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nonlocal equations with fractional diffusion and nonlinearity at exponential growth.
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1. Introduction and results

Since the seminal results by Trudinger [13] and Moser [9] on embeddings of exponential type for the
Sobolev spaces H1

0 (Ω) with Ω ⊂ R2, many contributions have appeared related to applications of these
results to semi-linear elliptic partial differential equations such as{

−Δu = f(u) in Ω,

u = 0 on ∂Ω,
(1.1)

with f(t) ∼ e4πtq as t → +∞ for some 0 < q � 2. Here the case q < 2 is considered as a subcritical
growth, while the case q = 2 is known as the critical case with respect to the Trudinger–Moser inequality
(see [9, Theorem 1])

sup
u∈H1

0 (Ω)
‖∇u‖L2(Ω)�1

∫
Ω

e4πu2 � C|Ω|. (1.2)

For existence and multiplicity of solutions for problems like (1.1) via techniques of critical point theory,
we refer the reader to de Figueiredo, Miyagaki & Ruf [4] and to the references therein. Many extensions of
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inequality (1.2) have been achieved, for spaces W 1,n
0 (Ω) with Ω ⊂ Rn and also to higher order Sobolev spaces

(see Adams [1]). As a consequence, quasi-linear problems involving the n-Laplacian on domains Ω ⊂ Rn or
the linear biharmonic operator Δ2 for functions of W 2,2

0 (Ω) on domains Ω ⊂ R4 can be studied. Focusing
the attention on nonlinear problems at exponential growth involving linear diffusion, if the dimension four
is natural for the biharmonic operator Δ2 and dimension two is natural for the Laplacian −Δ, the natural
setting for the fractional diffusion (−Δ)1/2 is dimension one.

Fractional Sobolev spaces are well known since the beginning of the last century, especially in the frame-
work of harmonic analysis. More recently, after the paper of Caffarelli & Silvestre [3], a large amount of
papers were written on problems involving the fractional diffusion (−Δ)s, 0 < s < 1. Due to its nonlocal
nature, working on bounded domains suggests the functions to be defined on the whole Rn and that the
problems are formulated as follows (see Servadei & Valdinoci [12]):{

(−Δ)su = f(u) in Ω,

u = 0 in Rn \Ω.
(1.3)

For the functional framework of fractional Sobolev spaces and fractional Laplacian, we refer the reader
to the survey of Di Nezza, Palatucci & Valdinoci [5]. Equations like (1.3) appear in fractional quantum
mechanics in the study of particles on stochastic fields modeled by Lévy processes, which occur widely in
physics and biology and have recently attracted much interest. One dimensional cases have been studied by
Weinstein [15].

In the present paper we will prove the existence and multiplicity of solutions for a Dirichlet problem
driven by the 1/2-Laplacian operator of the following type:{

(−Δ)1/2u = f(u) in (0, 1),
u = 0 in R \ (0, 1),

(P )

equivalently written in (0, 1) as the nonlocal equation

1
2π

∫
R

u(x + y) + u(x− y) − 2u(x)
|y|2 dy + f

(
u(x)

)
= 0.

It is natural to work on the space

X =
{
u ∈ H1/2(R): u = 0 in R \ (0, 1)

}
, ‖u‖X = [u]H1/2(R) (1.4)

where [·]H1/2(R) denotes the Gagliardo semi-norm (see Proposition 2.3). For this space, we state (see Corol-
lary 2.4) and exploit the following Trudinger–Moser type inequality: there exists 0 < ω � π such that for
all 0 < α < 2πω we can find Kα > 0 such that

1∫
0

eαu
2
dx � Kα, for all u ∈ X, ‖u‖X � 1. (1.5)

We list below our hypotheses on the nonlinearity f in the subcritical case:

H Let f ∈ C(R) be a function such that f(0) = 0 and denote

F (t) =
t∫

0

f(τ) dτ, for all t ∈ R.

Moreover, assume that there exist t0,M > 0 such that:
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(i) 0 < F (t) � M |f(t)|, for all |t| � t0;
(ii) 0 < 2F (t) � f(t)t, for all t �= 0;
(iii) lim supt→0

F (t)
t2 < λ1

4π (λ1 provided by Proposition 2.2 below);
(iv) lim|t|→∞

|f(t)|
eαt2 = 0, for all α > 0.

By a (weak) solution of problem (P ) we mean a function u ∈ X satisfying (3.1) (see Section 3). The following
are our main results:

Theorem 1.1. If H hold, then (P ) has a nontrivial solution u ∈ H1/2(R). If in addition f is odd, then (P )
has infinitely many solutions in H1/2(R).

On symmetric domains, we also have the following result:

Theorem 1.2. If H hold, then the problem{
(−Δ)1/2u = f(u) in (−1, 1),
u = 0 in R \ (−1, 1),

has an even nontrivial solution u ∈ H1/2(R) decreasing on R+.

Now we turn to the critical case, under the following assumptions:

H′ Assume H(i)–(iii) and:
(iv) there exists 0 < α0 < 2πω such that

lim
|t|→∞

|f(t)|
eαt2

=
{
∞ if 0 < α < α0,

0 if α > α0;

(v) there exists ψ ∈ X such that ‖ψ‖X = 1 and

sup
t∈R+

(
t2

4π −
1∫

0

F (tψ) dx
)

<
ω

2α0
.

For this case we have the following result:

Theorem 1.3. If H′ hold, then (P ) has a nontrivial solution u ∈ H1/2(R).

These results establish a one dimensional fractional counterpart (with the additional information of
symmetry and monotonicity of the solution in Theorem 1.2 for symmetric domains) of the results of [4]
for the local case in dimension two. As far as the critical case is concerned, typically when f(t) ∼ eα0t

2 as
t → ∞, it is still unclear how to detect suitable (concentrating) optimizing sequences in X for the fractional
Trudinger–Moser inequality (1.5). However, we can prove that in this case the functional associated to the
problem satisfies the Palais–Smale condition at each level c < ω/(2α0) and that the problem has a nontrivial
solution under the additional hypothesis H′(v). We point out that, with a similar machinery, existence and
multiplicity of solutions for fractional non-autonomous problems like{

(−Δ)1/2u = f(x, u) in (a, b),
u = 0 in R \ (a, b),

can be obtained under suitable assumptions on f : (a, b) × R → R.
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2. Preliminaries

First we recall some basic facts about the 1/2-Laplacian operator and the related function space H1/2(R),
following mainly [5]. For all s ∈ (0, 1), all measurable u and all x ∈ R we set

(−Δ)su(x) = −Cs

2

∫
R

u(x + y) + u(x− y) − 2u(x)
|y|1+2s dy,

with the constant

Cs =
[ ∫

R

1 − cos(ξ)
|ξ|1+2s dξ

]−1

(see [5, Lemma 3.3]). We focus on the case s = 1/2. Note that C1/2 = π−1. We define

H1/2(R) =
{
u ∈ L2(R):

∫
R2

(u(x) − u(y))2
|x− y|2 dx dy < ∞

}

and for all u ∈ H1/2(R) we introduce the Gagliardo seminorm

[u]H1/2(R) =
[ ∫

R2

(u(x) − u(y))2
|x− y|2 dx dy

] 1
2

and the norm

‖u‖H1/2(R) =
(
‖u‖2

L2(R) + [u]2H1/2(R)
) 1

2 .

We know that (H1/2(R), ‖ · ‖H1/2(R)) is a Hilbert space. Moreover, by [5, Proposition 3.6]

∥∥(−Δ)1/4u
∥∥
L2(R) = (2π)− 1

2 [u]H1/2(R), for all u ∈ H1/2(R). (2.1)

Our main tool is a fractional Trudinger–Moser inequality (see Ozawa [10, Theorem 1] and Kozono, Sato &
Wadade [7, Theorem 1.1]):

Theorem 2.1. There exists 0 < ω � π with the following property: for all 0 < α < ω there exists Hα > 0
such that ∫

R

(
eαu

2 − 1
)
dx � Hα‖u‖2

L2(R),

for every u ∈ H1/2(R) with ‖(−Δ)1/4u‖L2(R) � 1.

We do not possess an explicit formula for the optimal constant ω, and neither we know whether the
inequality above holds for α = ω.

Now we turn to the space X, defined in (1.4). Clearly the only constant function in X is 0, so the seminorm
[·]H1/2(R) turns out to be a norm on X, which we denote by ‖ · ‖X . We have the following Poincaré-type
inequality:
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Proposition 2.2. There exists λ1 > 0 such that for all u ∈ X

‖u‖L2(0,1) � λ
− 1

2
1 ‖u‖X .

Moreover, equality holds for some u ∈ X with ‖u‖L2(0,1) = 1.

Proof. We set

S =
{
u ∈ X: ‖u‖L2(0,1) = 1

}
and equivalently prove that

inf
u∈S

‖u‖2
X = λ1 > 0. (2.2)

Clearly λ1 � 0. We first prove that λ1 is attained in S. Let (un) ⊂ S be a minimizing sequence for (2.2).
In particular, supn∈N[un]2

H1/2(R) < ∞ and (un) is bounded in L2(0, 1). In light of [5, Theorem 7.1], there
exists u ∈ L2(0, 1) such that, up to a subsequence, un → u in L2(0, 1). We extend u by setting u(x) = 0 for
all x ∈ R \ (0, 1), so u ∈ L2(R) and un → u a.e. in R. Fatou’s lemma yields∫

R2

|u(x) − u(y)|2
|x− y|2 dx � lim inf

n

∫
R2

|un(x) − un(y)|2
|x− y|2 dx = λ1,

hence u ∈ X. Moreover, ‖u‖L2(0,1) = 1, hence u ∈ S, in particular u �= 0 and ‖u‖2
X = λ1 > 0. �

Due to Proposition 2.2, we can prove further properties of X:

Proposition 2.3. (X, ‖ · ‖X) is a Hilbert space.

Proof. Clearly the norm ‖ · ‖X is induced by an inner product, defined for all u, v ∈ X by

〈u, v〉X =
∫
R2

(u(x) − u(y))(v(x) − v(y))
|x− y|2 dx dy.

Moreover, by Proposition 2.2 we have for all u ∈ X

‖u‖X � ‖u‖H1/2(R) �
(
λ−1

1 + 1
) 1

2 ‖u‖X . (2.3)

So, completeness of X follows at once from that of H1/2(R). �
We specialize Theorem 2.1 to the space X:

Corollary 2.4. For all 0 < α < 2πω there exists Kα > 0 such that

1∫
0

eαu
2
dx � Kα

for all u ∈ X, ‖u‖X � 1.



Author's personal copy

A. Iannizzotto, M. Squassina / J. Math. Anal. Appl. 414 (2014) 372–385 377

Proof. Fix u ∈ X with ‖u‖X � 1. Set v = (2π)1/2u, then v ∈ H1/2(R) and by (2.1) we have
‖(−Δ)1/4v‖L2(R) � 1. Set α̃ = (2π)−1α, so 0 < α̃ < ω and by Theorem 2.1 and Proposition 2.2 we
have

1∫
0

eαu
2
dx =

∫
R

[
eα̃v

2 − 1
]
dx + 1

� Hα̃‖v‖2
L2(0,1) + 1 � 2πHα̃

λ1
+ 1 := Kα,

which concludes the proof. �
We point out an important consequence of the results above:

Proposition 2.5. eu2 ∈ L1(0, 1) for every u ∈ X.

Proof. We follow Trudinger [13]. Choose 0 < α < ω and set for all t ∈ R

φ(t) = eαt
2 − 1
Hα

(Hα defined as in Theorem 2.1).

We introduce the Orlicz norm induced by φ putting for all measurable u : (0, 1) → R

‖u‖φ = inf
{
γ > 0:

1∫
0

φ

(
u

γ

)
dx � 1

}
,

and the corresponding Orlicz space Lφ∗(0, 1), see Krasnosel’skĭı & Rutickĭı [8, p. 67] for the definition. We
prove (by identifying a function v ∈ X with its restriction to (0, 1)) that

X ↪→ Lφ∗(0, 1) continuously. (2.4)

For all v ∈ X \ {0}, we set w = ‖v‖−1
H1/2(R)v, so by (2.1)

∥∥(−Δ)1/4w
∥∥
L2(R) =

[v]H1/2(R)

(2π)1/2‖v‖H1/2(R)
� (2π)−1/2 < 1.

So, in light of Theorem 2.1, we have

1∫
0

φ

(
v

‖v‖H1/2(R)

)
dx =

∫
R

eαw
2 − 1
Hα

dx � ‖w‖2
L2(R) � 1,

hence by (2.3)

‖v‖φ � ‖v‖H1/2(R) �
(
λ−1

1 + 1
) 1

2 ‖v‖X .

Thus, (2.4) is proved.
Now fix u ∈ X and set ũ = α−1/2u. By the results of Fiscella, Servadei & Valdinoci [6], we know that

C∞
c (0, 1) is a dense linear subspace of X. So, there exists a sequence (ψn) in C∞

c (0, 1) such that ψn → ũ

in X. By (2.4), we have ψn → ũ in Lφ∗(0, 1) as well. In particular ũ ∈ Eφ, namely the closure of the set of
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bounded functions of X in Lφ∗(0, 1). From a general result on Orlicz spaces (see [8, formula (10.1), p. 81])
it follows that

1∫
0

φ(ũ) dx < ∞,

which immediately yields the conclusion. �
We conclude this section with a technical result which we shall use later:

Lemma 2.6. If (vn) is a sequence in X with ‖vn‖X = 1 for all n ∈ N and vn ⇀ v in X, 0 < ‖v‖X < 1, then
for all 0 < α < 2πω and all 1 < p < (1 − ‖v‖2

X)−1 the sequence (eαv2
n) is bounded in Lp(0, 1).

Proof. By applying the generalized Hölder inequality with exponents γ1, γ2, γ3 > 1 such that γ1α < 2πω
and γ−1

1 + γ−1
2 + γ−1

3 = 1, we have

1∫
0

epαv
2
n dx =

1∫
0

epα[(vn−v)2+2(vn−v)v+v2] dx

�
[ 1∫

0

eγ1pα(vn−v)2 dx

] 1
γ1
[ 1∫

0

e2γ2pα(vn−v)v dx

] 1
γ2
[ 1∫

0

eγ3pαv
2
dx

] 1
γ3

.

We estimate the three integrals separately. First we note that

‖vn − v‖2
X = 1 − 2〈vn, v〉X + ‖v‖2

X → 1 − ‖v‖2
X <

1
p
,

so for n ∈ N big enough we have ‖vn − v‖2
X < 1/p. Hence, by Corollary 2.4

1∫
0

eγ1pα(vn−v)2 dx �
1∫

0

e
γ1α( vn−v

‖vn−v‖X
)2
dx � Kγ1α.

Besides, by Corollary 2.4 and Proposition 2.5 we have for some c1 > 0

1∫
0

e2γ2pα(vn−v)v dx �
1∫

0

e
2(α

2 )1/2 vn−v
‖vn−v‖X

(c1v)
dx �

1∫
0

e
α
2 ( vn−v

‖vn−v‖X
)2+(c1v)2

dx

�
[ 1∫

0

e
α( vn−v

‖vn−v‖X
)2
dx

]1/2[ 1∫
0

e2c21v
2
dx

]1/2

� Kα

[ 1∫
0

e2c21v
2
dx

]1/2

.

Finally, clearly

1∫
0

eγ3pαv
2
dx < ∞.

Thus, (eαv2
n) is bounded in Lp(0, 1). �
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3. Proofs of Theorems 1.1 and 1.2

In this section we act under H. We give our problem a variational formulation by setting for all u ∈ X

ϕ(u) = ‖u‖2
X

4π −
1∫

0

F (u) dx.

Proposition 2.5, H(i) and H(iv) imply that ϕ ∈ C1(X). By (2.1), its derivative is given for all u, v ∈ X by

〈
ϕ′(u), v

〉
= 1

2π 〈u, v〉X −
1∫

0

f(u)v dx

=
∫
R

(−Δ)1/4u(−Δ)1/4v dx−
1∫

0

f(u)v dx.

In particular, if u ∈ X and ϕ′(u) = 0, then for all v ∈ X

∫
R

(−Δ)1/4u(−Δ)1/4v dx =
1∫

0

f(u)v dx, (3.1)

namely u is a (weak) solution of (P ).
First we point out some consequences of H. By H(iv), for all α > 0 there exists c2 > 0 such that∣∣f(t)

∣∣ � c2e
αt2 , for all t ∈ R. (3.2)

By virtue of H(i), there exists c3 > 0 such that

F (t) � c3e
|t|
M , for all |t| � t0. (3.3)

Finally, by H(i) and H(ii), for all ε > 0 there exists tε > 0 such that

F (t) � εf(t)t, for all |t| � tε. (3.4)

The following lemma shows a compactness property of ϕ:

Lemma 3.1. ϕ satisfies the Palais–Smale condition at every level c ∈ R.

Proof. Let (un) be a sequence in X such that ϕ(un) → c (c ∈ R) and ϕ′(un) → 0 in X∗. We need to show
that (un) has a convergent subsequence in X. By (3.4), for all 0 < ε < 1/2 we can find c4 > 0 such that for
all t ∈ R

F (t) � εf(t)t + c4.

For n ∈ N big enough we have ϕ(un) � c + 1 and ‖ϕ′(un)‖X∗ � 1, so

c + 1 � ‖un‖2
X

4π −
1∫

0

[
εf(un)un + c4

]
dx =

(
1
2 − ε

)
‖un‖2

X

2π + ε
〈
ϕ′(un), un

〉
− c4

�
(

1
2 − ε

)
‖un‖2

X

2π − ε‖un‖X − c4.
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Thus, (un) is bounded in X. By Proposition 2.2, (un) is bounded in H1/2(R) as well. By [5, Theorem 7.1
and Theorem 6.10], passing to a subsequence we may assume that un ⇀ u in both X and H1/2(R), and that
un → u in Lq(0, 1) for all q � 1 and un(x) → u(x) a.e. in (0, 1). In particular, there exists c5 > 0 such that
‖un‖2

X � c5, for all n ∈ N. Observe that (f(un)) is bounded in L2(0, 1). Indeed, by choosing 0 < α < πω/c5,
by Corollary 2.4 and (3.2) we get

1∫
0

f2(un) dx � c22

1∫
0

e2αu2
n dx � c22

1∫
0

e
2αc5( un

‖un‖X
)2
dx � c22K2αc5 . (3.5)

By reflexivity of L2(0, 1), passing to a subsequence, we have f(un) ⇀ f(u) in L2(0, 1). As a consequence,
for all v ∈ X we have

〈
ϕ′(u), v

〉
= 1

2π 〈u, v〉X −
1∫

0

f(u)v dx = lim
n

〈
ϕ′(un), v

〉
= 0,

namely u is a solution of (P ). Observe that

lim
n

1∫
0

f(un)un dx =
1∫

0

f(u)u dx,

since by (3.5) and f(un) ⇀ f(u) in L2(0, 1) it holds

∣∣∣∣∣
1∫

0

f(un)un dx−
1∫

0

f(u)u dx
∣∣∣∣∣ �

∥∥f(un)
∥∥
L2(0,1)‖un − u‖L2(0,1) +

∣∣∣∣∣
1∫

0

(
f(un) − f(u)

)
u dx

∣∣∣∣∣. (3.6)

In turn we have

lim
n

‖un‖2
X

2π = lim
n

[ 1∫
0

f(un)un dx +
〈
ϕ′(un), un

〉]
=

1∫
0

f(u)u dx = ‖u‖2
X

2π ,

which immediately yields the assertion. �
The following lemmas deal with the mountain pass geometry for ϕ:

Lemma 3.2. There exist ρ, a > 0 such that ϕ(u) � a for all u ∈ X with ‖u‖X = ρ.

Proof. By H(iii) there exist 0 < μ < λ1 and δ > 0 such that for all |t| < δ we have F (t) � μt2/(4π). Fix
q > 2, 0 < α < 2πω and r > 1 such that rα < 2πω as well. By (3.2) there exists c6 > 0 such that for all
|t| � δ we have F (t) � c6e

αt2 |t|q. Summarizing, for all t ∈ R, we obtain

F (t) � μt2

4π + c6e
αt2 |t|q.

Reasoning as in [5, Theorem 6.10], we see that the embedding X ↪→ Lr′q(0, 1) (r′ = r/(r−1)) is continuous.
So, by the estimate above, Proposition 2.2 and Corollary 2.4, we have for all u ∈ X, ‖u‖X � 1 (and for a
convenient c7 > 0)
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ϕ(u) � ‖u‖2
X

4π −
1∫

0

[
μu2

4π + c6e
αu2 |u|q

]
dx

�
(

1 − μ

λ1

)
‖u‖2

X

4π − c6

( 1∫
0

erαu
2
dx

)1/r( 1∫
0

|u|r′q dx
)1/r′

�
(

1 − μ

λ1

)
‖u‖2

X

4π − c7‖u‖qX .

Set for all t � 0

g(t) =
(

1 − μ

λ1

)
t2

4π − c7t
q.

By a straightforward computation we find 0 < ρ < 1 such that g(ρ) = a > 0. So, for all u ∈ X with
‖u‖X = ρ we have ϕ(u) � a. �
Lemma 3.3. If Y ⊂ X is a linear subspace generated by bounded functions and dim(Y ) < ∞, then
supu∈Y ϕ(u) < ∞ and

lim
‖u‖X→∞

u∈Y

ϕ(u) = −∞.

Proof. Fix p > 2. By (3.3), we have |t|−pF (t) → ∞ for |t| → ∞, so we can find c8 > 0 such that for all
t ∈ R we have F (t) � |t|p − c8. Whence, for some c9 > 0, we obtain for all u ∈ Y

ϕ(u) � ‖u‖2
X

4π − ‖u‖pLp(0,1) + c8 � ‖u‖2
X

4π − c9‖u‖pX + c8,

which readily yields the assertion. �
Proof of Theorem 1.1 concluded. The existence of one solution follows by applying the Mountain Pass
Theorem (see Rabinowitz [11, Theorem 2.2]) to ϕ and combining Lemmas 3.1, 3.2 and 3.3.

Concerning the multiplicity, we apply [11, Theorem 9.12]. �
Proof of Theorem 1.2 concluded. Given a nonnegative function u ∈ X and any H = (a,∞) with a < 0, we
have the following inequality for the polarization uH (see Baernstein [2, Theorem 2, p. 58])∫

R2

(uH(x) − uH(y))2
|x− y|2 dx dy �

∫
R2

(u(x) − u(y))2
|x− y|2 dx dy,

which implies that ϕ(uH) � ϕ(u), for all nonnegative u of X.
The existence of an even solution on (−1, 1), decreasing on (0, 1), equal to zero on R \ (−1, 1) follows by

the (symmetric) Mountain Pass Theorem of Van Schaftingen [14, Theorem 3.2] applied to the functional ϕ
on X with the V therein chosen as V = L2(−1, 1), and on account of Lemmas 3.1, 3.2 and 3.3. �
Example 3.4. Fix 1 < q < 2 and 0 < μ < λ1/(2π). Define f : R → R by setting, for all t � 0,

f(t) =
{
μt if 0 � t � 1,
μtq−1et

q−1 if t > 1,
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and f(t) = −f(−t) for all t < 0. It is easily seen that f is continuous, odd and satisfies H. By Theorem 1.1,
then, the corresponding problem (P ) admits infinitely many solutions.

4. Proof of Theorem 1.3

In this section, we consider the critical case, that is, we act under H′.
An important remark here is that (3.2) holds only for α > α0. We prove that the Palais–Smale condition

is satisfied only for levels in a certain range:

Lemma 4.1. If f satisfies H′, then ϕ satisfies the Palais–Smale condition at any level c < ω/(2α0).

Proof. Let (un) be a sequence in X such that ϕ(un) → c and ϕ′(un) → 0 in X∗. Arguing as in the proof of
Lemma 3.1, it is readily seen that there exists a positive constant c10 such that, for all n ∈ N,

max
{
‖un‖2

X ,

1∫
0

f(un)un dx,

1∫
0

F (un) dx
}

� c10.

Moreover, up to a subsequence, un ⇀ u in X and un → u in Lq(0, 1) for all q � 1. Reasoning as in
[4, Lemma 2.1] we have f(un) → f(u) in L1(0, 1). Whence, in light of H(i), it follows that

∫ 1
0 F (un) dx →∫ 1

0 F (u) dx. So we have

‖un‖2
X

4π → c +
1∫

0

F (u) dx. (4.1)

Then, since ϕ′(un) → 0, we get

1∫
0

f(un)un dx → 2
(
c +

1∫
0

F (u) dx
)
.

So, by means of H(ii), we have

c = 1
2 lim

n

1∫
0

[
f(un)un − 2F (un)

]
dx � 0.

Besides, for all v ∈ C∞
c (0, 1) we have

〈
ϕ′(u), v

〉
= 1

2π 〈u, v〉X −
1∫

0

f(u)v dx = lim
n

〈
ϕ′(un), v

〉
= 0.

Recalling again the density result of [6], we have 〈ϕ′(u), v〉 = 0 for all v ∈ X, namely u is a solution of (P ).
By H(ii) and taking v = u we have

ϕ(u) = 1
2

(
‖u‖2

X

2π − 2
1∫

0

F (u) dx
)

� 1
2

(
‖u‖2

X

2π −
1∫

0

f(u)u dx
)

= 0.

Summarizing, we have c � 0 and ϕ(u) � 0. Now we distinguish three cases.
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(a) If c = 0, then by virtue of (4.1) and ϕ(u) � 0, we get

‖u‖2
X

4π �
1∫

0

F (u) dx = lim
n

‖un‖2
X

4π .

Recalling that un ⇀ u in X, we conclude that un → u in X.
(b) If c > 0, u = 0, then the sequence (f(un)) is bounded in Lq(0, 1), for some q > 1. Indeed, since

c < ω/(2α0) we can find q > 1, ε > 0 and α0 < α < 2πω such that 2π(2c + ε)qα := β < 2πω. Since
‖un‖2

X → 4πc, for n ∈ N big enough we have ‖un‖2
X < 2π(2c+ ε). So, applying (3.2) and Corollary 2.4

we have

1∫
0

∣∣f(un)
∣∣q dx � cq2

1∫
0

eqαu
2
n dx � cq2

1∫
0

e
β( un

‖un‖X
)2
dx � cq2Kβ .

Recalling that un → 0 in Lq′(0, 1) (q′ = q/(q − 1)) and that

0 �
1∫

0

f(un)un dx �
∥∥f(un)

∥∥
Lq(0,1)‖un‖Lq′ (0,1),

from ϕ′(un) → 0 we have immediately

lim
n

‖un‖2
X

2π = lim
n

1∫
0

f(un)un dx = 0,

whence un → 0 in X. Thus ϕ(un) → 0 < c, a contradiction.
(c) If c > 0, u �= 0, then we prove that ϕ(u) = c. This equality yields the strong convergence by means

of (4.1). We know that ϕ(u) � c, so by contradiction assume ϕ(u) < c. Then

‖un‖2
X → 4π

(
c +

1∫
0

F (u) dx
)

> ‖u‖2
X .

Set vn = ‖un‖−1
X un and v = (4πc + 4π

∫ 1
0 F (u) dx)−1/2u. So we have ‖vn‖X = 1, 0 < ‖v‖X < 1 and

vn ⇀ v in X. Since c < ω/(2α0), we can find q > 1, α0 < α < 2πω such that qc < ω/(2α), hence (recall
ϕ(u) � 0)

2qα <
ω

c− ϕ(u) .

We have

lim
n

qα‖un‖2
X = 4πqα

(
c +

1∫
0

F (u) dx
)

< 2πω
c +

∫ 1
0 F (u) dx

c− ϕ(u) .

We can choose p > 1, 0 < γ < 2πω such that

p <
c +

∫ 1
0 F (u) dx

c− ϕ(u) = 1
1 − ‖v‖2

X
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and for n ∈ N big enough

qα‖un‖2
X < pγ.

Since γ < 2πω, by Lemma 2.6 the sequence (eγv2
n) is bounded in Lp(0, 1), so

1∫
0

∣∣f(un)
∣∣q dx � cq2

1∫
0

eqαu
2
n dx � cq2

1∫
0

ep(γv
2
n) dx,

which proves that (f(un)) is bounded in Lq(0, 1). Passing if necessary to a subsequence, we have f(un) ⇀
f(u) in Lq(0, 1) while un → u in Lq′(0, 1). So,

∣∣∣∣∣
1∫

0

f(un)un dx−
1∫

0

f(u)u dx
∣∣∣∣∣ �

∥∥f(un)
∥∥
Lq(0,1)‖un − u‖Lq′ (0,1) +

∣∣∣∣∣
1∫

0

(
f(un) − f(u)

)
u dx

∣∣∣∣∣,
hence

lim
n

1∫
0

f(un)un dx =
1∫

0

f(u)u dx.

As above, this yields un → u in X. This in turn implies ϕ(u) = c, a contradiction.

This concludes the proof. �
Proof of Theorem 1.3 concluded. The conclusions of Lemmas 3.2 and 3.3 still hold, with small changes in
the proofs. Moreover, if we fix t > 0 such that ϕ(tψ) < ϕ(0) and denote by Γ the set of continuous paths
in X joining 0 and tψ and set

c = inf
γ∈Γ

max
τ∈[0,1]

ϕ
(
γ(τ)

)
,

by H′(v) we see that c < ω/(2α0). Thus, by Lemma 4.1, ϕ satisfies the Palais–Smale condition at level c.
By the Mountain Pass Theorem, then, (P ) has a nontrivial solution. �
Example 4.2. Fix 0 < μ < λ1/(2π), 0 < α0 < 2πω. Define f : R → R by setting, for all t � 0,

f(t) =
{
μt if 0 � t � 1,
μteα0(t2−1) if t > 1,

and f(t) = −f(−t) for all t < 0. It is easily seen that f is continuous and satisfies H′(i)–(iv). If there exists
ψ ∈ X satisfying H′(v), then by Theorem 1.3 the corresponding problem (P ) admits a nontrivial solution.
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