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Abstract. We consider a class of scalar field equations with anisotropic non-
local nonlinearities. We obtain a suitable extension of the well-known com-

pactness lemma of Benci and Cerami to this variable exponent setting, and

use it to prove that the Palais-Smale condition holds at all level below a cer-
tain threshold. We deduce the existence of a ground state when the variable

exponent slowly approaches the limit at infinity from below.

1. Introduction and main results. The study of elliptic partial differential equa-
tions involving variable exponent has increased rapidly in recent years, partly in
connection with the applications of such equations in phisics (electrorheological
and thermorheological fluids) and computer science (image processing), partly be-
cause of the purely mathematical interest into the functional-analytic setting of such
equations (variable exponents Lebesgue and Sobolev spaces). We refer the reader
to the monograph of Diening et al. [5], the survey paper of Fan and Zhao [6] and
the references therein for an account of the main features of this subject.

In the present paper we seek ground states, namely least energy solutions, for
the following nonlocal anisotropic scalar field equation:

−∆u+ V (x)u = λ
|u|p(x)−2 u∫

RN |u(x)|p(x) dx
, u ∈ H1(RN ). (1)

Here, N ≥ 2, V ∈ L∞(RN ) is a weight function satisfying

lim
|x|→∞

V (x) = V∞ > 0, (2)
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and the variable exponent p ∈ C(RN ) satisfies

2 < p− := inf
x∈RN

p(x) ≤ sup
x∈RN

p(x) =: p+ < 2∗, (3)

lim
|x|→∞

p(x) = p∞ (4)

(2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = ∞ if N = 2). Equation (1) is the Euler-
Lagrange equation for the constrained C1 functional J |M, where we denote for all
u ∈ H1(RN )

J(u) :=

∫
RN

(
|∇u|2 + V (x)u2

)
dx,

I(u) := inf
{
γ > 0 :

∫
RN

∣∣∣∣u(x)

γ

∣∣∣∣p(x)
dx

p(x)
≤ 1
}
,

and the C1 Hilbert manifold (see Lemma 2.3 below)

M :=
{
u ∈ H1(RN ) : I(u) = 1

}
,

namely u ∈ H1(RN ) solves (1) if and only if u is a critical point of J |M with
J(u) = λ (see Section 2 below for details). In particular, the ground states of (1)
are the minimizers of J |M and the corresponding energy level is

λ1 := inf
u∈M

J(u).

In other terms, (1) has a ground state if and only if λ1 is attained.
The constant exponent case p(x) ≡ p∞ ∈ (2, 2∗) of equation (1) has been studied

extensively for more than three decades (see Bahri and Lions [1] for a detailed
account). Ground states are quite well understood in this case. Set for all u ∈
H1(RN )

I∞(u) :=

[∫
RN

|u(x)|p
∞ dx

p∞

] 1
p∞

, M∞ :=
{
u ∈ H1(RN ) : I∞(u) = 1

}
.

The infimum

λ̃1 := inf
u∈M∞

J(u)

is not attained in general. Turning now to the asymptotic case when both p and V
are constant, we note that the functional

J∞(u) :=

∫
RN

(
|∇u|2 + V∞u2

)
dx, u ∈ H1(RN )

attains its infimum

λ∞1 := inf
u∈M∞

J∞(u) > 0 (5)

at a positive radial function w∞1 (see Berestycki and Lions [3] and Byeon et al. [4]).
Moreover, such minimizer is unique up to translations (see Kwong [8]). By (2)

and the translation invariance of J∞, one can easily see that λ̃1 ≤ λ∞1 , and λ̃1 is
attained if this inequality is strict (see Lions [9, 10]).

In this paper we give sufficient conditions on the weight V and the exponent p
for the existence of a ground state of (1). Precisely, we shall prove the following
result:



GROUND STATES FOR ANISOTROPIC NONLOCAL EQUATIONS 5965

Theorem 1.1. Assume that V ∈ L∞(RN ) satisfies (2) and p ∈ C(RN ) satisfies
(3) and (4). Then −∞ < λ1 ≤ λ∞1 . If

λ1 <

(
p−

p∞

)2/p∞

λ∞1 , (6)

then λ1 is attained at a positive minimizer w1 ∈ C1(RN ).

In particular, there exists a positive ground state if p∞ = p− and λ1 < λ∞1 (hence
our result is consistent with the constant exponent case). Hypothesis (6) is global,
but it can be assured by making convenient local assumptions on p, for instance
when p(x) slowly approaches p∞ from below as |x| → ∞:

Theorem 1.2. Assume that V ∈ L∞(RN ) satisfies (2) and p ∈ C(RN ) satisfies
(3) and (4). Let ψ ∈ C1(R+,R+

0 ) be a mapping such that ψ(r)→∞ as r →∞ and

the function e−ψ(|·|) ∈ H1(RN ), and let R > 0. Then there exists a > 0 such that,
if

p(x) ≤ p∞ − a

ψ(|x|)
, |x| ≥ R, (7)

then λ1 is attained.

For example, given R > 0, we can find a > 0 such that, if

p(x) ≤ p∞ − ae−|x|, |x| ≥ R,

then λ1 is attained. We note that the only assumption on V in Theorem 1.2 is (2).
Finally, we address the problem of symmetry of minimizers. Apparently, the best

we can achieve under the assumption of radial symmetry of the data V and p is
axial symmetry of all ground states:

Corollary 1.3. Assume that N ≥ 3, V ∈ L∞(RN ) satisfies (2) and p ∈ C(RN )
satisfies (3) and (4), and both are radially symmetric in RN . Moreover, assume
that (6) holds. Then, for every minimizer w there exist a line L though 0 and a
function w̃ : L× R+ → R such that

w(x) = w̃(PL(x), |x− PL(x)|), x ∈ RN ,

where PL : RN → L denotes the projection onto L.

As in the constant exponent case, the main difficulty is the lack of compactness in-
herent in this problem, which originates from the invariance of RN under the action
of the noncompact group of translations, and manifests itself in the noncompactness
of the embedding of H1(RN ) into the variable exponent Lebesgue space Lp(·)(RN ).
This in turn implies that the manifoldM is not weakly closed in H1(RN ) and that
J |M does not satisfy the Palais-Smale compactness condition (shortly (PS)c) at all
energy levels c ∈ R. We will use the concentration compactness principle of Lions
(see [9–11]), expressed as a suitable profile decomposition for (PS) sequences of
J |M, to overcome these difficulties. Developing this argument, we will also prove
an extension to the variable exponent case of the compactness lemma of Benci and
Cerami [2] (see Proposition 3.4 below).

The paper has the following structure: in Section 2 we introduce the mathemat-
ical background and establish some technical lemmas; in Section 3 we prove that
(PS)c holds for all c below a threshold level; and in Section 4 we deliver the proofs
of our main results.
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2. Preliminaries. We consider H1(RN ) endowed with the norm defined by

‖u‖2 :=

∫
RN

(
|∇u(x)|2 + V∞ |u(x)|2

)
dx, u ∈ H1(RN ),

which is equivalent to the standard norm. Clearly we have J ∈ C1(H1(RN )) with

〈J ′(u), v〉 = 2

∫
RN

(
∇u · ∇v + V (x)uv

)
dx, u, v ∈ H1(RN ).

We recall some basic features from the theory of variable exponent Lebesgue space,
referring the reader to the book of Diening et al. [5] for further information. Let
p ∈ C(RN ) satisfy (3) and (4). The space Lp(·)(RN ) contains all the measurable
functions u : RN → R such that

ρ(u) :=

∫
RN

|u(x)|p(x)dx <∞.

This is a reflexive Banach space under the following modified Luxemburg norm,
introduced by Franzina and Lindqvist [7]:

‖u‖p(·) := inf
{
γ > 0 :

∫
RN

∣∣∣∣u(x)

γ

∣∣∣∣p(x)
dx

p(x)
≤ 1
}
, u ∈ Lp(·)(RN ).

The following relation will be widely used in our study:

p−min
{
‖u‖p

+

p(·) , ‖u‖
p−

p(·)

}
≤ ρ(u) ≤ p+ max

{
‖u‖p

+

p(·) , ‖u‖
p−

p(·)

}
. (8)

It can be proved noting that, for all u ∈ Lp(·)(RN ),∫
RN

∣∣∣∣∣ u(x)

‖u‖p(·)

∣∣∣∣∣
p(x)

dx

p(x)
= 1. (9)

Analogously, for all q > 1 we endow the constant exponent Lebesgue space Lq(RN )
with the norm

‖u‖qq :=

∫
RN

|u(x)|q dx
q
, u ∈ Lq(RN ).

By (3) and [5, Theorem 3.3.11], the embedding Lp
+

(RN ) ∩ Lp−(RN ) ↪→ Lp(·)(RN )
is continuous. So, by the Sobolev embedding theorem, also H1(RN ) ↪→ Lp(·)(RN )
is continuous.

We set

σ(u) := max{‖u‖p
−−1
p(·) , ‖u‖p

+−1
p(·) }, u ∈ Lp(·)(RN ),

and we prove the following properties that will be used later:

Lemma 2.1. For all u, v ∈ Lp(·)(RN ) we have

(i)

∫
RN

|u(x)|p(x)−1 |v(x)| dx ≤ p+σ(u) ‖v‖p(·);

(ii) |ρ(u)− ρ(v)| ≤ (p+)2(σ(u) + σ(v)) ‖u− v‖p(·)..

Proof. We prove (i). Taking a =
(
|u(x)|/ ‖u‖p(·)

)p(x)−1
, b = |v(x)|/ ‖v‖p(·) and

q = p(x) in the well-known Young’s inequality

ab ≤
(

1− 1

q

)
aq/(q−1) +

1

q
bq a, b ≥ 0, q > 1, (10)



GROUND STATES FOR ANISOTROPIC NONLOCAL EQUATIONS 5967

and integrating over RN gives (note that ‖u‖p(x)−1
p(·) ≤ σ(u) in RN )

1

σ(u) ‖v‖p(·)

∫
RN

|u(x)|p(x)−1 |v(x)| dx

≤
∫
RN

∣∣∣∣∣ u(x)

‖u‖p(·)

∣∣∣∣∣
p(x)−1

|v(x)|
‖v‖p(·)

dx

≤
∫
RN

(
1− 1

p(x)

) ∣∣∣∣∣ u(x)

‖u‖p(·)

∣∣∣∣∣
p(x)

dx+

∫
RN

∣∣∣∣∣ v(x)

‖v‖p(·)

∣∣∣∣∣
p(x)

dx

p(x)

≤ p+,

the last inequality following from (9). Now we prove (ii). Taking a = |u(x)|, b =
|v(x)|, q = p(x) in the elementary inequality

|aq − bq| ≤ q(aq−1 + bq−1)|a− b|, a, b ≥ 0, q ≥ 2,

and integrating over RN gives

|ρ(u)− ρ(v)| ≤
∫
RN

∣∣∣|u(x)|p(·) − |v(x)|p(·)
∣∣∣ dx

≤ p+
(∫

RN

|u(x)|p(x)−1
∣∣|u(x)| − |v(x)|

∣∣dx+

∫
RN

|v(x)|p(x)−1
∣∣|u(x)| − |v(x)|

∣∣dx)
≤ (p+)2(σ(u) + σ(v)) ‖u− v‖p(·) ,

the last inequality following from (i).

From Lemma 2.1 (ii) it follows that, if (uk), (vk) are bounded sequences in
Lp(·)(RN ), then there exists C > 0 such that

|ρ(uk)− ρ(vk)| ≤ C ‖uk − vk‖p(·) , k ∈ N.

The case V (x) ≡ V∞, p(x) ≡ p∞ represents a limit case for (1). We set

ρ∞(u) =

∫
RN

|u(x)|p
∞
dx, σ∞(u) = ‖u‖p

∞−1
p∞ , u ∈ Lp

∞
(RN ),

so Lemma 2.1 gives for all u, v ∈ Lp∞(RN )∫
RN

|u(x)|p
∞−1|v(x)|dx ≤ p∞σ∞(u) ‖v‖p∞ , (11)

|ρ∞(u)− ρ∞(v)| ≤ (p∞)2(σ∞(u) + σ∞(v)) ‖u− v‖p∞ . (12)

Moreover, we have the following asymptotic laws in the presence of translations:

Lemma 2.2. If u ∈ H1(RN ), (yk) is a sequence in RN with |yk| → ∞ and we set
uk = u(· − yk), then

(i) ρ(uk)→ ρ∞(u),
(ii) I(uk)→ I∞(u),

(iii) J(uk)→ J∞(u).

Proof. We prove (i). For all k ∈ N, the change of variable z = x− yk gives

ρ(uk) =

∫
RN

|uk(x)|p(x)dx =

∫
RN

|u(z)|p(z+yk)dz.

Since p(·+yk)→ p∞ by (4) and |u(z)|p(z+yk) ≤ |u(z)|p−+ |u(z)|p+ , the last integral
converges to ρ∞(u) by the dominated convergence theorem.
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We prove (ii). As in the proof of (i), for all γ > 0∫
RN

∣∣∣∣uk(x)

γ

∣∣∣∣p(x)
dx

p(x)
→
∫
RN

∣∣∣∣u(z)

γ

∣∣∣∣p∞ dz

p∞
=
(‖u‖p∞

γ

)p∞
. (13)

If ‖uk‖p(·) 6→ ‖u‖p∞ , then there exists ε0 > 0 such that, on a renumbered subse-

quence, either ‖uk‖p(·) ≤ ‖u‖p∞ − ε0 or ‖uk‖p(·) ≥ ‖u‖p∞ + ε0. In the former case,

‖u‖p∞ ≥ ε0 and, taking ε0 smaller if necessary, we may assume that this inequality
is strict. Then∫

RN

( |uk(x)|
‖u‖p∞ − ε0

)p(x) dx

p(x)
≤
∫
RN

( |uk(x)|
‖uk‖p(·)

)p(x) dx

p(x)
= 1.

Passing to the limit as k →∞, (13) implies( ‖u‖p∞
‖u‖p∞ − ε0

)p∞
≤ 1,

a contradiction. The latter case leads to a similar contradiction.
Finally we prove (iii). We have for all k ∈ N

J(uk) =

∫
RN

(
|∇uk|2 + V (x)u2

k

)
dx =

∫
RN

(
|∇u|2 + V (z + yk)u2

)
dz,

where z = x− yk. Since V (·+ yk)→ V∞ by (2) and V ∈ L∞(RN ), the last integral
converges to J∞(u) by the dominated convergence theorem.

As a consequence of the previous results, the functional I : H1(RN )→ R is well
defined and continuous. We now address the question of differentiability of I. We
set

〈A(u), v〉 =

∫
RN

∣∣∣∣u(x)

I(u)

∣∣∣∣p(x)−2
u(x)

I(u)
v(x) dx∫

RN

∣∣∣∣u(x)

I(u)

∣∣∣∣p(x)

dx

, u ∈ H1(RN ) \ {0} , v ∈ H1(RN ).

Lemma 2.3. I ∈ C1(H1(RN ) \ {0}) with I ′(u) = A(u) for all u ∈ H1(RN ) \ {0}.

Proof. We fix u ∈ H1(RN )\{0} and v ∈ H1(RN ). Reasoning as in [7, Lemma A.1],
we see that

lim
ε→0+

I(u+ εv)− I(u)

ε
= 〈A(u), v〉.

Moreover, setting w = u/I(u) ∈ H1(RN ), by Lemma 2.1 (i) we have

|〈A(u), v〉| ≤ p+σ(w)

ρ(w)
‖v‖p(·) ,

which, together with the continuous embedding H1(RN ) ↪→ Lp(·)(RN ), yields A(u)
∈ H−1(RN ). So, I is Gâteaux differentiable in u with I ′(u) = A(u).

Now we prove that I ′ : H1(RN ) → H−1(RN ) is continuous. Let (uk) be a
sequence in H1(RN ) \ {0} such that uk → u 6= 0 in H1(RN ), in particular we have
uk → u and in Lp(·)(RN ). Set wk = uk/I(uk), w = u/I(u), hence wk → w both in
H1(RN ) in Lp(·)(RN ). Besides, Lemma 2.1 (ii) implies ρ(wk)→ ρ(w) > 0. Set also

zk =
∣∣∣|wk|p(x)−2wk − |w|p(x)−2w

∣∣∣1/(p(x)−1)

.



GROUND STATES FOR ANISOTROPIC NONLOCAL EQUATIONS 5969

It is easily seen that zk ∈ Lp(·)(RN ) and σ(zn) → 0. By Lemma 2.1 (i), for all
k ∈ N and all v ∈ H1(RN ) we have

|〈I ′(uk)− I ′(u), v〉| =

∣∣∣∣∣∣∣∣
∫
RN

|wk|p(x)−2wk v dx

ρ(wk)
−

∫
RN

|w|p(x)−2w v dx

ρ(w)

∣∣∣∣∣∣∣∣
≤

∫
RN

|zk|p(x)−1|v| dx

ρ(wk)
+

∫
RN

|w|p(x)−1|v| dx
∣∣∣∣ 1

ρ(wk)
− 1

ρ(w)

∣∣∣∣
≤
(
p+σ(zn)

ρ(wk)
+
p+σ(w)|ρ(wk)− ρ(w)|

ρ(wk)ρ(w)

)
‖v‖p(·) .

By the convergences above and the continuous embedding H1(RN ) ↪→ Lp(·)(RN ),
we can find a sequence (ξk) in R, independent of v, such that ξk → 0+ and

|〈I ′(uk)− I ′(u), v〉| ≤ ξk‖v‖,

thus I ′(uk)→ I ′(u) in H−1(RN ).

In particular, as 1 is a regular value of I, M turns out to be a C1 Hilbert
manifold. By the Lagrange multiplier rule, u ∈M is a critical point of J |M if and
only if there exists µ ∈ R such that

J ′(u) = µI ′(u) in H−1(RN ),

that is (recalling that I(u) = 1), if and only if u is a (weak) solution of (1) with
λ = µ/2. Moreover, testing (1) with u yields J(u) = λ.

3. A compactness result. In this section we prove that J |M satisfies (PS)c when-
ever c ∈ R lies below a certain threshold level. The main technical tool that we will
use for handling the convergence matters is the following profile decomposition due
to Solimini [13] for bounded sequences in H1(RN ) (the present statement can be
found in the book of Tintarev and Fieseler [15, Corollary 3.3]).

Proposition 3.1. Let (uk) be a bounded sequence in H1(RN ), and assume that
there is a constant δ > 0 such that, if uk(· + yk) ⇀ w 6= 0 on a renumbered
subsequence for some sequence (yk) in RN with |yk| → ∞, then ‖w‖ ≥ δ. Then

there exist m ∈ N, w(1), . . . w(m) ∈ H1(RN ), and sequences (y
(1)
k ), . . . (y

(m)
k ) in RN ,

y
(1)
k = 0 for all k ∈ N, w(n) 6= 0 for all 2 ≤ n ≤ m, such that, on a renumbered

subsequence,

(i) uk(·+ y
(n)
k ) ⇀ w(n);

(ii)
∣∣y(n)
k − y(l)

k

∣∣→∞ for all n 6= l;

(iii)

m∑
n=1

‖w(n)‖2 ≤ lim inf
k
‖uk‖2;

(iv) uk −
m∑
n=1

w(n)(· − y(n)
k )→ 0 in Lq(RN ) for all q ∈ (2, 2∗).
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Since y
(1)
k = 0 for all k ∈ N, by (ii) we have |y(n)

k | → ∞ for all 2 ≤ n ≤ m.
Moreover, by (iv), (3) and [5, Theorem 3.3.11], we also have

uk −
m∑
n=1

w(n)(· − y(n)
k )→ 0 in Lp(·)(RN ). (14)

Next we show that the sublevel sets of J |M are bounded. Set

Sa =
{
u ∈M : J(u) ≤ a

}
, a ∈ R.

Lemma 3.2. For all a ∈ R, Sa is bounded.

Proof. By (2), we can find R > 0 such that |V (x) − V∞| < V∞/2 for all |x| > R.
So, V∞/2− V ≤ 0 outside the ball BR(0). For all u ∈ Sa, we have

‖u‖2

2
≤
∫
RN

(
|∇u|2 +

V∞

2
u2
)
dx ≤ a+

∫
RN

(V∞
2
− V (x)

)
u2dx

≤ a+

∫
BR(0)

(V∞
2
− V (x)

)
u2dx ≤ a+

(V∞
2

+ ‖V ‖∞
)∫

BR(0)

u2dx.

Since u ∈ M, and Lp(·)(BR(0)) is continuously embedded in L2(BR(0)) (see [5,
Corollary 3.3.4]), the last integral is bounded. So, Sa is bounded.

Now, let (uk) be a (PS)c-sequence for J |M for some c ∈ R, namely J(uk) → c
and there exists a sequence (µk) in R such that J ′(uk)−µkI ′(uk)→ 0 in H−1(RN ).
So we have

−∆uk + V (x)uk =
µk

2ρ(uk)
|uk|p(x)−2uk + o(1). (15)

Testing (15) with uk, we easily get µk/2 → c. Besides, since uk ∈ M, by (3) we
have p− ≤ ρ(uk) ≤ p+, whence, on a renumbered subsequence, ρ(uk)→ ρ0 for some
ρ0 ∈ [p−, p+].

We prove some technical properties of (uk):

Lemma 3.3. Let (uk) be as above and w ∈ H1(RN ):

(i) if uk ⇀ w on a renumbered subsequence, then

−∆w + V (x)w =
c

ρ0
|w|p(x)−2w;

(ii) if uk(·+ yk) ⇀ w on a renumbered subsequence for some sequence (yk) in RN
with |yk| → ∞, then

∆w + V∞w =
c

ρ0
|w|p

∞−2w.

Proof. We prove (i). By the density of C∞0 (RN ) in H1(RN ), it suffices to show that∫
RN

(
∇w · ∇v + V (x)wv

)
dx =

c

ρ0

∫
RN

|w|p(x)−2wv dx, v ∈ C∞0 (RN ). (16)

We have supp v ⊂ Ω for some bounded domain Ω ⊂ RN . Testing (15) with v gives∫
Ω

(
∇uk · ∇v + V (x)ukv

)
dx =

µk
2ρ(uk)

∫
Ω

|uk|p(x)−2ukv dx+ o(1).

Since V ∈ L∞(RN ) and uk ⇀ w, we have∫
Ω

(
∇uk · ∇v + V (x)ukv

)
dx→

∫
RN

(
∇w · ∇v + V (x)wv

)
dx.
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Besides, µk/(2ρ(uk))→ c/ρ0. Finally, by compactness of the embedding H1(Ω) ↪→
Lp

+

(Ω), on a renumbered subsequence we have uk → w in Lp
+

(Ω) and uk(x) →
w(x) a.e. in Ω. By (3), (10) we have a.e. in Ω

|uk|p(x)−1|v| ≤
(
1 + |uk|p

+−1
)
|v| ≤ |v|+

(
1− 1

p+

)
|uk|p

+

+
1

p+
|v|p

+

,

hence by the generalized dominated convergence theorem∫
Ω

|uk|p(x)−2ukw dx→
∫
RN

|w|p(x)−2wv dx,

proving (i). We prove (ii). As above, we only need to show that for all v ∈ C∞0 (RN )∫
RN

(
∇w · ∇v + V∞wv

)
dx =

c

ρ0

∫
RN

|w|p
∞−2wv dx. (17)

We have supp v ⊂ Ω for some bounded domain Ω ⊂ RN . Testing (15) with v(·−yk)
and making the change of variable z = x− yk gives for all k ∈ N∫

RN

(
∇ũk · ∇v + V (z + yk) ũkv

)
dz =

µk
2ρ(uk)

∫
RN

|ũk|p(z+yk)−2ũkv dz + o(1),

where ũk = uk(·+yk). Since ũk ⇀ w and V (·+yk)→ V∞ uniformly on Ω, we have∫
RN

(
∇ũk · ∇v + V (z + yk) ũkv

)
dz →

∫
RN

(
∇w · ∇v + V∞wv

)
dx.

Besides, µk/(2ρ(uk)) → c/ρ0. Finally, exploiting again (3), (10) as in the proof of
(i) we have, on a renumbered subsequence,∫

RN

|ũk|p(z+yk)−2ũkv dz →
∫
RN

|w|p
∞−2wv dx,

which proves (ii).

The main result of this section is the following extension to the variable exponent
case of the compactness lemma of Benci and Cerami [2, Lemma 3.1].

Proposition 3.4. Let (uk) be a (PS)c-sequence for J |M, c ∈ R. Then there exist

m ∈ N, w(1), . . . w(n) ∈ H1(RN ), and sequences (y
(1)
k ), . . . (y

(n)
k ) in RN , y

(1)
k = 0 for

all k ∈ N, w(n) 6= 0 for all 2 ≤ n ≤ m, such that, on a renumbered subsequence,
ρ(uk)→ ρ0 for some ρ0 ∈ [p−, p+], and

(i) uk(·+ y
(n)
k ) ⇀ w(n);

(ii)
∣∣y(n)
k − y(l)

k

∣∣→∞ for all n 6= l;

(iii)

m∑
n=1

‖w(n)‖2 ≤ lim inf
k
‖uk‖2;

(iv) −∆w(1) + V (x)w(1) = c/ρ0|w(1)|p(x)−2w(1);
(v) −∆w(n) + V∞w(n) = c/ρ0|w(1)|p∞−2w(n), 2 ≤ n ≤ m;

(vi) J(w(1)) = c/ρ0ρ(w(1));
(vii) J∞(w(n)) = c/ρ0ρ

∞(w(n)), 2 ≤ n ≤ m;

(viii) ρ(w(1)) +

m∑
n=2

ρ∞(w(n)) = ρ0;

(ix) J(w(1)) +

m∑
n=2

J∞(w(n)) = c;
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(x) uk −
m∑
n=1

w(n)(· − y(n)
k )→ 0 in H1(RN ).

Proof. By Lemma 3.2, the sequence (uk) is bounded. Passing to a subsequence, we
have ρ(uk)→ ρ0. We shall apply Proposition 3.1. To this end, set

δ =
(p−(λ∞1 )

p∞
2

p∞c

) 1
p∞−2

> 0

(in particular, c > 0). If uk(·+ yk) ⇀ w in H1(RN ), on a renumbered subsequence,
for some sequence (yk) in RN , |yk| → ∞ and some w 6= 0, then by Lemma 3.3 (ii)
and the definition of λ∞1 we have, testing with w,

‖w‖2 =
p∞c

ρ0
‖w‖p

∞

p∞ ≤
p∞c

p−
(λ∞1 )−

p∞
2 ‖w‖p

∞
,

hence ‖w‖ ≥ δ. Then, by Proposition 3.1 there exist w(n), (y
(n)
k ) (1 ≤ n ≤ m) and

a renumbered subsequence (uk) satisfying (i)-(iii) and

uk −
m∑
n=1

w(n)(· − y(n)
k )→ 0 in Lq(RN ), 2 < q < 2∗.

By (14), the convergence above also holds in Lp(·)(RN ). From (i) (ii) and Lemma
3.3 we deduce (iv) and (v). Further, testing (iv) with w(1) and (v) with w(n) yields
(vi) and (vii), respectively. We prove now (viii). Set for all k ∈ N

wk =

m∑
n=1

w(n)(· − y(n)
k ).

Since ‖uk − wk‖p(·) → 0 by (14) and ‖uk‖p(·) = 1, we have ‖wk‖p(·) → 1. Since

ρ(uk) → ρ0, then ρ(wk) → ρ0 by Lemma 2.1 (ii). Let ε > 0. Since C∞0 (RN ) is
dense in Lp(·)(RN ), there exists w̃(1) ∈ C∞0 (RN ) such that

∥∥w(1) − w̃(1)
∥∥
p(·) < ε,

and since C∞0 (RN ) is dense in Lp
∞

(RN ), for all 2 ≤ n ≤ m there is w̃(n) ∈ C∞0 (RN )
with

∥∥w(n) − w̃(n)
∥∥
p∞

< ε. Let

w̃k =

m∑
n=1

w̃(n)(· − y(n)
k ).

By (ii) and Lemma 2.2 (ii) we have

‖wk − w̃k‖p(·) ≤
m∑
n=1

∥∥∥w(n)(· − y(n)
k )− w̃(n)(· − y(n)

k )
∥∥∥
p(·)

→
∥∥∥w(1) − w̃(1)

∥∥∥
p(·)

+

m∑
n=2

∥∥∥w(n) − w̃(n)
∥∥∥
p∞
≤ mε.

So,

lim sup
k
‖wk − w̃k‖p(·) ≤ mε.

Since ‖wk‖p(·) → 1 and ρ(wk)→ ρ0, then by Lemma 2.1 (ii) we can find a constant

C > 0 such that

lim sup
k
|ρ(w̃k)− ρ0| ≤ Cε.
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On the other hand, for all sufficiently large k, the (compact) supports of w̃(n)(·−y(n)
k )

are pairwise disjoint by (ii) and hence

ρ(w̃k) =

m∑
n=1

ρ(w̃(n)(· − y(n)
k ))→ ρ(w̃(1)) +

m∑
n=2

ρ∞(w̃(n))

by (ii) and Lemma 2.2 (i). So∣∣∣∣∣ρ(w̃(1)) +

m∑
n=2

ρ∞(w̃(n))− ρ0

∣∣∣∣∣ ≤ Cε.
By Lemma 2.1 (ii) and (12) we have∣∣∣ρ(w(1))− ρ(w̃(1))

∣∣∣ ≤ Cε, ∣∣∣ρ∞(w(n))− ρ∞(w̃(n))
∣∣∣ ≤ Cε, 2 ≤ n ≤ m.

Since ε > 0 is arbitrary, (viii) follows. Adding (vi) and (vii) and substituting (viii),
we get (ix). We conclude by proving (x). Set vk = uk −wk and ũk = uk −w(1) for
all k ∈ N. Note that both (ũk) and (vk) are bounded in H1(RN ). By (15), (iv) and
(v) we have

−∆vk + V∞vk

=(V∞ − V (x))ũk +
µk

2ρ(uk)
|uk|p(x)−2uk

− c

ρ0

(
|w(1)|p(x)−2w(1) +

m∑
n=2

|w(n)(x− y(n)
k )|p

∞−2w(n)(c− y(n)
k )

)
+ ηk,

for a sequence (ηk) in H−1(RN ) with ηk → 0 in H−1(RN ). Testing with vk and
using Lemma 2.1 (i) and (11) gives

‖vk‖2 ≤
∫
RN

|(V (x)− V∞)ũkvk| dx

+ C
(
(σ(uk) + 1) ‖vk‖p(·) + ‖vk‖p∞

)
+ o(‖vk‖).

Since ‖uk‖ is bounded, so are ‖ũk‖, σ(uk), and ‖vk‖. If ‖vk‖ 6→ 0, then there exists
ε0 > 0 such that, on a renumbered subsequence, ‖vk‖ ≥ ε0. By (2), there exists
R > 0 such that∫

BR(0)c
|(V (x)− V∞)ũkvk| dx ≤ 2 sup

x∈BR(0)c
|V (x)− V∞| ‖ũk‖2 ‖vk‖2 ≤

ε2
0

2
.

Then, from the equation above, Hölder inequality, Proposition 3.1 (iv) and (14),

ε2
0

2
≤ C

(
‖vk‖L2(BR(0)) + ‖vk‖p∞ + ‖vk‖p(·)

)
+ o(1)→ 0,

a contradiction. Thus, (x) is proved.

Now we prove that J |M satisfies (PS)c whenever c lies below a threshold level:

Theorem 3.5. Assume that V ∈ L∞(RN ) satisfies (2) and p ∈ C(RN ) satisfies
(3) and (4). Then J |M satisfies (PS)c for all

c <

(
p−

p∞

)2/p∞

λ∞1 . (18)
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Proof. Let c satisfy condition (18) and let uk ∈ M be a (PS)c sequence for J |M.
Then uk admits a renumbered subsequence that satisfies the conclusions of Propo-
sition 3.4. Let us set

t1 = ρ(w(1))/ρ0, tn = ρ∞(w(n))/ρ0, for n = 2, . . . ,m.

Then
m∑
n=1

tn = 1 (19)

by (viii) of Proposition 3.4, so each tn ∈ [0, 1], and tn 6= 0 for n ≥ 2. For n =
2, . . . ,m,

c tn = J∞(w(n)) ≥ λ∞1
∥∥∥w(n)

∥∥∥2

p∞
= λ∞1

(
ρ0 tn
p∞

)2/p∞

≥ λ∞1
(
p− tn
p∞

)2/p∞

by (vii) of Proposition 3.4 and (5), so

tn ≥

[
λ∞1
c

(
p−

p∞

)2/p∞
]p∞/(p∞−2)

> 1

by (18). Then (19) implies m = 1 and hence uk → w(1) in H1(RN ) by (x) of
Proposition 3.4.

4. Proofs of the main theorems.

4.1. Proof of Theorem 1.1. Since the sublevel sets of J |M are bounded by
Lemma 3.2 and J |M is clearly bounded on bounded sets, λ1 > −∞. To see that
λ1 ≤ λ∞1 , let w∞1 be the minimizer of J∞ on M∞ mentioned in the introduction,
yk ∈ RN , |yk| → ∞, and wk = w∞1 (· − yk). Since wk/ ‖wk‖p(·) ∈M,

λ1 ≤ J
( wk
‖wk‖p(·)

)
=

J(wk)

‖wk‖2p(·)
→ J∞(w∞1 )

‖w∞1 ‖
2
p∞

= λ∞1

by (ii) and (iii) of Lemma 2.2, so λ1 ≤ λ∞1 . Assume now that (6) holds. Since
J |M satisfies the Palais-Smale condition at the level λ1 by Theorem 3.5, it has a
minimizer w1 by a standard argument. Then |w1| is a minimizer too and hence we
may assume w1 ≥ 0, w1 6= 0. We note that, for all v ∈ H1(RN ), v ≥ 0, we have∫

RN

(
∇w1 · ∇v + ‖V ‖∞w1v

)
dx ≥ 0,

so by the strong maximum principle (see [15, Proposition C.2]) we have w1 >
0. Observe that a solution u ∈ H1(RN ) of (1) satisfies −∆u = g(x, u) for a
Carathéodory function g : RN × R→ R such that∣∣∣g(x, u)

u

∣∣∣ ≤ C + C|u|p(x)−2 ≤ C + C|u|
4

N−2 , for some C = C(V,N, p+) > 0.

Then by standard regularity theory, u ∈ C1(RN ), see e.g. [14, Appendix B].
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4.2. Proof of Theorem 1.2. Since e−ψ(|x|)/
∥∥e−ψ(|x|)

∥∥
p(·) ∈M,

λ1 ≤ J
( e−ψ(|x|)∥∥e−ψ(|x|)

∥∥
p(·)

)
=

J(e−ψ(|x|))∥∥e−ψ(|x|)
∥∥2

p(·)

. (20)

By virtue of condition (7),

ρ(e−ψ(|x|)) =

∫
RN

e−ψ(|x|) p(x) dx ≥ ea
∫
BR(0)c

e−p
∞ψ(|x|) dx. (21)

It follows from (20), (8) and (21) that (6) holds if a > 0 is sufficiently large.

4.3. Proof of Corollary 1.3. If N ≥ 3, V and p are radially symmetric in RN ,
we can get some symmetry properties of minimizers by applying the results of
Mariş [12]. We can equivalently define

M =

{
u ∈ H1(RN ) :

∫
RN

|u(x)|p(x) dx

p(x)
= 1

}
.

For any hyperplane Π through 0, splitting RN in two half-spaces Π+ and Π−, and
all u ∈ H1(RN ) we define functions uΠ+ , uΠ− : RN → R by setting

uΠ+(x) =

u(x), if x ∈ Π+ ∪Π

u(2PΠ(x)− x), if x ∈ Π−
,

uΠ−(x) =

u(x), if x ∈ Π− ∪Π

u(2PΠ(x)− x), if x ∈ Π+,

where P(·) is the orthogonal projection from RN to an affine submanifold (·). Clearly

uΠ± ∈ H1(RN ), hypothesis A1 of [12] is satisfied. Since u is of class C1(RN ), so
hypothesis A2 holds as well. By [12, Theorem 1] we learn that, for every minimizer

w of J̃ , there exists a line L through 0 such that w(x) = w̃(PL(x), |x− PL(x)|) for
all x ∈ RN , for a convenient function w̃ : L× R+ → R.
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http://www.ams.org/mathscinet-getitem?mr=MR1450954&return=pdf
http://dx.doi.org/10.1016/S0294-1449(97)80142-4
http://dx.doi.org/10.1016/S0294-1449(97)80142-4
http://www.ams.org/mathscinet-getitem?mr=MR0898712&return=pdf
http://dx.doi.org/10.1007/BF00282048
http://dx.doi.org/10.1007/BF00282048
http://www.ams.org/mathscinet-getitem?mr=MR0695535&return=pdf
http://dx.doi.org/10.1007/BF00250555
http://www.ams.org/mathscinet-getitem?mr=MR2558325&return=pdf
http://dx.doi.org/10.1007/s00526-009-0238-1
http://www.ams.org/mathscinet-getitem?mr=MR2790542&return=pdf
http://dx.doi.org/10.1007/978-3-642-18363-8
http://dx.doi.org/10.1007/978-3-642-18363-8
http://www.ams.org/mathscinet-getitem?mr=MR1866056&return=pdf
http://dx.doi.org/10.1006/jmaa.2000.7617
http://www.ams.org/mathscinet-getitem?mr=MR3040343&return=pdf
http://dx.doi.org/10.1016/j.na.2013.02.011
http://www.ams.org/mathscinet-getitem?mr=MR0969899&return=pdf
http://dx.doi.org/10.1007/BF00251502
http://www.ams.org/mathscinet-getitem?mr=MR0778970&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0778974&return=pdf


5976 ANTONIO IANNIZZOTTO, KANISHKA PERERA AND MARCO SQUASSINA

[11] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys.,
109 (1987), 33–97.
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