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a b s t r a c t

We consider a nonlinear pseudo-differential equation driven by the fractional p-
Laplacian (−∆)s

p with s ∈ (0, 1) and p ⩾ 2 (degenerate case), under Dirichlet
type conditions in a smooth domain Ω . We prove that local minimizers of the
associated energy functional in the fractional Sobolev space W s,p

0 (Ω) and in the
weighted Hölder space C0

s (Ω), respectively, coincide.
© 2019 Elsevier Ltd. All rights reserved.

1. Introduction and main result

The ‘Sobolev versus Hölder minimizers problem’ is a classical one in nonlinear analysis, arising from the
application of variational methods to boundary value problems of the following general type:{

Lu = f(x, u) in Ω

u ∈ W.
(1.1)

Here Ω ⊂ RN is a (generally bounded and smooth) domain, W is a Sobolev-type function space defined on
Ω , incorporating some boundary condition, L : W → W∗ is an elliptic differential operator in divergence
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form (linear or nonlinear), and the reaction f : Ω × R → R is a Carathéodory mapping satisfying suitable
growth conditions. In many relevant cases, weak solutions of problem (1.1) coincide with critical points of
an energy functional J ∈ C1(W) of the form

J(u) = ∥u∥p
W

p
−

∫
Ω

F (x, u) dx, (1.2)

where p > 1 and F (x, ·) denotes a primitive of f(x, ·). Among critical points, local minimizers play a special
rôle, as they are the starting point to apply mountain pass or minimax schemes, as well as Morse-theoretic
arguments aimed at multiplicity results.

In order to localize solutions of (1.1), truncations of the reaction are often employed: as a typical example,
when f(·, 0) = 0, positive solutions are detected by using a modified functional J+ defined as in (1.2), but
with f replaced by f+(x, t) = f(x, t+) (here t+ denotes the positive part of t ∈ R). Alternatively, one may
truncate f(x, ·) outside a sub-solution and a super-solution of (1.1) in order to ‘trap’ solutions within a given
functional interval. Among many examples, we refer the reader to the classical works [1,24,29]. In all these
cases natural constraints are employed, so that weak comparison arguments ensure that critical points of
the truncated functionals are critical points of J as well. A drawback of the truncation method is that the
topological nature of such critical points is a priori lost in the process, along with the valuable information
that can be derived from it: in particular, it is not a priori ensured that local minimizers of the truncated
functionals are minimizers of J . For instance, this is the case for the truncation at 0, as J and J+ only agree
on the positive cone W+, which in general has an empty interior.

In [4], Brezis and Nirenberg proposed an answer to this issue for the Dirichlet problem with L = −∆ and
W = H1

0 (Ω), by proving that local minimizers of J in H1
0 (Ω) coincide with those in the space C = C1(Ω)

(whose positive cone has a nonempty interior). Such result relies on classical elliptic regularity theory, as well
as on the linearity of the operator (coincidence is first proved for 0, and then extended to any minimizer u

by translation). A key point is that minimizers of J on closed balls in H1
0 (Ω) solve a problem of the form

(1.1), involving a Lagrange’s multiplier as well.
When nonlinear operators are considered, the question becomes more involved. In [14], Garc̀ıa Azorero,

Peral Alonso and Manfredi extended the coincidence result to the p-Laplacian operator L = −∆p, with
W = W 1,p

0 (Ω) (p > 1) and again C = C1(Ω). In this case, to deal with non-zero minimizers, a simple
translation would not work, but the authors overcame such difficulty by employing the nonlinear regularity
theory of Lieberman [23] for a more general operator than −∆p. Since then, ‘Sobolev versus Hölder’ results
were proved for a number of (1.1)-type problems involving several operators (both linear and nonlinear)
and boundary conditions (see for instance [9,15,21,27]). In particular, we mention the approach of Brock,
Iturriaga and Ubilla [5], where constrained minimization of J is performed on balls in Lq(Ω) (q < p∗), so that
the modified equation is still of p-Laplacian type, though involving an additional power term (see also [10]).

When it comes to nonlocal operators of fractional order, problem (1.1) is naturally set in a fractional
Sobolev space, but C1-regularity up to the boundary is not to be expected any more. For instance, given
s ∈ (0, 1), the function (1 − |x|2)s

+ solves{
(−∆)su = 1 in B1

u = 0 in RN \ B1,

but clearly |∇u| blows up near the boundary. The issue, moreover, does not only involve the boundary
behavior: for f ∈ L∞(RN ), the optimal interior regularity for solutions of (−∆)su = f is C2s when s ̸= 1/2,
so that when s < 1/2 we cannot expect even Lipschitz continuity in the interior (see [28]). In the fractional
framework, the natural function space to work with is constructed through a weighted Hölder regularity
condition, namely assuming that u/ds

Ω admits a continuous extension to Ω , where ds
Ω (x) = dist(x,RN \Ω)s.

We denote by C = C0
s (Ω) the space of such u’s, equipped with the norm ∥u∥C0

s
= supΩ |u|/ds

Ω , while we set
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L = (−∆)s (the fractional Laplacian of order s ∈ (0, 1)) and W = Hs
0(Ω). In [18], equivalence of minimizers

for J in W and in C was proved following the approach of [4] (see also [2,12] for similar results).
In this work we propose a ‘Sobolev versus Hölder’ result for a nonlinear nonlocal equation driven by

the degenerate fractional p-Laplacian, namely the nonlinear extension of (−∆)s. For any s ∈ (0, 1), p ⩾ 1,
N > ps we define the Gagliardo (semi-)norm of a measurable function u : RN → R as

∥u∥p
s,p =

∫∫
R2N

|u(x) − u(y)|p dµ,

where we use the abbreviated notation
dµ = dx dy

|x − y|N+ps
.

Further, let Ω ⊂ RN be a bounded domain with a C1,1-boundary and set

W s,p
0 (Ω) =

{
u ∈ Lp(RN ) : ∥u∥s,p < ∞, u = 0 a.e. in RN \ Ω

}
.

The space W s,p
0 (Ω), endowed with the norm ∥ · ∥s,p, is a separable, uniformly convex Banach space with

dual denoted by W −s,p′(Ω). The embedding W s,p
0 (Ω) ↪→ Lq(Ω) is continuous for all q ∈ [1, p∗

s] and compact
for all q ∈ [1, p∗

s), where
p∗

s = Np

N − ps

denotes the fractional Sobolev exponent. We define the fractional p-Laplacian as an operator (−∆)s
p :

W s,p
0 (Ω) → W −s,p′(Ω) given by

⟨(−∆)s
p u, φ⟩ =

∫∫
R2N

(u(x) − u(y))p−1(φ(x) − φ(y)) dµ,

i.e., (−∆)s
p is the Fréchet derivative of u ↦→ ∥u∥p

s,p/p (see [16] for details). Note that (−∆)s
p is both nonlinear

and nonlocal. We will consider the following Dirichlet problem:{
(−∆)s

p u = f(x, u) in Ω

u = 0 in RN \ Ω ,
(1.3)

f : Ω × R → R is a Carathéodory mapping obeying the following at most critical growth condition for a.e.
x ∈ Ω and all t ∈ R:

|f(x, t)| ⩽ C0 (1 + |t|p
∗
s−1) (C0 > 0). (1.4)

According to the general formula (1.2), the energy functional for problem (1.3) is J ∈ C1(W s,p
0 (Ω)), defined

by
J(u) =

∥u∥p
s,p

p
−

∫
Ω

F (x, u) dx,

with
F (x, t) =

∫ t

0
f(x, τ) dτ.

In the present case, the rôle of the space C is played by the weighted Hölder space

C0
s (Ω) =

{
u ∈ C0(Ω) : u

ds
Ω

∈ C0(Ω)
}

,

endowed with the norm
∥u∥C0

s
=

 u

ds
Ω


∞

.

Our main result is the following, proving coincidence of Sobolev and Hölder minimizers of J :
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Theorem 1.1. Let p ⩾ 2, s ∈ (0, 1), N > ps, Ω ⊆ RN be a bounded domain with a C1,1-boundary,
f : Ω × R → R be a Carathéodory mapping satisfying (1.4). Then, for any u0 ∈ W s,p

0 (Ω), the following are
equivalent:

(i) there exists ρ > 0 such that J(u0 + v) ⩾ J(u0) for all v ∈ W s,p
0 (Ω), ∥v∥s,p ⩽ ρ;

(ii) there exists σ > 0 such that J(u0 + v) ⩾ J(u0) for all v ∈ W s,p
0 (Ω) ∩ C0

s (Ω), ∥v∥C0
s
⩽ σ.

We make some comments on Theorem 1.1:

(a) Choice of the space. There are many reasons why C0
s (Ω) is a natural choice where to settle this kind

of result. Mainly, such choice is dictated by the results of [17] (see also [19,20]), where an a priori
bound places solutions of (1.3) in the space Cα

s (Ω) = {u ∈ Cα(Ω) : u/ds
Ω ∈ Cα(Ω)} for some α > 0,

which compactly embeds into C0
s (Ω) (see Section 2 for details). Plus, in [7] (see also [22]) the following

version of Hopf’s lemma was proved: any solution u ⩾ 0 of (1.3) with non-negative right hand side either
vanishes identically, or u/ds

Ω ⩾ c in Ω for some c > 0. In particular, these signed solutions belong to
the interior of the non-negative cone in C0

s (Ω).
(b) Method of proof. Our strategy is more in the spirit of [5] rather than of [14], with constrained

minimization on Lp∗
s (Ω)-balls in order to deal with possibly critical problems, and employs as well a

special monotonicity property of (−∆)s
p (see Section 3 for the detailed proof). Notice that in references

such as [4,5,14] only the implication (ii) ⇒ (i) is considered, as the other one is trivial due to
C1(Ω) ↪→ W 1,p

0 (Ω). A typical feature of the nonlocal framework is that C0
s (Ω) is not included in

W s,p
0 (Ω), so we have to prove both implications.

(c) Applications. The semi-linear case p = 2 of Theorem 1.1 proved in [18] has already been applied in a
number of settings, see e.g. [8,13] and the monograph [25] for a general theory of fractional boundary
value problems. We hope that Theorem 1.1 will prove to be equally useful in the quasi-linear setting.
Already in [16, Theorem 5.3], a multiplicity result for problem (1.3) was proved under the conjecture
that a version of Theorem 1.1 holds: such result is now fully achieved. In Section 4, we will briefly
describe an illustrative application. Besides [16], see [11,30] (focused on problems with critical growth)
and the survey [26].

(d) The singular case. We remark that our result is only proved in the degenerate (or superquadratic)
case p ⩾ 2. This is due to the fact that the Cα

s (Ω)-regularity mentioned above has so far only been
proved in this setting. For the singular case p ∈ (1, 2), the boundary regularity issue is therefore still
open. Provided the answer is positive, the singular counterpart of Theorem 1.1 (with exactly the same
statement except p ∈ (1, 2)) could be easily proved arguing as we do below using Lemma 2.4 instead
of Lemma 2.3.

Notation. Throughout the paper we will use the short notation ar = |a|r−1
a for all a ∈ R, r ⩾ 1. We will

denote ∥ · ∥q the usual norm of Lq(Ω) for all q ∈ [1, ∞]. Finally, C will denote several positive constants,
only depending on the data of the problem.

2. Preliminaries

In this section we introduce some technical results which will be used in the proof of our main theorem.
First, we recall that u ∈ W s,p

0 (Ω) is a (weak) solution of problem (1.3) iff for all φ ∈ W s,p
0 (Ω)

⟨(−∆)s
p u, φ⟩ =

∫
Ω

f(x, u)φ dx,

i.e., iff J ′(u) = 0 in W −s,p′(Ω). We recall from [6, Theorem 3.3, Remark 3.8] the following a priori bound
for weak solutions of (1.3):
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Lemma 2.1. There exists ε0 = ε0(N, p, s, C0) > 0 such that if u ∈ W s,p
0 (Ω) solves (1.3) under the growth

condition (1.4) and K > 0 fulfills ∫
{|u|⩾K}

|u|p
∗
s dx < ε0,

then ∥u∥∞ ⩽ C with C = C(N, p, s, C0, ∥u∥s,p, K) > 0.

The bound in Lemma 2.1 is not uniform in ∥u∥s,p, due to the critical growth in (1.4), therefore in order
to prove equi-boundedness of a sequence (un)n of solutions to (1.3) one not only needs an a priori bound
on ∥un∥s,p, but also an equi-integrability estimate. For strictly subcritical reactions the dependence on K

can be dropped, and the former is sufficient.
In addition to C0

s (Ω) defined in the Introduction, we will also use the following weighted Hölder space
(see [18] for details):

Cα
s (Ω) =

{
u ∈ C0(Ω) : u

ds
Ω

∈ Cα(Ω)
}

, (α ∈ (0, 1)),

with norm
∥u∥Cα

s
= ∥u∥C0

s
+ sup

x ̸=y

|u(x)/ds
Ω (x) − u(y)/ds

Ω (y)|
|x − y|α

.

The embedding Cα
s (Ω) ↪→ C0

s (Ω) is compact for all α ∈ (0, 1). The space Cα
s (Ω) is related to the global

regularity theory for solutions of the following problem:{
(−∆)s

p u = g(x) in Ω

u = 0 in RN \ Ω ,
(2.1)

with g ∈ L∞(Ω). Weak solutions are defined just as those of (1.3). From [17, Theorem 1.1] we have the
following result:

Lemma 2.2. Let p ⩾ 2. Then, there exist α, C > 0, both depending on Ω , p, and s, such that any weak
solution u ∈ W s,p

0 (Ω) of (2.1) with g ∈ L∞(Ω) fulfills

∥u∥Cα
s
⩽ C ∥g∥

1
p−1
∞ .

Another useful tool for our argument is the following monotonicity property of the fractional p-Laplacian,
which we present separately in the degenerate and singular case:

Lemma 2.3 (Degenerate Case). Let p ⩾ 2. There exists C = C(p) > 0 such that for all u, v ∈ W s,p
0 (Ω) ∩

L∞(Ω) and all q ⩾ 1 (u − v)
p+q−1

p

p

s,p
⩽ C qp−1 ⟨(−∆)s

p u − (−∆)s
p v, (u − v)q⟩.

Proof. First we prove the following elementary inequality (recall the notation ar = |a|r−1
a introduced

above for a < 0): for all a, b, c, d ∈ R such that a − b = c − d it holds⏐⏐⏐a p+q−1
p − b

p+q−1
p

⏐⏐⏐p

⩽ C qp−1 (
cp−1 − dp−1) (

aq − bq
)
, (2.2)

with a constant C = C(p) > 0 independent of q. We may assume that a ⩾ b and c ⩾ d since the former is
equivalent to the latter, so that being t ↦→ tr−1 increasing for all r ⩾ 1 all the factors of (2.2) are nonnegative.
We apply [3, Lemma A.2] with g(t) = tq and

G(t) =
∫ t

0
(g′(τ))

1
p dτ = p q

1
p

p + q − 1 t
p+q−1

p
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to get (
a

p+q−1
p − b

p+q−1
p

)p

⩽
(p + q − 1)p

pp q

(
a − b

)p−1 (
aq − bq

)
.

Besides, p ⩾ 2 implies that t ↦→ tp−2 is increasing on R+, hence

cp−1 − dp−1 = (p − 1)
∫ c

d

|t|p−2
dt

⩾ (p − 1)
∫ (c−d)/2

−(c−d)/2
|t|p−2

dt

= 1
2p−2

(
c − d

)p−1
.

Recalling that a − b = c − d and concatenating with the previous inequality, we get(
a

p+q−1
p − b

p+q−1
p

)p

⩽
2p−2(p + q − 1)p

pp q

(
cp−1 − dp−1) (

aq − bq
)
,

which yields (2.2). Now pick u, v ∈ W s,p
0 (Ω)∩L∞(Ω), so (u−v)q ∈ W s,p

0 (Ω). By (2.2) with a = u(x)−v(x),
b = u(y) − v(y), c = u(x) − u(y) and d = v(x) − v(y), we have(u − v)

p+q−1
p

p

s,p
=

∫∫
R2N

⏐⏐⏐(u(x) − v(x))
p+q−1

p − (u(y) − v(y))
p+q−1

p

⏐⏐⏐p

dµ

⩽ C qp−1 ⟨(−∆)s
p u − (−∆)s

p v, (u − v)q⟩,

which proves the assertion. □

In the singular case, the monotonicity is slightly different:

Lemma 2.4 (Singular Case). Let p ∈ (1, 2). Then, there exists C = C(p) > 0 such that for all u, v ∈
W s,p

0 (Ω) ∩ L∞(Ω) and all q ⩾ 1(u − v)
q+1

2
2

s,p(
∥u∥p

s,p + ∥v∥p
s,p

)2−p ⩽ C q ⟨(−∆)s
p u − (−∆)s

p v, (u − v)q⟩.

Proof. Again we start with an elementary inequality:⏐⏐⏐a q+1
2 − b

q+1
2

⏐⏐⏐2
⩽ C q

(
cp−1 − dp−1) (

aq − bq
)(

c2 + d2) 2−p
2 , (2.3)

for all a, b, c, d ∈ R such that a − b = c − d, with a constant C = C(p) > 0 independent of q. As in the
previous proof, we may assume that a ⩾ b and c ⩾ d. By the Cauchy–Schwartz inequality and the assumption
a − b = c − d, we have [

a
q+1

2 − b
q+1

2
]2

=
[q + 1

2

∫ a

b

|t|
q−1

2 dt
]2

⩽
(q + 1)2

4

∫ a

b

|t|q−1
dt (a − b)

= (q + 1)2

4 q

(
aq − bq

)
(c − d).

(2.4)

On the other hand, |t| ⩽
(
c2 + d2) 1

2 for all t ∈ [d, c], which, along with p < 2, implies for all t ∈ [d, c]

|t|2−p ⩽
(
c2 + d2) 2−p

2 .
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In turn, the latter implies

c − d =
∫ c

d

|t|2−p |t|p−2
dt

⩽
(
c2 + d2) 2−p

2
∫ c

d

|t|p−2
dt

= 1
p − 1

(
c2 + d2) 2−p

2
(
cp−1 − dp−1)

,

which inserted into (2.4) gives (2.3). Now pick u, v ∈ W s,p
0 (Ω) ∩ L∞(Ω) and set, for any x, y ∈ RN ,

a = u(x) − v(x), b = u(y) − v(y), c = u(x) − u(y) and d = v(x) − v(y). Using (2.3) and Hölder’s inequality
with exponents 2/p and 2/(2 − p), we get(u − v)

q+1
2

p

s,p
=

∫∫
R2N

⏐⏐(u(x) − v(x))
q+1

2 − (u(y) − v(y))
q+1

2
⏐⏐p

dµ

⩽ C q
p
2

∫∫
R2N

[(
(u(x) − u(y))p−1− (v(x) − v(y))p−1)(

(u(x) − v(x))q − (u(y) − v(y))q
)

(
(u(x) − u(y))2 + (v(x) − v(y))2

) p−2
2

] p
2
dµ

⩽ C q
p
2

(
⟨(−∆)s

p u − (−∆)s
p v, (u − v)q⟩

) p
2
(
∥u∥p

s,p + ∥v∥p
s,p

) 2−p
2 ,

with a different C = C(p) > 0, still independent of q. Raising to the power 2/p we conclude. □

3. Proof of the main result

In this section we prove our main result:

Proof of Theorem 1.1. First we prove that (i) implies (ii). Assuming (i), we have in particular J ′(u0) = 0
in W −s,p′(Ω), hence by Lemma 2.1 u0 ∈ L∞(Ω). In turn, by (1.4) we have f(·, u) ∈ L∞(Ω). Then,
Lemma 2.2 implies u ∈ C0

s (Ω).
We argue by contradiction, assuming that there exists a sequence (un)n in W s,p

0 (Ω) ∩ C0
s (Ω) such that

un → u0 in C0
s (Ω) and J(un) < J(u0) for all n ∈ N. Then we have un → u0 in L∞(Ω), hence

lim
n

∫
Ω

F (x, un) dx =
∫
Ω

F (x, u0) dx.

So we have

lim sup
n

∥un∥p
s,p

p
= lim sup

n

[
J(un) +

∫
Ω

F (x, un) dx
]

⩽ J(u0) +
∫
Ω

F (x, u0) dx =
∥u0∥p

s,p

p
,

in particular (un) is bounded in W s,p
0 (Ω). Passing to a subsequence, we have un ⇀ u0 in W s,p

0 (Ω), hence

∥u0∥s,p ⩽ lim inf
n

∥un∥s,p.

By the uniform convexity of W s,p
0 (Ω), it is easily seen that the latter implies un → u0 (strongly) in W s,p

0 (Ω).
Then, for all n ∈ N big enough we have ∥un − u0∥s,p ⩽ ρ along with J(un) < J(u0), a contradiction. Thus,
(ii) holds.

Now we prove that (ii) implies (i). First note that, by (ii), for all φ ∈ W s,p
0 (Ω) ∩ C0

s (Ω) we have

⟨J ′(u0), φ⟩ ⩾ 0.
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Since W s,p
0 (Ω) ∩ C0

s (Ω) is a dense subspace of W s,p
0 (Ω), we have J ′(u0) = 0 in W −s,p′(Ω). As above, using

Lemmas 2.1 and 2.2 we deduce that u0 ∈ C0
s (Ω), in particular u0 ∈ L∞(Ω). Again we argue by contradiction,

assuming that there exists a sequence (ũn)n in W s,p
0 (Ω) such that ũn → u0 in W s,p

0 (Ω) and J(ũn) < J(u0)
for all n ∈ N. Set for all n ∈ N

δn = ∥ũn − u0∥p∗
s
, Bn =

{
u ∈ W s,p

0 (Ω) : ∥u − u0∥p∗
s
⩽ δn

}
.

By the continuous embedding W s,p
0 (Ω) ↪→ Lp∗

s (Ω) we have δn → 0, and Bn is a closed convex (hence, weakly
closed) subset of W s,p

0 (Ω). Due to the critical growth in (1.4), we cannot directly minimize J over Bn, so
we introduce a suitable truncation. Set for all t ∈ R, κ > 0

[t]κ = sign(t) min{|t|, κ}.

For all u ∈ W s,p
0 (Ω) we have by dominated convergence

lim
κ→+∞

∫
Ω

∫ u

0
f(x, [t]κ) dt dx =

∫
Ω

F (x, u) dx. (3.1)

Fix n ∈ N, εn ∈ (0, J(u0) − J(ũn)). By (3.1) we can find κn > ∥u0∥∞ + 1 such that⏐⏐⏐ ∫
Ω

Fn(x, ũn) dx −
∫
Ω

F (x, ũn) dx
⏐⏐⏐ < εn,

where we have set
fn(x, t) = f(x, [t]κn), Fn(x, t) =

∫ t

0
fn(x, τ) dτ.

Note that, by (1.4),
|fn(x, t)| ⩽ Cn = C0 (1 + κ

p∗
s−1

n ).

Set for all u ∈ W s,p
0 (Ω)

Jn(u) =
∥u∥p

s,p

p
−

∫
Ω

Fn(x, u) dx,

hence Jn ∈ C1(W s,p
0 (Ω)), is sequentially weakly lower semi-continuous and, being p > 1 and |Fn(x, t)| ⩽

Cn(1 + |t|), it turns out to be coercive. Thus for any n ⩾ 0 we can find un ∈ Bn solving the minimization
problem

Jn(un) = mn = inf
u∈Bn

Jn(u). (3.2)

Note that, by the choice of εn and κn, we have

Jn(un) ⩽ Jn(ũn) ⩽ J(ũn) + εn < J(u0) = Jn(u0). (3.3)

We claim that there exists λn ⩾ 0 such that the following identity holds in W −s,p′(Ω):

(−∆)s
p un + λn(un − u0)p∗

s−1 = fn(x, un). (3.4)

Indeed, recalling that un ∈ Bn, two cases may occur:

(a) If ∥un − u0∥p∗
s

< δn, then by (3.2) and the continuous embedding W s,p
0 (Ω) ↪→ Lp∗

s (Ω), un is a local
minimizer of Jn in W s,p

0 (Ω), hence J ′
n(un) = 0. So, (3.4) holds with λn = 0.

(b) If ∥un − u0∥p∗
s

= δn, then we apply Lagrange’s multipliers rule. Set for all u ∈ W s,p
0 (Ω)

I(u) =
∥u − u0∥p∗

s
p∗

s

p∗
s

, Mn =
{

u ∈ W s,p
0 (Ω) : I(u) = δ

p∗
s

n

p∗
s

}
,
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then I ∈ C1(W s,p
0 (Ω)) and Mn is a C1-manifold in W s,p

0 (Ω). By (3.2), un is a global minimizer of Jn

on Mn, so there exists λn ∈ R such that in W −s,p′(Ω)

J ′
n(un) + λnI ′(un) = 0,

which is equivalent to (3.4). Besides, by (3.2) again we have

λn = −⟨J ′
n(un), u0 − un⟩

⟨I ′(un), u0 − un⟩
⩾ 0.

By construction we have that un → u0 in Lp∗
s (Ω), as n → ∞. Moreover, by Lemma 2.1 and (3.4), we have

un ∈ L∞(Ω). The next and most delicate step of the proof consists in proving that

un → u0 in L∞(Ω). (3.5)

Subtracting (1.3) from (3.4), for all n ∈ N we get in W −s,p′(Ω)

(−∆)s
p un − (−∆)s

p u0 + λn(un − u0)p∗
s−1 = gn(x, un − u0), (3.6)

where for all (x, t) ∈ Ω × R we have set

gn(x, t) = fn(x, t + u0(x)) − f(x, u0(x)).

By (1.4), we can find C > 0 (independent of n) such that for all n ∈ N

|gn(x, t)| ⩽ C (1 + |t|p
∗
s−1). (3.7)

We set wn = un − u0 ∈ W s,p
0 (Ω) ∩ L∞(Ω) and test (3.6) with wq

n ∈ W s,p
0 (Ω), for q ⩾ 1:

⟨(−∆)s
p un − (−∆)s

p u0, wq
n⟩ + λn

∫
Ω

|wn|p
∗
s+q−1

dx =
∫
Ω

gn(x, wn) wq
n dx

⩽ C
[∫

Ω

|wn|q dx +
∫
Ω

|wn|p
∗
s+q−1

dx
]
.

(3.8)

We now apply Lemma 2.3 and the continuous embedding W s,p
0 (Ω) ↪→ Lp∗

s (Ω) to get[∫
Ω

|wn|
p∗

s(p+q−1)
p dx

] p
p∗

s ⩽ C
w

p+q−1
p

n

p

s,p

⩽ C qp−1 ⟨(−∆)s
p un − (−∆)s

p u0, wq
n⟩,

which, along with λn ⩾ 0 and (3.8), implies for all n ∈ N, q ⩾ 1[∫
Ω

|wn|
p∗

s(p+q−1)
p dx

] p
p∗

s ⩽ C qp−1
[∫

Ω

|wn|q dx +
∫
Ω

|wn|p
∗
s+q−1

dx
]
, (3.9)

with C > 0 independent of q and n. Next, we shall derive an iterative formula from (3.9). We define
recursively an increasing sequence (qj)j by setting

q1 = 1, qj+1 = p∗
s(p + qj − 1)

p
,

so qj → ∞ as j → ∞. In particular, we can find ȷ̄ ∈ N such that

q̄ = qȷ̄ >
N(p∗

s − 1)
ps

. (3.10)
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By (3.9) with q = qj , we have for all j, n ∈ N[∫
Ω

|wn|qj+1 dx
] p

p∗
s ⩽ C qp−1

j

[∫
Ω

|wn|qj dx +
∫
Ω

|wn|p
∗
s+qj−1

dx
]
.

We aim at absorbing the last integral into the left hand side. By Hölder’s inequality we have∫
Ω

|wn|p
∗
s+qj−1

dx ⩽
[∫

Ω

|wn|p
∗
s dx

] p∗
s−p

p∗
s

[∫
Ω

|wn|
p∗

s(p+qj −1)
p dx

] p
p∗

s .

Since wn → 0 in Lp∗
s (Ω), for all n ∈ N big enough we may assume

[∫
Ω

|wn|p
∗
s dx

] p∗
s−p

p∗
s ⩽

1
2 C q̄p−1 .

So for all j = 1, . . . ȷ̄ we have[∫
Ω

|wn|qj+1 dx
] p

p∗
s ⩽ C qp−1

j

∫
Ω

|wn|qj dx + 1
2

[∫
Ω

|wn|qj+1 dx
] p

p∗
s ,

which yields [∫
Ω

|wn|qj+1 dx
] p

p∗
s ⩽ 2 C qp−1

j

∫
Ω

|wn|qj dx. (3.11)

Iterating on (3.11) for j = 1, . . . ȷ̄, we find C, ᾱ > 0 such that for all n ∈ N big enough

∥wn∥q̄ ⩽ C ∥wn∥ᾱ
1 .

Since (wn)n is bounded in L1(Ω), it is so in Lq̄(Ω) as well. Now recall (3.10) and set

r̄ = q̄

p∗
s − 1 >

N

ps
.

By (3.7) and Hölder’s inequality we have∫
Ω

|gn(x, wn)|r̄ dx ⩽ C

∫
Ω

(1 + |wn|q̄) dx ⩽ C.

Again we test (3.6) with wq
n ∈ W s,p

0 (Ω) ∩ L∞(Ω), q ⩾ 1. As above, by using Lemma 2.3 we get[∫
Ω

|wn|
p∗

s(p+q−1)
p dx

] p
p∗

s ⩽ C qp−1
∫
Ω

gn(x, wn)wq
n dx (3.12)

⩽ C qp−1
[∫

Ω

|gn(x, wn)|r̄ dx
] 1

r̄
[∫

Ω

|wn|qr̄′
dx

] 1
r̄′

⩽ C qp−1
[∫

Ω

|wn|qr̄′
dx

] 1
r̄′

,

with C > 1 independent of n and q. By (3.10) we may set

γ = p∗
s

pr̄′ > 1,

and define recursively two sequences (pj)j , (qj)j (different from the previous (qj)j) through

p0 = p∗
s, pj+1 = γpj + p∗

s(p − 1)
p

, qj = pj

r̄′ .
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So we have pj , qj → ∞ as j → ∞ and setting q = qj in (3.12), we have for all n, j ∈ N[∫
Ω

|wn|pj+1 dx
] p

p∗
s ⩽ C qp

j

[∫
Ω

|wn|pj dx
] 1

r̄′

(recall that qj > 1, hence qp−1
j ⩽ qp

j ), which rephrases as the following recursive inequality:∫
Ω

|wn|pj+1 dx ⩽ (C qp
j )γr̄′[∫

Ω

|wn|pj dx
]γ

. (3.13)

Iterating on (3.13) for j ∈ N and recalling that qj ∼ γj/r̄′ as j → ∞, we have∫
Ω

|wn|pj dx ⩽
j−1∏
i=0

(C qp
i )γj−ir̄′ [∫

Ω

|wn|p0 dx
]γj

⩽ Cγj
γpr̄′ ∑j−1

i=0 iγj−i
[∫

Ω

|wn|p
∗
s dx

]γj

,

with an even bigger C > 1 independent of j, n. Set

S =
∞∑

i=0
i γ−i < ∞,

then we have for all n, j ∈ N ∫
Ω

|wn|pj dx ⩽ Cγj
γpr̄′Sγj

[∫
Ω

|wn|p
∗
s dx

]γj

.

Note that, since wn → 0 in Lp∗
s (Ω), the integral on the right hand side is less than 1 for all n ∈ N big enough.

Raising the last inequality to the power 1/pj , we get

∥wn∥pj
⩽ C

γj

pj γ
pr̄′S γj

pj

[∫
Ω

|wn|p
∗
s dx

] γj

pj

⩽ Cβ γpr̄′Sβ
[∫

Ω

|wn|p
∗
s dx

]η

,

where β, η > 0 have been chosen such that for all j ∈ N

η <
γj

pj
< β.

Summarizing, we find C > 1 such that for all n, j ∈ N big enough

∥wn∥pj
⩽ C ∥wn∥ηp∗

s
p∗

s
.

Letting j → ∞ and recalling that wn ∈ L∞(Ω), we have for all n ∈ N large enough

∥wn∥∞ ⩽ C ∥wn∥ηp∗
s

p∗
s

.

Finally, from wn → 0 in Lp∗
s (Ω) we infer wn → 0 in L∞(Ω) as well, thus proving (3.5).

We can now conclude the proof. For n ∈ N big enough, (3.4) rephrases as

(−∆)s
p un = f(x, un) − λn(un − u0)p∗

s−1 in W −s,p′
(Ω), (3.14)

with λn ⩾ 0 (possibly λn → ∞). As a consequence of (3.5), the sequence (un)n is bounded in L∞(Ω), so
by (1.4) we see that (f(·, un))n is uniformly bounded as well. To go further we need a uniform bound on
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(λn (un − u0)p∗
s−1)n. Testing again (3.6) with wq

n (with wn = un − u0, q ⩾ 1) and applying Lemma 2.3, we
get for all n ∈ N big enough

λn

∫
Ω

|wn|p
∗
s+q−1

dx ⩽
∫
Ω

g(x, un) wq
n dx

⩽ C

∫
Ω

|wn|q dx

⩽ C
[∫

Ω

|wn|p
∗
s+q−1

dx
] q

p∗
s+q−1 |Ω |

p∗
s−1

p∗
s+q−1

(with C > 0 independent of n, q), which implies

λn ∥wn∥p∗
s−1

p∗
s+q−1 ⩽ C |Ω |

p∗
s−1

p∗
s+q−1 .

Letting q → ∞, we have
λn ∥wn∥p∗

s−1
∞ ⩽ C,

i.e., (λn (un − u0)p∗
s−1)n is a bounded sequence in L∞(Ω). Then, (3.14) and Lemma 2.2 imply that (un)n is

bounded in Cα
s (Ω). By the compact embedding Cα

s (Ω) ↪→ C0
s (Ω̄), passing to a subsequence we have un → u0

in C0
s (Ω). So, for all n ∈ N big enough we have ∥un − u0∥C0

s
⩽ σ.

On the other hand, being (un)n bounded in L∞(Ω), for n large enough we have Jn(un) = J(un), so that
by (3.3) we have J(un) < J(u0). Thus we reached a contradiction to (ii), and (i) is proved. □

4. An application

To conclude we just want to give an example of how our result works, presenting a nonlinear extension
of [8, Theorem 3.3]. We make on the reaction f in problem (1.3) the following assumptions:

H f : Ω × R → R is a Carathéodory map such that

(i) |f(x, t)| ⩽ C0(1 + |t|q−1) for a.e. x ∈ Ω , all t ∈ R (C0 > 0, q ∈ (p, p∗
s));

(ii) f(x, t)t ⩾ 0 for a.e. x ∈ Ω , all t ∈ R;
(iii) lim sup|t|→∞

F (x,t)
|t|p ⩽ 0 uniformly for a.e. x ∈ Ω ;

(iv) lim inft→0
F (x,t)

|t|p > λ2
p uniformly for a.e. x ∈ Ω .

Here λ2 > 0 denotes the second (variational) eigenvalue of (−∆)s
p in W s,p

0 (Ω) (see [3] for details). Under
these assumptions, we prove the following multiplicity result for problem (1.3):

Theorem 4.1. Let H be satisfied. Then, problem (1.3) admits at least three nontrivial solutions.

Proof. We just sketch the proof, referring to [8] for details. First we introduce two truncated reactions and
their primitives, defined for all (x, t) ∈ Ω × R by

f±(x, t) = f(x, ±t±), F±(x, t) =
∫ t

0
f±(x, τ) dτ

(here t± = max{±t, 0}), and note that f± are Carathéodory with subcritical growth due to H (i). We
introduce the corresponding truncated energy functionals J± ∈ C1(W s,p

0 (Ω)) defined by

J±(u) =
∥u∥p

s,p

p
−

∫
Ω

F±(x, u) dx.
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By H (iii), J+ is coercive and thus it admits a global minimizer u+ ∈ W s,p
0 (Ω). Using H (iv), we easily see

that u+ ̸= 0. Clearly, u+ is a weak solution of the auxiliary problem{
(−∆)s

p u = f+(x, u) in Ω

u = 0 in RN \ Ω ,

hence by Lemmas 2.1, 2.2 we have u+ ∈ C0
s (Ω). Besides, by H (ii) and the fractional p-Laplacian Hopf’s

lemma (see [7, Theorem 1.5]), we have uniformly for all x ∈ ∂Ω

lim
Ω∋y→x

u+(y)
ds
Ω (y) > 0.

Thus, u+ lies in the interior of the positive order cone C0
s (Ω)+ of C0

s (Ω) (see [16, Lemma 5.1]). Since J+ = J

on C0
s (Ω)+, we see that u+ is a local minimizer of J in the C0

s (Ω)-topology. By Theorem 1.1, u+ is as well
a local minimizer of J in the W s,p

0 (Ω)-topology.
Arguing similarly on J−, we detect a local minimizer u− ∈ −int(C0

s (Ω)+) of J . Plus, J satisfies the
Palais–Smale condition, hence by the mountain pass theorem it admits one more critical point ũ ∈ W s,p

0 (Ω).
Exploiting condition H (iv) and the variational characterization of the second eigenvalue λ2 (see [3, Theorem
5.3]), we see that ũ ̸= 0. Finally, we use Lemmas 2.1, 2.2 to deduce that ũ ∈ C0

s (Ω).
All in all, u+, u−, ũ ∈ W s,p

0 (Ω) ∩ C0
s (Ω) \ {0} are three nontrivial solutions of (1.3). □
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some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000) 385–404.
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