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1. Introduction

Let Ω be a smooth bounded domain of RN and, for p > 1, consider the problem{
−Δpu = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

In the linear case p = 2, the spectrum reduces to an increasing sequence (λk) and a celebrated result
obtained by Weyl [17] around 1912 states that the counting function N for eigenvalues, defined by

N (λ) = �{k ∈ N: λk < λ}, (1.1)

satisfies N (λ) ∼ (2π)−NωN |Ω|λN/2 for λ large, being ωN the volume of the unit ball in R
N . In turn, the

asymptotic growth of the λk’s is k2/N , up to some constant depending on N and |Ω|. In the case p �= 2,
although the spectrum is not yet completely understood, it is known that there exists a sequence of vari-
ational eigenvalues (λk) and, around 1989, García Azorero and Peral Alonso [10] and Friedlander [9]
obtained the following asymptotic two-sided estimate for such sequence:

C1|Ω|λN/p � N (λ) � C2|Ω|λN/p, λ > 0 large.

In this paper, we deal with the eigenvalue problem for the fractional p-Laplacian, namely

{
(−Δ)spu = λ|u|p−2u in Ω,
u = 0 in R

N \Ω,
(1.2)
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where 0 < s < 1, Ω ⊂ R
N (N � 2) is a bounded domain with Lipschitz boundary and (−Δ)sp is

defined, up to a normalization factor c(s, p,N ), as

(−Δ)spu(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x− y|N+sp

dy, x ∈ R
N .

In the particular but very important linear case p = 2, the operator (−Δ)sp reduces to the linear fractional
Laplacian (−Δ)s. Due to the non-local character of such operator, it is natural to work in the Sobolev
space W s,p(RN ) and express the Dirichlet condition on R

N \Ω rather than on ∂Ω.
Though fractional Sobolev spaces are well known since the beginning of the last century, especially

in the field of harmonic analysis, they have become increasingly popular in the last few year, under the
impulse of the work of Caffarelli and Silvestre [3] (see Di Nezza, Palatucci and Valdinoci [5] and the
reference within). The large amount of new contributions, especially focused on the linear case p = 2,
are motivated by several applications. For instance, Laskin [13] has obtained, in quantum mechanics,
a fractional generalization of the classical Schrödinger equation involving the operator (−Δ)s. The non-
linear eigenvalue problem (1.2) was first studied by Lindgren and Lindqvist [14] (for the case p � 2)
and by Franzina and Palatucci [8] (for any p > 1). In [14] much attention is paid to the asymptotics of
problem (1.2) as p → ∞, while in [8] some regularity results for the eigenfunctions are proved.

We provide a variational formulation for problem (1.2). A (weak) solution of problem (1.2) is a func-
tion u ∈ W s,p(RN ) such that u = 0 a.e. in R

N \Ω and∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x− y|N+sp

dx dy = λ

∫
Ω
|u|p−2uv dx (1.3)

for all v ∈ W s,p(RN ) such that v = 0 a.e. in R
N \Ω. We know that any solution is essentially bounded

(see [8, Theorem 3.2]), and Hölder continuous if sp > N (see [14, Theorem 3]). For all λ ∈ R, there
exists a non-zero solution u of (1.2), then we say that λ ∈ R is an eigenvalue and u is a λ-eigenfunction.
The set of eigenvalues is the spectrum of (1.2) and is denoted by σ(s, p), and for all λ ∈ σ(s, p) the set
of λ-eigenfunctions is called λ-eigenspace. Clearly, σ(s, p) ⊂ R

+ and all eigenspaces are star-shaped
sets, as both sides of (1.2) are (p− 1)-homogeneous.

We recall some remarkable properties of σ(s, p):

(i) σ(s, p) is a closed set;
(ii) λ1 = minσ(s, p) > 0 is simple and isolated;

(iii) for all λ ∈ σ(s, p) with λ > λ1, any λ-eigenfunction u is sign-changing in Ω;
(iv) if (Ωj) is a non-decreasing sequence of domains such that Ω =

⋃∞
j=1 Ωj , then λ1(Ωj) ↘ λ1

(here λ1(Ωj) denotes the first eigenvalue of (1.2) on the domain Ωj ⊂ Ω);
(v) if Ω is a ball, then any positive (resp. negative) λ1-eigenfunction is radially symmetric and radi-

ally decreasing (resp. increasing).

For the proofs of (i)–(iv) and the exact ranges of s, p for which these assertions hold, see [14] and [8]
(some of these properties also hold with a more general kernel K(x, y), still with differentiability order
s and summability order p, replacing |x− y|−N−sp). For (v), see Proposition 4.1.

In the present paper we focus on the higher fractional p-eigenvalues, following [9] and [10], dealing
with the p-Laplacian operator. We will define a non-decreasing sequence (λk) of variational (of min–
max type) eigenvalues by means of the cohomological index (see [16]), and we will provide an estimate
of the counting function of (λk), still denoted by N (λ) and defined as in (1.1), at infinity.
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Our main result is the following theorem.

Theorem 1.1. Let 0 < s < 1, p > 1, N � 2 and Ω ⊂ R
N be a bounded domain with Lipschitz

boundary. Then problem (1.2) admits a non-decreasing sequence (λk) of positive eigenvalues such that
λk → ∞ and

N (λ) � C1|Ω|(sp)/(Np−N+sp)λN/(Np−N+sp), λ > 0 large (1.4)

for some constant C1 > 0 depending only on s, p and N . Furthermore, for sp > N ,

N (λ) � C2|Ω|(sp)/(sp−N )λN/(sp−N ), λ > 0 large (1.5)

for some constant C2 > 0 depending only on s, p and N .

Consequently, for k large and sp > N , we have

C ′
1|Ω|−(sp)/Nk(sp−N )/N � λk � C ′

2|Ω|−(sp)/Nk(Np−N+sp)/N

for some positive constants C ′
i depending only on s, p and N (i = 1, 2). We suspect that, actually, the

following sharper Weil-type law holds

C̃1|Ω|λN/sp � N (λ) � C̃2|Ω|λN/sp, λ > 0 large (1.6)

for some positive constants C̃i depending only on s, p and N (i = 1, 2). Indeed, (1.6) implies both (1.4)
and (1.5) (at least if sp > N ), and we have

|Ω|(sp)/(Np−N+sp)λN/(Np−N+sp) ∼ |Ω|λN/(sp) for p close to 1,

|Ω|(sp)/(sp−N )λN/(sp−N ) ∼ |Ω|λN/(sp) for p large.

Non-optimality of our estimates may be explained as follows. In computing asymptotic estimates of
variational eigenvalues, a crucial step consists in proving sub- and super-additivity properties for the
genus and co-genus of sublevels of the Sobolev norm on a domain Ω which is union of a disjoint family
of open subsets Ωi. In the classical case of p-Laplacian problems (s = 1), this is easily performed due
to the following splitting properties of Sobolev norms: if Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = ∅,

‖u1 + u2‖p
W 1,p

0 (Ω)
= ‖u1‖p

W 1,p
0 (Ω1)

+ ‖u2‖p
W 1,p

0 (Ω2)
, ui ∈ W 1,p

0 (Ωi) (i = 1, 2).

In the fractional case (0 < s < 1), in general we have

[u1 + u2]ps,p �= [u1]ps,p + [u2]ps,p, ui ∈ W s,p
(
R
N
)

with ui = 0 a.e. in R
N \Ωi (i = 1, 2),

due to the nonlocal character of the Gagliardo norm. This forces us to introduce some correction multi-
pliers, which eventually produce the asymmetric estimates (1.4)–(1.5).

In the linear case p = 2, a completely different approach is possible: the explicit asymptotic behaviour
of eigenvalues was obtained recently by Frank and Geisinger [7] and Geisinger [11] and in the one-
dimensional case by Kwasnicki [12]. These results are consistent with (1.6).
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The paper is organized as follows: in Section 2 we give a variational formulation of the problem and
construct the sequence (λk). In Section 3 we prove some technical lemmas on the Krasnoselskii genus
and co-genus. In Section 4 we prove Theorem 1.1 (and (v) above).

2. Construction of the variational eigenvalues

We first recall some basic notions from the Alexander–Spanier cohomology theory and introduce a
cohomological index which goes back to Fadell and Rabinowitz [6]. Let A(X) denote the family of all
nonempty, closed, symmetric subsets of a Banach space X , and for all A ∈ A(X), B ∈ A(X ′) we
denote by C2(A,B) the set of all odd, continuous mappings f :A → B. For all A ∈ A(X) we define
the quotient space A = A/Z2 and the classifying map ϕ :A → RP∞ towards the infinite-dimensional
projective space, which induces a homomorphism of cohomology rings ϕ∗ :H∗(RP∞) → H∗(A). One
can identify H∗(RP∞) with the polynomial ring Z2[ω] on a single generator ω. Finally we define the
index of A as the positive integer

i(A) = sup
{
k ∈ N: ϕ∗(ωk−1

)
�= 0

}
.

We will not actually use much of index theory. All we need to know is that i(Sk−1) = k for all k ∈ N

(Sk−1 denotes the unit sphere in R
k, see [16, Example 2.11]) and that, if A ∈ A(X), B ∈ A(X ′) and

f ∈ C2(A,B), then i(A) � i(B) (see [16, Proposition 2.12 (i2)]). We refer the reader to [16] and to
Motreanu, Motreanu and Papageorgiou [15] for a detailed account of this subject.

We also define the Krasnoselskii genus and co-genus by setting for all A ∈ A(X)

γ+(A) = sup
{
k ∈ N: C2

(
Sk−1,A

)
�= ∅

}
,

γ−(A) = inf
{
k ∈ N: C2

(
A,Sk−1

)
�= ∅

}
.

We have for all A ∈ A(X)

γ+(A) � i(A) � γ−(A). (2.1)

Indeed, for all k ∈ N for which there is a mapping f ∈ C2(Sk−1,A), we have i(A) � i(Sk−1) = k,
hence i(A) � γ+(A). The second inequality is proved in a similar way.

Now we turn to problem (1.2) for which we provide a convenient variational formulation. For all
measurable functions u :RN → R, we set

‖u‖Lp(RN ) =

(∫
RN

∣∣u(x)
∣∣p dx

)1/p

,

[u]s,p =

(∫
R2N

|u(x) − u(y)|p
|x− y|N+sp

dx dy

)1/p

.

We define the fractional Sobolev space W s,p(RN ) as the space of all functions u ∈ Lp(RN ) such that
[u]s,p is finite and endow it with the norm

‖u‖W s,p(RN ) =
(
‖u‖p

Lp(RN )
+ [u]ps,p

)1/p
.
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We refer to [5] for a description of fractional Sobolev spaces. Now we define a closed linear subspace of
W s,p(RN ):

X(Ω) =
{
u ∈ W s,p

(
R
N
)
: u = 0 a.e. in R

N \Ω
}
.

Clearly we can identify ‖ · ‖Lp(RN ) and ‖ · ‖Lp(Ω) on X(Ω). By using [5, Theorem 7.1], it is readily seen
that the following Poincaré-type inequality holds:

‖u‖Lp(Ω) � λ
−1/p
1 [u]s,p for all u ∈ X(Ω) (λ1 > 0). (2.2)

Thus, we can equivalently renorm X(Ω) by setting ‖u‖X(Ω) = [u]s,p for every u ∈ X(Ω). So, (X(Ω),
‖ · ‖X(Ω)) is a uniformly convex (in particular, reflexive) Banach space. In fact, we have the linear isom-
etry F :X(Ω) → Lp(R2N ) defined, for all u ∈ X(Ω), by

F (u)(x, y) =
u(x) − u(y)

|x− y|N/p+s
, (x, y) ∈ R

2N .

Whence, F (X(Ω)) is uniformly convex as a linear subspace of Lp(R2N ). Hence X(Ω) is uniformly
convex too. We denote by X(Ω)∗ the topological dual of X(Ω) and we define a nonlinear operator
A :X(Ω) → X(Ω)∗ by setting for all u, v ∈ X(Ω)

〈
A(u), v

〉
=

∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x− y|N+sp

dx dy.

Clearly A is (p− 1)-homogeneous and odd, a potential operator, satisfies for all u, v ∈ X(Ω)

〈
A(u),u

〉
= ‖u‖pX(Ω),

∣∣〈A(u), v
〉∣∣ � ‖u‖p−1

X(Ω)‖v‖X(Ω),

hence by the uniform convexity of X(Ω) it enjoys the (S)-property, that is, whenever (un) is a sequence
in X(Ω) such that un ⇀ u in X(Ω) and 〈A(un),un − u〉 → 0, then un → u in X(Ω) (see [16,
Proposition 1.3]).

We set for all u ∈ X(Ω)

I(u) = ‖u‖pLp(Ω), J(u) = [u]ps,p.

Besides, we set

S =
{
u ∈ X(Ω): I(u) = 1

}
.

Clearly I ∈ C1(X(Ω)), hence S is a C1-Finsler manifold. Besides, J ∈ C1(X(Ω)) and for every
u, v ∈ X(Ω)

〈
J ′(u), v

〉
= p

〈
A(u), v

〉
.
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We denote by J̃ the restriction of J to S. For all λ > 0, λ is a critical value of J̃ if and only if it is an
eigenvalue of (1.2). Indeed, if there exists u ∈ S and μ ∈ R such that J(u) = λ and J ′(u) − μI ′(u) = 0
in X(Ω)∗, then for all v ∈ X(Ω) we have∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x− y|N+sp

dx dy = μ

∫
Ω

∣∣u(x)
∣∣p−2

u(x)v(x) dx,

hence (taking v = u) λ = μ. So, u �= 0 satisfies (1.3). Vice versa, if λ is an eigenvalue of (1.2), then we
can find a λ-eigenfunction u ∈ X(Ω) with I(u) = 1. So, u ∈ S is a critical point of J̃ at level λ (see
[16, Proposition 3.54]).

Now we define the sequence (λk). We denote by F the family of all nonempty, closed, symmetric
subsets of S and for all k ∈ N we set

Fk =
{
A ∈ F : i(A) � k

}
and

λk = inf
A∈Fk

sup
u∈A

J(u) (2.3)

(this min–max formula differs from the classical ones by the use of the index in the place of the genus).
Clearly, since Fk+1 ⊆ Fk for all k ∈ N, the sequence (λk) is non-decreasing. In particular (recalling
that J is even) we have

λ1 = inf
u∈S

J(u) = inf
u∈X(Ω)\{0}

[u]ps,p

‖u‖pLp(Ω)

,

hence λ1 coincides with the first eigenvalue mentioned in the Introduction and in (2.2).

Proposition 2.1. The functional J̃ satisfies the Palais–Smale condition at any level c ∈ R.

Proof. Let (un) and (μn) be sequences in S and R respectively, such that J(un) → c as n → ∞ and
J ′(un)−μnI

′(un) → 0 in X(Ω)∗ as n → ∞. Then, (un) is bounded in X(Ω). Passing to a subsequence,
we find u ∈ X(Ω) such that un ⇀ u in X(Ω) as n → ∞ and un → u strongly in Lp(Ω) as n → ∞, in
light of [5, Theorem 7.1]. In particular, u ∈ S. Moreover,

μn = J(un) + o(1) → c.

Notice that, for all n ∈ N, we have

∣∣〈A(un),un − u
〉∣∣= ∣∣∣∣μn

∫
Ω

∣∣un(x)
∣∣p−2

un(x)
(
un(x) − u(x)

)
dx

∣∣∣∣+ o(1)

� |μn|‖un − u‖Lp(Ω) + o(1)

and the latter vanishes as n → ∞. Hence, by the (S)-property of A, we get un → u in X(Ω). �

We have the following result for the sequence defined in (2.3).
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Proposition 2.2. For all k ∈ N, λk is an eigenvalue of problem (1.2). Moreover, λk → ∞.

Proof. We equivalently prove that λk is a critical value of J̃ , arguing by contradiction. Assume λk is
a regular value of J̃ . Then, since J̃ satisfies the Palais–Smale condition by Proposition 2.1, there exist
a real ε > 0 and an odd homeomorphism η :S → S such that J(η(u)) � λk − ε for all u ∈ S with
J(u) � λk + ε (see Bonnet [2, Theorem 2.5]). We can find A ∈ Fk such that supA J < λk + ε. Set
B = η(A), then B ∈ F and i(B) � i(A), so B ∈ Fk. We have for all supB J � λk − ε, which
contradicts (2.3).

Finally, since i(S) = ∞ and supS J = ∞, we easily draw λk → ∞. �

3. Preparatory results

We introduce some notation: for all Ω′ ⊂ R
N and for all λ > 0, we set

Mλ
0

(
Ω′) = {

u ∈ X
(
Ω′): ‖u‖pLp(Ω′) = 1, [u]ps,p � λ

}
,

Mλ
(
Ω′) = {

u ∈ W s,p
(
R
N
)
: ‖u‖pLp(Ω′) = 1, [u]ps,p � λ

}
.

In order to prove our asymptotic estimate we need some information about the dependence of the genus
and co-genus of sub-level sets of the types above, with respect to the domain and the level. We begin
with a monotonicity property.

Lemma 3.1. Assume that Ω ⊆ Ω′ and 0 < μ � μ′. Then

γ+
(
Mμ

0 (Ω)
)
� γ+

(
Mμ′

0

(
Ω′)), γ−

(
Mμ(Ω)

)
� γ−

(
Mμ′(

Ω′)).
Proof. The first inequality follows immediately from Mμ

0 (Ω) ⊆ Mμ′

0 (Ω′). Consider the mapping
f :Mμ(Ω) → Mμ′

(Ω′) defined by

f (u) = ‖u‖−1
Lp(Ω′)u.

Then, for every u ∈ W s,p(RN ) with ‖u‖pLp(Ω) = 1 and [u]ps,p � μ we have ‖f (u)‖Lp(Ω′) = 1 and

[
f (u)

]p
s,p

= ‖u‖−p
Lp(Ω′)[u]ps,p � ‖u‖−p

Lp(Ω)μ � μ′.

Hence f ∈ C2(Mμ(Ω),Mμ′
(Ω′)), which proves the assertion. �

We prove that the genus is (up to a correction factor) super-additive with respect to the domain in the
following lemma.

Lemma 3.2. If Ω1, . . . ,Ωm ⊂ R
N are bounded domains with Lipschitz boundaries, such that Ωi∩Ωj =

∅ for all i �= j and
⋃m

i=1 Ωi = Ω, then for all μ > 0

m∑
i=1

γ+
(
Mμ

0 (Ωi)
)
� γ+

(
Mmp−1μ

0 (Ω)
)
.
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Proof. Avoiding trivial cases, we assume γ+(Mμ
0 (Ωi)) = ki ∈ N and fi ∈ C2(Ski−1,Mμ

0 (Ωi)) (i =
1, . . . ,m). Set k = k1 + · · · + km. For all ξ ∈ Sk−1 we set ξ = (ξ1, . . . , ξm) with ξi ∈ R

ki and
|ξi| = ti ∈ [0, 1] (i = 1, . . . ,m). Clearly t2

1 + · · · + t2
m = 1. For all 1 � i � m define ui ∈ X(Ωi) by

setting

ui =

{
fi(ξi/ti) if ti > 0,
0 if ti = 0.

Hence ‖ui‖Lp(Ωi) is either 0 or 1 (according to either ti = 0 or ti > 0) and [ui]
p
s,p � μ. Set

f (ξ) =
m∑
i=1

t
2/p
i ui.

Clearly f (ξ) ∈ X(Ω). Moreover,

∥∥f (ξ)
∥∥p
Lp(Ω)

=
m∑
i=1

t2
i‖ui‖

p
Lp(Ωi) =

m∑
i=1

t2
i = 1

and a simple calculation shows

[
f (ξ)

]
s,p

�
m∑
i=1

t
2/p
i [ui]s,p � μ1/p

m∑
i=1

t
2/p
i � m(p−1)/pμ1/p,

whence [f (ξ)]ps,p � mp−1μ. It is easily seen that the mapping f :Sk−1 → Mmp−1μ
0 (Ω) is odd. Continuity

is a more delicate matter. Let (ξn) be a sequence in Sk−1 with ξn → ξ and denote f (ξn) = un, f (ξ) = u.
Clearly ξni → ξi and tni → ti for all 1 � i � m (with the obvious notation). So, for all 1 � i � m one
of the following cases occurs:

• if ti > 0, then tni > 0 for n ∈ N big enough and uni = fi(ξni /t
n
i ), so in X(Ω)

lim
n

(
tni
)2/p

uni = lim
n

(
tni
)2/p

fi
(
ξni /t

n
i

)
= (ti)

2/pfi(ξi/ti) = (ti)
2/pui;

• if ti = 0 and tni > 0 for n ∈ N big enough, then

(
tni
)2/p[

uni
]
s,p

�
(
tni
)2/p

μ1/p,

and the latter tends to 0 as n → ∞, so (tni )2/puni → 0 in X(Ω);
• if ti = 0 and there exists a relabeled sequence such that tni = 0 for n ∈ N big enough, then clearly

(tni )2/puni = 0, and, reasoning as above, we conclude that (tni )2/puni → 0 in X(Ω).

Thus, we have un → u in X(Ω), hence f ∈ C2(Sk−1,Mmp−1μ
0 (Ω)). Thus

γ+
(
Mmp−1μ

0 (Ω)
)
� k,

and the proof is concluded. �
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Now we prove that the co-genus is (up to a correction factor) sub-additive from the right.

Lemma 3.3. If Ω1, . . . ,Ωm ⊂ R
N are bounded domains with Lipschitz boundaries, such that Ωi∩Ωj =

∅ for all i �= j and
⋃m

i=1 Ωi = Ω, then for all 0 < μ′ < μ

γ−
(
Mμ′/m(Ω)

)
�

m∑
i=1

γ−
(
Mμ(Ωi)

)
.

Proof. Avoiding trivial cases, for all 1 � i � m we assume γ−(Mμ(Ωi)) = ki ∈ N and fi ∈
C2(Mμ(Ωi),Ski−1). For all 1 � i � m we define a mapping θi :Mμ′/m(Ω) → R ∪ {∞} by setting for
all u ∈ Mμ′/m(Ω)

θi(u) =

{
[u]ps,p/‖u‖

p
Lp(Ωi) if ‖u‖Lp(Ωi) > 0,

∞ if ‖u‖Lp(Ωi) = 0.

Moreover, if ‖u‖Lp(Ωi) > 0 we set ui = ‖u‖−1
Lp(Ωi)u, so that θi(u) = [ui]

p
s,p. We have

min
1�i�m

θi(u) � μ′. (3.1)

We prove (3.1) arguing by contradiction. Assume θi(u) > μ′ for all 1 � i � m, then

1 = ‖u‖pLp(Ω) =
m∑
i=1

‖u‖pLp(Ωi) =
m∑
i=1

[u]ps,p

θi(u)
<

m

μ′ [u]ps,p

(with the convention that 1/∞ = 0), a contradiction.
We can find a mapping ρ ∈ C1(R+ ∪ {∞}) such that ρ(t) = 1 for all 0 � t � μ′, ρ(t) = 0 for all

μ � t � ∞ and 0 � ρ(t) � 1 for all t ∈ R
+. We set for all u ∈ Mμ′/m(Ω)

f (u) =

(
m∑
i=1

ρ
(
θi(u)

)2

)−1/2(
ρ
(
θ1(u)

)
f1(u1), . . . , ρ

(
θm(u)

)
fm(um)

)

(with the convention that 0 · anything = 0). By (3.1), f :Mμ′/m(Ω) → Sk−1 (k = k1 + · · · + km) is
well defined. Clearly f is odd. We prove now that it is continuous. Let (un) be a sequence in Mμ′/m(Ω)
such that un → u in W s,p(RN ) for some u ∈ Mμ′/m(Ω). For any 1 � i � m one of the following cases
occurs:

• if ‖u‖Lp(Ωi) > 0, then ‖un‖Lp(Ωi) > 0 for n ∈ N big enough, whence by continuity of fi we have
ρ(θi(un))fi(uni ) → ρ(θi(u))fi(ui);

• if ‖u‖Lp(Ωi) = 0 and ‖un‖Lp(Ωi) > 0 for all n ∈ N, then ‖un‖pLp(Ωi) → 0, so, recalling also that
[un]s,p → [u]s,p > 0, we have

lim
n

θi
(
un

)
= lim

n

[un]ps,p

‖un‖pLp(Ωi)

= ∞,

in particular ρ(θi(un)) = 0 for n ∈ N big enough, so ρ(θi(un))fi(uni ) → 0;
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• if ‖u‖Lp(Ωi) = 0 and ‖un‖Lp(Ωi) = 0 along a subsequence, then we can conclude that
ρ(θi(un))fi(uni ) = ρ(θi(u))gi(ui) = 0, and reasoning as above we get ρ(θi(un))fi(uni ) → 0.

In any case, we have f (un) → f (u) as n → ∞. Summarizing, f ∈ C2(Mμ′/m(Ω),Sk−1). Thus

γ−
(
Mμ′/m(Ω)

)
� k,

and the proof is concluded. �

Now we consider the behavior of the genus and co-genus in the presence of homothety.

Lemma 3.4. If τ > 0 and μ > 0, then

γ+
(
Mμ

0 (Ω)
)
= γ+

(
M

μ/τsp

0 (τΩ)
)
, γ−

(
Mμ(Ω)

)
= γ−

(
Mμ/τsp(τΩ)

)
.

Proof. For all τ > 0 and all u ∈ W s,p(RN ) we set uτ (z) = u(τ−1z), for all z ∈ R
N . Then, a simple

change of variables leads to

[
uτ

]p
s,p

= τN−sp[u]ps,p,
∥∥uτ∥∥p

Lp(τΩ)
= τN‖u‖pLp(Ω). (3.2)

For all u ∈ Mμ
0 (Ω) let us set f (u) = ‖uτ‖−1

Lp(τΩ)u
τ . Clearly f (u) ∈ W s,p(RN ) and f (u) = 0 a.e. in

R
N \ τΩ. Furthermore, from equalities (3.2), we have ‖f (u)‖Lp(τΩ) = 1 and

[
f (u)

]p
s,p

=
[uτ ]ps,p

‖uτ‖pLp(τΩ)

=
[u]ps,p

τ sp
� μ

τ sp
.

Thus, f ∈ C2(Mμ
0 (Ω),Mμ/τsp

0 (τΩ)). Since f is a homeomorphism, we get the first equality.
In a similar way, by using the homeomorphism g ∈ C2(Mμ/τsp(τΩ),Mμ(Ω)) defined for all v ∈

Mμ/τsp(τΩ) by setting g(v) = ‖v1/τ‖−1
Lp(Ω)v

1/τ , we achieve the second equality. �

4. Proof of the main result

We give now the proof of Theorem 1.1.
The first part of the assertion follows from Proposition 2.2, so we only need to prove the asymptotic

estimates (1.4) and (1.5). From [16, Theorem 4.6(iii)], for all λ > 0 we have

N (λ) = i
(
Mλ

0 (Ω)
)
. (4.1)

Preliminarily, we make some observations on cubes. Let Q be a unit cube in R
N and λ0 > 0 be such

that Mλ0
0 (Q) �= ∅. Then we have γ+(Mλ0

0 (Q)) = r and γ−(Mλ0 (Q)) = q for some r, q ∈ N. For all
λ′ > λ0 set aλ′ = (λ0/λ

′)1/sp. By Lemma 3.4 (with μ = λ0 and τ = aλ′) we have

γ+
(
Mλ′

0 (aλ′Q)
)
= r, γ−

(
Mλ′

(aλ′Q)
)
= q. (4.2)
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Now we prove (1.4). Since Ω is open, bounded and with a Lipschitz boundary, there exist 0 < a < 1
and n ∈ N and a set Ω′ ⊆ Ω, union of n copies of aQ with pairwise disjoint interiors, such that
naN = |Ω′| � |Ω|/2. We assume

λ � λ0n
p−1a−sp, (4.3)

and set

C1 = 2−(N2p−N2+Nsp+sp)/(Np−N+sp)rλ
−N/(Np−N+sp)
0 .

We consider the cube aQ and set

λ′ =
(
λ

(Np−N )/(sp)
0

(
naN

)1−p
λ
)(sp)/(Np−N+sp)

,

hence by (4.3) we have λ′ > λ0 and a � aλ′ . The cube aQ contains the union of m copies of aλ′Q,
where m = [a/aλ′]N � 1 (here [·] denotes the integer part of a real number). From the elementary
inequality α/2 � [α] � α for all α � 1 we have

2−Nλ
−N/(sp)
0 aN

(
λ′)N/(sp) � m � λ

−N/(sp)
0 aN

(
λ′)N/(sp)

.

We apply the inequalities above, (4.2) and Lemmas 3.2, 3.1 and we have

2−Nrλ
−N/(sp)
0 aN

(
λ′)N/(sp) �mr = mγ+

(
Mλ′

0 (aλ′Q)
)

� γ+
(
Mmp−1λ′

0 (aQ)
)

� γ+
(
M

λ
(N−Np)/(sp)
0 aNp−N (λ′)(Np−N+sp)/(sp)

0 (aQ)
)
.

The inequality above rephrases as the following:

γ+
(
Mn1−pλ

0 (aQ)
)
� r

2N
λ
−N/(Np−N+sp)
0 n(N−Np)/(Np−N+sp)a(Nsp)/(Np−N+sp)λN/(Np−N+sp).

(4.4)

We apply again Lemmas 3.2, 3.1 and (4.4) and we obtain

γ+
(
Mλ

0 (Ω)
)
� γ+

(
Mλ

0

(
Ω′)) � nγ+

(
Mn1−pλ

0 (aQ)
)

� 2−Nrλ
−N/(Np−N+sp)
0

(
naN

)(sp)/(Np−N+sp)
λN/(Np−N+sp)

� C1|Ω|(sp)/(Np−N+sp)λN/(Np−N+sp).

By (2.1) and (4.1), we have (1.4).
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Now we prove (1.5), under the hypothesis sp > N . We can find 0 < b < 1, h ∈ N and the union
Ω′′ ⊂ R

N of h copies of bQ with pairwise disjoint interiors, such that Ω ⊆ Ω′′ and hbN = |Ω′′| � 2|Ω|.
We assume

λ �
(
2N+1hbsp

)−1
λ0 (4.5)

and λ′′ > λ, and we set

C2 = 2(Nsp+sp+N )/(sp−N )qλ
−N/(sp−N )
0 .

We focus on the cube bQ. Setting

λ′ =
(
2N+1λ

−N/(sp)
0 hbNλ′′)(sp)/(sp−N )

,

so by (4.5) we have λ′ > λ0 and b � aλ′ . So, bQ is contained in the union of k = ([b/aλ′] + 1)N copies
of aλ′Q with pairwise disjoint interiors. From the elementary inequality α � [α]+1 � 2α for all α � 1
we have

λ
−N/(sp)
0 bN

(
λ′)N/(sp) � k � 2Nλ

−N/(sp)
0 bN

(
λ′)N/(sp)

.

We use the inequalities above, (4.2) and Lemmas 3.1 and 3.3 (with μ = λ′ and μ′ = λ′/2) to get

γ−
(
Mhλ′′

(bQ)
)
= γ−

(
M 2−N−1λ

N/(sp)
0 b−N (λ′)(sp−N )/(sp)

(bQ)
)
� γ−

(
M (2k)−1λ′

(bQ)
)

� kγ−
(
Mλ′

(aλ′Q)
)
= kq � 2Nqλ

−N/(sp)
0 bN

(
λ′)N/(sp)

,

which rephrases as

γ−
(
Mhλ′′

(bQ)
)
� 2(Nsp+N )/(sp−N )qλ

−N/(sp−N )
0 hN/(sp−N )b(Nsp)/(sp−N )

(
λ′′)N/(sp−N )

. (4.6)

Again by Lemmas 3.1 and 3.3 (this time with μ = hλ′′ and μ′ = hλ) and by (4.6), we have

γ−
(
Mλ(Ω)

)
� γ−

(
Mλ

(
Ω′′)) � hγ−

(
Mhλ′′

(bQ)
)

� 2(Nsp+sp+N )/(sp−N )qλ
−N/(sp−N )
0 |Ω|(sp)/(sp−N )

(
λ′′)N/(sp−N )

= C2|Ω|(sp)/(sp−N )
(
λ′′)N/(sp−N )

.

Letting λ′′ → λ, we obtain

γ−
(
Mλ(Ω)

)
� C2|Ω|(sp)/(sp−N )λN/(sp−N ),

which through (2.1) and (4.1) implies (1.5).
Finally, we prove property (v) stated in the Introduction.

Proposition 4.1. If Ω is a ball, then any λ1-eigenfunction is radially symmetric and radially monotone.
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Proof. Let u ∈ X(Ω) be a λ1-eigenfunction in the ball Ω. Then |u| is a λ1-eigenfunction too. Then by
using [4, Lemma 1.3], we obtain |u| > 0. In turn, without loss of generality, we may assume that u is
positive. If we denote u∗ the Schwartz symmetrization of u, we learn from Baernstein [1, Theorem 3]
that u∗ ∈ X(Ω), ‖u∗‖Lp(Ω) = ‖u‖Lp(Ω) and [u∗]s,p � [u]s,p. Hence, in turn, we have from (2.2)

λ1 � [u∗]ps,p

‖u∗‖pLp(Ω)

� [u]ps,p

‖u‖pLp(Ω)

= λ1.

Thus u∗ ∈ X is a λ1-eigenfunction too. By [8, Theorem 4.2], u∗ and u are proportional and by the
equalities above we obtain u∗ = u, completing the proof. �

Remark 4.2. We observe that alternative sequences of variational eigenvalues (μ±
k ) can be produced by

replacing the index i with the genus/co-genus γ± in the min–max formula (2.3) (see [16, p. 75]). Due to
(2.1), we then have μ−

k � λk � μ+
k for all k ∈ N, while it is not known whether the sequences coincide

or not. In any case, denoting N± the counting function for (μ±
k ), we have N+(λ) � N (λ) � N−(λ) for

all λ > 0, hence estimate (1.4) holds true for N− and (1.5) for N+, respectively.
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