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1. Introduction and results

Since the seminal results by Trudinger [13] and Moser [9] on embeddings of exponential type for the
Sobolev spaces Hi(£2) with 2 C R?, many contributions have appeared related to applications of these
results to semi-linear elliptic partial differential equations such as

—Au = f(u) in £2,
{u:O on 942, (1.1)

with f(t) ~ e*™" as t — +oo for some 0 < ¢ < 2. Here the case ¢ < 2 is considered as a subcritical
growth, while the case ¢ = 2 is known as the critical case with respect to the Trudinger—Moser inequality
(see [9, Theorem 1])

sup /64”2 < C|92|. (1.2)
uEHé(Q) A
IVull 2 (o)<1

For existence and multiplicity of solutions for problems like (1.1) via techniques of critical point theory,
we refer the reader to de Figueiredo, Miyagaki & Ruf [4] and to the references therein. Many extensions of
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inequality (1.2) have been achieved, for spaces WO1 "(£2) with 2 C R™ and also to higher order Sobolev spaces
(see Adams [1]). As a consequence, quasi-linear problems involving the n-Laplacian on domains {2 C R™ or
the linear biharmonic operator A? for functions of W02 2(£2) on domains £2 C R?* can be studied. Focusing
the attention on nonlinear problems at exponential growth involving linear diffusion, if the dimension four
is natural for the biharmonic operator A? and dimension two is natural for the Laplacian —A, the natural
setting for the fractional diffusion (—A)'/? is dimension one.

Fractional Sobolev spaces are well known since the beginning of the last century, especially in the frame-
work of harmonic analysis. More recently, after the paper of Caffarelli & Silvestre [3], a large amount of
papers were written on problems involving the fractional diffusion (—A)®, 0 < s < 1. Due to its nonlocal
nature, working on bounded domains suggests the functions to be defined on the whole R™ and that the
problems are formulated as follows (see Servadei & Valdinoci [12]):

{(—A)Su — f(u) inQ,

u=20 in R™\ £2. (1.3)

For the functional framework of fractional Sobolev spaces and fractional Laplacian, we refer the reader
to the survey of Di Nezza, Palatucci & Valdinoci [5]. Equations like (1.3) appear in fractional quantum
mechanics in the study of particles on stochastic fields modeled by Lévy processes, which occur widely in
physics and biology and have recently attracted much interest. One dimensional cases have been studied by
Weinstein [15].

In the present paper we will prove the existence and multiplicity of solutions for a Dirichlet problem
driven by the 1/2-Laplacian operator of the following type:

(—A)Y2u = f(u) in (0,1),
{uzO in R\ (0,1), (P)

equivalently written in (0, 1) as the nonlocal equation

1 [ulz+y) tulr—y) —2u(z)
2 ) ly[?

dy + f(u(z)) = 0.

It is natural to work on the space
X={uce HY2(R): u=0inR\ (0, D} lullx = [u] g (1.4)

where [-] 1/2(g) denotes the Gagliardo semi-norm (see Proposition 2.3). For this space, we state (see Corol-
lary 2.4) and exploit the following Trudinger—-Moser type inequality: there exists 0 < w < 7 such that for
all 0 < o < 2ww we can find K, > 0 such that

1
/emf dov < Ko, forallue X, |lulx <1. (1.5)
0

We list below our hypotheses on the nonlinearity f in the subcritical case:

H Let f € C(R) be a function such that f(0) = 0 and denote
t
Flt) = / f(r)dr, foralltcR.
0

Moreover, assume that there exist tg, M > 0 such that:
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(i) 0 < F(t) < M|f(t)], for all [t| > to;
(ii) 0 < 2F(t) < f(t)t, for all t # 0;
)
)

(iii) limsup,_,q ) < ﬁ (A1 provided by Proposition 2.2 below);

t2
(iv) lim t—o00 |f( )= =0, for all a > 0.

By a (weak) solution of problem (P) we mean a function u € X satisfying (3.1) (see Section 3). The following
are our main results:

Theorem 1.1. If H hold, then (P) has a nontrivial solution v € H?(R). If in addition f is odd, then (P)
has infinitely many solutions in H'Y?(R).

On symmetric domains, we also have the following result:

Theorem 1.2. If H hold, then the problem

(=) 2u=f(u) in(-1,1),
w=0 in R\ (—1,1),

has an even nontrivial solution v € H'/?(R) decreasing on R*.

Now we turn to the critical case, under the following assumptions:

H’' Assume H(i)—(iii) and:
(iv) there exists 0 < oy < 27w such that

f(t)]  [oo if0<a<a,
10 ifa> ag;

t|—oo eat?

(v) there exists ¢ € X such that ||¢||x =1 and

For this case we have the following result:
Theorem 1.3. If H' hold, then (P) has a nontrivial solution u € H'/?(R).

These results establish a one dimensional fractional counterpart (with the additional information of
symmetry and monotonicity of the solution in Theorem 1.2 for symmetric domains) of the results of [4]
for the local case in dimension two. As far as the critical case is concerned, typically when f(t) ~ e@ot” ag
t — o0, it is still unclear how to detect suitable (concentrating) optimizing sequences in X for the fractional
Trudinger—Moser inequality (1.5). However, we can prove that in this case the functional associated to the
problem satisfies the Palais—Smale condition at each level ¢ < w/(2cy) and that the problem has a nontrivial
solution under the additional hypothesis H'(v). We point out that, with a similar machinery, existence and
multiplicity of solutions for fractional non-autonomous problems like

(=A)Y2u = f(x,u) in (a,b),
u=20 in R\ (a,b),

can be obtained under suitable assumptions on f : (a,b) x R — R.
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2. Preliminaries

First we recall some basic facts about the 1/2-Laplacian operator and the related function space H 1/ 2(R),
following mainly [5]. For all s € (0,1), all measurable v and all x € R we set

(x +y) +ulz —y) —2u(x)
(=A)%u(z) = __/ |y[TF2s dy,

with the constant

-1

1—
= [ [Tt
R

(see [5, Lemma 3.3]). We focus on the case s = 1/2. Note that C; /o = 7~ 1. We define

[z —y]?

HY?(R) = {ue L*(R): /dedy < oo}
R

and for all u € H'/?(R) we introduce the Gagliardo seminorm

!

|z — yl2

and the norm

N=

lull rivzmy = (||U||%2(R) + [U]ip/z(R))
We know that (H'/2(R), || - | rr1/2(r)) is a Hilbert space. Moreover, by [5, Proposition 3.6]

[(—A)Y 2m) 2 [ulgr/agy,  for all u € HY3(R). (2.1)

“HL?(R)
Our main tool is a fractional Trudinger—-Moser inequality (see Ozawa [10, Theorem 1] and Kozono, Sato &
Wadade [7, Theorem 1.1]):

Theorem 2.1. There exists 0 < w < 7 with the following property: for all 0 < a < w there exists H, > 0
such that

/(e““z — 1) do < Hol[u|| 2 ),

R
for every u € HY2(R) with ||(—A)Y4u| r2r®) < 1.

We do not possess an explicit formula for the optimal constant w, and neither we know whether the
inequality above holds for o = w.

Now we turn to the space X, defined in (1.4). Clearly the only constant function in X is 0, so the seminorm
['|gr1/2(r) turns out to be a norm on X, which we denote by || - [[x. We have the following Poincaré-type
inequality:



376 A. Iannizzotto, M. Squassina / J. Math. Anal. Appl. 414 (2014) 872-385

Proposition 2.2. There exists Ay > 0 such that for allu € X
1
lullL2(0,1) < Ay ? [Jullx-
Moreover, equality holds for some u € X with |u| p2¢,1) = 1.
Proof. We set
S = {U e X: ||UHL2(O,1) = 1}

and equivalently prove that

inf |ullk% =\ : 2.2

it [} =\ > 0 (2.2)
Clearly A1 > 0. We first prove that A\; is attained in S. Let (u,) C S be a minimizing sequence for (2.2).
In particular, supneN[un]zl/Q(R) < oo and (uy) is bounded in L2(0,1). In light of [5, Theorem 7.1], there

exists u € L?(0,1) such that, up to a subsequence, u,, — u in L?(0,1). We extend u by setting u(x) = 0 for
allz € R\ (0,1), so u € L*(R) and u,, — u a.e. in R. Fatou’s lemma yields

_ 2
/|U ]x—y\z d éliminf/ [un(2) = un(y)| dx = A,
RQ

|z —y|?

hence u € X. Moreover, ||ul|2(0,1) = 1, hence u € S, in particular u # 0 and |jul% =X > 0. O
Due to Proposition 2.2, we can prove further properties of X:
Proposition 2.3. (X, || - ||x) is a Hilbert space.

Proof. Clearly the norm || - || x is induced by an inner product, defined for all u,v € X by

iy = [ LU v 4,

|z —y|?

R2

Moreover, by Proposition 2.2 we have for all u € X

1
lullx < lullgize < (A" +1) 2 ullx. (2.3)
So, completeness of X follows at once from that of H'/2(R). O
We specialize Theorem 2.1 to the space X:

Corollary 2.4. For all 0 < a < 2w there exists K, > 0 such that

1
2

/eo‘“ dr < K,

0

for allu e X, |Jullx < 1.
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Proof. Fix v € X with [jullx < 1. Set v = (27)/2u, then v € HY?(R) and by (2.1) we have
||(—A)1/4v||L2(R) < 1.Set @ = (27)7ta, so 0 < & < w and by Theorem 2.1 and Proposition 2.2 we

1
/eo‘“2 dx:/[eé“’2 —1] dr +1
0

R

have

27TH@
AL

< H&H/l)”%z(()?l) +1 < +1:= Ka,

which concludes the proof. O

We point out an important consequence of the results above:
Proposition 2.5. % € L'(0,1) for every u € X.
Proof. We follow Trudinger [13]. Choose 0 < a@ < w and set for all t € R

at?
-1
o(t) = ¢ T (H, defined as in Theorem 2.1).
[e%

We introduce the Orlicz norm induced by ¢ putting for all measurable v : (0,1) — R

1
lulls = inf{~y > 0: /qﬁ(%) do < 1},
0

and the corresponding Orlicz space Lg«(0,1), see Krasnosel’skii & Rutickii [8, p. 67 for the definition. We
prove (by identifying a function v € X with its restriction to (0,1)) that

X < Ly-(0,1) continuously. (2.4)
For all v € X \ {0}, we set w = Hv||;111/2(R)v, so by (2.1)
1/4 [l ) ~1/2
[(=2) ] g = <(@2m)V2 <1

(2m) 2 ||v ]l /2 r)

So, in light of Theorem 2.1, we have

1 2
e —1
dr = | ————dz < ||wl||? <1,
0/ <||U\H1/2(R)> 2 H, LB

hence by (2.3)

1
[vllg < vl < (7" +1)lvllx.

Thus, (2.4) is proved.

Now fix v € X and set & = a~/?u. By the results of Fiscella, Servadei & Valdinoci [6], we know that
C2°(0,1) is a dense linear subspace of X. So, there exists a sequence (1) in C2°(0, 1) such that ¢,, — @
in X. By (2.4), we have 1,, = @ in Lg~(0,1) as well. In particular @ € Ey4, namely the closure of the set of
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bounded functions of X in Lg-«(0,1). From a general result on Orlicz spaces (see [8, formula (10.1), p. 81])

it follows that
1
/ o(u) dx < oo,
0

which immediately yields the conclusion. O
We conclude this section with a technical result which we shall use later:

Lemma 2.6. If (v,,) is a sequence in X with ||v,||x =1 for alln € N and v, = v in X, 0 < ||v]|x < 1, then
for all 0 < a < 27w and all 1 < p < (1 —||v]|%) ™! the sequence (e°vn) is bounded in LP(0,1).

Proof. By applying the generalized Holder inequality with exponents ~y1,72,7v3 > 1 such that v1a < 27w

and 77 ' +75 "+ 75" = 1, we have

1 1
/ V2 g / opal(vn—0)? 20 —0)v+0?] g
0 0

1

1 U R a1
Y1 Y2 Y3
< [/enpa(vnvf dw] [ e272p(vn—v)v dm] [/ewwavz dm] )
0 0 0

We estimate the three integrals separately. First we note that
2 2 2 1
lon —vllx =1 —=2{vn,v)x + [lv]x =1 —[Jv]x < e

so for n € N big enough we have v, — v||% < 1/p. Hence, by Corollary 2.4
1 1
/ewpa(vnv)2 dzr < /6716“(%)2 dr < K, o
0 0

Besides, by Corollary 2.4 and Proposition 2.5 we have for some ¢; > 0

1 1 1

anl/2 Un —v a Up —v 2 2
/ e212Peln =Y gy / 8 SR () 4 / e 2 (i )+ gy
0

1 127 1 1/2 1
[/ (o Sy dx] [/626?”2 da:] < Ka [/eZCW dm]
0 0 0

1/2

Finally, clearly

1
y3pav?
e dr < 00.
0

Thus, (e®*») is bounded in LP(0,1). O
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3. Proofs of Theorems 1.1 and 1.2

In this section we act under H. We give our problem a variational formulation by setting for all u € X

1
(1) HUHX /
0

Proposition 2.5, H(i) and H(iv) imply that ¢ € C*(X). By (2.1), its derivative is given for all u,v € X by

In particular, if u € X and ¢'(u) = 0, then for all v € X

1

/(—A)1/4u( AV de = /f Yo da, (3.1)

R 0

namely u is a (weak) solution of (P).
First we point out some consequences of H. By H(iv), for all & > 0 there exists ¢o > 0 such that

|f(t)] < 26, forallteR. (3.2)
By virtue of H(i), there exists c3 > 0 such that

F(t) > czed,  for all [t| > to. (3.3)
Finally, by H(i) and H(ii), for all € > 0 there exists t. > 0 such that

F(t) <ef(t)t, for all [t| > t.. (3.4)
The following lemma shows a compactness property of ¢:

Lemma 3.1. ¢ satisfies the Palais—Smale condition at every level ¢ € R.

Proof. Let (u,) be a sequence in X such that ¢(u,) — ¢ (¢ € R) and ¢'(u,,) — 0 in X*. We need to show
that (u,) has a convergent subsequence in X. By (3.4), for all 0 < £ < 1/2 we can find ¢4 > 0 such that for
allt e R

F(t) < ef ()t + ca.

For n € N big enough we have ¢(u,) < c+ 1 and [|¢’(un)||x+ < 1, so

1
n 1 n ;
c+1> Hu ||X / €f Up, un+C4] dr = <_ _5)M +€<¢/(un),un> —C4
0

2 27
1 n
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Thus, (uy,) is bounded in X. By Proposition 2.2, (u,) is bounded in H'/2(R) as well. By [5, Theorem 7.1
and Theorem 6.10], passing to a subsequence we may assume that u,, — u in both X and H'/2(R), and that
u, — uwin L1(0,1) for all ¢ > 1 and u,(z) — u(x) a.e. in (0,1). In particular, there exists ¢5 > 0 such that
lun||% < cs, for all n € N. Observe that (f(u,)) is bounded in L?(0, 1). Indeed, by choosing 0 < a < mw/cs,
by Corollary 2.4 and (3.2) we get

1

1
/fQ(un) dr < Cg /€2aui dx < 63/620[05( H“q:fnx )? dr < C§K2a05- (35)
0 0 0

1

By reflexivity of L?(0, 1), passing to a subsequence, we have f(u,) — f(u) in L?(0,1). As a consequence,
for all v € X we have

<g0/(u),v>: /f vd:c—hm< (un),v) =0,
0

namely v is a solution of (7). Observe that

1 1
lim/ Up ) Uy dT = /f Judx,
0 0

since by (3.5) and f(u,) — f(u) in L?(0,1) it holds

1 1
/ U )Up, dT — /f Yudz
0 0

In turn we have

(3.6)

Hf Un HL2(0 1)Hun UHL2(0 1+

n e 2

2 ! P 9
lim”gﬂ :liyl/f(un)un da;+<s0'(un),un>] = /f(u)udx: HUHX,
0 0

which immediately yields the assertion. O
The following lemmas deal with the mountain pass geometry for ¢:
Lemma 3.2. There exist p,a > 0 such that p(u) > a for allu € X with ||u||x = p.

Proof. By H(iii) there exist 0 < u < A\; and § > 0 such that for all |¢| < § we have F(t) < ut?/(4w). Fix
qg>2,0<a<2rwandr > 1 such that ra < 27w as well. By (3.2) there exists ¢g > 0 such that for all
|t| > 6 we have F(t) < cge®’’ [t|?. Summarizing, for all ¢ € R, we obtain

t2
F(t) < B 4 cgen? |t

a7
Reasoning as in [5, Theorem 6.10], we see that the embedding X < L"'9(0,1) (' = r/(r —1)) is continuous.
So, by the estimate above, Proposition 2.2 and Corollary 2.4, we have for all u € X, ||Jul]|x < 1 (and for a
convenient ¢; > 0)
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1
2 2
o) > 15 — [0k e a
s

Set forallt >0

By a straightforward computation we find 0 < p < 1 such that g(p) = a > 0. So, for all u € X with
llullx = p we have p(u) > a. O

Lemma 3.3. If Y C X is a linear subspace generated by bounded functions and dim(Y) < oo, then
sup,cy ©(u) < oo and

lim  @(u) = —oc.
llullx —o0
u€Y

Proof. Fix p > 2. By (3.3), we have || PF(t) — oo for |t| — oo, so we can find ¢g > 0 such that for all
t € R we have F(t) > [t|P — cg. Whence, for some c¢g > 0, we obtain for all u € Y

[Jull%
4

Jull3
— Nl o0 + s < 7 = collullk +cs,

<
o(u) in

which readily yields the assertion. O

Proof of Theorem 1.1 concluded. The existence of one solution follows by applying the Mountain Pass
Theorem (see Rabinowitz [11, Theorem 2.2]) to ¢ and combining Lemmas 3.1, 3.2 and 3.3.
Concerning the multiplicity, we apply [11, Theorem 9.12]. O

Proof of Theorem 1.2 concluded. Given a nonnegative function u € X and any H = (a,00) with a < 0, we
have the following inequality for the polarization uf (see Baernstein [2, Theorem 2, p. 58])

Bl Sy UG B P
)

[z —y?

which implies that p(uf’) < p(u), for all nonnegative u of X.

The existence of an even solution on (—1, 1), decreasing on (0, 1), equal to zero on R\ (—1,1) follows by
the (symmetric) Mountain Pass Theorem of Van Schaftingen [14, Theorem 3.2] applied to the functional ¢
on X with the V therein chosen as V' = L?(—1,1), and on account of Lemmas 3.1, 3.2 and 3.3. O

Example 3.4. Fix 1 < ¢ <2 and 0 < u < A\1/(27). Define f : R — R by setting, for all t > 0,

ut if0<t<,
7(t) = {

ptd et =1 i ¢ > 1,
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and f(t) = —f(—t) for all t < 0. It is easily seen that f is continuous, odd and satisfies H. By Theorem 1.1,
then, the corresponding problem (FP) admits infinitely many solutions.

4. Proof of Theorem 1.3

In this section, we consider the critical case, that is, we act under H'.
An important remark here is that (3.2) holds only for av > 9. We prove that the Palais-Smale condition
is satisfied only for levels in a certain range:

Lemma 4.1. If f satisfies H', then ¢ satisfies the Palais—Smale condition at any level ¢ < w/(2ayp).

Proof. Let (u,) be a sequence in X such that ¢(u,) — ¢ and ¢'(u,) — 0 in X*. Arguing as in the proof of
Lemma 3.1, it is readily seen that there exists a positive constant cig such that, for all n € N,

1

maX{H“n”X /f Up) U, 5U,/F Up) } C10-

0

Moreover, up to a subsequence, u, — v in X and u, — u in L?(0,1) for all ¢ > 1. Reasomng as in
[4, Lemma 2.1] we have f(u,) — f(u) in L*(0,1). Whence, in light of H(i), it follows that fo (up) dz —

fol F(u)dz. So we have

Mﬁc—i—/F(u)daz (4.1)
A ' '
0

Then, since ¢'(u,) — 0, we get

1 1
O/f Up unda?—>2< —i—O/F(u)da?).

So, by means of H(ii), we have
1.
c=3 hm/[f(un)un — 2F (uy)] dz > 0.
Besides, for all v € C¢°(0,1) we have
1
(' (u),v) = /f Jvodx = hm< (un),v) = 0.
0

Recalling again the density result of [6], we have (¢'(u),v) = 0 for all v € X, namely u is a solution of (P).
By H(ii) and taking v = u we have

sy L (ruux_ / ) (ruux / ) N

Summarizing, we have ¢ > 0 and ¢(u) > 0. Now we distinguish three cases.
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If ¢ = 0, then by virtue of (4.1) and ¢(u) > 0, we get

1
IIUI / [lun 3
u)d —1 .
v 47
0

Recalling that u, — v in X, we conclude that u,, — u in X.

If ¢ > 0, u = 0, then the sequence (f(uy)) is bounded in L%(0,1), for some ¢ > 1. Indeed, since
¢ < w/(2ap) we can find ¢ > 1, ¢ > 0 and ap < a < 27w such that 27(2¢ + €)ga := f < 27w. Since
|lun||% — 4me, for n € N big enough we have |lu,||% < 2m(2c+ €). So, applying (3.2) and Corollary 2.4

we have

1

1 1
/!f(un)}qu < /eqa“i dr < ¢l /eﬁ(“l:hnx)2 dr < ddKg.
0 0 0

Recalling that u,, — 0 in L7 (0,1) (¢ = ¢/(q — 1)) and that

1
/f Un ) tn dz < Hf Un HLq(o 1)||u”HLq (0,1)
0

from ¢'(u,) — 0 we have immediately

1
k. _
lim =lim [ f(up)u,dzx =0,

n 21 n
0

whence u, — 0 in X. Thus ¢(u,) — 0 < ¢, a contradiction.
If ¢ > 0, u # 0, then we prove that ¢(u) = ¢. This equality yields the strong convergence by means
of (4.1). We know that ¢(u) < ¢, so by contradiction assume ¢(u) < ¢. Then

1
||un]]§( —>47T<c+/F(u) da:) > HUH?X
0

Set vy, = ||un|x un and v = (47c + 4n fol F(u)dz)~?u. So we have ||Jv,|lx =1, 0 < |jv]lx < 1 and
v, — v in X. Since ¢ < w/(2ag), we can find ¢ > 1, ap < a < 27w such that gec < w/(2«), hence (recall
p(u) > 0)
w
20 < ———.
c—p(u)
We have

1
lim qa||un ||% = 4mqa (c—i— /F(u) da:) < 27w
0

We can choose p > 1, 0 < v < 27w such that

<c—|—f01F(u)d$ 1
p =
¢ —p(u) L—vl%
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and for n € N big enough

gallunl% < py-
Since v < 27w, by Lemma 2.6 the sequence (ewi) is bounded in LP(0,1), so

1 1 1

/’f(un)’qdfﬂ < c;’/eqa“i dx < cg/ep(vvi) de,

0 0 0

which proves that (f(u,)) is bounded in L7(0, 1). Passing if necessary to a subsequence, we have f(u,) —
f(u) in L9(0,1) while u,, — u in L9 (0,1). So,

1

/f(un)undm—/lf(u)udx
0

0

9

< ”f(uTL)HLq(Q’l)Hun - uHLq’(O,l) +

/ (f(utn) — F())uda
0

hence

1 1
lim / flup)undx = | f(u)udz.
n

0 0
As above, this yields w,, — w in X. This in turn implies ¢(u) = ¢, a contradiction.

This concludes the proof. O

Proof of Theorem 1.3 concluded. The conclusions of Lemmas 3.2 and 3.3 still hold, with small changes in
the proofs. Moreover, if we fix ¢ > 0 such that ¢(t1)) < ¢(0) and denote by I" the set of continuous paths
in X joining 0 and t¢ and set

— inf
o= fof max ¢(2(7),

by H'(v) we see that ¢ < w/(2agp). Thus, by Lemma 4.1, ¢ satisfies the Palais—Smale condition at level c.
By the Mountain Pass Theorem, then, () has a nontrivial solution. 0O

Example 4.2. Fix 0 < p < A\1/(27), 0 < ag < 27w. Define f : R — R by setting, for all ¢ > 0,

ut if0<t <,
pte®o =D if ¢ > 1,

o=

and f(t) = —f(—t) for all t < 0. It is easily seen that f is continuous and satisfies H'(i)—(iv). If there exists
1 € X satisfying H'(v), then by Theorem 1.3 the corresponding problem () admits a nontrivial solution.
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