −C
λp−1 + Mp−1

Rs
+ 1

C

ˆ

B̃R

(Mds
Ω(y) − u(y))p−1

|x− y|N+ps
dy

� −C
λp−1 + Mp−1

Rs
+ 1

CRs
−
ˆ

B̃R

(
M − u(y)

ds
Ω(y)

)p−1
dy

� −C
λp−1 + Mp−1

Rs
+ Ex(u,M,R)p−1

CRs
,

(4.20)

where we have also used (4.19), (3.4) and Hölder’s inequality. So far, C > 1 has been 
chosen as big as necessary to satisfy all inequalities, depending only on N , p, s, and Ω. 
Now we can fix the constants in such a way that either the thesis is trivial or w is an 
upper barrier for u. Set

λ = Ex(u,M,R)
(4C2)

1
p−1

, θ′1 = max
{
2C ′

4, (4C2)
1

p−1
}
,

σ′
1 = 1

C(4C2)
1

p−1
, C ′

5 = σ′
1 max

{
2C ′

4, (4C)
1

p−1 ,
4C

(θ′1)p−2

}
,

where C ′
4 > 0 is as in Lemma 4.2. Clearly C ′

5 > 1, and all these constants (except λ) 
only depend on N , p, s, and Ω. Now we prove the asserted implication. Assume

Ex(u,M,R) � Mθ′1. (4.21)

Then, with the previous choices, (4.20) implies in HR

(−Δ)sp w � C

Rs

[
−Ex(u,M,R)p−1

4C2 −
(Ex(u,M,R)

θ′1

)p−1
+ Ex(u,M,R)p−1

C2

]
� Ex(u,M,R)p−1

2CRs
.

(4.22)

We can also assume

σ′
1Ex(u,M,R) � C ′

5(KRs)
1

p−1 + C ′
5HRs, (4.23)

otherwise there is nothing to prove (recall that u satisfies (4.1)). Such relation and (4.21)
imply

Ex(u,M,R)p−1 �

⎧⎪⎪⎨⎪⎪⎩
(C ′

5
σ′

1

)p−1
KRs � 4CKRs

(Mθ′1)p−2C
′
5
′ HRs � 4CMp−2HRs,
σ1
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and in turn

Ex(u,M,R)p−1

2CRs
� K + Mp−2H.

Plugging the last inequality into (4.22), we get

(−Δ)sp w � K + Mp−2H � (−Δ)sp u in HR. (4.24)

Let us now consider the pointwise estimates for x ∈ Hc
R. Three cases may occur:

(a) if x ∈ B̃R, then w(x) = u(x);
(b) if x ∈ Dc

R/2 ∩ B̃c
R, then w(x) = Mds

Ω(x) � u(x) by assumption;
(c) if x ∈ DR/2 ∩Hc

R, by (4.23), (4.21) we also have

Ex(u,M,R) �

⎧⎨⎩
C ′

5
σ′

1
(KRs)

1
p−1 + C ′

5
σ′

1
HRs � 2C ′

4(KRs)
1

p−1 + 2C ′
4HRs

Mθ′1 � 2C ′
4M,

which summarizes as

Ex(u,M,R) � C ′
4
(
M + (KRs)

1
p−1 + HRs

)
,

implying u � 0 in DR/2 by Lemma 4.2. Hence w(x) = 0 � u(x) again.

Therefore u � w in Hc
R, and recalling (4.24) we therefore have

{
(−Δ)sp u � (−Δ)sp w in HR

u � w in Hc
R.

By Proposition 2.1 we deduce u � w in RN . In particular, for all x ∈ DR/4 we have 
(recalling the definitions of ϕ, v, w, and of λ)

u(x) � −λϕ(x)
R

s
p−1

� −σ′
1Ex(u,M,R)ds

Ω(x).

So we have

inf
DR/4

(
M − u

ds
Ω

)
� − sup

DR/4

u

ds
Ω

� σ′
1Ex(u,M,R),

which readily yields the conclusion. �
Now we prove a similar upper bound for the case when Ex(u, M, R) is small:
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Lemma 4.4. Let ∂Ω be C1,1, p � 2, u ∈ W̃ s,p(DR) solve (4.1) and R ∈ ]0, ρ/4[. Then, for 
all θ � 1 there exist σ′

θ = σ′
θ(N, p, s, Ω, θ) ∈ ]0, 1], C ′

θ = C ′
θ(N, p, s, Ω, θ) > 1 such that

Ex(u,M,R) � Mθ

=⇒ inf
DR/2

(
M − u

ds
Ω

)
� σ′

θEx(u,M,R) − C ′
θ(Mp−1 + K)

1
p−1R

s
p−1 − C ′

θHRs.

Proof. The proof is similar to the one of Lemma 3.6 and we only sketch it. Fix ϕ ∈
C∞

c (B1) such that ϕ = 1 in B1/2 and 0 � ϕ � 1 in B1, let λ1 > 0 be as in Lemma 3.4, 
and for all λ ∈ ]0, λ1] set

wλ(x) = M
(
1 − λϕ

( x

R

))
ds

Ω(x), x ∈ RN .

Without loss of generality we may assume λ1 � 1. Then wλ ∈ W s,p(DR) and it satisfies⎧⎨⎩(−Δ)sp wλ � −C5M
p−1

(
1 − λ

Rs

)
in DR

wλ = M(1 − λ)ds
Ω in DR/2

(C5 > 0 as in Lemma 3.4). Now set for all x ∈ RN

vλ(x) =
{
wλ(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R,

where B̃R is defined as in (2.2). By Proposition 2.6, we have for all x ∈ DR

(−Δ)sp vλ(x) = (−Δ)sp wλ(x) + 2
ˆ

B̃R

(wλ(x) − u(y))p−1 − (wλ(x) − wλ(y))p−1

|x− y|N+ps
dy,

and estimating the integral term as in the proof of Lemma 3.6, we obtain

(−Δ)sp vλ � −CMp−1 − Mp−2

Rs

(
CMλ− Ex(u,M,R)

C

)
, (4.25)

for some C > 1 (depending on N , p, s, and Ω). Now we fix θ � 1 and set

σ′
θ = λ1

2θC2 , C ′
θ = σ′

θ max
{
4C, (4C2θp−2)

1
p−1

}
, λ = σ′

θEx(u,M,R)
M

.

Note that σ′
θ � 1. We also assume

Ex(u,M,R) � Mθ. (4.26)

Then, by the choice of constants we have



46 A. Iannizzotto et al. / Journal of Functional Analysis 279 (2020) 108659
λ < λ1, CMλ � Ex(u,M,R)
2C .

These inequalities and (4.25) give

(−Δ)sp vλ � −CMp−1 + Mp−2

Rs

Ex(u,M,R)
2C in DR.

Assuming also

σ′
θEx(u,M,R) � C ′

θ(Mp−1 + K)
1

p−1R
s

p−1 + C ′
θHRs

(otherwise the thesis is trivial), the choice of the parameters and (4.26) imply

Mp−2Ex(u,M,R) � 2C(CMp−1 + K + Mp−2H)Rs,

exactly as in the proof of Lemma 3.6, and therefore

(−Δ)sp vλ � K + Mp−2H in DR.

Moreover in Dc
R we have by construction either vλ = u in B̃R, or vλ = wλ = Mds

Ω � u. 
Thus {

(−Δ)sp u � (−Δ)sp vλ in DR

u � vλ in Dc
R.

Proposition 2.1 ensures u � vλ in all of RN . In particular u � wλ = M(1 − λ)ds
Ω in 

DR/2. So,

inf
DR/2

(
M − u

ds
Ω

)
� inf

DR/2

(
M − wλ

ds
Ω

)
� Mλ = σ′

θEx(u,M,R)

and the conclusion follows. �
Now we present the analog of Proposition 3.7, dealing with the problem{

(−Δ)sp u � K̃ in DR

u � Mds
Ω in D2R,

(4.27)

with K̃, M � 0.

Proposition 4.5 (Upper bound). Let ∂Ω be C1,1, p � 2, u ∈ W̃ s,p
0 (DR) solve (4.27). There 

exist σ′
2 = σ′

2(N, p, s, Ω) ∈ ]0, 1], C ′
6 = C ′

6(N, p, s, Ω) > 1 and, for all ε > 0, a constant 
C̃ ′

ε = C̃ ′
ε(N, p, s, Ω, ε) > 0 such that for all R ∈ ]0, ρ/4[
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inf
DR/4

(
M − u

ds
Ω

)
� σ′

2Ex(u,M,R) − ε
∥∥∥M − u

ds
Ω

∥∥∥
L∞(DR)

− C ′
6tail1

(( u

ds
Ω
−M

)
+
, 2R

)
Rs

− C̃ ′
ε

[
M + K̃

1
p−1 + tailp−1

(( u

ds
Ω
−M

)
+
, 2R

)]
R

s
p−1 .

Proof. The proof is identical to the one of Proposition 3.7, so we only sketch it. Consider 
v = u ∧Mds

Ω and fix ε > 0. By Proposition 2.7 (ii){
(−Δ)sp v � K + Mp−2H in DR

v � Mds
Ω in RN ,

where

K := K̃ + εp−1

Rs

∥∥∥M − u

ds
Ω

∥∥∥p−1

L∞(DR)
+ C ′

εtailp−1

(( u

ds
Ω
−M

)
+
, 2R

)p−1
,

H := C ′
2tail1

(( u

ds
Ω
−M

)
+
, 2R

)
.

Let 0 < σ′
1 � 1 � θ′1, C

′
5 given in Lemma 4.3 and choose θ = θ′1 in Lemma 4.4, with 

corresponding 0 < σ′
θ′
1

� 1 � C ′
θ′
1

given therein. Define

σ′
2 = min{σ′

1, σ
′
θ′
1
}, C = max{C ′

5, C
′
θ′
1
}.

Considering separately the cases Ex(u, M, R) � Mθ1 and Ex(u, M, R) < Mθ1 we obtain

inf
DR/4

(
M − v

ds
Ω

)
� σ′

2Ex(v,M,R) − C(Mp−1 + K)
1

p−1R
s

p−1 − CHRs.

Since u = v in D2R, after standard estimates we conclude. �
5. Weighted Hölder regularity

This final section is devoted to the proof of Theorem 1.1, i.e., of weighted Hölder 
regularity for the solutions of problem (1.1). We follow a standard approach, starting 
with an estimate of the oscillation near the boundary of u/ds

Ω, where u satisfy{
|(−Δ)sp u| � K in Ω
u = 0 in Ωc,

(5.1)

with some K > 0. Our estimate reads as follows:

Theorem 5.1. Let ∂Ω be C1,1, p � 2, x1 ∈ ∂Ω and u ∈ W s,p
0 (Ω) solve (5.1). There 

exist α1 ∈ ]0, s], C7 > 1, R0 ∈ ]0, ρ/4[ all depending on N, p, s and Ω such that for all 
r ∈ ]0, R0[
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osc
Dr(x1)

u

ds
Ω

� C7K
1

p−1 rα1 .

Proof. First we assume x1 = 0 and K = 1 in (5.1). We set v = u/ds
Ω ∈ W̃ s,p

0 (Ω), 
R0 = min{1, ρ/4}, and for all n ∈ N we define Rn = R0/8n, Dn = DRn

, and B̃n = B̃Rn/2
(see (2.2)). We claim that there exist α1 ∈ ]0, s], μ � 1, a nondecreasing sequence {mn}, 
and a nonincreasing sequence {Mn} in R (all depending on N , p, s, and Ω) such that 
for all n ∈ N

mn � inf
Dn

v � sup
Dn

v � Mn, Mn −mn = μRα1
n . (5.2)

Pick α1 ∈ ]0, s] (to be determined later). We argue by (strong) induction on n ∈ N. 
The first step n = 0 follows from [14, Theorem 4.4], which (slightly rephrased) ensures 
existence of C̃Ω > 1 (depending on N , p, s, and Ω) such that

|v| � C̃Ω in Ω.

So we set M0 = C̃Ω, mn = −C̃Ω, μ = 2C̃Ω/R
α1
0 , and (5.2) holds. Now let n ∈ N and

m0 � . . . � mn < Mn � . . . � M0

be defined and satisfy (5.2). We set R = Rn/2, so Dn+1 = DR/4 and B̃n = B̃R, and aim 
at applying our lower and upper bounds on v, by distinguishing three cases:

(a) If 0 � mn < Mn, then u satisfies both (3.25) and (4.27) with K̃ = 1 and non-negative 
multipliers of ds

Ω, namely{
−1 � (−Δ)sp u � 1 in DRn/2

mnds
Ω � u � Mnds

Ω in Dn.

Thus, Propositions 3.7 and 4.5 apply, yielding constants 0 < σ � 1 < C6, Cε (we 
take here the smaller of σ’s and the bigger of C6’s and of Cε’s, all depending on N , 
p, s, Ω with Cε also depending on ε) such that the following bounds hold:

inf
Dn+1

(v −mn) � σ −
ˆ

B̃n

(v −mn) dx− Cε

[
mn + 1 + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

− C6

[
ε sup
DRn/2

(v −mn) + tail1((mn − v)+, Rn)Rs
n

]
,

(5.3)

inf
Dn+1

(Mn − v) � σ −
ˆ

B̃n

(Mn − v) dx− Cε

[
Mn + 1 + tailp−1((v −Mn)+, Rn)

]
R

s
p−1
n

− C6

[
ε sup
DRn/2

(Mn − v) + tail1((v −Mn)+, Rn)Rs
n

]
.

(5.4)
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(b) If mn < 0 < Mn, then we can similarly apply Proposition 4.5 to u with upper bound 
Mnds

Ω and to −u with upper bound −mnds
Ω. After substitution, this provides (5.4)

and (5.3) respectively.
(c) If mn < Mn � 0, then we apply Proposition 3.7 to −u with lower bound −Mnds

Ω
and Proposition 4.5 to −u with upper bound −mnds

Ω, getting again (5.4) and (5.3)
respectively.

All in all, by taking convenient constants and replacing ε with ε/C6, we have

σ(Mn −mn) = σ −
ˆ

B̃n

(Mn − v) dx + σ −
ˆ

B̃n

(v −mn) dx

� inf
Dn+1

(Mn − v) + inf
Dn+1

(v −mn) + ε sup
Dn

(Mn − v) + ε sup
Dn

(v −mn)

+ Cε

[
1 + |Mn| + |mn| + tailp−1((v −Mn)+, Rn) + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

+ C6
[
tail1((v −Mn)+, Rn) + tail1((mn − v)+, Rn)

]
Rs

n.

Notice that

inf
Dn+1

(Mn − v) + inf
Dn+1

(v −mn) = (Mn −mn) − osc
Dn+1

v

and by the inductive hypothesis (5.2),

sup
Dn

(Mn − v) + sup
Dn

(v −mn) � 2(Mn −mn).

Now fix ε = σ/4 and, recalling that |mn|, |Mn| � C̃Ω, we get

σ(Mn −mn) �
(
1 + σ

2

)
(Mn −mn) − osc

Dn+1
v

+ C
[
1 + tailp−1((v −Mn)+, Rn) + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

+ C
[
tail1((v −Mn)+, Rn) + tail1((mn − v)+, Rn)

]
Rs

n,

for some C > 1 depending on N , p, s and Ω. Rearranging and using (5.2), we get

osc
Dn+1

v �
(
1 − σ

2

)
μRα1

n + C
[
1 + tailp−1((v −Mn)+, Rn) + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

+ C
[
tail1((v −Mn)+, Rn) + tail1((mn − v)+, Rn)

]
Rs

n.
(5.5)

Now we need to estimate the tail terms. We note that for all x ∈ Di \ Di+1, i ∈
{0, . . . n − 1}, by (5.2) and monotonicity of the sequences {mn}, {Mn} we have
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mn − v(x) � mn −mi � (mn −Mn) + (Mi −mi) � μ(Rα1
i −Rα1

n ).

Using |mn|, |Mn|, ‖v‖L∞(Ω) � C̃Ω, for all q � 1 we have

ˆ

Ω∩Bc
n

(mn − v(x))q+
|x|N+s

dx �
ˆ

Ω∩Bc
0

(mn − v(x))q+
|x|N+s

dx +
n−1∑
i=0

ˆ

Di\Di+1

(mn − v(x))q+
|x|N+s

dx

� C + μq
n−1∑
i=0

ˆ

Di\Di+1

(Rα1
i −Rα1

n )q

|x|N+s
dx

� C + Cμq
n−1∑
i=0

(Rα1
i −Rα1

n )q

Rs
i

� C + CμqSq(α1)Rqα1−s
n ,

where we have set

Sq(α1) =
∞∑
j=1

(8α1j − 1)q

8sj .

Recalling the definition (2.3) and setting q = p − 1, we get by convexity

tailp−1((mn − v)+, Rn)R
s

p−1
n � C

(
1 + μp−1Sp−1(α1)R(p−1)α1−s

n

) 1
p−1R

s
p−1
n

� CR
s

p−1
n + CμS

1
p−1
p−1 (α1)Rα1

n ,

while for q = 1 we immediately have

tail1((mn − v)+, Rn)Rs
n � CRs

n + CμS1(α1)Rα1
n .

Similarly we prove the estimates

tailp−1((v −Mn)+, Rn)R
s

p−1
n � CR

s
p−1
n + CμS

1
p−1
p−1 (α1)Rα1

n ,

tail1((v −Mn)+, Rn)Rs
n � CRs

n + CμS1(α1)Rα1
n .

Plugging these estimates into (5.5), and recalling that R0 < 1, we get

osc
Dn+1

v �
(
1 − σ

2

)
μRα1

n + C
(
S1(α1) + S

1
p−1
p−1 (α1)

)
μRα1

n + C
(
R

s
p−1
n + Rs

n

)
�

(
1 − σ

2 + CS1(α1) + CS
1

p−1
p−1 (α1)

)
8α1μRα1

n+1 + C ′Rα1
n+1.

(5.6)

for α1 < s/(p − 1). We claim that for all q � 1

lim
+
Sq(α1) = 0. (5.7)
α1→0
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Indeed, for all α1 ∈ ]0, s/q[ we have

Sq(α1) �
∞∑
j=1

1
8(s−α1q)j

< ∞,

while clearly (8α1j − 1)q/8sj → 0 as α1 → 0+, for all j ∈ N, so Sq(α1) → 0 as well. 
Applying (5.7) with q = 1, p − 1 respectively, for all α1 > 0 small enough we have(

1 − σ

2 + CS1(α1) + CS
1

p−1
p−1 (α1)

)
8α1 < 1 − σ

4 ,

while we may choose μ > 1 big enough to have(
1 − σ

4

)
μ + C ′ � μ,

so from (5.6) we have

osc
Dn+1

v � μRα1
n+1.

Thus, we can find mn+1, Mn+1 ∈ [mn, Mn] s.t.

mn+1 � inf
Dn+1

v � sup
Dn+1

v � Mn+1, Mn+1 −mn+1 = μRα1
n+1,

hence (5.2) holds at step n + 1, which concludes the induction step. For any r ∈ ]0, R0[
there exists n ∈ N such that Rn+1 < r � Rn, so we have

osc
Dr

v � osc
Dn+1

v � μ8α1rα1 .

Setting C7 = μ8α1 , we have

osc
Dr

u

ds
Ω

� C7 r
α1 .

Finally, for any x1 ∈ ∂Ω and an arbitrary K > 0 in (5.1), translation invariance and 
homogeneity of (−Δ)sp yield the conclusion. �

Our final steps require a technical lemma, which is contained in the proof of [28, 
Theorem 1.2]:

Lemma 5.2. Let ∂Ω be C1,1. If v ∈ L∞(Ω) satisfies the following conditions:

(i) ‖v‖L∞(Ω) � C8;
(ii) for all x1 ∈ ∂Ω, r > 0 we have osc v � C8r

β1 ;

Dr(x1)
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(iii) if dΩ(x0) = R, then v ∈ Cβ2(BR/2(x0)) with [v]Cβ2 (BR/2(x0)) � C8(1 + R−μ),

for some C8, μ > 0 and β1, β2 ∈ ]0, 1[, then there exist α ∈ ]0, 1[, C9 > 0 depending on 
the parameters and Ω such that v ∈ Cα(Ω) and [v]Cα(Ω) � C9.

Now we can prove our main result.

Proof of Theorem 1.1. Let u ∈ W s,p
0 (Ω), f ∈ L∞(Ω) satisfy (1.1), and set K =

‖f‖L∞(Ω), so u satisfies (5.1). By homogeneity we can assume K = 1. Let us collect 
some known facts about u. From [14, Theorem 1.1] we know that there exist α2 ∈ ]0, s], 
C > 0 such that u ∈ Cα2(Ω) and

‖u‖Cα2 (Ω) � C (5.8)

(in what follows, all constants depend on N , p, s, and Ω), in particular ‖u‖L∞(Ω) � C. 
Besides, from [14, Corollary 5.5] we know that for all x0 ∈ Ω with R = dΩ(x0)

[u]Cα2 (BR/2(x0)) � C

Rα2

[
Rp′s + ‖u‖L∞(Ω) + Rp′s

( ˆ

Bc
R(x0)

|u(y)|p−1

|x0 − y|N+ps
dy

) 1
p−1

]

� C

Rα2

[
Rp′s + 1 + Rp′s

( ˆ

Bc
R(x0)

1
|x0 − y|N+ps

dy
) 1

p−1
]

� C

Rα2
,

(5.9)

since R � diam(Ω). Finally, from [28, p. 292] we know that, with the same choice of x0

and R as above, the following estimate can be obtained by interpolation:

[d−s
Ω ]Cα2 (BR/2(x0)) � C

Rs+α2
. (5.10)

Now we set v = u/ds
Ω, and aim at applying Lemma 5.2 to this function. First, from [14, 

Theorem 4.4] we know that v ∈ L∞(Ω) with

‖v‖L∞(Ω) � C. (5.11)

Further, chosen x0 ∈ Ω, R = dΩ(x0), we have for all x, y ∈ BR/2(x0)

|v(x) − v(y)|
|x− y|α2

� |u(x)d−s
Ω (x) − u(y)d−s

Ω (x)|
|x− y|α2

+ |u(y)d−s
Ω (x) − u(y)d−s

Ω (y)|
|x− y|α2

� [u]Cα2 (BR/2(x))‖d−s
Ω ‖L∞(BR/2(x0)) + ‖u‖L∞(Ω)[d−s

Ω ]Cα2 (BR/2(x0))

� C ( 2 )s

+ C � C
,

Rα2 R Rs+α2 Rs+α2
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for some C > 0. Here we have used (5.8), (5.9), and (5.10). Finally, let x1 ∈ ∂Ω and 
r > 0, and α1 ∈ ]0, s], C7 > 0, and R0 ∈ ]0, ρ/4] be as in Theorem 5.1. We distinguish 
two cases:

(a) If r ∈ ]0, R0[, then by Theorem 5.1 we have

osc
Dr(x1)

v � C7r
α1 .

(b) If r � R0, then by (5.11) we have

osc
Dr(x1)

v � 2‖v‖L∞(Ω) � C

Rα1
0

rα1 .

In both cases, we can find C > 0 such that

osc
Dr(x1)

v � Crα1 for all r > 0.

Then, hypotheses (i), (iii), (ii) of Lemma 5.2 hold with C8 = C, β1 = α1, β2 = α2, 
and μ = α2 + s. Thus, we conclude that v ∈ Cα(Ω) and [v]Cα(Ω) � C, which by (5.11)
implies ‖v‖Cα(Ω) � C, for α ∈ ]0, s] and C > 0 only depending on N , p, s, and Ω. �
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