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Abstract

In this paper we study the semiclassical limit for the singularly perturbed Choquard equation

−ε2�u + V (x)u = εμ−3
(∫
R3

Q(y)G(u(y))

|x − y|μ dy
)
Q(x)g(u) in R

3,

where 0 < μ < 3, ε is a positive parameter, V, Q are two continuous real function on R3 and G is the 
primitive of g which is of critical growth due to the Hardy–Littlewood–Sobolev inequality. Under suitable 
assumptions on g, we first establish the existence of ground states for the critical Choquard equation with 
constant coefficients. Next we establish existence and multiplicity of semi-classical solutions and charac-
terize the concentration behavior by variational methods.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction and results

The stationary Choquard equation

−�u + V (x)u =
( ∫
RN

|u(y)|p
|x − y|μ dy

)
|u|p−2u, in R

N ,

where N ≥ 3, 0 < μ < N , arises in many interesting physical situations in quantum theory and 
plays an important role in the theory of Bose–Einstein condensation where it accounts for the 
finite-range many-body interactions. For N = 3, p = 2 and μ = 1, it was investigated by Pekar 
in [29] to study the quantum theory of a polaron at rest. In [19], Choquard applied it as ap-
proximation to Hartree–Fock theory of one-component plasma. This equation was also proposed 
by Penrose in [23] as a model of selfgravitating matter and is known in that context as the 
Schrödinger–Newton equation. For a complete and updated discussion upon the current litera-
ture of such problems, we refer the interested reader to the guide [28]. We also mention [14], 
where the fractional case is treated.

In the present paper we are interested in the existence, multiplicity and concentration behavior 
of the semi-classical solutions of the singularly perturbed nonlocal elliptic equation

−ε2�u + V (x)u = εμ−3
(∫
R3

Q(y)G(u(y))

|x − y|μ dy
)
Q(x)g(u), in R

3, (1.1)

where 0 < μ < 3, ε is a positive parameter, V , Q are real continuous functions on R3. As ε
goes to zero in (1.1), the existence and asymptotic behavior of the solutions of the singularly 
perturbed equation (1.1) is known as the semi-classical problem. It was used to describe the 
transition between of Quantum Mechanics and classical Mechanics. For the local Schrödinger 
equation

−ε2�u + V (x)u = g(u) in R
N ,
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it goes back to the pioneer work [15] by Floer and Weinstein. Since then, it has been studied 
extensively under various hypotheses on the potential and the nonlinearity, see for example [6,
13,15,17,30–32,34] and the references therein. Particularly, the existence and concentration of 
solutions for local Schrödinger equation with critical exponent was investigated in [1,9,12,38]. 
For a Schrödinger equation of the form

−ε2�u + V (x)u = K(x)ur−1 + Q(x)ut−1 in R
N , (1.2)

Wang and Zeng [35] proved that the concentration points are located on the middle ground of the 
competing potential functions and in some cases are given explicitly in terms of these functions. 
Cingolani and Lazzo [10] obtained a multiplicity result involving the set of global minima of 
a function which provides some kind of global median value between the minimum of V and 
the maximum of K and Q. We also mention the paper [7] by Ambrosetti, Malchiodi and Secchi 
where the authors considered the case Q = 0. Among other results, they proved that the number 
of solutions of (1.2) is related with the set of minima of a function given explicitly in terms of 
V, K, r , and the dimension N . Ding and Liu [13] considered

(−iε∇ + A(x))2 u + V (x)u = Q(x)
(
g(|u|) + |u|2∗−2)u,

for u ∈ H 1
A(RN, C), where A : RN → R

N denotes a continuous magnetic potential associated 
with a magnetic field B , g(|u|)u is a superlinear and subcritical. Under suitable assumptions 
on the potentials, the authors obtained some new concentration phenomena of the semi-classical 
ground states. It can be observed that if u is a solution of the nonlocal equation (1.1), for x0 ∈R

N , 
the function v = u(x0 + εx) satisfies

−�v + V (x0 + εx)v =
(∫
R3

Q(x0 + εy)G(v(y))

|x − y|μ dy
)
Q(x0 + εx)g(v) in R

3.

It suggests some convergence, as ε → 0, of the family of solutions to a solution u0 of the limit 
problem

−�v + V (x0)v = Q2(x0)
(∫
R3

G(v(y))

|x − y|μ dy
)
g(v) in R

3.

Hence we know that the equation

−�u + u =
(∫
R3

G(v(y))

|x − y|μ dy
)
g(u) in R

3 (1.3)

plays the role of limit equation in the study of the semiclassical problems. To apply the 
Lyapunov–Schmidt reduction techniques, it relies a lot on the uniqueness and non-degeneracy 
of the ground states of the limit problem which is not completely known for the ground states of 
the nonlocal Choquard equation (1.3). There is a considerable amount of work on investigating 
the properties of this type equation. We refer to Lieb [19] and Lions [20] for the existence and 
uniqueness of positive solutions to equation
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−�u + u =
(∫
R3

|u(y)|2
|x − y|dy

)
u in R

3. (1.4)

Recently, by using the method of moving planes, Ma and Zhao [22] proved that all the positive 
solutions of equation (1.4) must be radially symmetric and monotone decreasing about some 
fixed point. Which means that the positive solution of equation (1.4) is uniquely determined up to 
translations. Especially, they studied the classification of all positive solutions to the generalized 
nonlinear Choquard problem

−�u + u =
( ∫
RN

|u(y)|p
|x − y|μ dy

)
|u|p−2u, (1.5)

under some assumptions on μ, p and N , they proved that all the positive solutions of (1.5) must 
be radially symmetric and monotone decreasing about some fixed point. In [24], Moroz and Van 
Schaftingen completely investigated the qualitative properties of solutions of (1.5) and showed 
the regularity, positivity and radial symmetry decay behavior at infinity. The authors also con-
sidered in [25,27] the existence of ground states under the assumption of Berestycki–Lions type 
and studied the existence of solutions for the nonlocal equation with lower critical exponent due 
to the Hardy–Littlewood–Sobolev inequality. For N = 3, μ = 1 and F(s) = |s|2, the uniqueness 
and non-degeneracy of the ground states were proved in Lenzmann, Wei and Winter in [21,33]. 
Wei and Winter also constructed families of solutions by a Lyapunov–Schmidt type reduction 
when infV > 0 and Q(x) = 1. Cingolani et al. [11] applied the penalization arguments due to 
Byeon and Jeanjean [8] and showed that there exists a family of solutions having multiple con-
centration regions which are located around the minimum points of the potential. For any N ≥ 3
and F(u) = up with 2N−μ

N
≤ p <

2N−μ
N−2 in (1.1), Moroz and Van Schaftingen in [26] developed 

a nonlocal penalization technique and showed that equation (1.1) has a family of solutions con-
centrating around the local minimum of V with V satisfying some additional assumptions at 
infinity. In [4,5], Alves and Yang proved the existence, multiplicity and concentration of solu-
tions for the equation by penalization method and Lusternik–Schnirelmann theory. The planar 
case was considered by [3], where the authors first established the existence of ground state for 
the limit problem with critical exponential growth and then studied the concentration around the 
global minimum set. In [37], Yang and Ding considered the equation

−ε2�u + V (x)u =
(∫
R3

up(y)

|x − y|μ dy
)
up−1 in R3,

and they obtained the existence of solutions which goes to 0 with suitable parameter p and μ. 
To study problem (1.1) variationally the following Hardy–Littlewood–Sobolev inequality [18] is 
the starting point.

Proposition 1.1 (Hardy–Littlewood–Sobolev inequality). Let t, r > 1 and 0 < μ < 3 with

1/t + μ/3 + 1/r = 2,

f ∈ Lt(R3) and h ∈ Lr(R3). There exists a sharp constant C(t, μ, r), independent of f, h, such 
that
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∫
R3

∫
R3

f (x)h(y)

|x − y|μ dxdy ≤ C(t,μ, r)|f |t |h|r . (1.6)

If t = r = 6/(6 − μ), then

C(t,μ, r) = C(μ) = π
μ
2
�( 3

2 − μ
2 )

�(3 − μ
2 )

{
�( 3

2 )

�(3)

}−1+ μ
3

.

In this case there is equality in (1.6) if and only if f ≡ Ch and

h(x) = A(γ 2 + |x − a|2)−(6−μ)/2

for some A ∈C, γ ∈R \ {0} and a ∈R
3.

Notice that, by the Hardy–Littlewood–Sobolev inequality, for u ∈ H 1(R3), the integral∫
R3

∫
R3

|u(x)|t |u(y)|t
|x − y|μ dxdy

is well defined if

6 − μ

3
≤ t ≤ 6 − μ.

Thus (6 − μ)/3 is called the lower critical exponent and 6 −μ is the upper critical exponent due 
to the Hardy–Littlewood–Sobolev inequality, we also recall that 6 is critical Sobolev exponent for 
dimension 3. As to the best knowledge of us, the existing results for the existence and concentra-
tion behavior of solutions for the Choquard equation were obtained under the subcritical growth 
assumption, namely t < 6 − μ. It is then quite natural to ask if the nonlinearity g(u) in equation 
(1.3) is of upper critical growth in the sense of the Hardy–Littlewood–Sobolev inequality, does 
the ground state solution still exist? Furthermore, can we establish the existence and multiplicity 
results for the singular perturbed critical Choquard equation (1.1) and characterize the concen-
tration phenomena around the minimum set of linear potential V (x) or the maximum set of the 
nonlinear potential Q(x)? In the present paper we are going to answer the above questions and 
to investigate the existence, multiplicity and the concentration behavior of the solutions of the 
Choquard equation with critical exponent due to the Hardy–Littlewood–Sobolev inequality.

The first goal of the present paper is to study the existence of nontrivial solution for the critical 
Choquard equation of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�u + κu =
⎛⎜⎝∫
R3

ν|u(y)|6−μ + τF (u(y))

|x − y|μ dy

⎞⎟⎠(
ν|u|4−μu + τ

6 − μ
f (u)

)
in R

3,

u ∈ H 1(R3),

(1.7)

where 0 < μ < 3, κ, ν, τ are positive constants and
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F(u) =
u∫

0

f (s)ds.

Since we are interested in the existence of positive solutions, we shall suppose that f : R+ → R

verifies the following conditions.
There exists p, q, ζ such that

6 − μ

3
< q ≤ p < 6 − μ, 5 − μ < ζ < 6 − μ,

and c0, c1 > 0 such that for all s ∈ R:

|f (s)| ≤ c0(|s|q−1 + |s|p−1) and F(u) ≥ c1|s|ζ . (f1)

We suppose that f verifies the Ambrosetti–Rabinowitz type condition for nonlocal problems: 
there is α > 2 with

0 < αF(s) ≤ 2f (s)s, ∀s ∈ R
+. (f2)

Moreover

{s → f (s)} is strictly increasing on R
+. (f3)

Remark 1.2. From (f3) and (f2), we know there is ς > 0 such that

f ′(s)s2 −
(

1 + ς − α

2

)
f (s)s > 0, ∀s ∈ R

+. (f4)

In fact, since f ′(s) > 0 and f (s)s > 0, by taking ς = 1
2 (α

2 − 1), we obtain (f4) immediately.

The first result is about the existence of ground state for the autonomous case, that is

Theorem 1.3 (Existence of ground states). Suppose that (f1)–(f3) hold. Then, for any κ, ν, τ > 0, 
(1.7) admits a ground state solution.

Remark 1.4. As observed for the local Schrödinger equation, the subcritical perturbation is nec-
essary to secure the existence of a nontrivial solution. Note that if f (u) = 0 and u is a solution, 
we can establish the following Pohožaev identity

1

2

∫
R3

|∇u|2dx + 3κ

2

∫
R3

|u|2dx = ν2

2

∫
R3

∫
R3

|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy,

Then κ
∫

3 |u|2dx = 0, which means there are no solutions with κ �= 0.

R
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Next we are going to study the existence of semi-classical solutions with concentration around 
the global maximum of Q(x). For simplicity, we assume that V (x) = 1 and consider

−ε2�u + u = εμ−3

⎛⎜⎝∫
R3

Q(y)(|u(y)|6−μ + F(u(y)))

|x − y|μ dy

⎞⎟⎠(
Q(x)

(
|u|4−μu + 1

6 − μ
f (u)

))
in R

3. (1.8)

We denote

νmax := max
x∈R3

Q(x), Q := {x ∈R
3 : Q(x) = νmax}, νmax > ν∞ = lim sup

|x|→∞
Q(x) (Q)

and suppose that Q : R3 → R is a bounded continuous function with infx∈R3 Q(x) > 0. For this 
case we have the following theorem

Theorem 1.5 (Semiclassical limit I: concentration around maxima of Q). Suppose that the non-
linearity f satisfies (f1)–(f3) and the potential function Q satisfies condition (Q). Then, for any 
ε > 0, equation (1.8) has at least one positive ground state solution uε. Moreover, the following 
facts hold:

(a) There exists a maximum point xε ∈ R
3 of uε , such that

lim
ε→0

dist(xε,Q) = 0,

and for some c, C > 0,

|uε(x)| ≤ C exp
(

− c

ε
|x − xε|

)
.

(b) Setting vε(x) := uε(εx + xε), for any sequence xε → x0, ε → 0, vε converges in H 1(R3) to 
a ground state solution v of

−�v + v = ν2
max

⎛⎜⎝∫
R3

|v(y)|6−μ + F(v(y))

|x − y|μ dy

⎞⎟⎠(
|v|4−μv + 1

6 − μ
f (v)

)
.

Finally we are going to study the existence, multiplicity of semiclassical solutions that con-
centrating around the global minimum of V (x). We are going to study

−ε2�u + V (x)u = εμ−3

⎛⎜⎝∫
R3

|u(y)|6−μ + F(u(y))

|x − y|μ dy

⎞⎟⎠(
|u|4−μu + 1

6 − μ
f (u)

)
in R

3.

(1.9)
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Assume that V : R3 →R is a bounded continuous function satisfying:

0 < κmin := min
x∈R3

V (x), V := {x ∈ R
3 : V (x) = κmin}, κmin < κ∞ = lim inf|x|→∞ V (x) < ∞. (V )

This kind of hypothesis was introduced by Rabinowitz in [32].

Theorem 1.6 (Semiclassical limit II: concentration around minima of V ). Suppose that the non-
linearity f satisfies (f1)–(f3) and the potential function V (x) satisfies condition (V ). Then, for 
any ε > 0, equation (1.9) has at least one positive ground state solution uε. Moreover,

(a) There exists a maximum point xε ∈R
3 of uε , such that

lim
ε→0

dist(xε,V) = 0,

and for some c, C > 0,

|uε(x)| ≤ C exp
(

− c

ε
|x − xε|

)
.

(b) Setting vε(x) := uε(εx + xε), for any sequence xε → x0, ε → 0, vε converges in H 1(R3) to 
a ground state solution v of

−�v + κ2
minv =

⎛⎜⎝∫
R3

|v(y)|6−μ + F(v(y))

|x − y|μ dy

⎞⎟⎠(
|v|4−μv + 1

6 − μ
f (v)

)
.

The multiplicity of solutions for the nonlocal problem can be characterized by the Lusternik–
Schnirelman category of the sets V and Vδ defined by

Vδ = {x ∈R
3 : dist(x,V) ≤ δ}, for δ > 0.

Theorem 1.7 (Multiplicity of solutions). Suppose that the nonlinearity f satisfies (f1)–(f3) and 
the potential function V (x) satisfies condition (V ). Then, for any δ > 0, there exists εδ such 
that equation (1.9) has at least catVδ

(V) positive solutions, for any 0 < ε < εδ . Moreover, let uε

denotes one of these positive solutions with ηε ∈R
3 its global maximum. Then

lim
ε→0

V (ηε) = κmin.

Basic notations:
• C, Ci denote positive constants.
• BR denote the open ball centered at the origin with radius R > 0.
• C∞

0 (R3) denotes the space of the functions infinitely differentiable with compact support in 
R

3.
• For a mensurable function u, we denote by u+ and u− its positive and negative parts respec-
tively, given by

u+(x) = max{u(x),0} and u−(x) = min{u(x),0}.
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• E := H 1(R3) is the usual Sobolev space with norm

‖u‖ :=
⎛⎜⎝∫
R3

(|∇u|2 + |u|2)dx

⎞⎟⎠
1/2

.

• Ls(R3), for 1 ≤ s < ∞, denotes the Lebesgue space with the norms

|u|s :=
(∫
R3

|u|sdx
)1/s

.

• From the assumption on V , it follows that

‖u‖ε :=
⎛⎜⎝∫
R3

(|∇u|2 + V (εx)|u|2)dx

⎞⎟⎠
1/2

is an equivalent norm on E.
• Let X be a real Hilbert space and I : X → R be a functional of class C1. We say that (un) ⊂ X

is a Palais-Smale ((PS) for short) sequence at c for I if (un) satisfies

I (un) → c and I ′(un) → 0, as n → ∞.

Moreover, I satisfies the (PS) condition at c, if any (PS) sequence at c possesses a convergent 
subsequence.

2. Autonomous critical equation

Since there are no existing results for the nonlocal Choquard equation with upper critical 
exponent in the whole space, then we are going to study firstly the existence and properties of the 
ground state solutions of the autonomous equation (1.7) which will play the role of limit problem 
for the equation (1.8) and (1.9). Let G(u) = ν|u|6−μ + τF (u) and g(u) = dG(u)

du
, then equation 

(1.7) can be rewritten as

−�u + κu = 1

6 − μ

⎛⎜⎝∫
R3

G(u(y))

|x − y|μ dy

⎞⎟⎠g(u) in R
3.

Remark 2.1. Assumption (f2) with α > 2 implies the existence of constant θ > 2 such that 
Ambrosetti–Rabinowitz condition for g holds: for every u �= 0, 0 < θG(u) ≤ 2ug(u). Moreover, 
we also assume that there is ς > 0 such that

g′(s)s2 −
(

1 + ς − θ

2

)
g(s)s > 0 ∀s > 0. (f ′

4)
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For all u ∈ D1,2(R3) we know

(∫
R3

∫
R3

|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy
) 1

6−μ ≤ C(3,μ)
1

6−μ |u|26,

where C(3, μ) is defined as in Proposition 1.1. We use SH,L to denote the best constant defined 
by

SH,L := inf
u∈D1,2(R3)\{0}

∫
R3

|∇u|2dx

⎛⎜⎝∫
R3

∫
R3

|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy

⎞⎟⎠
1

6−μ

. (2.1)

From the comments above, we can easily draw the following conclusion.

Lemma 2.2 (Optimizers for SH,L). [16] The constant SH,L defined in (2.1) is achieved if and 
only if

u = C

(
b

b2 + |x − a|2
) 1

2

,

where C > 0 is a fixed constant, a ∈ R3 and b > 0 are parameters. Moreover,

SH,L = S

C(3,μ)
1

6−μ

, (2.2)

where S is the best Sobolev constant of the continuous embedding D1,2(R3) ↪→ L2∗
(R3). In 

particular, let

U(x) = C0

(1 + |x|2) 1
2

be a minimizer for S which satisfies −�U = U5, then

Ũ (x) = S
(μ−3)
4(5−μ) C(3,μ)

−1
2(5−μ) U(x),

is the unique minimizer for SH,L that satisfies

−�u =
⎛⎜⎝∫
R3

|u(y)|6−μ

|x − y|μ dy

⎞⎟⎠ |u|4−μu in R
3.
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Proof. We sketch the proof for the completeness of the paper. By the Hardy–Littlewood–Sobolev 
inequality, we have

SH,L ≥ 1

C(3,μ)
1

6−μ

inf
u∈D1,2(R3)\{0}

∫
R3

|∇u|2dx

|u|26
= S

C(3,μ)
1

6−μ

.

On the other hand, the equality in the Hardy–Littlewood–Sobolev inequality (1.6) holds if and 
only if

f (x) = h(x) = C

(
b

b2 + |x − a|2
) 6−μ

2

,

where C > 0 is a fixed constant, a ∈R
3 and b ∈ (0, ∞) are parameters. Thus

(∫
R3

∫
R3

|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy
) 1

6−μ = C(3,μ)
1

6−μ |u|26,

if and only if

ū(x) = C

(
b

b2 + |x − a|2
) 1

2

.

Then, by the definition of SH,L, we know

SH,L ≤

∫
R3

|∇ū(x)|2dx

⎛⎜⎝∫
R3

∫
R3

|ū(x)|6−μ|ū(y)|6−μ

|x − y|μ dxdy

⎞⎟⎠
1

6−μ

= 1

C(3,μ)
1

6−μ

∫
R3

|∇ū|2dx

|ū|26
.

It is well-known that ū is a minimizer for S, thus we get

SH,L ≤ S

C(3,μ)
1

6−μ

.

From the arguments above, we know that SH,L on ū and (2.2) holds. By a simple calculation, we 
know

Ũ (x) = S
(μ−3)
4(5−μ) C(3,μ)

−1
2(5−μ) U(x)

is the unique minimizer for SH,L that satisfies
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−�u =
⎛⎜⎝∫
R3

|u(y)|6−μ

|x − y|μ dy

⎞⎟⎠ |u|4−μu in R3,

and, moreover,

∫
R3

|∇Ũ |2dx =
∫
R3

∫
R3

|Ũ (x)|6−μ|Ũ (y)|6−μ

|x − y|μ dxdy = S
6−μ
5−μ

H,L,

which concludes the proof. �
Next, repeat the proof in [16], we have one more important information about the best constant 
SH,L.

Lemma 2.3. For every open subset � ⊂R
3, we have

SH,L(�) := inf
u∈D

1,2
0 (�)\{0}

∫
�

|∇u|2dx

⎛⎝∫
�

∫
�

|u(x)|6−μ|u(y)|6−μ

|x − y|μ dxdy

⎞⎠
1

6−μ

= SH,L,

and SH,L(�) is never achieved except for � =R
3.

Proof. Clearly SH,L ≤ SH,L(�) by D1,2
0 (�) ⊂ D1,2(R3). Let (un) ⊂ C∞

0 (R3) be a minimizing 
sequence for SH,L. We make translations and dilations for (un) by choosing yn ∈ R

3 and τn > 0
such that

u
yn,τn
n (x) := τ

1/2
n un(τnx + yn) ∈ C∞

0 (�),

which satisfies ∫
R3

|∇u
yn,τn
n |2dx =

∫
R3

|∇un|2dx

and ∫
�

∫
�

|uyn,τn
n (x)|6−μ|uyn,τn

n (y)|6−μ

|x − y|μ dxdy =
∫
R3

∫
R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy.

Hence SH,L(�) ≤ SH,L. Moreover SH,L(�) is never achieved except for � =R
3, since Ũ (x) is 

the only class of functions with equality in the Hardy–Littlewood–Sobolev inequality. �
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The energy functional associated to equation (1.7) is defined by

�κ,ν,τ (u) = 1

2

∫
R3

(|∇u|2 + κ|u|2)dx − 1

2(6 − μ)

∫
R3

∫
R3

G(u(y))G(u(x))

|x − y|μ dxdy.

From the growth assumptions on f , the Hardy–Littlewood–Sobolev inequality implies that 
�κ,ν,τ is well defined on E and belongs to C1 with its derivative given by

〈�′
κ,ν,τ (u),ϕ〉 =

∫
R3

(∇u∇ϕ +κuϕ)dx − 1

6 − μ

∫
R3

∫
R3

G(u(y))g(u(x))ϕ(x)

|x − y|μ dxdy, ∀u,ϕ ∈ E.

Therefore, the solutions of equation (1.7) correspond to critical points of the energy �κ,ν,τ . 
Let us denote by Nκ,ν,τ the Nehari manifold associated to �κ,ν,τ defined by {u ∈ E : u �= 0,

〈�′
κ,ν,τ (u), u〉 = 0}, namely

Nκ,ν,τ =

⎧⎪⎨⎪⎩u ∈ E \ {0} :
∫
R3

(|∇u|2 + κ|u|2)dx = 1

6 − μ

∫
R3

∫
R3

G(u(y))g(u(x))u(x)

|x − y|μ dxdy

⎫⎪⎬⎪⎭ ,

or equivalently Nκ,ν,τ = {
u ∈ E \ {0} : �κ,ν,τ (u) = 0

}
, where we have set

�κ,ν,τ (u) :=
∫
R3

(|∇u|2 + κ|u|2)dx − 1

6 − μ

∫
R3

∫
R3

G(u(y))g(u(x))u(x)

|x − y|μ dxdy.

From (f3), for each u ∈ E\{0}, there is a unique t = t (u) > 0 such that

�κ,ν,τ (t (u)u) = max
s≥0

�κ,ν,τ (su), t (u)u ∈Nκ,ν,τ .

Furthermore, there exists δ > 0 such that

‖u‖ ≥ δ, ∀u ∈Nκ,ν,τ . (2.3)

By assumption (f ′
4), there exists � > 0 such that

〈� ′
κ,ν,τ (u),u〉 ≤ −�, ∀u ∈Nκ,ν,τ .

In fact, from (f2) and (f ′
4), a direct computation yields

〈� ′
κ,ν,τ (u),u〉

= 2
∫
R3

(|∇u|2 + κ|u|2)dx

− 1

6 − μ

∫
3

∫
3

g(u(y))u(y)g(u(x))u(x) + G(u(y))g′(u(x))u2(x) + G(u(y))g(u(x))u(x)

|x − y|μ dxdy
R R
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≤
∫
R3

∫
R3

G(u(y))[(1 − θ
2 )g(u(x))u(x) − g′(u(x))u2(x)]

|x − y|μ dxdy

≤ −ς

∫
R3

∫
R3

G(u(y))g(u(x))u(x)

|x − y|μ dxdy .

Therefore, if there exists a sequence (un) ⊂ Nκ,ν,τ such that 〈� ′
κ,ν,τ (un), un〉 → 0, then would 

we have ∫
R3

∫
R3

G(un(y))g(un(x))un(x)

|x − y|μ dxdy → 0,

and consequently ‖un‖ → 0, which contradicts (2.3). Therefore, Nκ,ν,τ defines a natural mani-
fold and, as it can be readily checked, minimizing �κ,ν,τ over Nκ,ν,τ generates critical point of 
�κ,ν,τ .

To get existence of nontrivial solution by Mountain Pass theorem, we need to check that �κ,ν,τ

satisfies the Mountain Pass Geometry. For simplicity, we let κ = ν = τ = 1 in the sequel. The 
following lemma is a revised one of the corresponding version in [2] and we sketch here for the 
convenience of the readers.

Lemma 2.4. The functional �1,1,1 satisfies the Mountain Pass Geometry, that is,

(1) There exist ρ, δ0 > 0 such that �1,1,1|∂Bρ ≥ δ0 for all u ∈ ∂Bρ = {u ∈ E : ‖u‖ = ρ};
(2) There are r > 0 and e with ‖e‖ > r such that �1,1,1(e) < 0.

Proof. (1). From the growth assumptions on f and the Hardy–Littlewood–Sobolev inequality, 
we derive

�1,1,1(u) ≥ 1

2
‖u‖2 − C(‖u‖2q + ‖u‖2(6−μ)),

then (1) follows if ρ is small enough. (2). Fixed u0 ∈ E \ {0}, we set ψ(t) := �
(

tu0‖u0‖
)

> 0, 
where

�(u) = 1

2(6 − μ)

∫
R3

∫
R3

G(u(x))G(u(y))

|x − y|μ dxdy.

By the Ambrosetti–Rabinowitz condition (f2),

ψ ′(t)
ψ(t)

≥ α

t
, for t > 0.

Integrating over the interval (1, s‖u0‖) where s > 1
‖u0‖ , we find

�(su0) ≥ �
( u0

)
‖u0‖αsα.
‖u0‖
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Therefore, for s large we get

�1,1,1(su0) ≤ C1s
2 − C2s

α.

Since α > 2, (2) follows with e = su0 and s large enough. �
By the Mountain Pass theorem without (PS) condition, there is a (PS) sequence (un) ⊂ E such 
that

�′
1,1,1(un) → 0, �1,1,1(un) → m1,1,1,

where the minimax value m1,1,1 can be characterized by

m1,1,1 := inf
u∈E\{0} max

t≥0
�1,1,1(tu) = inf

u∈N1,1,1

�1,1,1(u). (2.4)

By using the Ambrosetti–Rabinowitz condition, it is easy to see that (un) is bounded in E. The 
next lemma establishes an important information involving (PS) sequence which will be crucial 
later on.

Lemma 2.5 (Nonvanishing energy range). Assume that (un) ⊂ E is a (PS)c-sequence with

0 < c <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L.

Then (un) cannot be vanishing, namely there exist r, δ > 0 and a sequence (yn) ⊂ R
3 such that

lim inf
n→∞

∫
Br (yn)

|un|2dx ≥ δ.

Proof. By contradiction, if (un) ⊂ E is vanishing, then [36, Lemma 1.21] yields

un → 0 in Lr(R3),

as n → ∞, where 2 < r < 6. Choose t, s close to 6
6−μ

satisfying

1/t + μ/3 + 1/s = 2.

Applying the Hardy–Littlewood–Sobolev inequality, we know

∣∣∣ ∫
R3

∫
R3

|un(y)|6−μf (un(x))un(x)

|x − y|μ dxdy

∣∣∣ ≤ C|un|6−μ

t(6−μ)(|un|psp + |un|qsq),

from where it follows∫
3

∫
3

|un(y)|6−μf (un(x))un(x)

|x − y|μ dxdy → 0,

∫
3

∫
3

|un(y)|6−μF(un(x))

|x − y|μ dxdy → 0,
R R R R
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as n → ∞. Similarly,∫
R3

∫
R3

F(un(y))f (un(x))un(x)

|x − y|μ dxdy → 0,

∫
R3

∫
R3

F(un(y))F (un(x))

|x − y|μ dxdy → 0,

as n → ∞. Then, since (un) is a Palais–Smale sequence for �1,1,1 with �1,1,1(un) → c, we get

c = 1

2
‖un‖2 − 1

2(6 − μ)

∫
R3

∫
R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy + on(1) (2.5)

‖un‖2 =
∫
R3

∫
R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy + on(1). (2.6)

If ‖un‖ → 0, then it follows from (2.5) and (2.6) that c = 0, which is a contradiction. Then 
‖un‖ � 0 and, by virtue of formula (2.6), we obtain

‖un‖2 ≤ S
μ−6
H,L ‖un‖2(6−μ) + on(1). (2.7)

So in light of (2.7) we get

lim inf
n→∞ ‖un‖2 ≥ S

(6−μ)/(5−μ)
H,L .

Then from (2.5) and (2.6) we easily conclude that c ≥ (5 −μ)/(2(6 −μ))S
(6−μ)/(5−μ)
H,L , contradic-

tion the assumption. Hence, there exist r, δ > 0 and (yn) ⊂ R
3 with lim infn→∞

∫
Br(yn)

|un|2dx ≥
δ. �
Lemma 2.6. Suppose that (f1)–(f3) hold. Then there exists u0 ∈ H 1(R3) \ {0} such that

sup
t≥0

�1,1,1(tu0) <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L.

Proof. For every ε > 0, consider

Uε(x) := √
εU

(x

ε

)
, uε(x) := ψ(x)Uε(x), x ∈ R

3,

be the functions in formula (7.1) in the Appendix, where ψ ∈ C∞
0 (R3) is such that ψ = 1 on 

B(0, δ) and ψ = 0 on R3 \ B(0, 2δ) for some δ > 0. From Lemma 7.1 and [36, Lemma 1.46], 
we know that ∫

3

|uε|2∗
dx = C(3,μ)

3
2(6−μ) S

3
2
H,L +O(ε3),
R
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∫
R3

|∇uε|2dx = C(3,μ)
3

2(6−μ) S
3
2
H,L +O(ε), (2.8)

∫
R3

|uε|2dx =O(ε), (2.9)

∫
R3

∫
R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy ≥ C(3,μ)
3
2 S

6−μ
2

H,L −O
(
ε

6−μ
2

)
, (2.10)

∫
R3

∫
R3

|uε(x)|ζ |uε(y)|ζ
|x − y|μ dxdy ≥ O(ε6−μ−ζ ) −O

(
ε

6−μ
2

)
, if 6−μ

2 < ζ < 6 − μ. (2.11)

Then the estimates (2.8)–(2.11) imply

�1,1,1(tuε) ≤ t2

2

∫
R3

(|∇uε|2 + |uε|2)dx − t2(6−μ)

2(6 − μ)

∫
R3

∫
R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy

− t2ζ

2(6 − μ)
c2

1

∫
R3

∫
R3

|uε(x)|ζ |uε(y)|ζ
|x − y|μ dxdy

≤ t2

2

(
C(3,μ)

1
6−μ

· 3
2 S

3
2
H,L +O(ε)

)− t2(6−μ)

2(6 − μ)

(
C(3,μ)

3
2 S

6−μ
2

H,L −O(ε
6−μ

2 )
)

− t2ζ

2(6 − μ)
(O(ε6−μ−ζ ) −O(ε

6−μ
2 )) := h(t).

Then h(t) → −∞ as t → +∞, h(0) = 0 and h(t) > 0 as t → 0+. In turn, there exists tε > 0
such that supR+ h is attained at tε . Differentiating h, we obtain

(
C(3,μ)

3
2(6−μ) S

3
2
H,L +O(ε)

)− t2(6−μ)−2
ε

(
C(3,μ)

3
2 S

6−μ
2

H,L −O(ε
6−μ

2 )
)

= t2ζ−2
ε

(
O(ε6−μ−ζ ) −O(ε

6−μ
2 )

)
.

Since 0 < μ < 3 and 5 − μ < ζ < 6 − μ then 6 − μ − ζ < (6 − μ)/2. Hence, as ε → 0+ we 
have

tε < SH,L(ε) :=
⎛⎝C(3,μ)

3
2(6−μ) S

3
2
H,L +O(ε)

C(3,μ)
3
2 S

6−μ
2

H,L −O(ε
6−μ

2 )

⎞⎠
1

2(6−μ)−2

and there exists t0 > 0 such that, for ε > 0 small enough, tε ≥ t0. Notice that the function

t �→ t2

2

(
C(3,μ)

3
2(6−μ) S

3
2
H,L +O(ε)

)− t2(6−μ)

2(6 − μ)

(
C(3,μ)

3
2 S

6−μ
2

H,L −O(ε
6−μ

2 )
)

is increasing on [0, SH,L(ε)], thanks to t0 < tε < SH,L(ε), we have
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max
t≥0

�1,1,1(tuε) ≤ 5 − μ

2(6 − μ)

⎛⎜⎜⎝ C(3,μ)
3

2(6−μ) S
3
2
H,L +O(ε)(

C(3,μ)
3
2 S

6−μ
2

H,L −O(ε
6−μ

2 )
) 1

6−μ

⎞⎟⎟⎠
6−μ
5−μ

−O(ε6−μ−ζ ) +O(ε
6−μ

2 )

≤ 5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L +O(ε) −O(ε6−μ−ζ ) +O(ε
6−μ

2 ).

Since 0 < μ < 3 and 5 − μ < ζ < 6 − μ, we know that 6 − μ − ζ < 1, and therefore

max
t≥0

�1,1,1(tuε) <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L,

if ε is small enough. The proof is completed. �
3. Proof of Theorem 1.3

By Lemma 2.4 and Lemma 2.6 and the Mountain Pass Theorem without (PS) condition (cf. 
[36]), there exists a (PS)m1,1,1 -sequence (un) ⊂ E of �1,1,1 with

m1,1,1 <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L.

Furthermore, by Lemma 2.5, there exist r, δ > 0 and a sequence (yn) ⊂R3 such that

lim inf
n→∞

∫
Br (yn)

|un|2dx ≥ δ.

Since �1,1,1 and �′
1,1,1 are both invariant by translation, without lost of generality we let yn = 0

and ∫
Br (0)

|un|2dx ≥ δ

2
. (3.1)

Since (un) is also bounded, we may assume un ⇀ u in E, un(x) → u(x) a.e. in R3, un → u in 
L

p

loc(R
3), p < 6 and u �≡ 0 by (3.1). We first check that if un ⇀ u in E, then

∫
R3

∫
R3

|un(y)|6−μ|un(x)|4−μun(x)ϕ(x)

|x − y|μ dxdy →
∫
R3

∫
R3

|u(y)|6−2μ|u(x)|4−μu(x)ϕ(x)

|x − y|μ dxdy,

(3.2)

for any ϕ ∈ E, as n → +∞. By the Hardy–Littlewood–Sobolev inequality, we have

|f ∗ |x − y|−μ| 6 ≤ C|f | 6 , for all f ∈ 6
.

μ 6−μ 6 − μ
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Choosing fn(y) := |un(y)|6−μ ∈ L
6

6−μ (R3), we get

||un(y)|6−μ ∗ |x − y|−μ| 6
μ

≤ C|un|6 ≤ C.

Therefore, by Hölder inequality with exponents 5
5−μ

and 5
μ

, the sequence

(
|un(y)|6−μ ∗ |x − y|−μ

)
|un(x)|4−μun(x)

is bounded in L6/5(R3). Then, as n → +∞, by duality we have∫
R3

|un(y)|6−μ

|x − y|μ |un(x)|4−μun(x)dy ⇀

∫
R3

|u(y)|6−μ

|x − y|μ |u(x)|4−μu(x)dy, in L
6
5 (R3)

as n → +∞. Then (3.2) follows for every ϕ ∈ E ⊂ L6(R3). For ϕ ∈ C∞
0 (R3), notice that

1

6 − μ

∫
R3

∫
R3

G(u(y))g(u(x))ϕ(x)

|x − y|μ dxdy =
∫
R3

⎛⎜⎝∫
R3

|u(y)|6−μ + F(u(y))

|x − y|μ dy

⎞⎟⎠
×

(
|u(x)|4−μu(x) + 1

6 − μ
f (u(x))

)
ϕ(x)dx,

since f is subcritical in the sense of the Hardy–Littlewood–Sobolev inequality, it is then easy to 
prove ∫

R3

∫
R3

G(un(y))g(un(x))ϕ(x)

|x − y|μ dxdy →
∫
R3

∫
R3

G(u(y))g(u(x))ϕ(x)

|x − y|μ dxdy.

Then u is a nontrivial critical point for �1,1,1. By Fatou’s Lemma, since g(s)s − G(s) ≥ 0 for 
all s, we get

m1,1,1 ≤ �1,1,1(u) − 1

2
〈�′

1,1,1(u),u〉

≤ 1

2(6 − μ)

∫
R3

∫
R3

(
g(u(x))u(x) − G(u(x))

)
G(u(y))

|x − y|μ dxdy

≤ lim
n→∞

1

2(6 − μ)

∫
R3

∫
R3

(
g(un(x))un(x) − G(un(x))

)
G(un(y))

|x − y|μ dxdy

= �1,1,1(un) − 1

2
〈�′

1,1,1(un), un〉 → m1,1,1,

we know �1,1,1(u) = m1,1,1, which means that u is a ground state solution for �1,1,1. Rewriting 
the equation (1.7) in the form of
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−�u + u =
⎛⎜⎝∫
R3

H(u(y))u(y)

|x − y|μ dy

⎞⎟⎠K(u) in R
3

where

H(u) := |u|6−μ + F(u)

u
, K(u) := |u|4−μu + 1

6 − μ
f (u) ∈ L

6
3−μ (R3) + L

6
5−μ (R3).

By [25, Proposition 3.1], we know u ∈ Lp(R3) for all p ∈ [2, 18/(3 − μ)). Using the growth 
assumption of f and the higher integrability of u, the Hardy–Littlewood–Sobolev inequality 
yields, for some C > 0,∣∣∣∣∣∣∣

∫
R3

G(u(y))

|x − y|μ dy

∣∣∣∣∣∣∣∞
≤ C||u|6−μ + |u|q + |u|p| 3

3−μ
≤ C

(
|u|6−μ

3(6−μ)
3−μ

+ |u|q3q
3−μ

+ |u|p3p
3−μ

)
,

which is finite since the various exponents live within the range [2, 18/(3 −μ)). Thus,

−�u + u ≤ C
(
|u|4−μu + 1

6 − μ
f (u)

)
in R

3.

By the Moser iteration, the solution u of (1.3) is classical, bounded and it decays to zero at 
infinity. �
Lemma 3.1. There are C, β > 0 such that the ground state solution satisfies |u(x)| ≤ Ce−β|x|
for x ∈ R

3.

Proof. By the previous discussion, we have

−�u + 1

2
u ≤ C

(|u|4−μu + f (u)
)− 1

2
u.

Since u(x) → 0 uniformly as |x| → +∞, we find ρ0 > 0 such that for |x| ≥ ρ0 the right hand side 
is negative. It is then well known that −�u + u/2 ≤ 0 yields an exponential decay on R

3. �
The following is a comparison result for the mountain pass values with different parameters 

κ, ν, τ > 0, useful in proving the existence result for (1.1) when ε is small enough.

Lemma 3.2 (Monotonicity of energy levels). Let κi, νi, τi > 0, i = 1, 2, with min{κ2 − κ1, ν1 −
ν2, τ1 − τ2} ≥ 0. Then

mκ1,ν1,τ1 ≤ mκ2,ν2,τ2 .

If additionally, max{κ2 − κ1, ν1 − ν2, τ1 − τ2} > 0, then the inequality is strict.
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Proof. From Theorem 1.3, let u be a weak solution of problem (1.7) with coefficients κ2, ν2, τ2
at the energy level �κ2,ν2,τ2(u) = mκ2,ν2,τ2 . By (f3), we know there is a unique t = t (u) > 0 such 
that

�κ2,ν2,τ2(t (u)u) = max
s≥0

�κ2,ν2,τ2(su), t (u)u ∈Nκ2,ν2,τ2 .

Since u ∈Nκ2,ν2,τ2 , we know t (u) = 1 and so

�κ2,ν2,τ2(u) = max
t≥0

�κ2,ν2,τ2(tu).

Similarly, there exists t0 > 0 such that �κ1,ν1,τ1(t0u) = maxt≥0 �κ1,ν1,τ1(tu). Then

mκ1,ν1,τ1 = inf
w∈E\{0} max

t≥0
�κ1,ν1,τ1(tw) ≤ max

t≥0
�κ1,ν1,τ1(tu)

= �κ1,ν1,τ1(t0u) ≤ �κ2,ν2,τ2(t0u) ≤ �κ2,ν2,τ2(u) = mκ2,ν2,τ2 ,

which concludes the proof. The proof of the strict inequality is similar. �
4. Critical equation with nonlinear potential

In this section we will consider the existence and concentration of the solutions of equation 
(1.8). Consider

−�u + u = 1

6 − μ

(∫
R3

Q(εy)G(u(y))

|x − y|μ dy
)
Q(εx)g(u) in R

3, (SCC1)

where we still use the notions G(u) = |u|6−μ + F(u). By changing variable, it is possible to 
see that the above equation is equivalent to equation (1.8). The energy functional associated to 
(SCC1) is

Iε(u) := 1

2

∫
R3

(|∇u|2 + |u|2)dx − �̃(u),

�̃(u) := 1

2(6 − μ)

∫
R3

∫
R3

Q(εy)G(u(y))Q(εx)G(u(x))

|x − y|μ dxdy.

The Nehari manifold associated to Iε will be denote by Nε, that is, Nε = {
u ∈ E : u �= 0,

〈I ′
ε(u), u〉 = 0

}
and there exists α > 0, independent of ε, such that

‖u‖ ≥ α, ∀u ∈Nε.

Similar to Lemma 2.4, we know Iε also satisfies the Mountain Pass Geometry and assumption 
(f3) implies that the least energy can be characterized by

cε = inf
u∈Nε

Iε(u) = inf
u∈E\{0} max

t≥0
Iε(tu), (4.1)

and there exists c > 0, which is independent of ε, such that cε > c.
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4.1. Truncating techniques

For d ∈ [νmin, νmax], we set

Qd(εx) := min{d,Q(εx)}
and introduce the first auxiliary problem for equation (SCC1) by considering

−�u + u = 1

6 − μ

(∫
R3

Qd(εy)G(u(y))

|x − y|μ dy
)
Qd(εx)g(u).

The associated energy functional is defined by

I d
ε (u) = 1

2

∫
R3

(|∇u|2 + |u|2)dx − 1

2(6 − μ)

∫
R3

∫
R3

Qd(εy)G(u(y))Qd(εx)G(u(x))

|x − y|μ dxdy.

The associated Nehari manifold is N d
ε = {

u ∈ E : u �= 0, 〈(I d
ε )′(u), u〉 = 0

}
and the least energy 

is cd
ε .

Lemma 4.1. Suppose that f satisfies (f1)–(f3). Then

lim sup
ε→0

cd
ε ≤ m1,Qd(0),Qd(0).

Proof. Let u be a ground state solution of (1.7) with coefficients (1, Qd(0), Qd(0)), that is

�1,Qd(0),Qd(0)(u) = m1,Qd(0),Qd(0).

Then there exists a unique tε = tε(u) > 0 such that tεu ∈ N d
ε and cd

ε ≤ I d
ε (tεu). From the 

boundedness of Q, by the arguments in Lemma 2.4, there exists T > 0 independent of ε with 
Id
ε (su) < 0 for all s ≥ T . Consequently, tε < T and we may assume that tε → t0. Observe that

I d
ε (tεu) = �1,Qd(0),Qd(0)(tεu)

− 1

2(6 − μ)

∫
R3

∫
R3

[Qd(εy)Qd(εx) − Qd(0)Qd(0)]G(u(y))G(u(x))

|x − y|μ dxdy.

Once that Q is bounded and tε → t0, applying the Lebesgue’s Dominated Convergence theorem, 
we know

lim sup
ε→0

cd
ε ≤ lim sup

ε→0
I d
ε (tεu)

= lim sup
ε→0

(
�1,Qd(0),Qd(0)(tεu) + oε(1)

)
= �1,Qd(0),Qd(0)(t0u) ≤ �1,Qd(0),Qd(0)(u) = m1,Qd(0),Qd(0),

which concludes the proof. �
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Next, we prove an upper bound for the Mountain Pass level cε in (4.1).

Lemma 4.2. There holds

lim sup
ε→0

cε ≤ m1,νmax,νmax .

Proof. If d = νmax, then Qd(εx) = Q(εx). Consequently, cd
ε = cε . Then, by Lemma 4.1,

lim sup
ε→0

cε ≤ m1,νmax,νmax .

This completes the proof. �
To consider the existence of solutions concentrating at the nonlinear potential, we will partially 
truncate the nonlinear potential Q in front of the subcritical term and introduce the second aux-
iliary problem for equation (SCC1). For e ∈ [νmin, νmax), we set Qe(εx) := min{e, Q(εx)} and 
consider

−�u + u =
(∫
R3

Q(εy)|u(y)|6−μ + Qe(εy)F (u(y))

|x − y|μ dy
)
[Q(εx)|u|4−μu + Qe(εx)

6 − μ
f (u)]

in R
3.

The associated energy functional is defined by

Ĩ e
ε (u) = 1

2

∫
R3

(|∇u|2 + |u|2)dx − 1

2(6 − μ)

×
∫
R3

∫
R3

[Q(εy)|u(y)|6−μ + Qe(εy)F (u(y))][Q(εx)|u(x)|6−μ + Qe(εx)F (u(x))]
|x − y|μ dxdy,

the corresponding Nehari manifold and least energy are Ñ e
ε and c̃e

ε . Related to the above func-
tional, we have an important lower bound for the level c̃e

ε.

Lemma 4.3. c̃e
ε ≥ m1,νmax,e.

Proof. Since Qe(εx) ≤ e and Q(εx) ≤ νmax, from the characterization of the value m1,νmax,e, 
we know

inf
u∈E

max
t≥0

Ĩ e
ε (tu) ≥ inf

u∈E
max
t≥0

�1,νmax,e(tu),

namely the assertion. �
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4.2. Existence for Theorem 1.5

In this subsection, we will prove Theorem 1.5.

Lemma 4.4. Suppose that the potential function Q satisfies (Q) and the nonlinearity f satisfies 
(f1)–(f3). Then the minimax value cε is achieved if ε is small enough. Hence, problem (SCC1)
admits a least energy solution if ε is small enough.

Proof. From Lemma 4.2, there holds

lim sup
ε→0

cε ≤ m1,νmax,νmax .

Furthermore, we know

m1,νmax,νmax <
5 − μ

2(6 − μ)
ν

− 2
5−μ

max S
6−μ
5−μ

H,L.

Since the least energy cε can be characterized by

cε = inf
u∈Nε

Iε(u),

we can choose a minimizing sequence (un) ⊂ Nε of Iε such that Iε(un) → cε . By Ekeland’s 
variational principle [36], we may also assume it is a bounded (PS) sequence at cε . With-
out loss of generality, we assume that un ⇀ uε in E with I ′

ε(uε) = 0. To complete the proof, 
we need to show that uε �= 0 if ε is small enough. On the contrary we assume that there ex-
ists a sequence εj → 0 with uεj

= 0. For each fixed j , let (un) ⊂ Nεj
be a (PS) sequence 

of Iε at cεj
such that un ⇀ uεj

= 0 in E. Select νmin ≤ e < νmax and consider the func-

tional Ĩ e
εj

. Note that for each un there is a unique tn such that tnun ∈ Ñ e
εj

, we claim that 
the sequence (tn) is bounded. Indeed, suppose by contradiction that tn → ∞ as n → ∞. 
Since (un) is bounded and ‖un‖2 ≥ α, we know that there exist (yn) ⊂ R

3 and r, δ > 0 such 
that ∫

Br(yn)

|un|2dx ≥ δ, n ∈ N.

Otherwise, un → 0 in Ls(R3), 2 < s < 6, and we can get

Iεj
(un) − 1

2
〈I ′

εj
(un), un〉 = 5 − μ

2(6 − μ)

∫
R3

∫
R3

Q(εjy)|un(y)|6−μQ(εjx)|un(x)|6−μ

|x − y|μ dxdy

+ on(1).

Notice that (un) ⊂ Nε is bounded minimizing sequence at cε , we have

j j
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1

2
‖un‖2 − 1

2(6 − μ)

∫
R3

∫
R3

Q(εjy)|un(y)|6−μQ(εjx)|un(x)|6−μ

|x − y|μ dxdy → cεj
. (4.2)

‖un‖2 =
∫
R3

∫
R3

Q(εjy)|un(y)|6−μQ(εjx)|un(x)|6−μ

|x − y|μ dxdy. (4.3)

And so we get

‖un‖2 ≤ ν2
max

∫
R3

∫
R3

|un(x)|6−μ|un(y)|6−μ

|x − y|μ dxdy ≤ ν2
maxS

μ−6
H,L ‖un‖2(6−μ). (4.4)

If ‖un‖ → 0, then cεj
= 0, a contradiction. Consequently, ‖un‖ � 0. So by (4.4) we get 

‖un‖ ≥ ν
− 1

5−μ
max S

6−μ
2(5−μ)

H,L . Then from (4.2), (4.3) and (4.4) we easily conclude that

cεj
≥ 5 − μ

2(6 − μ)
ν

− 2
5−μ

max S
6−μ
5−μ

H,L,

which contradicts with the assumption. Hence (un) is non-vanishing. Thus, vn(x) = un(x + yn)

is bounded in E and its weak limit v ∈ E is not zero, namely v �= 0. Hence, there is � ⊂ R
3

with |�| > 0 such that v(x) > 0 for all x ∈ �. Since (un) and V are bounded and inf
x∈R3

Q(εx) >

0,

t2
n‖vn‖2 ≥ t2ζ

n C

∫
R3

∫
R3

|vn(x)|ζ |vn(y)|ζ
|x − y|μ dxdy,

which implies that (tn) is bounded. In what follows we assume that tn → t0 > 0 as n → ∞. 
Hence,

c̃e
εj

≤ Ĩ e
εj

(tnun) = Iεj
(tnun)

+ 1

(6 − μ)

∫
R3

∫
R3

Q(εjy)|un(y)|6−μ[Q(εjx) − Qe(εjx)]F(un(x))

|x − y|μ dxdy

+ 1

2(6 − μ)

∫
R3

∫
R3

[Q(εjy)Q(εj x) − Qe(εj y)Qe(εj x)]F(un(x))F (un(y))

|x − y|μ dxdy.

Notice that un ⇀ uεj
= 0 in E and un → 0 in Lq

loc(R
3) for q subcritical. Choose t and s close 

to 6
6−μ

with

1/t + μ/3 + 1/s = 2

and apply the Hardy–Littlewood–Sobolev inequality, we know
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∣∣∣ ∫
R3

∫
R3

Q(εjy)|un(y)|6−μ[Q(εjx) − Qe(εj x)]F(un(x))

|x − y|μ dxdy

∣∣∣
≤ C|un|6−μ

t(6−μ)|[Q(εjx) − Qe(εjx)]F(un)|s .

Observe that∫
R3

|[Q(εjx) − Qe(εjx)]F(un)|sdx =
∫

{x:Q(εj x)≥e}
|[Q(εjx) − e]F(un)|sdx = on(1),

since {x : Q(εjx) ≥ e} is bounded and f (s) is of subcritical growth, we know

∫
R3

∫
R3

Q(εjy)|un(y)|6−μ[Q(εjx) − Qe(εj x)]F(un(x))

|x − y|μ dxdy = on(1).

Similarly,∫
R3

∫
R3

[Q(εjy)Q(εj x) − Qe(εjy)Qe(εj x)]F(un(x))F (un(y))

|x − y|μ dxdy = on(1).

From the above arguments and the fact that Iεj
(tnun) ≤ Iεj

(un), since (un) ⊂ Nεj
, we 

know

c̃e
εj

≤ Iεj
(tnun) + on(1) ≤ Iεj

(un) + on(1).

Hence ce
εj

≤ cεj
as n → ∞. From Lemma 4.3, since there holds c̃e

ε ≥ m1,νmax,e, we know 
m1,νmax,e ≤ cεj

. Taking the limit j → +∞ and using Lemma 4.2, we get m1,νmax,e ≤
m1,νmax,νmax , applying Lemma 3.2 with the fact that e < νmax, this yields a contradiction that 
is uε �= 0. Then, repeat the arguments in section 3, we know Iε(uε) = cε which finishes the 
proof. �
The following Brezis–Lieb type lemma, here specialized for N = 3, for the nonlocal term is 
proved in [16].

Lemma 4.5. Let 0 < μ < 3. If (un) is a bounded sequence in L6(R3) such that un → u almost 
everywhere in R3, then the following hold,∫

R3

(|x|−μ ∗ |un|6−μ)|un|6−μdx −
∫
R3

(|x|−μ ∗ |un − u|6−μ)|un − u|6−μdx

→
∫
R3

(|x|−μ ∗ |u|6−μ)|u|6−μdx,

as n → ∞.



C.O. Alves et al. / J. Differential Equations 263 (2017) 3943–3988 3969
Lemma 4.6. Let (un) be the sequence of solutions obtained in Lemma 4.4 with parameter 
εn → 0. Then, there is yn ∈R

3 such that

lim
n→∞ dist(εnyn,Q) = 0,

such that the sequence vn(x) := un(x + yn) converges strongly in E to a ground state solution v
of

−�v + v = ν2
max

⎛⎜⎝∫
R3

|v(y)|6−μ + F(v(y))

|x − y|μ dy

⎞⎟⎠(
|v|4−μv + 1

6 − μ
f (v)

)
in R

3.

Proof. Let (un) be the sequence of solutions obtained in Lemma 4.4 with parameter εn → 0. It 
is easy to see that (un) is bounded in E. Moreover, repeat the arguments in Lemma 4.4, we know 
that there exist r, δ > 0 and a sequence (yn) ⊂R3 such that

lim inf
n→∞

∫
Br(yn)

|un|2dx ≥ δ. (4.5)

Setting vn(x) := un(x + yn) and Q̃εn(x) := Q(εn(x + yn)), we see that vn solves problems

−�v + v = 1

6 − μ

(∫
R3

Q̃εn(y)G(v(y))

|x − y|μ dy
)
Q̃εn(x)g(v(x)) in R

3.

We shall use Ĩεn to denote the corresponding energy functional. Since vn(x) := un(x + yn) is 
also bounded, from (4.5), we may assume that vn ⇀ v in E with v �= 0 and v ≥ 0. The sequence 
(εnyn) must be bounded and up to sequence εnyn → y0 ∈ Q. Argue by contradiction, we assume 
that εnyn → ∞, as n → ∞, we may suppose that Q(εnyn) → Q0 < νmax. Since 〈Ĩ ′

εn
(vn), ϕ〉 = 0

for any ϕ ∈ C∞
0 (R3), equivalently, we have

∫
R3

(∇vn∇ϕ + vnϕ)dx − 1

6 − μ

∫
R3

(∫
R3

Q̃εn(y)G(vn(y))

|x − y|μ dy
)
Q̃εn(x)g(vn(x))ϕ(x)dx = 0.

(4.6)

From the regularity arguments in the section 3, we know∣∣∣∣∣∣∣
∫
R3

G(vn(y))

|x − y|μ dy

∣∣∣∣∣∣∣∞
≤ C

(
|vn|6−μ

3(6−μ)
3−μ

+ |vn|q3q
3−μ

+ |vn|p3p
3−μ

)
,

thus
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C = sup
n∈N

sup
x∈R3

∣∣∣ ∫
R3

Q̃εn(y)G(vn(y))

|x − y|μ dy

∣∣∣ < ∞.

Whence, we have

∣∣∣ ∫
R3

(∫
R3

Q̃εn(y)G(vn(y))

|x − y|μ dy
)(

Q̃εn(x)g(vn(x)) − Q0g(v(x))
)
ϕ(x)dx

∣∣∣
≤ C

∣∣∣ ∫
R3

(
Q̃εn(x)g(vn(x)) − Q0g(v(x))

)
ϕ(x)dx

∣∣∣.
Then, since ∫

R3

(
Q̃εn(x)g(vn(x)) − Q0g(v(x))

)
ϕ(x)dx → 0, ∀ϕ ∈ C∞

0 (R3),

we have

∣∣∣ ∫
R3

(∫
R3

Q̃εn(y)G(vn(y))

|x − y|μ dy
)(

Q̃εn(x)g(vn(x)) − Q0g(v(x))
)
ϕ(x)dx

∣∣∣ → 0, ∀ϕ ∈ C∞
0 (R3).

Repeating the arguments in the proof of Theorem 1.3, we obtain

∣∣∣ ∫
R3

(∫
R3

Q̃εn(y)G(vn(y)) − Q0G(v(y))

|x − y|μ dy
)
g(v(x))ϕ(x)dx

∣∣∣ → 0, ∀ϕ ∈ C∞
0 (R3).

Taking the limit in equation (4.6), we get that v is nothing but a solution of the equation

−�v + v = Q2
0

⎛⎜⎝∫
R3

|v(y)|6−μ + F(v(y))

|x − y|μ dy

⎞⎟⎠(
|v|4−μv + 1

6 − μ
f (v)

)
in R

3.

Observe that Iεn(un) = Ĩεn(vn), and by Fatou’s Lemma and Lemma 3.2, we can get

m1,νmax,νmax < m1,Q0,Q0 ≤ �1,Q0,Q0(v)

= �1,Q0,Q0(v) − 1

θ(6 − μ)
〈�′

1,Q0,Q0
(v), v〉

=
(1

2
− 1

θ(6 − μ)

)
‖v‖2 + Q2

0

2θ(6 − μ)

∫
R3

∫
R3

G(v(y))[2g(v(x))v(x) − θG(v(x))]
|x − y|μ dxdy

≤ lim inf
{(1 − 1 )

‖vn‖2

n→∞ 2 θ(6 − μ)
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+ 1

2θ(6 − μ)

∫
R3

∫
R3

Qεn(y)G(vn(y))Qεn(x)[2g(vn(x))vn(x) − θG(vn(x))]
|x − y|μ dxdy

}

= lim inf
n→∞

{
Ĩεn (vn) − 1

θ(6 − μ)
〈Ĩ ′

εn
(vn), vn〉

}
= lim inf

n→∞ cεn .

This contradicts to Lemma 4.2 which says

lim sup
n→∞

cεn ≤ m1,νmax,νmax .

Thus (εnyn) is bounded and we may assume that εnyn → y0. Next we are going to prove y0 ∈ Q. 
If y0 /∈Q, by the definitions of Q, then it is easy to see

m1,νmax,νmax < m1,Q(y0),Q(y0).

Let v be the weak limit of the sequence vn(x) := un(x + yn) then v satisfies

−�v + v = Q(y0)
2

⎛⎜⎝∫
R3

|v(y)|6−μ + F(v(y))

|x − y|μ dy

⎞⎟⎠(
|v|4−μv + 1

6 − μ
f (v)

)
(4.7)

and

m1,νmax,νmax < m1,Q(y0),Q(y0) ≤ lim inf
n→∞ cεn .

which contradicts Lemma 4.2, since

lim sup
n→∞

cεn ≤ m1,νmax,νmax .

Therefore y0 ∈ Q, which means dist(εnyn, Q) → 0. By repeating the arguments in Lemma 4.1, 
we get

lim
n→∞ Ĩεn(vn) ≤ m1,Q(y0),Q(y0) = m1,νmax,νmax ,

consequently,

�1,νmax,νmax(v) = �1,Q(y0),Q(y0)(v) = m1,νmax,νmax ,

and so v in fact is a ground state solution of the equation (4.7) with Q(y0) = νmax. Finally we 
show that (vn) converges strongly to v in E. Since Q is uniformly continuous, using Lemma 4.5,

Ĩεn(vn − v) = Ĩεn (vn) − �1,νmax,νmax(v) + on(1).

Since

lim Ĩεn(vn) = �1,νmax,νmax(v),

n→∞
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it follows that Ĩεn(vn − v) → 0. Similarly, Ĩ ′
εn

(vn − v) → 0, which implies

lim
n→∞〈Ĩ ′

εn
(vn − v), vn − v〉 = 0.

Hence,

‖vn − v‖2 ≤ C lim
n→∞

(
Ĩεn(vn − v) − 1

θ(6 − μ)
〈Ĩ ′

εn
(vn − v), vn − v〉

)
= 0,

showing that vn → v in E. This ends the proof. �
Lemma 4.7. Let (vn) be the sequence obtained in Lemma 4.6. Then, there exists C > 0 indepen-
dent of n such that |vn|∞ ≤ C and vn(x) → 0 as |x| → ∞, uniformly in n ∈ N. Furthermore 
there are C, β > 0 with

|vn(x)| ≤ C exp(−β|x|), ∀x ∈ R
3.

Proof. From Lemma 4.6 we know that εnyn → y0 ∈ Q as n → ∞ and the sequence vn(x) :=
un(x + yn) converges strongly to a solution v of the equation

−�v + v = Q(y0)
2

⎛⎜⎝∫
R3

|v(y)|6−μ + F(v(y))

|x − y|μ dy

⎞⎟⎠(
|v|4−μv + 1

6 − μ
f (v)

)
in R

3.

From the regularity arguments in section 2,

sup
n∈N

sup
x∈R3

∣∣∣ ∫
R3

Q̃εn(y)G(vn(y))

|x − y|μ dy

∣∣∣ < ∞,

and vn ∈ Lq(R3) for all 2 ≤ q < ∞. Furthermore, the elliptic regularity theory implies that 
vn ∈ C2(R3) and

−�vn ≤ h(vn) in R
3,

where h(vn) ∈ Lt(R3), t > 3
2 . Then, we learn that |vn|∞ ≤ C and

lim|x|→∞vn(x) = 0 uniformly in n ∈N.

Recall that by (4.5),

δ ≤
∫

Br(yn)

|un|2dx,

then we obtain



C.O. Alves et al. / J. Differential Equations 263 (2017) 3943–3988 3973
δ ≤
∫

Br(0)

|vn|2dx ≤ |Br ||vn|2∞,

from where it follows |vn|∞ ≥ δ′. That means there exists δ′ > 0 such that |vn|∞ ≥ δ′ for all 
n ∈ N. The exponential decay property follows from a standard comparison arguments. �
4.3. Concentration behavior

If uεn is a solution of problem (SCC1), then vn(x) = uεn(x + yn) solves

−�vn + vn = 1

6 − μ

(∫
R3

Q̃εn(y)G(vn(y))

|x − y|μ dy
)
Q̃εn(x)g(vn) in R

3,

with Q̃εn(x) = Q(εnx + εnyn) and (yn) ⊂ R
3 given in Lemma 4.6. Moreover, up to a subse-

quence,

vn → v in E, ỹn → y0 ∈Q,

where ỹn = εnyn. If bn denotes a maximum point of vn, from Lemma 4.7, we know it is a 
bounded sequence in R3. Thus, there is R > 0 such that bn ∈ BR(0). Thereby, the global maxi-
mum of uεn is zεn = bn + yn and

εnzεn = εnbn + εnyn = εnbn + ỹn.

From boundedness of (bn), we get the limit lim
n→∞εnzεn = y0, therefore lim

n→∞Q(εnzεn) = Q(y0). 

We also point out that for any ε > 0 the sequence (εzε) is bounded, where zε is the maximum 
point of the solution uε obtained in Lemma 4.4. In fact, if there exists εj → 0 and zεj

of uεj
such 

that εj zεj
→ ∞. However, from the above arguments,

εj zεj
= εj bεj

+ εj yεj
,

where yεj
is obtained in (4.5) by non-vanishing argument with (εjyεj

) bounded, and bεj
is 

the maximum point of vεj
= uεj

(x + yεj
). Consequently, εj zεj

− εj yεj
= εj bεj

→ ∞. which 
contradicts with the fact bεj

lies in a ball BR(0). From Lemma 4.4, there is a positive solution 
for (SCC1) for ε > 0 small enough. Therefore, the function wε(x) = uε(

x
ε
) is a positive solution 

of (1.8). Thus, the maximum points xε and zε of wε and uε respectively, satisfy the equality 
xε = εzε . Setting vε(x) := wε(εx + xε), for any sequence xε → x0, ε → 0, it follows from 
Lemma 4.6 that, limε→0 dist(xε, Q) = 0 and vε converges in E to a ground state solution v of

−�u + u = ν2
max

6 − μ

(∫
R3

G(u(y))

|x − y|μ dy
)
g(u).

From Lemma 4.7, for some c, C > 0, |wε(x)| ≤ C exp
(

− c |x − xε|
)

.

ε
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5. Critical equation with linear potential

Finally, to study the existence of solutions for the following equation

−�u+V (εx)u =
⎛⎜⎝∫
R3

|u(y)|6−μ + F(u(y))

|x − y|μ dy

⎞⎟⎠(
|u|4−μu+ 1

6 − μ
f (u)

)
in R

3, (SCC2)

we introduce the energy functional associated to (1.9) be Jε . The Nehari manifold associated to 
Jε will be still denoted by Nε, that is,

Nε =
{
u ∈ E : u �= 0, 〈J ′

ε(u),u〉 = 0
}
.

Similar to Lemma 2.4, Jε also satisfies the Mountain Pass Geometry and assumption (f3) implies 
that the least energy can be characterized by

cε = inf
u∈Nε

Jε(u) = inf
u∈E\{0} max

t≥0
, Jε(tu),

moreover, there exists α > 0 which is a constant independent of ε such that cε > α.

5.1. Compactness criteria

Let (un) be any (PS) sequence of Jε at c. Then, it is easy to see that (un) is bounded and c ≥ 0. 
Hence, without loss of generality, we may assume un ⇀ u in E and un → u in Ls

loc(R
3) for 1 ≤

s < 6 and un(x) → u(x) a.e. for x ∈ R
3. Furthermore, arguing as in the proof of Theorem 1.3. 

We have the following lemma

Lemma 5.1. One has along a subsequence:

(1). Jε(un − u) → c − Jε(u);
(2). J ′

ε(un − u) → 0.

Lemma 5.2. Suppose that (f1)–(f3) and (V ) hold. Consider a (PS)c sequence (un) for Jε with

c <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L.

Suppose that un ⇀ u in E. Then either un → u in E along a subsequence or

c − Jε(u) ≥ mκ∞,1,1,

where mκ∞,1,1 is the minimax level of �κ∞,1,1 given in (2.4) with κ = κ∞, μ = τ = 1.

Proof. Define vn = un −u, from Lemma 5.1 we know that (vn) is a (PS) sequence at c − Jε(u)

with Jε(u) ≥ 0. Now we suppose that vn � 0 in E. From condition (f3), for each un there is 
unique tn ∈ (0, ∞) such that (tnvn) ⊂ Nκ∞,1,1. We divide the proof into three steps.
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• Step 1. The sequence (tn) satisfies

lim sup
n→∞

tn ≤ 1.

In fact, suppose by contradiction that the above claim does not hold. Then, there exist δ > 0 and 
a subsequence of (tn), still denoted by itself, such that

tn ≥ 1 + δ for all n ∈ N.

Since 〈J ′
ε(vn), vn〉 = on(1) and (tnvn) ⊂Nκ∞,1,1, we have

‖vn‖2
ε =

∫
R3

∫
R3

G(vn(y))g(vn(x))vn(x)

|x − y|μ dxdy + on(1)

and

t2
n

∫
R3

(|∇vn|2 + κ∞|vn|2)dx =
∫
R3

∫
R3

G(tnvn(y))g(tnvn(x))tnvn(x)

|x − y|μ dxdy.

Consequently,∫
R3

(κ∞ − V (εx))|vn|2dx + on(1)

=
∫
R3

∫
R3

(G(tnvn(y))g(tnvn(x))tnvn(x)

t2
n |x − y|μ − G(vn(y))g(vn(x))vn(x)

|x − y|μ
)
dxdy.

Given ξ > 0, from assumption (V ), there exists R = R(ξ) > 0 such that

V (εx) ≥ κ∞ − ξ, for any |x| ≥ R.

Using the fact that vn → 0 in Lp(BR(0)), we conclude that∫
R3

∫
R3

(G(tnvn(y))g(tnvn(x))tnvn(x)

t2
n |x − y|μ − G(vn(y))g(vn(x))vn(x)

|x − y|μ
)
dxdy ≤ ξC + on(1),

where C = supn∈N |vn|22. Notice that (vn) is (PS) sequence at c − Jε(u). We claim that there 
exist (yn) ⊂ R

3 and r, δ > 0 such that∫
Br(yn)

|vn|2dx ≥ δ, n ∈N.

Otherwise,

vn → 0 in Ls(R3), 2 < s < 6, as n → ∞.
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By repeating the arguments in Lemma 4.4, we have

1

2
‖vn‖2

ε − 1

2(6 − μ)

∫
R3

∫
R3

|vn(x)|6−μ|vn(y)|6−μ

|x − y|μ dxdy → c − Jε(u) (5.1)

and

‖vn‖2
ε =

∫
R3

∫
R3

|vn(x)|6−μ|vn(y)|6−μ

|x − y|μ dxdy + on(1). (5.2)

Hence,

‖vn‖2
ε ≤

∫
R3

∫
R3

|vn(x)|6−μ|vn(y)|6−μ

|x − y|μ dxdy + on(1) ≤ S
μ−6
H,L ‖vn‖2(6−μ) + on(1). (5.3)

Since ‖vn‖ε � 0, by (5.3) we get ‖vn‖ε ≥ S
6−μ

2(5−μ)

H,L . Then from (5.1), (5.2) and (5.3) we easily 
conclude that

c − Jε(u) ≥ 5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L,

which contradicts with our assumption that

c <
5 − μ

2(6 − μ)
S

6−μ
5−μ

H,L.

Thus there exists (yn) ⊂ R
3 and r, β > 0 such that∫

Br (yn)

|vn|2dx ≥ β.

If we define ṽn = vn(x +yn), we may suppose that, up to a subsequence, ṽn ⇀ ṽ in E. Moreover, 
using the fact that vn ≥ 0 for all n ∈ N, there exists a subset � ⊂ R

3 with positive measure such 
that ṽ(x) > 0 for all x ∈ �. Consequently, from (f3), we get∫

�

∫
�

|ṽn(y)||ṽn(x)|
|x − y|μ

[G((1 + δ)ṽn(y))g((1 + δ)ṽn(x))(1 + δ)ṽn(x)

(1 + δ)|ṽn(y)|(1 + δ)|ṽn(x)|

− G(ṽn(y))g(ṽn(x))ṽn(x)

|ṽn(y)||ṽn(x)|
]
dxdy

=
∫
�

∫
�

[G((1 + δ)ṽn(y))g((1 + δ)ṽn(x))(1 + δ)ṽn(x)

(1 + δ)2|x − y|μ − G(ṽn(y))g(ṽn(x))ṽn(x)

|x − y|μ
]
dxdy

≤ ξC + on(1)
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Letting n → ∞ and applying Fatou’s lemma, from the monotone assumption (f3), it follows that

0 <

∫
�

∫
�

(
G((1 + δ)ṽ(y))g((1 + δ)ṽ(x))(1 + δ)ṽ(x)

(1 + δ)2|x − y|μ − G(ṽ(y))g(ṽ(x))ṽ(x)

|x − y|μ
)

dxdy ≤ ξC

which is absurd, since the arbitrariness of ξ .

• Step 2. The sequence (tn) satisfies

lim sup
n→∞

tn = 1.

In this case, there exists a subsequence, still denoted by (tn), such that tn → 1. Since mκ∞,1,1 ≤
�κ∞,1,1(tnvn), we know

c − Jε(u) + on(1) = Jε(vn) ≥ Jε(vn) + mκ∞,1,1 − �κ∞,1,1(tnvn).

Given ξ > 0, from assumption (V ) there exists R = R(ξ) > 0 such that

V (εx) ≥ κ∞ − ξ, for any |x| ≥ R.

Since

Jε(vn) − �κ∞,1,1(tnvn) = (1 − t2
n)

2

∫
R3

|∇vn|2dx + 1

2

∫
R3

V (εx)|vn|2dx − t2
n

2

∫
RN

κ∞|vn|2dx

+ 1

2(6 − μ)

∫
R3

∫
R3

(G(tnvn(y))G(tnvn(x))

t2
n |x − y|μ − G(vn(y))G(vn(x))

|x − y|μ
)
dxdy,

from the fact that (vn) is bounded in E and vn ⇀ 0, we derive

c − Jε(u) + on(1) = Jε(vn) ≥ mκ∞,1,1 − ξC + on(1),

consequently, c − Jε(u) ≥ mκ∞,1,1.

• Step 3. The sequence (tn) satisfies

lim sup
n→∞

tn = t0 < 1.

We suppose that there exists a subsequence, still denoted by (tn), such that tn → t0 < 1. Since 
mκ∞,1,1 ≤ �κ∞,1,1(tnvn) and 〈�′

κ∞,1,1(tnvn), tnvn〉 = 0, we get

mκ∞,1,1 ≤ �κ∞,1,1(tnvn) − 1

2
〈�′

κ∞,1,1(tnvn), tnvn〉

= 1

2(6 − μ)

∫
3

∫
3

G(tnvn(y)g(tnvn(x))tnvn(x) − G(tnvn(y))G(tnvn(x))

|x − y|μ dxdy
R R
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≤ 1

2(6 − μ)

∫
R3

∫
R3

G(vn(y)g(vn(x))vn(x) − G(vn(y))G(vn(x))

|x − y|μ dxdy

= Jε(vn) − 1

2
〈J ′

ε(vn), vn〉 = c − Jε(u) + on(1).

From this, the conclusion then follows. �
By an immediate consequence of Lemma 5.1, we have

Lemma 5.3. Suppose (f1)–(f3) and (V ) hold. Then Jε satisfies (PS)c condition for all c <

mκ∞,1,1.

Corollary 5.4. Suppose (f1)–(f3) and (V ) hold. Then Jε|Nε
satisfies (PS)c condition for all 

c < mκ∞,1,1.

Proof. Let (un) ⊂ Nε be any sequence such that Jε(un) → c and ‖J ′
ε(un)‖∗ → 0. Since Nε is 

a natural constraint, we know that (un) is a (PS)c sequence with c < mκ∞,1,1. The conclusion 
follows from Lemma 5.3. �
6. Existence and multiplicity

In this section, we are going to prove the existence and multiplicity of solutions. First we have 
the following existence result.

Theorem 6.1 (Existence of ground states). Suppose that the nonlinearity f satisfies (f1)–(f3) and 
the potential function V (x) satisfies condition (V ). Then, there exists ε0 > 0 such that problem 
(SCC2) has a positive ground state solution uε, for all ε < ε0.

Proof. It is easy to check that Jε also satisfies the Mountain Pass geometry. Let

mε := inf
u∈E\{0} max

t≥0
Jε(tu) = inf

u∈Nε

Jε(u).

Then, we know there exists a (PS) sequence at mε , i.e.,

J ′
ε(un) → 0 and Jε(un) → mε.

Thus, by Lemma 5.3, if mε < mκ∞,1,1, then the existence of ground state solution is guaranteed. 
In what follows, we fix γ > 0 and �γ ∈ C∞

0 (R3) such that

�κmin,1,1(�γ ) = max
t≥0

�κmin,1,1(t�γ ) and �κmin,1,1(�γ ) ≤ mκmin,1,1 − γ.

By a direct computation,

lim sup
ε→0

mε ≤ �κmin,1,1(�γ ) ≤ mκmin,1,1 − γ < mκ∞,1,1.

Therefore, there is ε0 > 0 such that mε < mκ∞,1,1 for all ε ∈ (0, ε0). �
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Next, we are going to show the existence of multiple solutions and study the behavior of their 
maximum points in relation to the set V . Let δ > 0 be fixed and w be a ground state solution of 
problem (1.7) with A = κmin. Define η to be a smooth non-increasing cut-off function in [0, ∞)

such that η(s) = 1 if 0 ≤ s ≤ δ
2 and η(s) = 0 if s ≥ δ. For any y ∈ V , let us define

�ε,y(x) = η(|εx − y|)w
(εx − y

ε

)
,

tε > 0 satisfying

max
t≥0

Iε(t�ε,y) = Iε(tε�ε,y),

and �ε : V → Nε by �ε(y) = tε�ε,y . By construction, �ε(y) has compact support for any 
y ∈ M .

Lemma 6.2. The function �ε has the following limit

lim
ε→0

Jε(�ε(y)) = mκmin,1,1, uniformly in y ∈ V .

Proof. By contradiction, there exist δ0 > 0, (yn) ⊂ V and εn → 0 such that

|Jεn(�εn(yn)) − mκmin,1,1| ≥ δ0. (6.1)

From Lebesgue’s theorem,

lim
n→∞

∫
R3N

(|∇(tεn�εn,yn)|2 + V (εnx)|tεn�εn,yn |2)dx =
∫
R3

(|∇w|2 + V0|w|2)dx

and

lim
n→∞

∫
R3

∫
R3

G(tεn�εn,yn)G(tεn�εn,yn)

|x − y|μ dxdy =
∫
R3

∫
R3

G(w(y))G(w(x))

|x − y|μ dxdy.

Since tεn�εn,yn ∈Nεn , it is easy to see the sequence tεn → 1. In fact, from the below equality

t2
εn

∫
R3

|∇�εn,yn |2 + V (εnx)|�εn,yn |2dx = 1

6 − μ

∫
R3

∫
R3

G(tεn�εn,yn)g(tεn�εn,yn)tεn�εn,yn

|x − y|μ dxdy,

we derive

‖w‖2
ε = lim

n→∞

∫
R3

∫
R3

G(tεn�εn,yn)g(tεn�εn,yn)tεn�εn,yn

t2
εn

|x − y|μ dxdy.

Now, using the fact that w is a ground state solution of problem (1.7) together with (f ′
4), we get 

that tεn → 1. Now, note that
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Jεn(�εn(yn)) = t2
εn

2

∫
R3

|∇(η(|εnx|)w(x))|2dx + t2
εn

2

∫
R3

V (εnx + yn)|(η(|εnx|)w(x))|2dx

− 1

2(6 − μ)

∫
R3

∫
R3

G(tεnη(|εny|)w(y))G(tεnη(|εnx|)w(x))

|x − y|μ dxdy.

Letting n → ∞, we get limn→∞ Jεn(�εn(yn)) = mκmin,1,1, which contradicts with (6.1). �
For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Let χ : R3 →R

3 be defined as

χ(x) := x for |x| ≤ ρ and χ(x) := ρx

|x| for |x| ≥ ρ.

Finally, let us consider βε :Nε → R
3 given by

βε(u) :=

∫
R3

χ(εx)|u|2dx

∫
R3

|u|2dx

.

Using the above notations, by the Lebesgue’s theorem permits to show the following lemma

Lemma 6.3. The function �ε verifies

lim
ε→0

βε(�ε(y)) = y, uniformly in y ∈ V .

Let h : R+ → R
+ be a positive function tending to 0 such that h(ε) → 0 as ε → 0 and let

N̂ε := {u ∈ Nε : Jε(u) ≤ mκmin,1,1 + h(ε)}.

From Lemma 6.3, we know N̂ε �= ∅.

Lemma 6.4. Let δ > 0 and Vδ = {x ∈ R3 : dist(x, V) ≤ δ}. Then

lim
ε→0

sup
u∈N̂ε

inf
y∈Vδ

|βε(u) − y| = 0.

Proof. Let εn → 0. For each n ∈N, there exists (un) ⊂ N̂εn , such that

inf
y∈Vδ

|βεn(un) − y| = sup
u∈N̂εn

inf
y∈Vδ

|βεn(u) − y| + on(1).

Since (un) ⊂ N̂εn ⊂ Nεn , it follows that mκmin,1,1 ≤ mεn ≤ Jεn(un) ≤ mκmin,1,1 + h(εn), which 
means that

Jεn(un) → mκ ,1,1 and (un) ⊂Nεn .
min
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By repeating the arguments in Lemma 4.4, there exist (yn) ⊂ R
3 and r, δ > 0 such that∫

Br(yn)

|un|2dx ≥ δ, n ∈N.

Setting vn(x) = un(x + yn), up to a subsequence, if necessary, we can assume vn ⇀ v �≡ 0 in E. 
Let tn > 0 be such that ṽn = tnvn ∈Nκmin,1,1. Then,

mκmin,1,1 ≤ �κmin,1,1(ṽn) = �κmin,1,1(tnun) ≤ Jε(tnun) ≤ Jε(un) → mκmin,1,1

and so,

�κmin,1,1(ṽn) → mκmin,1,1 and (ṽn) ⊂Nκmin,1,1.

Then the sequence (ṽn) is a minimizing sequence, and by Ekeland’s variational principle [36], 
we may also assume it is a bounded (PS) sequence at mκmin,1,1. Thus, for some subsequence, 
ṽn ⇀ ṽ weakly in E with ṽ �= 0 and �′

min,1,1(ṽ) = 0. Then we can obtain that

�κmin,1,1(ṽn − ṽ) → 0, �′
κmin,1,1(ṽn − ṽ) → 0.

Hence,

‖ṽn − ṽ‖2 ≤ C lim
n→∞

(
�κmin,1,1(ṽn − ṽ) − 1

θ(6 − μ)
〈�′

κmin,1,1(ṽn − ṽ), ṽn − ṽ〉) = 0,

showing that ṽn → ṽ in E. Since (tn) is bounded, we can assume that for some subsequence 
tn → t0 > 0, and so, vn → v in E. Now, we will show that (εnyn) has a subsequence satisfying 
εnyn → y ∈ V . First we claim (εnyn) is bounded in R3. Indeed, suppose by contradiction there 
exists a subsequence, still denoted by (εnyn), such that |εnyn| → ∞. Since ṽn → ṽ in E and 
κmin < κ∞, we have

mκmin,1,1 = �κmin,1,1(ṽ) < �κ∞,1,1(ṽ)

≤ lim inf
n→∞

⎡⎢⎣1

2

∫
R3

|∇ṽn|2dx + 1

2

∫
R3

V (εnx + εnyn)|ṽn|2dx

− 1

2(6 − μ)

∫
R3

∫
R3

G(ṽn(y))G(ṽn(x))

|x − y|μ dxdy

⎤⎥⎦

= lim inf
n→∞

⎡⎢⎣ t2
n

2

∫
R3

|∇un|2dx + t2
n

2

∫
R3

V (εnx)|un|2dx

− 1

2(6 − μ)

∫
3

∫
3

G(tnun(y))G(tnun(x))

|x − y|μ dxdy

⎤⎥⎦

R R
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≤ lim inf
n→∞ Jεn(un) = mκmin,1,1,

which does not make sense, showing that (εnyn) is bounded. Thus there exists a sequence (yn) ⊂
R

3 such that vn(z) = un(x + yn) has a convergent subsequence in E and up to a subsequence, 
εnyn → y ∈ V . Thus,

βεn(un) =

∫
R3

χ(εnx)|un|2dx

∫
R3

|un|2dx

=

∫
R3

χ(εnx + εnyn)|un(x + yn)|2dx

∫
R3

|un(x + yn)|2dx

= εnyn +

∫
R3

[χ(εnx + εnyn) − εnyn]|vn(x)|2dx

∫
R3

|vn(x)|2dx

→ y ∈ V .

Consequently, there exists εnyn ∈ Vδ such that

lim
n→∞|βεn(un) − εnyn| = 0,

finishing the proof of the lemma. �
Theorem 6.5 (Multiplicity of solution). Suppose that the nonlinearity f satisfies (f1)–(f3) and 
the potential function V satisfies condition (V ). Then for any δ > 0 there exists εδ > 0 such that 
problem (SCC2) has at least catVδ

(V) positive solutions, uε for all ε < εδ .

Proof. We fix a small ε > 0. Then, by Lemma 6.2 and 6.4, βε ◦�ε is homotopic to the inclusion 
map id : V → Vδ and so,

cat
N̂ε

(N̂ε) ≥ catVδ
(V).

Since that functional Jε satisfies the (PS)c condition for c ∈ (mκmin,1,1, mκmin,1,1 + h(ε)), by 
the Lusternik–Schnirelman theory of critical points [36], we can conclude that Iε has at least 
catVδ

(V) critical points on Nε . Consequently, Jε has at least catVδ
(V) critical points in E. �

Concentration behavior. Let εn → 0 and (un) be a sequence of solutions obtained in 
Lemma 6.5, then there exists a sequence (yn) ∈ R

3 such that εnyn → y ∈ V and vn(z) =
un(x + yn) has a convergent subsequence in E. Similar to the arguments in Lemma 4.7, we 
know that there exists C > 0 independent of n such that |vn|∞ ≤ C and

lim|x|→∞vn(x) = 0 uniformly in n ∈ N.

Furthermore there exist C, β > 0 such that |vn(x)| ≤ C exp(−β|x|). Similar to the analy-
sis in section 3, by Theorem 6.1 and 6.5, we know the existence and multiplicity of positive 
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ground state solutions for equation (SCC2) for ε > 0 small enough. Therefore, the function 
wε(x) = uε(

x
ε
) is a positive solution of (1.9). Thus, the maximum points xε and zε of wε and 

uε respectively, satisfy the equality xε = εzε . Setting vε(x) := wε(εx + xε), for any sequence 
xε → x0, ε → 0, it follows from Lemma 4.6 that,

lim
ε→0

dist(xε,V) = 0

and vε converges in E to a ground state solution v of

−�u + κminu = 1

6 − μ

(∫
R3

G(u(y))

|x − y|μ dy
)
g(u).

Moreover, for some c, C > 0, we have |wε(x)| ≤ C exp
(− c

ε
|x − xε|

)
.

7. Appendix: estimates

In R3, we know that

U(x) = 31/4

(1 + |x|2)1/2

is a minimizer for S, the best Sobolev constant. By Proposition 2.2, we know that U(x) is also a 
minimizer for SH,L. Consider a cut-off function ψ ∈ C∞

0 (R3) such that

ψ(x) = 1, |x| ≤ δ, ψ(x) = 0, |x| ≥ 2δ,

where δ > 0 is given in Lemma 2.6. We define, for ε > 0,

uε(x) := ψ(x)Uε(x), where Uε(x) := ε−1/2U
(x

ε

)
. (7.1)

Then, we have

Lemma 7.1. If 6−μ
2 < q < 6 − μ, then there holds

∫
R3

∫
R3

|uε(x)|q |uε(y)|q
|x − y|μ dxdy ≥ O(ε6−μ−q) −O(ε

6−μ
2 ),

and

∫
R3

∫
R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy ≥ C(3,μ)
3
2 S

6−μ
2

H,L −O(ε
6−μ

2 ).
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Proof. To estimate the convolution part, we know∫
R3

∫
R3

|uε(x)|q |uε(y)|q
|x − y|μ dxdy ≥

∫
Bδ

∫
Bδ

|uε(x)|q |uε(y)|q
|x − y|μ dxdy

=
∫
Bδ

∫
Bδ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy

=
∫

B2δ

∫
B2δ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy

(7.2)

− 2
∫

B2δ\Bδ

∫
Bδ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy

−
∫

B2δ\Bδ

∫
B2δ\Bδ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy

:= A− 2B−C,

where

A :=
∫

B2δ

∫
B2δ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy,

B :=
∫

B2δ\Bδ

∫
Bδ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy,

C :=
∫

B2δ\Bδ

∫
B2δ\Bδ

|Uε(x)|q |Uε(y)|q
|x − y|μ dxdy.

We are going to estimate A, B and C. By direct computation, we know, for ε < 1,

A ≥ ε−qC

∫
Bδ

∫
Bδ

1

(1 + | x
ε
|2) q

2 |x − y|μ(1 + | y
ε
|2) q

2
dxdy

= Cε6−μ−q

∫
B δ

ε

∫
B δ

ε

1

(1 + |x|2) q
2 |x − y|μ(1 + |y|2) q

2
dxdy

≥ O(ε6−μ−q)

∫
Bδ

∫
Bδ

1

(1 + |x|2) q
2 |x − y|μ(1 + |y|2) q

2
dxdy = O(ε6−μ−q),

B = εqC

∫
�\Bδ

∫
Bδ

1

(ε2 + |x|2) q
2 |x − y|μ(ε2 + |y|2) q

2
dxdy
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≤ O(εq)
( ∫
�\Bδ

1

(ε2 + |x|2) 3q
6−μ

dx
) 6−μ

6
(∫

Bδ

1

(ε2 + |y|2) 3q
6−μ

dy
) 6−μ

6

=O(ε
6−μ

2 )
( δ

ε∫
0

z2

(1 + z2)
3q

6−μ

dz
) 6−μ

6

≤ O(ε
6−μ

2 )
( +∞∫

0

z2

(1 + z2)
3q

6−μ

dz
) 6−μ

6 =O(ε
6−μ

2 ),

for each q >
6−μ

2 and

C= εqC

∫
B2δ\Bδ

∫
B2δ\Bδ

1

(ε2 + |x|2) q
2 |x − y|μ(ε2 + |y|2) q

2
dxdy

≤ εqC

∫
B2δ\Bδ

∫
B2δ\Bδ

1

|x|q |x − y|μ|y|q dxdy =O(εq).

(7.3)

From (7.2)–(7.3), we have∫
�

∫
�

|uε(x)|q |uε(y)|q
|x − y|μ dxdy ≥O(ε6−μ−q) −O(ε

6−μ
2 ) −O(εq)

=O(ε6−μ−q) −O(ε
6−μ

2 ).

Next, concerning the second assertion, we have

∫
R3

∫
R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy

≥
∫
Bδ

∫
Bδ

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy

=
∫
R3

∫
R3

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy − 2
∫

R3\Bδ

∫
Bδ

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy

−
∫

R3\Bδ

∫
R3\Bδ

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy

= C(3,μ)
3
2 S

6−μ
2

H,L − 2D−E,

(7.4)

where
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D=
∫

R3\Bδ

∫
Bδ

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy, E =
∫

R3\Bδ

∫
R3\Bδ

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy.

By direct computation, we know

D=
∫

R3\Bδ

∫
Bδ

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy

= ε6−μC

∫
R3\Bδ

∫
Bδ

1

(ε2 + |x|2) 6−μ
2 |x − y|μ(ε2 + |y|2) 6−μ

2

dxdy

≤ O(ε6−μ)

⎛⎜⎝ ∫
R3\Bδ

1

(ε2 + |x|2)3
dx

⎞⎟⎠
6−μ

6
⎛⎜⎝∫

Bδ

1

(ε2 + |y|2)3
dy

⎞⎟⎠
6−μ

6

≤ O(ε6−μ)

⎛⎜⎝ ∫
R3\Bδ

1

|x|6 dx

⎞⎟⎠
6−μ

6 ⎛⎝ δ∫
0

r2

(ε2 + r2)3
dr

⎞⎠
6−μ

6

≤ O(ε
6−μ

2 )

and

E =
∫

R3\Bδ

∫
R3\Bδ

|Uε(x)|6−μ|Uε(y)|6−μ

|x − y|μ dxdy

= ε6−μC

∫
R3\Bδ

∫
R3\Bδ

1

(ε2 + |x|2) 6−μ
2 |x − y|μ(ε2 + |y|2) 6−μ

2

dxdy

≤ ε6−μC

∫
R3\Bδ

∫
R3\Bδ

1

|x|6−μ|x − y|μ|y|6−μ
dxdy =O(ε6−μ).

(7.5)

It follows from (7.4) to (7.5) that∫
R3

∫
R3

|uε(x)|6−μ|uε(y)|6−μ

|x − y|μ dxdy ≥ C(3,μ)
3
2 S

6−μ
2

H,L −O(ε
6−μ

2 ) −O(ε6−μ)

= C(3,μ)
3
2 S

6−μ
2

H,L −O(ε
6−μ

2 ).

This concludes the proof. �
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