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Abstract. We study a class of indefinite Schrödinger equations coupled with the Chern-Simons theory−∆u+ Vω(|x|)u+ λ

(ˆ ∞

|x|

hu(s)

s
u2(s)ds+

h2
u(|x|)
|x|2

)
u = g(x, u) in R2,

u(x) = u(|x|),

where Vω(|x|) = |x|2−ω with ω ∈ R such that the operator−∆+Vω is invertible and hu(s) =
´ s

0
r
2
u2(r)dr.

If g fulfills the supercritical exponential growth at infinity in the Trudinger-Moser sense, due to a subtle
truncation argument, we take advantage of some analytic techniques and the elliptic regularity theory to
deduce that this equation admits a nontrivial solution for all sufficiently small λ > 0 by using variational

method. If g(x, u) = ξ(x)|u|p−2u with ξ ∈ L
2

2−p (R2) and 1 < p < 2, as applications of the arguments
above, we conclude the existence of infinitely many nontrivial solutions whose energies converge to 0 for
λ > 0 small enough. As far as we know, the results above have not been considered yet in the literature.

1. Introduction and main results

In this article, we mainly focus on the existence and multiplicity results for a class of gauged nonlinear
Schrödinger equations

(1.1)

−∆u+ Vω(|x|)u+ λ

(ˆ ∞

|x|

hu(s)

s
u2(s)ds+

h2u(|x|)
|x|2

)
u = g(x, u) in R2,

u(x) = u(|x|),

where the indefinite potential Vω(|x|) = |x|2−ω satisfies that the constant ω > 0 is sufficiently large to
make the operator −∆+ Vω non-degenerate and hu(s) =

´ s
0

r
2u

2(r)dr.
The study of equation (1.1) is mainly motivated by the Chern-Simons-Schrödinger system introduced

in [24,25]

(1.2)


iD0ϕ+ (D1D1 +D2D2)ϕ+ ϱ(ϕ) = 0,

∂0A1 − ∂1A0 = −Im(ϕD2ϕ),

∂0A2 − ∂2A0 = Im(ϕD1ϕ),
∂1A2 − ∂2A1 = −1

2 |ϕ|
2.

This system consists of the nonlinear Schrödinger equation augmented by the gauge field Aj : R1+2 → R,
where i denotes the imaginary unit, ϕ : R1+2 → C represents the complex scalar field and ∂0 = ∂/∂t,
∂1 = ∂/∂x1, ∂2 = ∂/∂x2 for (t, x1, x2) ∈ R1+2 as well as Dj = ∂jiAj stands for the covariant derivative
for j = 0, 1, 2. Given a χ ∈ C∞0 (R1+2), system (1.2) is invariant under the gauge transformation

ϕ→ ϕeiχ, Aj → Aj − ∂jχ,
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due to the celebrated Chern-Simons theory [16].
As a matter of fact, there are a lot of interesting applications of this model in the high-temperature

superconductor, Aharovnov-Bohm scattering and quantum Hall effect, see e.g. [24–26] in detail. For
some other further physical motivations on (1.2), we refer the reader to [16,21,35,36] and the references
therein. To explore the existence of standing waves of system (1.2), the ansatz ϕ(t, x) = u(x) exp(−iωt)
with ω ∈ R and x ∈ R2 is usually considered, where u is radially symmetric or not.

If u is radially symmetric, Byeon, Huh and Seok [8] investigated the existence of solutions of type

(1.3) A0(t, x) = k(|x|), A1(t, x) =
x2
|x|2

h(|x|), A2(t, x) =
x1
|x|2

h(|x|),

where ω > 0 symbols as the frequency and u, k, h are real value functions depending only on |x|. Note
that (1.3) satisfies the Coulomb gauge condition with χ = ct+ nπ, where n is an integer and c is a
real constant. Indeed, inserting (1.3) into (1.2), it can be reduced to the following semilinear elliptic
equation

(1.4) −∆u+ (ω + ζ)u+

(ˆ ∞

|x|

h(s)

s
u2(s)ds+

h2(|x|)
|x|2

)
u = ϱ(u) in R2,

where ϱ(u) = λ̄|u|p−2u with λ̄ > 0, h(s) =
´ s
0

r
2u

2(r)dr, and ζ ∈ R stands for an integration constant
of A0 which takes the form

A0(r) = ζ +

ˆ ∞

r

h(s)

s
u2(s)ds.

Since the constant ω + ζ is a gauge invariant of the stationary solutions, one might take ζ = 0 in (1.4)
for simplicity in what follows and thereby lim

|x|→∞
A0(x) = 0 which was assumed in [6, 24, 41]. If ū solves

(1.4), inspired by [14], u = λ
1

p−2 ū satisfies

(1.5) −∆u+ ωu+ λ

(ˆ ∞

|x|

h(s)

s
u2(s)ds+

h2(|x|)
|x|2

)
u = |u|p−2u in R2,

where λ = λ̄
− 4

p−2 . Over the past several decades, Eq. (1.5) and its variants have attracted considerable
attentions due to the appearance of the nonlocal Chern-Simons term

(1.6)

ˆ ∞

|x|

h(s)

s
u2(s)ds+

h2(|x|)
|x|2

,

which indicates that it is not a pointwise identity any longer. In [8], Byeon et al. obtained the existence
of ground state solutions for all p > 4 by means of a suitable constraint minimization method, existence
and nonexistence of nontrivial solutions depending on λ > 0 for p = 4, and the existence of minimizers
under L2-constraint for all p ∈ (2, 4). In the meanwhile, Pomponio and Ruiz [41] concluded that there
is a sharp constant ω0 > 0 such that the corresponding variational functional to Eq. (1.5) is bounded
from below if ω ≥ ω0 and not bounded from below for every ω ∈ (0, ω0) with p ∈ (2, 4). Concerning a
more general nonlinearity in (1.5), namely replacing |u|p−2u with f(u), the authors in [11] investigated
the multiplicity results when f satisfies the planar version of Berestycki-Lions type assumptions. As a
matter of fact, they especially supposed that

(f̄1) f ∈ C(R,R) is an odd function;

(f̄2) lim sup
s→∞

f(s)

eαs2
≤ 0 for all α > 0;

(f̄3) −∞ < lim inf
s→∞

f(s)

s
≤ lim sup

s→∞

f(s)

s
< 0;

(f̄4) There exists a ζ0 > 0 such that F (ζ0) > 0, where and in the sequel F (s) =

ˆ s

0
f(t)dt.
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With aid of a particular truncation argument, the authors in [11] obtained the multiplicity of nontrivial
solutions by using the Symmetric mountain-pass theorem. We remark that the assumption (f̄2) reveals
that the nonlinearity f possesses the subcritical exponential growth at infinity in the Trudinger-Moser
sense. There are some other results on (1.5), we refer the reader to [4, 14, 20, 23, 27, 29, 32, 37, 44–47,51,
52,59–62] and the references therein for example even if these references are far to be exhaustive.

If u is non-radially symmetric, instead, it seems more complex to contemplate (1.2) to some extent.
Generally speaking, mathematicians usually consider the case Aj(t, x) = Aj(x) for all (t, x1, x2) ∈ R1+2

and j = 0, 1, 2 for simplicity. Owing to this, Eq. (1.2) is reduced to be the following form of type

(1.7)


−∆u+ ωu+A0u+

2∑
j=1

A2
ju = f(x, u),

∂1A2 − ∂2A1 = −
1

2
|u|2,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2.

Let Aj satisfy the Coulomb gauge condition
∑2

j=0 ∂jAj = 0, then (1.7) becomes

(1.8)


−∆u+ ωu+A0u+

2∑
j=1

A2
ju = f(x, u),

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
∂1A2 − ∂2A1 = −

1

2
|u|2, ∂1A1 + ∂2A2 = 0.

Combining ∂1A0 = A2|u|2 and ∂2A0 = −A1|u|2 in (1.8), one has that

∆A0 = ∂1
(
A2|u|2

)
− ∂2

(
A1|u|2

)
,

leading to

A0[u](x) =
x1

2π|x|2
∗
(
A2|u|2

)
− x2

2π|x|2
∗
(
A1|u|2

)
.

It follows from ∂1A2 − ∂2A1 = −1
2 |u|

2 and ∂1A1 + ∂2A2 = 0 in (1.8) to derive

∆A1 = ∂2

(
|u|2

2

)
and ∆A2 = −∂1

(
|u|2

2

)
.

As a consequence, one might observe that the components Aj for j = 1, 2 in (1.8) can be represented as

(1.9)


A1[u](x) =

x2
2π|x|2

∗
(
|u|2

2

)
= − 1

4π

ˆ
R2

(x2 − y2)u2(y)
|x− y|2

dy,

A2[u](x) = −
x1

2π|x|2
∗
(
|u|2

2

)
=

1

4π

ˆ
R2

(x1 − y1)u2(y)
|x− y|2

dy.

With (1.9) in hands, then we are able to deal with the system (1.8) using variational methods and so it
has received many attentions which can be found in [10,19,21,22,30,49,50,58] the references therein.

According to our best knowledge, it seems that the first attempt on system (1.8) in R2 is due to [22],
where the existence of infinitely many solutions was established for f(x, u) = |u|p−2u with p > 6. After
that, with the help of the constraint minimization method, Wan and Tan [54] concluded a ground state
solution of Nehari-Pohoz̆aev type for f(x, u) = |u|p−2u with 4 < p ≤ 6. What’s more, Gou and Zhang
in [19] considered the case f(x, u) = |u|p−2u with p > 2 for the existence of L2-normalized solutions to
system (1.8). In reality, there exist also a lot of other interesting generalizations and improvements
related to the variants of system (1.8) including a non-constant potential. Explaining it more clearly,
replacing ω with a potential V : R2 → R. For example, if V is positive and satisfies the Rabinowitz
type condition, the authors in [55] established the existence of semi-classical solutions to this system
when f(x, u) = |u|p−2u with p > 6, see e.g. [10] and the references therein.
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Very recently, Pomponio, Shen, Zeng and Zhang [42] especially obtained the existence and multiplicity
of nontrivial solution for system (1.8) with an indefinite potential. As a matter of fact, they studied
particularly the following system

(1.10)


−∆u+ [V (x)− ω]u+A0u+

2∑
j=1

A2
ju = f(x, u),

∂1A2 − ∂2A1 = −
1

2
|u|2, ∂1A1 + ∂2A2 = 0, A1∂1u+A2∂2u = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
where the assumptions on the potential V and the nonlinearity f are supposed to satisfy

(V ) V ∈ C(R2,R) with V (x) ≥ 0 on R2 and lim inf
|x|→∞

V (x) = +∞.

(f̃1) f(x, t) ∈ C(R2 × R) and there exist two constants C1 > 0 and p > 6 such that

|f(x, t)| ≤ C1(|t|+ |t|p−1), ∀(x, t) ∈ R2 × R;

(f̃2) f(x, t)t ≥ 6F (x, t) ≥ 0 for all (x, t) ∈ R2 × R and

(1.11) lim
|t|→+∞

f(x, t)t− 6F (x, t)

t6
= +∞ uniformly in x ∈ R2.

They proved the following existence results.

Theorem 1.1. Suppose (V ) and (f̃1)− (f̃2),

(i) if f(x, t) = o(t) as t→ 0+ uniformly in x ∈ R2 in addition, then system (1.10) has a nontrivial
solution;

(ii) if f(x,−t) = −f(x, t) for all (x, t) ∈ R2×R in addition, then system (1.10) has infinitely many
nontrivial solutions whose energies converge to +∞.

We would like to mention here that the existence result exhibited in Theorem 1.1-(i) has also been
explored in [28,30], where the nonlinearity f satisfies several slightly different conditions. Nevertheless,
it should be emphasized that these articles including [42] strongly depend on the local linking argument
because of the Chern-Simons term. Unfortunately, as pointed out in [28], the corresponding variational
functional is required to satisfy the global compactness condition whenever the critical point theorem
involving local linking structure is applied up to now. As a consequence, there seems no related results
for the case that f admits the critical, or even supercritical exponential growth which shall be explained
later. Last but not the least, the assumption (f̃2) and its mild modification play crucial role in verifying
that every (C) sequence is uniformly bounded. In a word, we shall try our best to introduce some new
techniques to consider the mentioned issues above in this paper.

The reader is invited to observe that the spatial dimension of (1.5) and (1.8), is two, therefore the
case is special and quite delicate. Since the Sobolev embedding theorem ensures H1

0 (Ω) ↪→ Lq(Ω) with
q ∈ [1,∞) for every bounded domain Ω ⊂ R2, but H1

0 (Ω) ̸↪→ L∞(Ω), to get rid of the obstacle in the
limiting case, the Trudinger-Moser inequality [39, 40,53] seems to be an ideal candidate as it exhibits
the sharp maximal exponential integrability for functions in H1

0 (Ω):

(1.12) sup
u∈H1

0 (Ω):∥∇u∥L2(Ω)≤1

ˆ
Ω
eαu

2
dx ≤ C|Ω|, if α ≤ 4π,

where the constant C > 0 relies only on α, and |Ω| denotes the Lebesgue measure of Ω. Subsequently,
this inequality was improved by P. L. Lions in [34]: Let (un) be a sequence of functions in H1

0 (Ω) with
∥∇un∥L2(Ω) = 1 such that un ⇀ u0 weakly in H1

0 (Ω), then for all p < 1
(1−∥∇u0∥2

L2(Ω)
)
, it holds that

lim sup
n→∞

ˆ
Ω
e4πpu

2
ndx < +∞.
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Motivated by the Trudinger-Moser type inequality, we say that a function f(·, s) has critical exponential
growth at infinity in the Trudinger-Moser sense if there is a constant α0 > 0 such that

(1.13) lim
|s|→+∞

|f(x, s)|
eαs2

=

{
0, ∀α > α0,
+∞, ∀α < α0,

uniformly in x ∈ R2.

This definition was introduced by Adimurthi and Yadava [1], see also de Figueiredo, Miyagaki and
Ruf [17] for example.

Whereas, the supremum in (1.12) would become infinite for the domain Ω with |Ω| =∞ and thereby
the Trudinger-Moser inequality seems unavailable for the unbounded domains. As to the whole space
R2, authors in [7, 9] developed the following Trudinger-Moser inequality:ˆ

R2

(
eαu

2 − 1
)
dx < +∞, ∀α > 0 and u ∈ H1(R2).

Moreover, for all u ∈ H1(R2) with ∥u∥L2(R2) ≤M < +∞, there is a C = C(M,α) > 0 such that

(1.14) sup
u∈H1(R2):∥∇u∥L2(R2)≤1

ˆ
R2

(
eαu

2 − 1
)
dx ≤ C if α < 4π.

Concerning some other generalizations, extensions and applications of the Trudinger-Moser inequalities
for bounded and unbounded domains, we refer to [17] and the references therein. Let us note here that
this inequality due to Cao [9] keeps effective for α < 4π, i.e. with subcritical growth. For the sharp
case, based on symmetrization and blow-up analysis, Ruf [43], Li and Ruf [33] proved that

sup
u∈W 1,N

0 (RN ):∥u∥N
LN+∥∇u∥N

LN≤1

ˆ
RN

(
eα|u|

N
N−1 −

N−2∑
k=0

αk|u|kN/(N−1)

k!

)
dx <∞, if α ≤ αN ,

by replacing the LN -norm of ∇u in the supremum with the standard Sobolev norm. This inequality
was also generalized by de Souza and do Ó [13] for N = 2.

Associated with the so-called supercritical exponential growth at infinity in the Trudinger-Moser sense
on a nonlinearity, there exist some diverse understandings in several directions, see [2, 3, 12, 18, 38, 46]
and their references therein for example. In this article, we shall retrace the previous papers [2, 3, 46].
Explaining it more explicitly, denoted G(x, ·) by the primitive of g(x, ·) for all x ∈ R2 throughout the
whole paper, we are supposing that

(1.15) G(x, t) = F (x, t)eσt
2
, ∀(x, t) ∈ R2 × R,

where and in the sequel F (x, t) =

ˆ t

0
f(x, s)ds with f : R2 × R→ R satisfying the critical exponential

growth at infinity in (1.13) and σ > 0. Obviously, we realize that the nonlinearity g has the supercritical
growth at infinity. As a matter of fact, this seems introduced firstly by Alves and Shen in [2,3]. According

to them, taking into account a suitable function ḡ(x, t) = eα|t|
τ
for all (x, t)×R2×R, our nonlinearity g

satisfying the supercritical exponential growth belongs to a special case of the following two alternatives

(1.16)

{
(I) τ > 2 is arbitrary and α > 0 is fixed;
(II) α > 0 is arbitrary and τ ≥ 2 is fixed.

What’s more, as pointed out in [3, Remark 1.11], one can call (I) and (II) the subcritical-supercritical
exponential growth and critical-supercritical exponential growth, respectively. As we can derive
from [2,3], the Case (I) keeps simpler to handle and so, throughout this paper, we shall always consider
the Case (II) if it refers to the supercritical exponential growth. As a consequence, one of main purposes
in this paper is to investigate the existence of nontrivial solutions for the gauged Schrödinger equations
with supercritical exponential growth. To this end, we are going to suppose that f : R2 × R→ R is a
continuous function satisfying f(x, t) ≡ 0 for all t ≤ 0 and the following assumptions
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(f1) f(x, t) = o(t) as t→ 0+ uniformly in x ∈ R2;
(f2) There is a θ > 2 such that f(x, t)t ≥ θF (x, t) ≥ 0 for all (x, t) ∈ R2 × R and

(1.17) lim
|t|→+∞

F (x, t)

t2
= +∞ uniformly in x ∈ R2.

(f3) There exist some constants t̂0 > 0 and M0 > 0 such that

0 < F (x, t) ≤M0f(x, t), ∀(x, t) ∈ R2 × [t̂0,+∞);

(f4) There exist some constants β0 > 0 and ϑ ∈ [0, 1] such that

lim inf
t→+∞

tϑf(x, t)

eα0t2
≥ β0

{
> 0, if ϑ ∈ [0, 1),
= +∞, if ϑ = 1,

uniformly in x ∈ R2.

Our first main result is concerned with the existence of a nontrivial solution for Eq. (1.1).

Theorem 1.2. Let g satisfy (1.15) with (1.13) and suppose (f1)− (f4). Then, given some large ω > 0
such that the operator −∆+ Vω is non-degenerate, there exist some σ∗ > 0 and λ∗ > 0 such that Eq.
(1.1) admits at least a nontrivial solution for all σ ∈ (0, σ∗) and λ ∈ (0, λ∗).

Remark 1.3. As far as we know, there seems no related results for gauged Schrödinger equations with
indefinite potential and supercritical exponential growth. As a matter of fact, apart from [46,48,51], A
very few attempts have been made currently to adapt the supercritical exponential growth to the Chern-
Simons-Schrödinger equations. On the one hand, the truncation argument exploited in [2, 3, 46,51] is
unapplicable any longer because it would fail to demonstrate the linking structures of the corresponding
variational functional which also leads to the failure of the aforementioned approach utilized in [11].
On the other hand, because of the indefinite potential, we are unable to repeat the methods introduced
in [48] to arrive at the proof of Theorem 1.2, either. Regardless of taking the indefinite potential into
account, we make use of a weak version of Ambrosetti-Rabinowitz type condition in (f2) above, instead

of ϑ = 6 in (f̃2) in [42]. Consequently, some subtle ideas have been proposed in this article to certificate
that every (C) sequence is uniformly bounded and contains a strongly convergent subsequence. What’s
more, in order to make the L∞-estimate for the obtained solution, we shall have to carry on some more
delicate and careful analyses caused by the indefinite feature in our problem.

Remark 1.4. In contrast to [28,30,42], to the best knowledge of us, the consideration of Theorem 1.2
provides some conspicuously interesting contributions below

(1) We succeed in deriving the existence of a nontrivial solution of the indefinite gauged Schrödinger
equation with (super)critical exponential growth which has not been studied yet in the literature.

(2) Let us date back to the conditions (f̃2) and (f2), hence it has been relaxed the restriction on f

to a large extent. Nevertheless, one can never improve (f̃2) completely by (f2) since it seems
impossible to suppose in our problem that ϑ = 2 and

lim
|t|→+∞

f(x, t)t− 2F (x, t)

t2
= +∞ uniformly in x ∈ R2.

(3) Despite disposing of the indefinite case, we are capable of imposing the “almost optimal” growth
condition (f4) on the nonlinearity to restore the compactness.

The next goal in this article is to investigate the multiplicity results for Eq. (1.1) and it should be
regarded as a supplement of Theorem 1.1-(ii) to some extent.

Theorem 1.5. Let g(x, t) = ξ(x)|t|p−2t with 0 ≤ ξ ∈ L
2

2−p (R2) and 1 < p < 2 for all (x, t) ∈ R2 × R.
Then, given some large ω > 0 such that the operator −∆+Vω is non-degenerate, there exist a constants
λ∗ > 0 such that for all λ ∈ (0, λ∗), Eq. (1.1) admits infinitely many nontrivial solutions (um) whose
energies converge to 0 as m→ +∞.
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As a matter of fact, by making some straightforward adjustments, we are capable of taking advantage
of the methods adopted in Theorem 1.5 to conclude the following result without detailed proof.

Corollary 1.6. Let σ ≡ 0 in (1.15). Suppose |f(x, t)| ≤ ξ(x)|t|p−1 with ξ ∈ L
2

2−p (R2) and 1 < p < 2
for all (x, t) ∈ R2 × R as well as

(f0) there is a constant 1 < ν < 2 such that

0 ≤ f(x, t)t ≤ νF (x, t) for all (x, t) ∈ R2 × R.
If f(x,−t) = −f(x, t) for all (x, t) ∈ R2×R in addition, then, for all large ω > 0 such that the operator

−∆+ Vω is non-degenerate, there exist a constant λ̂∗ > 0 such that for all λ ∈ (0, λ̂∗), Eq. (1.1) has
infinitely many nontrivial solutions (um) whose energies converge to 0 as m→ +∞.

Remark 1.7. We know that the condition (f0) indicates that the nonlinearity f possesses the subcritical
exponential growth at infinity in the Trudinger-Moser sense and it has been supposed in [28,30]. Since
we depend on a new generalized fountain theorem developed by Ding and Dong [15] to derive the proof
of Theorem 1.5, it is extremely required to verify the corresponding variational functional satisfies
the global compactness condition and thus we are unable to establish the existence of infinitely many
nontrivial solutions for the indefinite gauged Schrödinger equations with (super)critical exponential
growth at present. Alternatively, what we would like to point out here is that this is solvable when
ω ≤ 0, or ω > 0 is sufficiently small, see [48, Theorem 1.3] in detail. In consideration of the significant
differences, there are some additional efforts to arrive at the proof of Theorem 1.5.

Remark 1.8. As the reader might observe that the results in Theorem 1.2 and Theorem 1.5 are true
provided that the parameter λ > 0 is small enough. It seems very natural to wonder that whether these
results would remain valid for all arbitrary λ > 0 or not, and we are working hard in this direction. In
fact, there are also some other interesting questions worth further explorations which shall be collected
as follows

• Can we replace the potential Vω with a more general one? In other words, if Vω is continuous
and periodic as well as −∆+ Vω is inevitable, does Eq. (1.1) admit a nontrivial solution?
• Can we demonstrate some similar existence and multiplicity results concluded in Theorem 1.2
and Theorem 1.5 for the Chern-Simons-Schrödinger system like (1.10)?
• Can we establish the multiplicity results in Theorem 1.5 when ξ(x) ≡ 1 and 2 < p < +∞?
• What happens when the sufficiently large ω > 0 satisfies the operator −∆+ Vω to be generate
in Theorem 1.2 and Theorem 1.5?

We note that, up to our best knowledge, it is the first time to deal with the existence and multiplicity
results for a class of gauged nonlinear Schrödinger equations with indefinite potential and less restrictive
nonlinearities. It seems standard to consider the indefinite problem via using linking argument by now,
but we would like to highlight here that there are two fundamental difficulties arising in Theorems 1.2
and 1.5. On the one hand, because of the appearances of the Chern-Simons term and the supercritical
exponential case in Theorem 1.2, it seems technical to introduce a suitable truncation argument to
ensure that the corresponding variational functional is well-defined and of class C1 and it possesses the
global linking structures at the same time. Motivated by [48], there is a such one but we are confronted
with the barrier of how to conclude that every (C) sequence is uniformly bounded. On the other hand,
in light of the operator −∆+Vω is non-degenerate, we cannot adapt directly the L∞-estimate explored
in [48] to our problems. Therefore, we prefer to regard it as one of the most striking novelties in this
paper.

Again the results established in Theorem 1.2 and Theorem 1.5 are new in some sense that we discuss
the existence and multiplicity results for indefinite gauged nonlinear Schrödinger equation with a wider
class of nonlinearities. We anticipate that our results would prompt some extensive applications on
related topics.
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The outline of this article is organized as follows. In Section 2, some preliminary results including
the truncation argument are provided and will be used frequently in the whole paper. Sections 3 and 4
are focused on the proofs of Theorem 1.2 and Theorem 1.5, respectively.

Notations: From now on in this paper, otherwise mentioned, we ultilize the following notations:

• C, C1, C2, · · · denote any positive constant, whose value is not relevant and R+ ≜ (0,+∞).
• Let (Z, ∥ · ∥Z) be a Banach space with dual space (Z−1, ∥ · ∥Z−1), and Ψ be functional on Z.
• The Cerami sequence at a level c ∈ R ((C)c sequence in short) corresponding to Φ means that
Φ(xn)→ c and (1 + ∥xn∥Z)∥Φ′(xn)∥Z−1 → 0 as n→∞, where {xn} ⊂ Z.
• For any ϱ > 0 and every x ∈ R2, Bϱ(x) ≜ {y ∈ R2 : |y − x| < ϱ}.
• | · |p denotes the usual norm of the Lebesgue space Ω, for every p ∈ [1,∞], where Ω ⊂ R2.
• H1(R2) represents the usual Sobolev space equipped with the standard norm so that it is the
completion of C∞

0 (R2).

• Let H1
r (R2) = {u ∈ H1(R2) : u(x) = u(|x|)} and its norm is labeled by ∥ · ∥ =

√
|∇ · |22 + | · |22.

• ok(1) denotes the real sequences by ok(1)→ 0 as k → +∞.
• “ → ” and “ ⇀ ” stand for the strong and weak convergence in the related function spaces,
respectively.

2. Variational Framework and Preliminaries

In this section, on the one hand, we shall formulate the variational structures for our problems and
on the other hand, there rare some preliminary results which shall be crucial in the next sections.

To look for nontrivial solutions associated with Eq. (1.1), due to a variational method point of view,
it will be found critical points for the corresponding variational functional. So, as a start, we need to
introduce the work space adopted in the whole paper. Let us define

X ≜

{
u ∈ L1

loc(R2) :

ˆ
R2

|∇u|2dx < +∞ and

ˆ
R2

|x|2|u|2dx < +∞
}

and it is an Hilbert space equipped with the norm

∥ · ∥X =

[ˆ
R2

(
|∇ · |2 + |x|2| · |2

)
dx

] 1
2

.

It is widely known that Xr can be continuously imbedded into H1
r (R2) and compactly imbedded into

Lq(R2) for all 2 ≤ q < +∞, where and in the sequel Xr = {u ∈ X : u(x) = u(|x|)}.
According to the compactness of the imbedding Xr ↪→ L2(R2), by virtute of the spectral theory of

self-adjoint compact operators, one sees that the eigenvalue problem

(2.1) −∆u+ |x|2u = µ̂u, u ∈ Xr,

admits a complete sequence of eigenvalues

0 < µ̂1 ≤ µ̂2 ≤ · · · , µ̂j → +∞ as j → +∞,
where each µ̂j has been repeated in the sequence due to its finite multiplicity. Moreover, we denote by
ϕj the eigenfunction of µ̂j . Taking µ̂j → +∞ as j → +∞ into account, for all ω > 0, there is a j0 ∈ N+

such that 0 < µ̂1 ≤ µ̂2 ≤ · · · ≤ µ̂j0 < ω < µ̂j0+1 ≤ · · · since ω > 0 satisfies the operator −∆+ Vω(|x|)
is non-degenerate. Setting

X−
r = span{ϕ1, ϕ2, · · ·ϕj0} and X+

r ≜
(
X−

r

)⊥
and so Xr = X−

r

⊕
X+

r . Accordingly, there are some constants µ± > 0 such that

(2.2) ±
ˆ
R2

[
|∇u|2 + Vω(|x|)u2

]
dx ≥ µ±∥u∥2X , ∀u ∈ X±

r .
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Now, we recall the related Euler-Lagrange functional J : Xr → R of Eq. (1.1) which is defined by

J(u) =
1

2

ˆ
R2

[
|∇u|2 + Vω(|x|)u2

]
dx+

λ

2
N(u)−

ˆ
R2

G(x, u)dx,

where the functional N : H1
r (R2)→ R is given by

(2.3) N(u) =

ˆ
R2

u2

|x|2

(ˆ |x|

0

s

2
u2(s)ds

)2

dx.

In view of [8, Proposition 2.2], we can deduce that N is of class C1(H1
r (R2),R). Unfortunately, it seems

impossible to verify that J belongs to C1(Xr,R) because of the nonlinearity G involving supercritical
exponential growth. In spirit of [48], we are going to take advantage of the subtle truncation argument
to overcome this difficulty. Explaining it more clearly, for each n ∈ N+, let us first define

(2.4) ηn(t) = η

(
t

n

)
, Fn(t) = t2ηn(t) and F′

n(t) = fn(t), ∀t ∈ R,

where η ∈ C∞0 (R2) denotes an even function with 0 ≤ η ≤ 1 and satisfies

η(t) =

{
1, |t| ≤ 1,
0, |t| ≥ 2,

with |η′(t)| ≤ 2, ∀t ∈ R.

With ηn in hands, we are able to replace G and g in Eq. (1.1) with

(2.5) Gn(x, t) ≜ F (x, t)eσFn(t), ∀t ∈ R

and Gn(x, t) =

ˆ t

0
gn(x, s)ds, respectively. In the meanwhile, in light of the linking structures, we set

hu,n(s) =

ˆ s

0

r

2
Fn(u(r))dr, ∀u ∈ H1

r (R2).

At this stage, we shall contemplate the following auxiliary semilinear elliptic equation

(2.6) −∆u+ Vω(|x|)u+ λ

(ˆ ∞

|x|

hu,n(s)

s
Fn(u(s))ds+

h2u,n(|x|)
|x|2

)
fn(u)

2
= gn(x, u) in R2,

As we shall conclude later, Eq. (2.6) possesses a variational structure and, for all n ∈ N+, its variational
functional Jn : Xr → R is defined by

Jn(u) =
1

2

ˆ
R2

[
|∇u|2 + Vω(|x|)u2

]
dx+

λ

2

ˆ
R2

Fn(u)

|x|2

(ˆ |x|

0

s

2
Fn (u(s)) ds

)2

dx−
ˆ
R2

Gn(x, u)dx.

In what follows, we will also certify that Jn is not only well-defined, but also belongs to C1(Xr,R). As
a consequence, each critical point of Jn is in fact a (weak) solution of Eq. (2.6). Moreover, according
to the definition of ηn in (2.4), every nontrivial critical point, saying it u, of Jn satisfying |u|∞ < n, is
a nontrivial solution of Eq. (1.1).

Next, we mainly focus on the two modified terms above that permit us to treat Eq. (2.6) variationally.
To begin with, motivated by [48], it is simple to derive that there are the following facts

(2.7) 0 ≤ Fn(t) ≤ 4n2 and |fn(t)| ≤ 12n, ∀n ∈ N+ and t ∈ R,
and

(2.8) 0 ≤ Fn(t) ≤ t2 and |fn(t)| ≤ 6|t|, ∀n ∈ N+ and t ∈ R.
With aid of (2.7) and (2.8), there is a constant Cθ > 0 which is only dependent of θ in (f2) that

(2.9) |θFn(t)− 2fn(t)t| ≤ Cθt2, ∀n ∈ N+ and t ∈ R.
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On the one hand, we are concerned with the modified Chern-Simons term Nn : H1
r (R2)→ R for all

n ∈ N+ below

Nn(u) ≜
ˆ
R2

Fn(u)

|x|2

(ˆ |x|

0

s

2
Fn (u(s)) ds

)2

dx.

Lemma 2.1. For all n ∈ N+, we have the following conclusions:

(i) Nn(u) ≤ N(u) for all u ∈ H1
r (R2) and thus Nn is well-defined. Besides, Nn is of class C1 and,

for all ψ ∈ H1
r (R2), its derivative is characterized as

N ′
n(u)(ψ) = 2

ˆ
R2

Fn(u)

|x|2

(ˆ |x|

0

s

2
Fn (u(s)) ds

)(ˆ |x|

0

s

2
fn (u(s))ψ(s)ds

)
dx

+

ˆ
R2

fn(u)ψ

|x|2

(ˆ |x|

0

s

2
Fn (u(s)) ds

)2

dx.

(ii) Suppose uk ⇀ u in H1
r (R2) as k →∞, then, going to some subsequences if necessary, for all

n ∈ N+ and ψ ∈ H1
r (R2),

Nn(uk)→ Nn(u), N
′
n(uk)(uk)→ N ′

n(u)(u) and N
′
n(uk)(ψ)→ N ′

n(u)(ψ).

(iii) There exists a constant T2 > 0, which is only dependent of the imbedding constant of X ↪→
L2(R2), such that Nn(u) ≤ T2n

4∥u∥2X and |N ′
n(u)(u)| ≤ T2n

4∥u∥2X .
(iv) Let T2 > 0 above be sufficiently large if necessary, then |θNn(u)− 2N ′

n(u)(u)| ≤ T2n
4∥u∥2X .

Proof. We shall omit the details and the reader can refer to [48, Lemmas 2.2, 2.4 and 2.5]. □

On the other hand, let us focus on the modified nonlinearities gn and Gn for all n ∈ N+.

Lemma 2.2. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, for all n ∈ N+,
we have the following conclusions:

(g1) gn(x, t) = o(t) as t→ 0+ uniformly in x ∈ R2 and n ∈ N+;
(g2) There is a σ1 > 0 such that for all σ ∈ (0, σ1), then it holds that gn(x, t)t− θGn(x, t) ≥ − θ−2

8T2
2
t2

for all (x, t) ∈ R2 × R. Moreover, for all σ > 0,

(2.10) lim
|t|→+∞

Gn(x, t)

t2
= +∞ uniformly in x ∈ R2 and n ∈ N+.

(g3) There is a σ2 > 0 such that for all σ ∈ (0, σ2), we have for t̂0 > 0 and M0 > 0 in (f3),

0 < Gn(x, t) ≤ 2M0gn(x, t), ∀(x, t) ∈ R2 × [t̂0,+∞) and n ∈ N+;

(g4) Given a σ ∈ (0, σ2), then for all β0 > 0 and ϑ ∈ [0, 1] in (f4), it holds that

lim inf
t→+∞

tϑgn(x, t)

eα0t2
≥ β0

2

{
> 0, if ϑ ∈ [0, 1),
= +∞, if ϑ = 1,

uniformly in x ∈ R2 and n ∈ N+.

Proof. It follows from the definition of Gn defined in (2.5) that

gn(x, t) = [f(x, t) + σF (x, t)fn(t)] e
σFn(t), ∀(x, t) ∈ R2 × R.

Obviously, taking (f1) in (2.8) into account, we have the point (g1). In order to deduce point (g2), due
to (1.13) and (f1), for all ϵ > 0 and α > α0, there is a constant Cϵ > 0 such that

(2.11) |f(x, t)| ≤ ϵ|t|+ Cϵ|t|q̄−1
(
eαt

2 − 1
)
, ∀(x, t) ∈ R2 × R,

where q̄ ≥ 2 can be arbitrarily chosen later. Using (f2), there holds

(2.12) |F (x, t)| ≤ ϵ|t|2 + Cϵ|t|q̄
(
eαt

2 − 1
)
, ∀(x, t) ∈ R2 × R.
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Moreover, without mentioning any longer, let us exploit directly the following inequality (see e.g. [57,
Lemma 2.1]): (

eαt
2 − 1

)m
≤
(
eαmt2 − 1

)
, ∀t ∈ R, α > 0 and m > 1.

Choosing ϵ = 1 and q̄ = 2 in (2.11), we apply (f2) and (2.7) to get

gn(x, t)t− θGn(x, t) = [f(x, t)t− θF (x, t) + σF (x, t)fn(t)t] e
σFn(t)

≥ σF (x, t)fn(t)teσFn(t) ≥ −σF (x, t)|fn(t)t|e4σn
2

≥ −24C1σn2
(
e4αn

2 − 1
)
e4σn

2
t2,

where C1 > 0 is independent of n ∈ N+. As a consequence, we define

σ1 ≜ min

{
1

4n2
,

θ − 2

192C1T2
2en

2
(
e4αn2 − 1

)}
and then it yields the first part of point (g2) for all σ ∈ (0, σ1). Recalling (1.15) and (1.17), we see the
remaining part in point (g2) immediately. Combining (f2)− (f3) and (2.7), we set

σ2 =
1

24n

and so for all σ ∈ (0, σ2), it has that

gn(x, t) = f(x, t) + σF (x, t)fn(t) ≥ f(x, t)− 12σnF (x, t)

≥ (1− 12σn) f(x, t) ≥ 1

2
f(x, t)(2.13)

from where we adopt again (f3) to find that

Gn(x, t)

gn(x, t)
=

2F (x, t)

f(x, t)
≤ 2M0, ∀(x, t) ∈ R2 × [t̂0,+∞),

which is the desired point (g3). The point (g4) is an immediate consequence of (2.13) and (f4) for all
σ ∈ (0, σ2). The proof is completed. □

As some by-products of Lemma 2.2, we collect some growth conditions for the nonlinearities gn and
Gn for all n ∈ N+ as follows. For all σ ∈ (0, σ1), then

(2.14) |gn(x, t)| ≤ 7eϵ|t|+ 7eCϵ|t|q̄−1
(
eαt

2 − 1
)
, ∀(x, t) ∈ R2 × R,

and

(2.15) |Gn(x, t)| ≤ eϵ|t|2 + eCϵ|t|q̄
(
eαt

2 − 1
)
, ∀(x, t) ∈ R2 × R,

where the constants ϵ, Cϵ and q̄ are appearing in (2.11) and (2.12). To see them, we are derived from
(f2) and (2.7) that

gn(x, t) ≤ [1 + σ|fn(t)t|] f(x, t)eσFn(t)

≤
(
1 + 24σn2

)
f(x, t)e4σn

2

≤ 7ef(x, t), ∀(x, t) ∈ R2 × R,
provided σ ∈ (0, σ1). So, (2.14) and (2.15) conclude. As a consequence, we are able to make sure that
the functional Ψn : H1

r (R2)→ R defined by

Ψn(u) =

ˆ
R2

Gn(x, u)dx

is well-defined and of class of C1, see e.g. [48, Lemma 2.6] in detail.
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As this stage, gathering the discussions above, one shall demonstrate that the variational functional
Jn is well-defined and belongs to C1(Xr,R) which permit us to make full use of variational methods to
find nontrivial solution for Eq. (2.6). What’s more, it is elementary to take some calculations that the
derivative of Jn is given by

J ′
n(u)(ψ) =

ˆ
R2

[∇u∇ψ + Vω(|x|)uψ] dx+
λ

2

ˆ
R2

fn(u)ψ

|x|2

(ˆ |x|

0

s

2
Fn (u(s)) ds

)2

dx

+ λ

ˆ
R2

Fn(u)

|x|2

(ˆ |x|

0

s

2
Fn (u(s)) ds

)(ˆ |x|

0

s

2
fn (u(s))ψ(s)ds

)
dx−

ˆ
R2

gn(x, u)ψdx.

We conclude this section by the following convergent results related to the nonlinearity Gn and gn.

Lemma 2.3. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, for all n ∈ N+

and 0 < σ < min{σ1, σ2}, if (uk) ⊂ H1
r (R2) and uk ⇀ u in H1

r (R2) with

sup
k∈N+

ˆ
R2

gn(x, uk)ukdx < +∞,

then for all n ∈ N+, along a subsequence, it holds that

(2.16) lim
k→∞

ˆ
R2

Gn(x, uk)dx =

ˆ
R2

Gn(x, u)dx

Moreover, passing to a subsequence if necessary, there holds

(2.17) lim
k→∞

ˆ
R2

gn(x, uk)ψdx =

ˆ
R2

gn(x, u)ψdx for all ψ ∈ C∞
0 (R2).

Proof. With Lemma 2.2-(g3) and (2.14)-(2.15) in hands, the proof is standard and we onit it. □

3. Existence results for (super)critical problem

In this section, we shall investigate the existence results for the auxiliary semilinear elliptic equation
(2.6) under the assumptions (1.15) and (1.13) as well as (f1)− (f4) for all n ∈ N+.

The main result concerning Eq. (2.6) is the following:

Theorem 3.1. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, there exist
some constants σ0 > 0 and λ0 > 0 such that for all σ ∈ (0, σ0) and λ ∈ (0, λ0), Eq. (2.6) admits at
least a nontrivial solution for all n ∈ N+.

The proof of the above theorem will be divided into several lemmas.
First of all, due to the indefinite settings in this paper, we shall make full use of the following type

of linking theorem.

Proposition 3.2. (see [5]) Let X = Y
⊕

Z be an Hilbert space with dimY < ∞ and let z ∈ Z with
∥z∥X = 1 be fixed. Assume that Φ ∈ C1(X,R) satisfies there exist ρ̂ > ρ > 0 such that

inf
Sρ

Φ > sup
∂Q

Φ,

where
Sρ ≜ {u ∈ Z : ∥u∥X = ρ} and Q ≜ {v + sz : v ∈ Y, 0 ≤ s ≤ ρ̂, ∥v∥X ≤ ρ̂}.

Then, there exists a (C) sequence of Φ at the level

(3.1) c = inf
γ∈Γ

sup
u∈Q

Φ(γ(u)),

where
Γ = {γ ∈ C(Q,X) : γ|∂Q = id}.
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In order to apply Proposition 3.2, we set X = Xr with Y = X−
r and Z = X+

r since dimX−
r = j0 < +∞

in Section 2. Moreover, setting Φ = Jn ∈ C1(X,R) for all n ∈ N+, then we prove the following results
regarding the linking geometry structure.

Lemma 3.3. Let G be given by (1.15) and satisfy (1.13) as well as (f1)−(f4). Then, for all σ ∈ (0, σ1),
there is a ρ > 0 independent of σ and n ∈ N+ such that

inf
Sρ

Jn > 0,

for all n ∈ N+, where Sρ ≜ {u ∈ X+
r : ∥u∥X = ρ}.

Proof. Recalling (2.15), if ∥u∥2X <
2π

α
, then for all u ∈ X, (1.14) shows that

ˆ
R2

Gn(x, u)dx ≤ eϵ
ˆ
R2

|u|2dx+ eCϵ

ˆ
R2

|u|4
(
eαu

2 − 1
)
dx

≤ eϵ
ˆ
R2

|u|2dx+ eCϵ

(ˆ
R2

|u|8dx
) 1

2
[ˆ

R2

(
e2αu

2 − 1
)
dx

] 1
2

≤ eT2
2ϵ∥u∥2X − eCϵC2T4

8∥u∥4X ,

where Ts > 0 is associated with the imbedding constant on X ↪→ Ls(R2) with s = 2, 8, and C2 > 0 is

independent of n ∈ N+. Choosing ϵ =
µ+
4eT2

2

> 0 with µ+ > 0 given in (2.2), we obtain

Jn(u) ≥
µ+
4
∥u∥2X − C3∥u∥4X , ∀u ∈ X+

r .

for some C3 > 0 independent of n ∈ N+. Now, we set ρ ≜

{√
2π

α
,

√
µ+
8C3

}
> 0 and so

inf
Sρ

Jn ≥
µ+
8
ρ2,

where Sρ ≜ {u ∈ X+
r : ∥u∥Xr = ρ}. The proof is completed. □

Lemma 3.4. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, there is a λ1 > 0
such that for all λ ∈ (0, λ1), there exists a ρ̂ > ρ independent of σ and n ∈ N+ such that

sup
∂Q

Jn ≤ 0

for all n ∈ N+, where Q = {v + sz : v ∈ X−
r , 0 ≤ s ≤ ρ̂, ∥v∥X ≤ ρ̂} with z =

ϕj0+1

∥ϕj0+1∥X
∈ X+

r and

ϕj0+1 denoting the eigenfunction of µj0+1 associated with (2.1).

Proof. Choosing λ1 =
µ−
T2n4

with µ− > 0 given in (2.2), then for all λ ∈ (0, λ1), Lemma 2.1-(iii) shows

that

(3.2) λNn(w) ≤ µ−∥w∥2X , ∀w ∈ Xr.

From which, according to (f2), (2.2) and (2.5), it holds that

(3.3) Jn(w) = −
µ−
2
∥w∥2X +

λ

2
Nn(w)−

ˆ
R2

Gn(x,w)dx ≤ 0, ∀w ∈ X−
r ,

provided λ ∈ (0, λ1). On the one hand, for all u = v + suz ∈ Q, we define û =
u

∥u∥X
. If û ≡ 0, one

sees that su = 0 and so u = v ∈ X−
r . In this scenario, it follows from (3.3) that

(3.4) Jn(u) ≤ 0.
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On the other hand, if û ̸= 0, then there is a set Υû ⊂ R2 with Lebesgue measure |Υû| > 0 such that
|û(x)| > 0 for every x ∈ Υû. As a consequence, we shall demonstrate that |u(x)| = |û(x)|∥u∥X → +∞
on Υû as ∥u∥X → +∞. Hence, due to Lemma 2.2-(g2),

(3.5) lim inf
∥u∥X→+∞

ˆ
R2

Gn(x, u)

u2
û2dx ≥ lim inf

∥u∥X→+∞

ˆ
Υû

Gn(x, u)

u2
û2dx = +∞ uniformly in n ∈ N+.

Taking again (3.2) into account, for all λ ∈ (0, λ1), we apply (3.5) to obtain

Jn(u)

∥u∥2X
≤ 1− 1

∥u∥2X

ˆ
R2

Gn(x, u)dx→ −∞ as ∥u∥X → +∞.

Thus, with aid of (3.4), there exists ρ̂ > ρ independent of σ and n ∈ N+ such that

max
∂Q

Φ ≤ 0

finishing the proof of this lemma. □

Combining Lemmas 3.3 and 3.4 as well as Proposition 3.2, for all σ ∈ (0, σ1) and λ ∈ (0, λ1), there
exists a sequence (uk) ⊂ Xr such that

(3.6) Jn(uk)→ cn and (1 + ∥uk∥X)∥J ′
n(uk)∥X−1 → 0,

for all n ∈ N+, where

(3.7) cn ≜ inf
γ∈Γn

max
u∈Q

Jn(γ(u)) > 0

with

Γn = {γ ∈ C(Q,Xr) : γ|∂Q = id}.

Remark 3.5. The reader is invited to observe from the proofs of Lemmas 3.3 and 3.4 that there exist
some constants c̄, ĉ > 0, independent of σ, λ and n ∈ N+, such that c̄ ≤ cn ≤ ĉ.

Lemma 3.6. Let G be given by (1.15) and satisfy (1.13) as well as (f1)−(f4). Then, for all σ ∈ (0, σ1)
and λ ∈ (0, λ2) with λ2 = θ−2

8T2n4 > 0, if (uk) ⊂ Xr satisfies (3.6) and (3.7), we deduce that the sequence

(∥uk∥X) is uniformly bounded in k, n ∈ N+ along a subsequence. In particular, it holds that

(3.8) sup
k∈N+

ˆ
R2

gn(x, uk)ukdx ≤ C4

for some C4 > 0 independent of n, k ∈ N+.

Proof. Suppose, by contradiction, that ∥uk∥X → +∞ as k → +∞. We define vk = uk
∥uk∥X , then, passing

to a subsequence if necessary, there exists a function v ∈ X such that vk ⇀ v in X, vk → v in Lp(R2)
for all 2 ≤ p < +∞ and vk → v a.e. in R2. On the one hand, we shall conclude that v ≡ 0. Otherwise,
there is a set Υv ≜ {x ∈ R2 : |v(x)| > 0} ⊂ R2 with positive Lebesgue measure, that is |Υv| > 0 such
that |uk(x)| → ∞ as k →∞ for all x ∈ Υv. For all σ ∈ (0, σ1), we are derived from Lemma 2.2-(g2)
that

(3.9) lim inf
k→+∞

ˆ
R2

Gn(x, uk)

u2k
v2kdx ≥ lim inf

k→+∞

ˆ
Υv

Gn(x, uk)

u2k
v2kdx = +∞ uniformly in n ∈ N+.

Recalling (3.7) and Remark 3.5, we are capable of taking advantage of (3.2) and (3.9) to reach

0 = lim sup
k→+∞

Jn(uk)

∥uk∥2X
≤ 1− lim inf

k→+∞

ˆ
R2

Gn(x, uk)

u2k
v2kdx = −∞ uniformly in n ∈ N+,

which is impossible. So, we conclude that v ≡ 0. In this situation, we must have that vk → v in Lp(R2)
for all 2 ≤ p < +∞.
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With the above discussions in hands, by applying λ < λ2 = θ−2
2T2n4 to Lemma 2.1-(iv), we then exploit

Lemma 2.2-(g2) to see that

θcn + ok(1)

∥uk∥2X
=
θJn(uk)− J ′

n(uk)(uk)

∥uk∥2X

=
θ − 2

2
− θ − 2

2

ˆ
R2

ω|vk|2dx+
λ

2∥uk∥2X

[
θNn(uk)− 2N ′

n(uk)(uk)
]

+
1

∥uk∥2X

ˆ
R2

[θgn(x, uk)uk −Gn(x, uk)] dx

≥ θ − 2

8
+ ok(1)

which contradicts with Remark 3.5 if we tend k → +∞. The verification of (3.8) follows immediately
with the help of J ′

n(uk)(uk) = ok(1) and Lemma 2.1-(iii) with λ < λ2. The proof is completed. □

In light of the nonlinearity Gn possesses the supercritical exponential growth at infinity and it causes
the lack of compactness. To restore it, we proceed as the Brézis-Lieb method to pull the linking level
cn down below a critical value. Have this aim in mind, motivated by [1,9,13,17,31,57], for a sufficiently
small but fixed constant r0 ∈ (0, 1] which shall be determined later, we make use of the Moser sequence
functions defined by

(3.10) wk(x) ≜
1√
2π


√
log k, if 0 ≤ |x| ≤ r0

k ,

log( 1
|x| )√

log k
, if r0

k < |x| ≤ r0,

0, if |x| > r0.

Whereas, due to the indefinite settings in our problem, it would be much more complicated concerning
the estimate of minimax level than those of [42,47–49,52]. Roughly speaking, we are going to rely on a
new norm associated with the indefinite operator −∆+ Vω(|x|). As a consequence, let us included the
detailed proof of the following result in the Appendix.

Lemma 3.7. Let G be given by (1.15) and satisfy (1.13) as well as (f1)−(f4). Then, for all σ ∈ (0, σ2)
and λ ∈ (0, 1

T2n4 ), we have that for some k0 ∈ N+

max
t≥0,v∈X−

r

Jn(v + twk0) < c∗ ≜
2π

α0
.

Now, we show the proof of Theorem 3.1 and it is regarded as a direct corollary of the result below.

Lemma 3.8. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, for all n ∈ N+,
Eq. (2.6) possesses a nontrivial solution for all σ ∈ (0, σ0) and λ ∈ (0, λ0), where σ0 = min{σ1, σ2} > 0
and λ0 = min{λ1, λ2} > 0.

Proof. For all σ ∈ (0, σ1) and λ ∈ (0, λ1), we are derived from Lemmas 3.3 and 3.4 as well as Proposition
3.2 that there exists a sequence (uk) ⊂ Xr satisfying (3.6) and (3.7). Since λ < λ2, then Lemma 3.6
reveals that (uk) ⊂ Xr is uniformly bounded in Xr, that is, there exists a constant C5 > 0, independent
of n, k ∈ N+ such that ∥uk∥X ≤ C5. Passing to a subsequence if necessary, there is a function u ∈ Xr

such that uk ⇀ u in Xr, uk → u in Lp(R2) for all 2 ≤ p < +∞ and uk → u a.e. in R2. Using Lemma
3.6 again, we shall obtain (2.17) from (3.8) and thus Lemma 2.1-(ii) indicates that J ′

n(u) = 0. In other
words, we deduce that u is a solution of Eq. (2.6) for all n ∈ N+. The proof would be done if we verify
that u ̸= 0. Arguing in indirectly, we suppose that u ≡ 0. Let us take into account (2.17) and Lemma
2.1-(ii) once more, then

lim
k→∞

ˆ
R2

Gn(x, uk)dx = 0 and lim
k→∞

Nn(uk) = 0 uniformly in n ∈ N+.
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Combining uk → 0 in L2(R2) and Jn(uk)→ cn in (3.6) as well as Lemma 3.7, one finds that

lim sup
k→∞

∥uk∥2X <
4π

α0
.

Thereby, we shall choose α > α0 sufficiently close to α0 and ν > 1 sufficiently close to 1 in such a way
that 1

ν + 1
ν′ = 1 with ν ′ > 1 and

αν ′∥uk∥2X < 4π(1− ϵ) for some suitable ϵ ∈ (0, 1).

We define

ûk =

√
αν ′

4π(1− ϵ)
uk, ∀k ∈ N+,

and so ∥ûk∥X ≤ 1. In view of (2.14) with q̄ ≥ 2, for all σ ∈ (0, σ1), it holds thatˆ
R2

gn(x, uk)ukdx ≤
ˆ
R2

|uk|2dx+ C6
ˆ
R2

|uk|q̄
(
eαu

2
k − 1

)
dx

≤
ˆ
R2

|uk|2dx+ C6
(ˆ

R2

|uk|q̄νdx
) 1

ν
[ˆ

R2

(
e4π(1−ϵ)û2

k − 1
)
dx

] 1
ν′

.

Recalling (1.14), we can deduce that

lim
k→∞

ˆ
R2

gn(x, uk)ukdx = 0 uniformly in n ∈ N+.

From which, combining uk → 0 in L2(R2) and J ′
n(uk)(uk)→ 0 in (3.6) and Lemma 2.1-(ii), we conclude

that ∥uk∥X → 0 uniformly in n ∈ N+. Therefore, we must have cn = lim
k→∞

Jn(uk) = 0 which contradicts

with Remark 3.5 and so the claim u ̸= 0 concludes. The proof is completed. □

At this stage, according to the observations in the Introduction, we are going to take the L∞-estimate
for the obtained solution u explored in Theorem 3.1. Unfortunately, in light of the “almost optimal”
growth condition (f4) was supposed, then the arguments exploited in [2,3,46] would become unavailable
any longer. As a consequence, we need the following result which is crucial in this paper.

Lemma 3.9. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, for all n ∈ N+,
there are σ̄0 < σ0 and λ̄0 < λ0 such that the sequence (un) ⊂ Xr in Lemma 3.8 contains a strongly
convergent subsequence uniformly in n, k ∈ N+ for all σ ∈ (0, σ̄0) and λ ∈ (0, λ̄0).

Proof. Recalling the proof of Lemma 3.8, we know that ∥uk∥X ≤ C5. Moreover, uk ⇀ u in Xr, uk → u
in Lp(R2) for all 2 ≤ p < +∞ and uk → u a.e. in R2. In order to conclude that uk → u in Xr along a
subsequence, it is sufficient to demonstrate that

(3.11) lim
k→∞

ˆ
R2

gn(x, uk)(uk − u)dx = 0 uniformly in n ∈ N+.

As a matter of fact, it is very similar to the verification of (3.11) to have that

(3.12) lim
k→∞

ˆ
R2

gn(x, u)(uk − u)dx = 0 uniformly in n ∈ N+.

With (3.11) and (3.12) in hands, we take advantage of J ′
n(uk)(uk − u) = ok(1) by (3.6) and J ′(u) = 0

in Lemma 3.8 to reach

ok(1) = J ′
n(uk)(uk − u)− J ′

n(u)(uk − u)

= ∥uk − u∥2X − ω
ˆ
R2

|uk − u|2dx+
λ

2

[
N ′

n(uk)(uk − u)−N ′
n(u)(uk − u)

]
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−
ˆ
R2

gn(x, uk)(uk − u)dx+

ˆ
R2

gn(x, u)(uk − u)dx

= ∥uk − u∥2X + ok(1)

which yields the claim. Thereby, our next goal is to exhibit the verification of (3.11). First of all, using
(2.10), there is a constant K > 0, which is independent of n, k ∈ N+, such that

(3.13) Gn(x, t) ≥ t2, ∀(x, |t|) ∈ R2 × [K,+∞).

To continue showing (3.11), we shall split the proof into the following two cases.
Case 1. |u| ≤ 2K.

In this case, we shall prove (3.11) for all σ ∈ (0, σ0) and λ ∈ (0, λ0). Taking into account uk → u a.e.
in R2, without loss of generality, one would suppose that |uk| ≤ 3K for all k ∈ N+. With the help of
(2.14) with q̄ = 2, for all σ ∈ (0, σ1), we seeˆ

R2

|gn(x, uk)(uk − u)| dx ≤
ˆ
R2

|uk(uk − u)|dx+ C6
ˆ
R2

|uk − u| |uk|
(
eαu

2
k − 1

)
dx

≤ |uk|2|uk − u|2 + C6
(
e9αK

2 − 1
)
|uk|2|uk − u|2

which gives us (3.11) immediately, where C6 > 0 is independent of n, k ∈ N+.
Case 2. |u| > 2K.

In this case, we are going to look for some small σ̄0 < σ0 and λ̄0 < λ0 such that (3.11) remains valid
for all σ ∈ (0, σ̄0) and λ ∈ (0, λ̄0). What’s more, since we recall that uk → u a.e. in R2, without loss of
generality, one is allowed to suppose that |uk| ≥ K for all k ∈ N+. So, (3.13) reveals that

(3.14) Gn(x, uk) ≥ u2k, ∀x ∈ R2.

Proceeding as [8, Proposition 2.2], we easily conclude Nn(u) ≤ 1
16π |u|

2
2|u|44 ≤ 1

16πT
4
4C45 |u|22, where T4 > 0

is related to the imbedding constant of Xr ↪→ L4(R2). Analogously, there exists a C7 > 0, independent
of n, k ∈ N+, such that

(3.15)
∣∣2Nn(u)−N ′

n(u)(u)
∣∣ ≤ C7|u|22.

Denoting θ̂ = θ+2
2 ∈ (2, θ), we claim that there is a σ̄0 < σ0 such that for all σ ∈ (0, σ̄0), it holds that

(3.16) g(x, t)t− θ̂G(x, t) ≥ 0, ∀(x, t) ∈ R2 × R and n ∈ N+.

Indeed, according to the definition of Gn in (2.5), we apply (f2) and (2.7) to deduce that

gn(x, t)t− θ̂Gn(x, t) =
[
f(x, t)t− θ̂F (x, t) + σF (x, t)fn(t)t

]
eσFn(t)

≥
[
1

4
(θ − 2)− 24σn2

]
F (x, t)eσFn(t), ∀(x, t) ∈ R2 × R.

Choosing σ̄0 = min

{
σ0,

θ − 2

96n2

}
> 0, we then deduce that (3.16) holds true for all σ ∈ (0, σ̄0). As a

consequence, we are capable of taking advantaging of (3.14), (3.15) and (3.16) to reach

Jn(u) = Jn(u)−
1

2
J ′
n(u)(u)

=
λ

4

[
2Nn(u)−N ′

n(u)(u)
]
+

1

2

ˆ
R2

[gn(x, uk)uk − 2Gn(x, uk)] dx

≥ θ̂ − 2

2

ˆ
R2

Gn(x, uk)dx−
λ

4
C7|u|22 ≥

[
1

4
(θ − 2)− λ

4
C7
]
|u|22.



18 L. SHEN AND M. SQUASSINA

Let us determine λ̄0 = min
{
λ0,

θ−2
C7

}
> 0, then for all λ ∈ (0, λ̄0), one finds that Jn(u) ≥ 0. Thanks

to this crucial conclusion, we are ready to verify (3.11) in detail. We gather Jn(uk)→ cn in (3.6), the
Fatou’s lemma, uk → u in L2(R2) and Lemma 2.1-(ii) as well as (2.16) to derive

cn =
1

2
∥uk∥2X −

ω

2

ˆ
R2

|uk|2dx+
λ

2
Nn(uk)−

ˆ
R2

Gn(x, uk)dx+ ok(1)

=
1

2
∥uk − u∥2X +

1

2
∥u∥2X −

ω

2

ˆ
R2

|u|2dx+
λ

2
Nn(u)−

ˆ
R2

Gn(x, u)dx+ ok(1)

=
1

2
∥uk − u∥2X + Jn(u) + ok(1)

≥ 1

2
∥uk − u∥2X + ok(1).

In view of Lemma 3.7, it holds that lim sup
k→∞

∥uk − u∥2X < 4π
α0
. Consequently, we shall choose α > α0

sufficiently close to α0 and ν > 1 sufficiently close to 1 in such a way that 1
ν + 1

ν′ = 1 with ν ′ > 1 and

αν ′∥uk − u∥2X <
4π

(1 + ϵ)3
for some suitable ϵ ∈ (0, 1).

Setting

ŭk =

√
αν ′(1 + ϵ)3

4π
(uk − u), ∀k ∈ N+.

Obviously, one finds that ∥ŭk∥2X ≤ 1 for all k ∈ N+. Moreover, for the above fixed ϵ ∈ (0, 1), we need
the following two types of Young’s inequality

|a+ b|2 ≤ (1 + ϵ)|a|2 + (1 + ϵ−1)|b|2, ∀a, b ∈ R

and

ea+b − d ≤ 1

1 + ϵ

[
e(1+ϵ)a − d

]
+

ϵ

1 + ϵ

[
e(1+ϵ−1)b − d

]
, ∀a, b, d ∈ R.

By means of the above facts with (1.14) and ∥ŭk∥2X ≤ 1, one hasˆ
R2

(
eαν

′|uk|2 − 1
)
dx ≤

ˆ
R2

[
eαν

′(1+ϵ)|uk−u|2+αν′(1+ϵ−1)|u|2 − 1
]
dx

≤ 1

1 + ϵ

ˆ
R2

[
e4π(1+ϵ)−1|ŭk|2 − 1

]
dx+

ϵ

1 + ϵ

ˆ
R2

[
eα(1+ϵ−1)2|u|2 − 1

]
dx

≤ C8 +
ϵ

1 + ϵ

ˆ
R2

[
eα(1+ϵ−1)2|u|2 − 1

]
dx

< +∞,

from where it infers from (2.14) that

ˆ
R2

|gn(x, uk)(uk − u)|dx ≤ |uk|2|uk − u|2 + C9|uk|
(q̄−1)
2(q̄−1)ν |uk − u|2ν

[ˆ
R2

(
eαν

′|uk|2 − 1
)
dx

] 1
ν′

.

So, we can prove (3.11) in this Case. The proof is completed. □

As a byproduct of Lemma 3.9, we conclude that uk → u in Xr along a subsequence. Moreover, one
knows that ∥uk∥X ≤ C5 by Lemma 3.8 for some C5 > 0, independent of n, k ∈ N+. Therefore, for all
σ ∈ (0, σ̄0) and λ ∈ (0, λ̄0), there exists a function ϖ ∈ Xr that is independent of n, k ∈ N+ such that

(3.17) max

{
sup
k∈N+

|uk(x)|, |u(x)|
}
≤ ϖ(x), ∀x ∈ R2.
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Lemma 3.10. Let G be given by (1.15) and satisfy (1.13) as well as (f1)− (f4). Then, for all n ∈ N+,
there exist some σ∗ = σ̄0 and λ∗ < λ̄0 such that for all σ ∈ (0, σ∗) and λ ∈ (0, λ∗), the obtained solution
u ∈ Xr established in Theorem 3.1 belongs to L∞(R2). In particular, it holds that

|u|∞ ≤
(
2

q̃

) 2q̃

(2−q̃)2
[
C̄ q̃

′

0

ˆ
R2

(eαq̃
′ϖ2 − 1)dx

] q̃
2q̃′(2−q̃)

|u|44,

where C̄0 > 0 is a constant independent of n ∈ N+, ϖ comes from (3.17) and q̃ ∈ (1, 2) with 1
q̃ +

1
q̃′ = 1.

Proof. For all ω > 0, according to (2.10), there is a Tω > 0 independent of n, k ∈ N+ such that

(3.18) Gn(x, t) ≥ ωt2, ∀(x, |t|) ∈ R2 × [Tω,+∞).

Without loss of generality, we could suppose that |u|∞ > Tω. Otherwise, the proof is done immediately.
Because we have showed that uk → u in Xr by Lemma 3.9, there holds that Jn(u) = cn + ok(1) which
together with Remark 3.5 reveals that Jn(u) ≥ c̄ > 0 for all n ∈ N+. Proceeding as the very similar
calculations in Case 2 of the proof of Lemma 3.9, we use Jn(u) > 0 and (3.19) to arrive at

1

2
∥u∥2X ≥

ω

2

ˆ
R2

u2dx− λ

2
Nn(u) +

ˆ
R2

Gn(x, u)dx

≥
(
3ω

2
− λ

32π
T4
4C45
) ˆ

R2

u2dx.

If we choose λ3 =
16ωπ

T4
4C45

> 0, then for all λ ∈ (0, λ3), one has

(3.19) ∥u∥2X ≥ 2ω

ˆ
R2

u2dx.

Next, we shall begin with the verification of u ∈ L∞(R2). As a start, we suppose that u ≥ 0. Given

γ > 1 and z ∈ N+, we will introduce the measurable sets Az ≜ {x ∈ R2 : uγ−1 ≤ z} and Bz ≜ R2\Az.
Consider the sequences

uz =

{
u2γ−1, in Az,
z2u, in Bz,

and vz =

{
uγ , in Az,
zu, in Bz.

It is simple to observe that uz, vz ∈ Xr, |uz| ≤ |u|2γ−1 and |vz|2 = uuz ≤ |u|2γ in R2. Moreover,

∇uz =
{

(2γ − 1)u2(γ−1)∇u, in Az,
z2∇u, in Bz,

and ∇vz =
{
γuγ−1∇u, in Az,
z∇u, in Bz,

which imply that

(3.20)


ˆ
R2

∇u∇uzdx = (2γ − 1)

ˆ
Az

u2(γ−1)|∇u|2dx+ z2
ˆ
Bz

|∇u|2dx,ˆ
R2

|∇vz|2dx = γ2
ˆ
Az

u2(γ−1)|∇u|2dx+ z2
ˆ
Bz

|∇u|2dx.

Combining (3.20) and the fact that γ > 1, one obtainsˆ
R2

|∇vz|2dx =

ˆ
R2

∇u∇uzdx+ (γ − 1)2
ˆ
Az

u2(γ−1)|∇u|2dx

≤
[
1 +

(γ − 1)2

2γ − 1

]ˆ
R2

∇u∇uzdx ≤ γ2
ˆ
R2

∇u∇uzdx.(3.21)

Because u ∈ Xr is a nontrivial critical point of Jn, that is, J
′
n(u)(uz) = 0 which gives that

(3.22)

ˆ
R2

[
∇u∇uz +

(
|x|2 − ω

)
uuz

]
dx = −λ

2
N ′

n(u)(uz) +

ˆ
R2

gn(x, u)uzdx.
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Then, we shall take some careful analyses for each item in (3.22). First of all, let us note that uuz = v2z ,
it follows from (3.19), (3.21) and γ > 1 that, for all λ ∈ (0, λ3)

(3.23)

ˆ
R2

(
|∇vz|2 + |x|2|vz|2

)
dx ≤ 2γ2

ˆ
R2

[
∇u∇uz +

(
1 + |x|2

)
uuz

]
dx.

Due to (2.8), some simple calculations provide us that

h2u,n(|x|)
|x|2

≤ Cπ|u|44 ≤ CπT4
4∥u∥4X

and ∣∣∣∣∣
ˆ ∞

|x|

hu,n(s)

s
Fn(u(s))ds

∣∣∣∣∣ ≤ 1

2π

ˆ
R2

hu,n(|x|)
|x|2

Fn(u)dx ≤ Cπ|u|24
ˆ
R2

Fn(u)

|x|
dx

≤ Cπ|u|24

(ˆ
|x|<1

1

|x|
3
2

dx

) 2
3
(ˆ

|x|<1
F3
n(u)dx

) 1
3

+ Cπ|u|24|u|22

≤ Cπ|u|24
(
|u|26 + |u|22

)
≤ CπT2

4

(
T2
2 + T2

6

)
∥u∥4X ,

where Cπ > 0 is a constant which is only dependent of π, and Ti denotes the best imbedding constant
of the imbedding X ↪→ Ls(R2) with s ∈ {2, 4, 6}. Decreasing λ if necessary, it holds that

(3.24)

∣∣∣∣−λ2N ′
n(u)(uz)

∣∣∣∣ ≤ λCπT2
4

(
T2
2 + T2

4 + T2
6

)
∥u∥4X

ˆ
R2

uuzdx ≤
1

4

ˆ
R2

uuzdx.

In view of Jn(u) < c∗ and J ′
n(u) = 0, for all σ ∈ (0, σ1) and λ ∈ (0, λ2) we take advantage of Lemma

2.1-(iv) and Lemma 2.2-(g2) as well as (3.19) to have that

θc∗ = θJn(u)− J ′
n(u)(u)

=
θ − 2

2
∥u∥2X −

θ − 2

2

ˆ
R2

ω|u|2dx+
λ

2

[
θNn(u)− 2N ′

n(u)(u)
]

+

ˆ
R2

[θgn(x, u)u−Gn(x, u)] dx

≥ θ − 2

8
∥u∥2X .(3.25)

Consequently, (3.24) and (3.25) guarantees a λ∗ < min{λ̄0, λ3} which is independent of n ∈ N+ and
γ > 1 such that for all λ ∈ (0, λ∗)

(3.26)

∣∣∣∣−λ2N ′
n(u)(uz)

∣∣∣∣ ≤ 1

4

ˆ
R2

uuzdx.

It follows from (2.14) thatˆ
R2

gn(x, u)udx ≤
1

4

ˆ
R2

uuzdx+ C9
ˆ
R2

uuz

(
eα|u|

2 − 1
)
dx

≤ 1

4

ˆ
R2

uuzdx+ C9Iα,q̃′
(ˆ

R2

|vz|2q̃dx
) 1

q̃

,(3.27)

where C9 > 0 is independent of n ∈ N+ and

Iα,q̃′ ≜

(ˆ
R2

(
eαq̃

′|ϖ|2 − 1
)
dx

) 1
q̃′

.

Here ϖ comes from (3.17) and q̃ ∈ (1, 2) with 1
q̃ +

1
q̃′ = 1.
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As a consequence of (3.22), (3.23), (3.26) and (3.27), we have

ˆ
R2

[
|∇vz|2 +

(
1 + |x|2

)
|vz|2

]
dx ≤ C10Iα,q̃′γ2

(ˆ
R2

|vz|2q̃dx
) 1

q

.

We fix q̃ ∈ (1, 2) with q̃′ = q̃/(q̃ − 1) and X ↪→ L4(R2), there is a constant C̄0 > 0 independent γ such
that (ˆ

R2

|vz|4dx
) 1

2

≤ C̄0Iα,q̃′γ2
(ˆ

R2

|vz|2q̃dx
) 1

q

.

Once vz = uγ in Az and vz ≤ uγ in R2, there holds(ˆ
Az

|u|4γdx
) 1

2

≤ C̄0Iα,q̃′γ2
(ˆ

R2

|u|2q̃γdx
) 1

q̃

, ∀z ∈ N.

Applying the Lebesgue’s Dominated Convergence theorem with z →∞ to the above formula, one has

(3.28) |u|2γ4γ ≤ C̄0Iα,q̃′γ
2|u|2γ2q̃γ .

We choose the constant µ = 2/q̃, then µ > 1 because q̃ ∈ (1, 2). For every j ∈ N+, define γj = µj and
thus 2q̃γj+1 = 2q̃µγj = 4γj . For j = 1, γ1 = µ > 1 which can be applied in (3.28) to derive

(3.29) |u|4µ ≤ µ
1
µ (C̄0Iα,q̃′)

1
2µ |u|4.

For j = 2, γ2 = µ2 > 1 and 2q̃γ2 = 4γ1 = 4µ and by (3.28),

(3.30) |u|4µ2 ≤ (µ2)
1
µ2 (C̄0Iα,q̃′)

1
2µ2 |u|4µ.

For j = 3, γ3 = µ3 > 1 and 2q̃γ3 = 4γ2 = 4µ2 and by (3.28),

(3.31) |u|4µ3 ≤ (µ3)
1
µ3 (C̄0Iα,q̃′)

1
2µ3 |u|4µ2 .

Similar to (3.29), (3.30) and (3.31), proceeding this iteration procedure j times, we can infer that

(3.32) |u|4µj ≤ µ
∑j

i=1
i

µi (C̄0Iα,q̃′)
1
2

∑j
i=1

1

µi |u|4

invoking that u ∈ L4µj
(R2) for each j ∈ N+. Clearly,

∞∑
i=1

i

µi
=

µ

(µ− 1)2
and

∞∑
i=1

1

µi
=

1

µ− 1
, thereby

we can take the limit in (3.32) as j →∞ to obtain

|u|∞ ≤ µ
µ

(µ−1)2 (C̄0Iα,q̃′)
1

2(µ−1) |u|44.
Finally, if u changes sign, then it is enough to argue as before by contemplating once the positive part
u+ ≜ max{u, 0} and once the negative part u− ≜ max{−u, 0} in place of u in the definition of uz. As
a result, we shall conclude the verification of u ∈ L∞(R2) for the nontrivial solution u finishing the
proof of this lemma. □

With the help of Theorem 3.1 and Lemma 3.10, we are capable of exhibiting the detailed proof of
Theorem 1.2.

Proof of Theorem 1.5. Recalling Theorem 3.1, we have showed that the function u is a nontrivial

solution of Eq. (2.6) for every λ ∈ (0, λ∗) and σ ∈ (0, σ∗). Moreover, it satisfies ∥u∥2X <
16πθ

α0(θ − 2)
by

(3.25) and so Lemma 3.10 indicates that

|u|∞ ≤
(
2

q̃

) 2q̃

(2−q̃)2
[
C̄ q̃

′

0

ˆ
R2

(eαq̃
′ϖ2 − 1)dx

] q̃
2q̃′(2−q̃)

T2
2

[
16πθ

α0(θ − 2)

]2
≜ Ĉ0,
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where T2 > 0 denotes an imbedding constant of X ↪→ L2(R2). Now, we are able to reach the proof of

Theorem 1.2 by fixing n > Ĉ0, because in this case u is a nontrivial solution of Eq. (1.1) according to
the definition of ηn in (2.4). The proof is completed. □

4. Multiplicity results for subcritical problem

In this section, we are concerned with the existence of infinitely many solutions for the auxiliary
semilinear elliptic equation (2.6) with a sublinear type nonlinearity for all n ∈ N+. Speaking it more
clearly, we study the following class of gauged nonlinear Schrodinger equation with indefinite potential

(4.1) −∆u+ Vω(|x|)u+ λ

(ˆ ∞

|x|

hu,n(s)

s
Fn(u(s))ds+

h2u,n(|x|)
|x|2

)
fn(u)

2
= ξ(x)|u|p−2u in R2,

where ω > 0 is sufficiently large such that the operator −∆+ Vω is non-degenerate, ξ ∈ L
2

2−p (R2) with
ξ ≥ 0 and 1 < p < 2.

The main result concerning Eq. (4.1) can be stated as follows.

Theorem 4.1. Let ω > 0 be large and satisfy the operator −∆+Vω is non-degenerate. If ξ ∈ L
2

2−p (R2)
with ξ ≥ 0 and 1 < p < 2, then for all n ∈ N+, there is λ0 > 0 such that for all λ ∈ (0, λ0) possesses a
sequence of solutions (um) ⊂ Xr satisfying

(4.2) Jn(um) < 0 and Jn(um)→ 0 as m→ +∞ uniformly in n ∈ N+,

where the variational functional Jn : Xr → R corresponding to Eq. (4.1) is of class C1 and defined by

Jn(u) =
1

2

ˆ
R2

[
|∇u|2 + Vω(|x|)u2

]
dx+

λ

2
Nn(u)−

1

p

ˆ
R2

ξ(x)|u|pdx.

As before, we also divide the proof of the above theorem into several lemmas. Taking into account
the existence of infinitely many solutions for Eq. (4.1), we introduce the following minimax argument
which is known as the generalized fountain theorem due to Ding and Dong [15].

In what follows, we denote X by an Hilbert space equipped with the norm ∥ · ∥X. Let X = X−⊕X+

satisfy X− =
−1⊕

i=−∞
Xi and X+ =

∞⊕
i=1

Xi, then there is the following result.

Proposition 4.2. (see [15, Theorem 3.2]) Let Φ ∈ C1(X,R) be an even functional which is P-lower
semicontinuous, that is, for all C ∈ R the set {u ∈ X : Φ(u) ≤ C} is P-closed, and such that ∇Φ is
weakly sequentially continuous. If there is a constant m0 > 0, for all m > m0, such that Φ satisfies the
following conditions:

(i) there exists τm > 0 such that am ≜ inf Φ(∂Bm) ≥ 0, where ∂Bm ≜ {u ∈ Ym : ∥u∥X = τm} and
Ym =

∞⊕
j=m

Xj;

(ii) there exists a finite dimensional G-invariant subsequence X̂m ⊂ Xm and there exists 0 < νm < τm
such that bm ≜ supΦ(Nm) < 0, where Nm ≜ {u ∈ X−⊕ X̂m : ∥u∥X = νm};

(iiii) dm ≜ inf Φ(Bm)→ 0 as m→ +∞, where Bm ≜ {u ∈ Ym : ∥u∥X ≤ τm}.
If Φ satisfies the (PS) condition, then Φ possesses a sequence (um) of nontrivial critical points such
that Φ(um) < 0 and Φ(um)→ 0 as m→ +∞.

Here, the Palais-Smale sequence at level c ∈ R ((PS)c sequence in short) corresponding to Φ assumes
that Φ(xn)→ c and Φ′(xn)→ 0 as n→∞, where (xn) ⊂ X. If for any (PS)c sequence (xn) in X, there
exists a subsequence (xnk

) such that xnk
→ x0 in X for some x0 ∈ X, then we say that the variational

functional Φ satisfies the so-called (PS)c condition.
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Proceeding as what we have done in Section 3, to apply Proposition 4.2, we continue setting X = Xr.
In view of the eigenvalue problem (2.1), let µ̂j − ω be the eigenvalue of the non-degenerate operator

L ≜ −∆+ Vω(|x|) and Vj stands for the eigenfunction spaces related to µ̂j − ω, where j ∈ {1, 2, · · · }.

At this stage, we choose X− = X−
r ≜

j0⊕
j=1

Vj and X+ = X+
r ≜

+∞⊕
j=j0+1

Vj , then X = X−⊕X+ and

hence Xr = X−
r

⊕
X+

r , where L is positive definite on the infinite dimensional space X+
r and negative

definite on the finite dimensional space X−
r . Hereafter, we are going to denote P± by the orthogonal

projections from Xr to X±
r the decomposition above, respectively. Moreover, the spaces P− and P+

are also orthogonal with respect to L2-inner product. For any u ∈ Xr, we define

∥u∥2L = ∥P+u∥2L + ∥P−u∥2L,
where

∥P+u∥2L =

ˆ
R2

[
|∇P+u|2 + Vω(|x|)|P+u|2

]
dx

and

∥P−u∥2L = −
ˆ
R2

[
|∇P−u|2 + Vω(|x|)|P−u|2

]
dx.

Obviously, one also obtains thatˆ
R2

[
|∇u|2 + Vω(|x|)|u|2

]
dx = ∥P+u∥2L − ∥P−u∥2L, ∀u ∈ Xr.

Consequently, we define ∥ · ∥X = ∥ · ∥L. In other words, it is the case that (X, ∥ · ∥X) = (Xr, ∥ · ∥L). As
a matter of fact, we shall conclude that Xr endowed with the norm ∥ · ∥L can be compactly imbedded
into Ls(R2) for all 2 ≤ s < +∞, see Lemma A.1 below in detail. In this scenario, we define Φ = Jn for
all n ∈ N+ and it is simple to observe that Jn ∈ C1(Xr,R) by Lemma 2.1. What’s more, let us recall
the definition of η in (2.4), then one might realize that the functional Nn is even for all n ∈ N+ and so
is Jn. In the meanwhile, it would be very standard to certify that Jn is P-lower semicontinuous and
∇Jn is weakly sequentially continuous for all n ∈ N+. As a consequence, the application of Proposition
4.2 with m0 = j0 becomes available.

We next focus on the verifications of the geometry conditions on Jn.

Lemma 4.3. Let 1 < p < 2 and 0 ≤ ξ ∈ L
2

2−p (R2). Then, there exists a τm > 0 independent of λ > 0
and n ∈ N+ such that

am ≜ inf Jn(∂Bm) ≥ 0

for all n ∈ N+, where ∂Bm ≜ {u ∈ Ym : ∥u∥L = τm} and Ym =
∞⊕

j=m
Vj. In addition,

dm ≜ inf Jn(Bm)→ 0 as m→ +∞ uniformly in n ∈ N+,

where Bm ≜ {u ∈ Ym : ∥u∥L ≤ τm}.

Proof. For all m > m0, we define

(4.3) βm ≜ sup
u∈Ym\(0)

|u|2
∥u∥L

> 0.

Due to the compact imbedding (Xr, ∥ · ∥L) ↪→ L2(R2), we can proceed as the proof of [56, Lemma 3.8]
to conclude that βm → 0 as m→∞. So, given u ∈ Ym, we are derived from (4.3) that

Jn(u) =
1

2
∥u∥2L +

λ

2
Nn(u)−

1

p

ˆ
R2

ξ(x)|u|pdx

≥ 1

2
∥u∥2L −

1

p
|ξ| 2

2−p
βpm∥u∥

p
L =

1

4
∥u∥2L
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provided ∥u∥L =

(
4|ξ| 2

2−p
βpm

p

) 1
2−p

≜ τm. So, it holds that

Jn(u) ≥
1

4
τ2m ≥ 0, ∀u ∈ ∂Bm,

which indicates that am ≥ 0. For all u ∈ Bm = {u ∈ Ym : ∥u∥L ≤ τm}, it has that

0← −1

p
|ξ| 2

2−p
βpmτ

p
m ≤ −

1

p
|ξ| 2

2−p
βpm∥u∥

p
L ≤ Jn(u) ≤

1

2
∥u∥2L + C∥u∥6L ≤

1

2
τ2m + Cτ6m → 0

as m→∞, where C > 0 is independent of n ∈ N+. Thus, dm → 0. The proof is completed. □

Lemma 4.4. Let 1 < p < 2 and 0 ≤ ξ ∈ L
2

2−p (R2). Then, there exists a constant λ1 > 0 such that for

all λ ∈ (0, λ1), there exist a finite dimensional G-invariant subsequence X̂m ⊂ Xm and 0 < νm < τm
independent of n ∈ N+ such that

bm ≜ supΦ(Nm) < 0,

where Nm ≜ {u ∈ X−⊕ X̂m : ∥u∥L = νm}

Proof. Given a u = u− + u+ ∈ X−⊕ X̂m, where X̂m is a finite dimensional subsequence of Xm, it is
sufficient to demonstrate that Jn(u) < 0 as ∥u∥L → 0. Arguing it by a contradiction, we would suppose

that there is a sequence (uk) ⊂ X−⊕ X̂m with ∥uk∥L → 0 such that Jn(uk) ≥ 0 for all k ∈ N+. Then,

we set vk ≜
uk
∥uk∥L

and so ∥vk∥L ≡ 1. Passing to a subsequence if necessary, there exists a v ∈ Xr such

that vk ⇀ v, v−k ⇀ v− and v+k → v+ in Xr, vk → v in Ls(R2) for all 2 ≤ s < +∞ and vk → v a.e. in

R2. Because of Remark A.2, without loss of generality, we choose λ1 = 1
2T2n4 , then for all λ ∈ (0, λ1),

Lemma 2.3-(iii) shows us that

0 ≤ Jn(uk)
∥uk∥2L

=
1

2

(
∥v+k ∥

2
L − ∥v−k ∥

2
L

)
+

λ

2∥uk∥2L
Nn(uk)−

1

p

ˆ
R2

ξ(x)
|uk|p

∥uk∥2L
dx

≤ 1

2

(
∥v+k ∥

2
L − ∥v−k ∥

2
L

)
+

1

4

(
∥v+k ∥

2
L + ∥v−k ∥

2
L

)
− 1

p

ˆ
R2

ξ(x)
|uk|p

∥uk∥2L
dx

=
3

4
∥v+k ∥

2
L −

1

4
∥v−k ∥

2
L −

1

p

ˆ
R2

ξ(x)
|uk|p

∥uk∥2L
dx.

We claim that v+ ̸= 0. Otherwise, with aid of v+k → 0 in Xr, we would obtain

0 ≤ lim
k→+∞

Jn(uk)
∥uk∥2L

≤ 3

4
lim

k→+∞
∥v+k ∥

2
L = 0

which, in turn, yields that ∥v−k ∥L → 0. Therefore, one deduces that 1 = ∥vk∥2L = ∥v+k ∥
2
L + ∥v−k ∥

2
L → 0,

a contradiction. This claim gives us that v ̸= 0 and so |Θv| > 0, where Θv ≜ {x ∈ R2 : |v(x)| > 0}. It
follows from the Fatou’s lemma and p < 2 that

0 ≤ lim sup
k→+∞

Jn(uk)
∥uk∥2L

≤ 3

4
∥v+∥2L −

1

4
lim inf
k→+∞

∥v−k ∥
2
L −

1

p
lim inf
k→+∞

ˆ
R2

ξ(x)
|uk|p

∥uk∥2L
dx

≤ 3

4
∥v+∥2L +

1

4
− 1

p
lim inf
k→+∞

1

∥uk∥2−p
L

ˆ
Θv

ξ(x)|vk|pdx

→ −∞
which is an absurd. The proof is completed. □

Lemma 4.5. Let 1 < p < 2 and 0 ≤ ξ ∈ L
2

2−p (R2) for all x ∈ R2. Then, there is a λ2 > 0 such that
for all λ ∈ (0, λ2) and for all n ∈ N+, Jn satisfies the (PS) condition.
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Proof. Given a c ∈ R which is independent of n ∈ N+, let (uk) ⊂ Xr be a (PS) sequence of Jn at the
level c such that

(4.4) Jn(uk)→ c and J ′
n(un)→ 0.

On the one hand, we shall certify that (uk) is uniformly bounded in k ∈ N+. According to Remark

A.2, we take advantage of ξ ∈ L
2

2−p (R2) to have that

ok(1)∥uk∥L ≥ J ′
n(uk)(u

+
k − u

−
k )

= ∥uk∥2L +
λ

2
N ′

n(uk)(u
+
k − u

−
k )−

ˆ
R2

ξ(x)|uk|p−2uk(u
+
k − u

−
k )dx

≥ ∥uk∥2L −
λ

2

∣∣N ′
n(uk)(u

+
k − u

−
k )
∣∣− |ξ| 2

2−p
|uk|p−1

2 |u+k − u
−
k |2

≥ ∥uk∥2L −
λ

2

(∣∣N ′
n(uk)(uk)

∣∣+ 2
∣∣N ′

n(uk)(u
−
k )
∣∣)− T

p
2
2 |ξ| 2

2−p
∥uk∥pL(4.5)

For all u ∈ Xr, it follows from (2.7) that

hu,n(|x|)
|x|

=
1

4π|x|

ˆ
B|x|(0)

Fn(u(y))dy ≤
1

4π|x|

(ˆ
B|x|(0)

dy

) 1
2
(ˆ

B|x|(0)
F2
n(u(y))dy

) 1
2

≤ 1

4
√
π

(ˆ
B|x|(0)

F2
n(u(y))dy

) 1
2

≤ n2|x|.

As a consequence, by means of (2.8) and Remark A.2, we obtain

∣∣N ′
n(uk)(u

−
k )
∣∣ = ∣∣∣∣∣2

ˆ
R2

Fn(uk)

|x|2

(ˆ |x|

0

s

2
Fn (uk(s)) ds

)(ˆ |x|

0

s

2
fn (uk(s))u

−
k (s)ds

)
dx

+

ˆ
R2

fn(uk)u
−
k

|x|2

(ˆ |x|

0

s

2
Fn (uk(s)) ds

)2

dx

∣∣∣∣∣
≤ n2√

2π

ˆ
R2

Fn(uk)

|x|

(ˆ |x|

0
sf2n (uk(s)) ds

) 1
2
(ˆ

B|x|(0)
|u−k (y)|

2dy

) 1
2

dx

+ n4
(ˆ

R2

|x|2|fn(uk)|2dx
) 1

2
(ˆ

R2

|x|2|u−k (x)|
2dx

) 1
2

≤ 6n3√
π

ˆ
R2

Fn(uk)

|x|
1
2

(ˆ
B|x|(0)

|uk(y)|2dy

) 1
2

dx+ 6n4T2
2∥uk∥L∥u−k ∥L

≤ 12n4|uk|22 + 6n4T2
2∥uk∥L∥u−k ∥L ≤ 18n4T2

2∥uk∥2L,

form where and Lemma 2.1-(iii), we can determine a sufficiently small λ2 > 0 such that for all λ ∈ (0, λ2)

λ
(∣∣N ′

n(uk)(uk)
∣∣+ 2

∣∣N ′
n(uk)(u

−
k )
∣∣) ≤ ∥uk∥2L.

Recalling (4.5) and p < 2, we can deduce that (uk) is uniformly bounded in k ∈ N+ for all λ ∈ (0, λ2).
On the other hand, let us conclude that (un) contains a strongly convergent subsequence. Since (un)

is uniformly bounded in Xr, going to a subsequence if necessary, there is a u ∈ Xr such that un ⇀ u in

Xr, un → u in Ls(R2) for all 2 ≤ s < +∞ and un → u a.e. in R2. Taking ξ ∈ L
2

2−p (R2) into account,



26 L. SHEN AND M. SQUASSINA

one finds that∣∣∣∣ˆ
R2

ξ(x)
(
|uk|p−2uk − |u|p−2u

)
(u+k − u

+)dx

∣∣∣∣ ≤ |ξ| 2
2−p

∣∣|uk|p−2uk − |u|p−2u
∣∣ 2
p−1
2

p−1

|u+k − u
+|2

≤ |ξ| 2
2−p

(
|uk|p−1

2 + |u|p−1
2

)
|uk − u|2

= ok(1)

which together with Lemma 2.1-(ii) and (4.4) indicates that

ok(1) = J ′
n(uk)(u

+
k − u

+)− J ′
n(u)(u

+
k − u

+)

= ∥u+n − u+∥2L + λN ′
n(uk)(u

+
k − u

+)− λN ′
n(u)(u

+
k − u

+)−
ˆ
R2

ξ(x)|uk|p−2uk(u
+
k − u

+)dx

= ∥u+n − u+∥2L + ok(1).

So, we have that u+k → u+ in X+
r . Analogously, one can deduce that u−k → u− in X−

r . As a consequence,
(un) contains a strongly convergent subsequence. The proof is completed. □

With the help of Lemma 4.3, Lemma 4.4 and Lemma 4.5, for λ0 = min{λ1, λ2}, we shall demonstrate
that Eq. (4.1) has a sequence of solutions (um) ⊂ Xr satisfying (4.2) for all λ ∈ (0, λ0) and n ∈ N+.
As a matter of fact, it is the desired conclusion exhibited in Theorem 4.1 and so we would not write its
proof any more.

Based on the discussions above, we are able to give the proof of Theorem 1.5.

Proof of Theorem 1.5. According to Theorem 4.1, one knows that, for all λ ∈ (0, λ0) and n ∈ N+,
(um) ⊂ Xr is a sequence of solutions of (4.1) satisfying (4.2). Proceeding as the very similar arguments
showed in the proof of Lemma 4.5, we have that (∥um∥L) is uniformly bounded in n,m ∈ N+ for all
λ ∈ (0, λ0). Next, we clam that there is a λ∗ < λ0 such that for all λ ∈ (0, λ∗), there exists a constant

C̃ > 0 independent of n,m ∈ N+ such that sup
m∈N+

|um|∞ ≤ C̃. Without loss of generality, we would like

to suppose that sup
m∈N+

|um|∞ ≥ 1. Otherwise, the proof would be done immediately. In this scenario,

ξ(x)|um|p−1 ≤ ξ(x)|um|p

and ˆ
R2

ξ2(x)|um|2pdx ≤
(ˆ

R2

|ξ|
2

2−pdx

)2−p(ˆ
R2

|um|
2p
p−1dx

)p−1

form where it follows that ξ(x)|um|p−1 is uniformly bounded in n,m ∈ N+ in L2(R2) for all λ ∈ (0, λ0).
As a consequence, it is standard to take advantage of the arguments in the proof of Lemma 3.10 to
find a small λ∗ < λ0 such that for all λ ∈ (0, λ∗),∣∣∣∣∣λ

(ˆ ∞

|x|

hum,n(s)

s
Fn(um(s))ds+

h2um,n(|x|)
|x|2

)∣∣∣∣∣ ≤ 1.

In view of (2.8) and (4.1), it holds that

−∆um + |x|2um ≤ (ω + 3)|um|+ ξ(x)|um|p−1 in R2.

Because (ω + 3)|um|+ ξ(x)|um|p−1 is uniformly bounded in n,m ∈ N+ in L2(R2) for each λ ∈ (0, λ∗),

the classic elliptic regularity results reveal that sup
m∈N+

|um|∞ ≤ C̃ holds true. Owing to the definition of

ηn, we are able to derive that (um) ⊂ Xr is a sequence of solutions of (1.1) if we choose n > C̃. The
proof is completed. □
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Appendix A. The proof of Lemma 3.7

In this section, we exhibit the detailed proof of Lemma 3.7. In order to begin with it, let us introduce
some preliminary results.

First of all, we define V ±
ω (|x|) ≜ max{±Vω(|x|), 0} for all x ∈ R2. Given a u ∈ Xr, since V

+
ω (|x|) ≤

|x|2 for all x ∈ R2, then

∥ · ∥+ =

(ˆ
R2

[
|∇ · |2 + V +

ω (|x|)| · |2
]
dx

) 1
2

can be regarded as a norm on Xr.

Lemma A.1. For any ω > 0, the norms ∥ · ∥+, ∥ · ∥L and ∥ · ∥X are equivalent to each other, where
∥ · ∥X comes from Section 2.

Proof. On the one hand, we shall certify that ∥ · ∥+ is equivalent to ∥ · ∥X . The reader might find that
V ±
ω (|x|) ≤ |x|2 for all x ∈ R2, then it holds that ∥u∥+ ≤ ∥u∥X for all u ∈ Xr. Moreover, it is simple to

observe that lim
|s|→+∞

V +
ω (|x|)
|x|2

= 1. So, there is an Rω > 1 such that

|x| > Rω =⇒ V +
ω (|x|) > 1

2
|x|2.

With aid of the above fact, for all u ∈ Xr, we obtain

∥u∥2X =

ˆ
|x|>Rω

(
|∇u|2 + |x|2|u|2

)
dx+

ˆ
|x|≤Rω

(
|∇u|2 + |x|2|u|2

)
dx

≤ 2

ˆ
|x|>Rω

[
|∇u|2 + V +

ω (|x|)|u|2
]
dx+R2

ω

ˆ
|x|≤Rω

(
|∇u|2 + |u|2

)
dx

≤ 2

ˆ
|x|>Rω

[
|∇u|2 + V +

ω (|x|)|u|2
]
dx+R2

ω(1 + C2Rω
)

ˆ
|x|≤Rω

|∇u|2dx

≤
[
2 +R2

ω(1 + C2Rω
)
]ˆ

R2

[
|∇u|2 + V +

ω (|x|)|u|2
]
dx,

where CRω > 0 is a constant independent of u. Therefore, we have that ∥u∥X ≤ C∥u∥+ for some C > 0
independent of u. Thus, ∥ · ∥+ is equivalent to ∥ · ∥X .

On the other hand, let us show that ∥·∥+ is equivalent to ∥·∥L. Since V −
ω (|x|) = max{ω−|x|2, 0} ≤ ω

for all x ∈ R2, then for all u = P+u+ P−u ∈ Xr with P±u ∈ X±
r , there holds

∥u∥2+ =

ˆ
R2

[
|∇u|2 + Vω(|x|)|u|2

]
dx+

ˆ
R2

V −
ω (|x|)|u|2dx

≤ ∥P+u∥2L − ∥P−u∥2L + ω

ˆ
R2

|u|2dx

≤ ∥P+u∥2L + ∥P−u∥2L + 2ω
(
|P+u|22 + |P−u|22

)
≤ ∥u∥2L + 2ω

(
∥P+u∥2L
µ̂j0+1 − ω

+
∥P−u∥2L
ω − µ̂j0

)
≤ Cω,µ̂j0+1,µ̂j0

∥u∥2L(A.1)

for some Cω,µ̂j0+1,µ̂j0
> 0 independent of u. Due to the definition of ∥ · ∥L, one has that

(A.2) ∥P+u∥2L =

ˆ
R2

[
|∇P+u|2 + Vω(|x|)|P+u|2

]
dx ≤ ∥P+u∥2+

and

(A.3) ∥P−u∥2L = −
ˆ
R2

[
|∇P−u|2 + Vω(|x|)|P−u|2

]
dx ≤ ω

ˆ
R2

|P−u|2dx ≤ ωT̂2∥P−u∥2+,
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where T̂2 > 0 denotes the best imbedding constant of (Xr, ∥ · ∥+) into L2(R2). Since P+ and P− are
orthogonal and 0 ≤ V −

ω (|x|) ≤ ω for all x ∈ R2, we conclude that

∥u∥2+ =

ˆ
R2

[
|∇P+u+∇P−u|2 + V +

ω (|x|)|P+u+ P−u|2
]
dx

= ∥P+u∥2+ + ∥P−u∥2+ + 2

ˆ
R2

[
∇P+u∇P−u+ V +

ω (|x|)P+uP−u
]
dx

= ∥P+u∥2+ + ∥P−u∥2+ + 2

ˆ
R2

V −
ω (|x|)P+uP−udx

≥ ∥P+u∥2+ + ∥P−u∥2+ − 2ωT̂2∥u∥2+,
which together with (A.2) and (A.3) indicates that

∥u∥2L = ∥P+u∥2L + ∥P−u∥2L ≤ ∥P+u∥2+ + ωT̂2∥P−u∥2+

≤
(
1 + ωT̂2

) (
∥P+u∥2+ + ∥P−u∥2+

)
≤
(
1 + 2ωT̂2

)2
∥u∥2+.(A.4)

Combining (A.1) and (A.4), we can derive that ∥ ·∥+ is equivalent to ∥ ·∥L. The proof is completed. □

Remark A.2. According to Lemma A.1 above, without loss of generality, we would not distinguish
the norm ∥ · ∥X from ∥ · ∥L on Xr when there is no misunderstanding in the whole paper.

Before making an estimate for the mountain-pass value cn in (3.7), in some similar spirit of [3, Lemma
4.5], we need to introduce some significant observations that play fundamental roles in the proof of
Lemma 3.7. Regarding the Moser sequence of functions defined in (3.10), some elementary computations
give us that

(A.5)

ˆ
R2

|∇wk|2dx = 1 and

ˆ
R2

|wk|2dx =
1

4 log k

(
1− 1 + 2 log k

k2

)
≜ δ1k,

ˆ
R2

|x|2|wk|2dx =

ˆ
0≤|x|≤ r0

k

|x|2|wk|2dx+

ˆ
r0
k
<|x|≤1

|x|2|wk|2dx

=
log k

4k4
+

1

32 log k

(
1− 1 + 4 log k + 8 log2 k

k4

)
≜ δ2k,(A.6)

(A.7)

ˆ
R2

|∇wk|dx =

√
2πr0√
log k

(
1− 1

k

)
≜ δ3k,

and ˆ
R2

|wk|dx =

ˆ
B r0

k
(0)
|wk|dx+

ˆ
Br0 (0)\B r0

k
(0)
|wk|dx

=
πr20
√
log k

k2
√
2π

+
πr20 log r0√
log k

√
2π

(
1− 1

k2

)
−
√
2π√
log k

ˆ ρ

ρ
k

r log rdr

=
πr20
√
log k

k2
√
2π

+

√
2πr20

4
√
log k

(
1− 1

k2

)
−
√
2πr20

√
log k

2k2

≜ δ4k ≤
πr20
√
log k

k2
√
2π

+

√
2πr20

4
√
log k

≤
√
2πr20

2
√
log k

.(A.8)

Moreover, recalling wk = w+
k + w−

k as well as P+ and P− are orthogonal, we derive

0 ≤
ˆ
R2

|∇w−
k |

2dx = −∥w−
k ∥

2
L −
ˆ
R2

Vω(x)|w−
k |

2dx ≤ ω
ˆ
R2

|w−
k |

2dx ≤ ω
ˆ
R2

|wk|2dx→ 0
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yielding that ∥w−
k ∥

2
L → 0, and so, (A.5) and (A.6) reveal that

(A.9) ∥w+
k ∥

2
L = ∥w−

k ∥
2
L +

ˆ
R2

[
|∇wk|2 + Vω(x)|wk|2

]
dx =

ˆ
R2

|∇wk|2dx+ ok(1) = 1 + ok(1).

By the inner product (·, ·)L in Section 4, for all v ∈ X−
r , it follows from (A.7) and (A.8) that

|(w−
k , v)L| =

∣∣∣∣ˆ
R2

[∇wk∇v + Vω(|x|)wkv] dx

∣∣∣∣ ≤ |∇v|∞ ˆ
R2

|∇wk|dx+ (1 + ω)|v|∞
ˆ
R2

|wk|dx

≤
√
2πr0√
log k

(c1|∇v|2 + c2(1 + ω)|v|2) ≤
√
2πr0c3√
log k

∥v∥H1(R2) ≤
√
2π√
log k

∥v∥L ≜ A−1
k ∥v∥L,(A.10)

where we used the fact that dimX−
r < +∞ and r0 ∈ (0, 1) can be chosen arbitrarily small.

Lemma A.3. Given (wk) defined above, if (tk) and (∥vk∥L) with (vk) ⊂ X−
r are uniformly bounded in

n, k ∈ N+, then for all λ ∈ (0, 1
T2n4 ), it holds that

λNn(vk + tkwk) ≤ ∥vk + tkw
−
k ∥

2
L + ok(1).

Proof. Because we have verified that ∥w−
k ∥L → 0, we apply the facts that (tk) and (∥vk∥L) are uniformly

bounded in (A.10) to reach

∥vk + tkw
−
k ∥

2
L = ∥vk∥2L + t2k∥w−

k ∥
2
L + 2tk(vk, wk)L = ∥vk∥2L + ok(1).

On the other hand, for all u ∈ Xr, it follows from (2.7) that

hu,n(|x|)
|x|

=
1

4π|x|

ˆ
B|x|(0)

Fn(u(y))dy ≤
1

4π|x|

(ˆ
B|x|(0)

dy

) 1
2
(ˆ

B|x|(0)
F2
n(u(y))dy

) 1
2

≤ 1

4
√
π

(ˆ
B|x|(0)

F2
n(u(y))dy

) 1
2

≤ n2|x|

which implies that

λNn(vk + tkwk) = λ

ˆ
R2

hvk+tkwk,n(|x|)
|x|2

Fn(vk + tkwk)dx ≤ λn4
ˆ
R2

|x|2|vk + tkwk|2dx

≤ 1

T2

{ˆ
R2

|x|2|vk|2dx+ t2k

ˆ
R2

|x|2|wk|2dx+ 2tk

(ˆ
R2

|x|2|vk|2dx
) 1

2
(ˆ

R2

|x|2|wk|2dx
) 1

2

}

=
1

T2

ˆ
R2

|x|2|vk|2dx+ ok(1) ≤ ∥vk∥2L + ok(1),

where we have used Remark A.2 and (A.6). The proof is completed. □

We are now in a position to show the proof of Lemma 3.7 in detail.

Proof of Lemma 3.7. Arguing it indirectly, for all n ∈ N+, we could suppose that

(A.11) max
t≥0,v∈X−

r

Jn(v + twk) ≥ c∗, ∀k ∈ N+.

In view of the proofs of Lemmas 3.3 and 3.4, there exist tk > 0 and ṽk ∈ X−
r such that

c∗ ≤ max
t≥0,v∈X−

r

Jn(v + twk) = max
t≥0,v∈X−

r

Jn(v + tw+
k ) = Jn(ṽk + tkw

+
k )

= Jn(ṽk − tkw−
k + tkwk) ≜ Jn(vk + tkwk),
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from where it follows that

(A.12)
1

2

(
t2k∥w+

k ∥
2
L − ∥vk + tkw

−
k ∥

2
L

)
+
λ

2
Nn(vk + tkwk) ≥ c∗ +

ˆ
R2

Gn(x, vk + tkwk)dx

and

(A.13)
(
t2k∥w+

k ∥
2
L − ∥vk + tkw

−
k ∥

2
L

)
+
λ

2
N ′

n(vk+ tkwk)(vk+ tkwk) =

ˆ
R2

gn(x, vk+ tkwk)(vk+ tkwk)dx.

Combining (A.5), (A.6), (A.9) and (A.10), we have

t2k∥w+
k ∥

2
L − ∥vk + tkw

−
k ∥

2
L = t2k(∥w+

k ∥
2
L − ∥w−

k ∥
2
L)− ∥vk∥2L − 2tk(w

−
k , vk)L

= t2k

ˆ
R2

[|∇wk|2 + Vω(|x|)w2
k]dx− ∥vk∥2L − 2tk(w

−
k , vk)L

≤ t2k(1 + ωδ1k + δ2k)− ∥vk∥2L + 2tkA
−1
k ∥vk∥L,

and, according to Remark A.2, we are capable of taking advantage of Lemma 2.1-(iii) to see that∣∣N ′
n(vk + tkwk)(vk + tkwk)

∣∣ ≤ T2n
4∥vk + tkwk∥2L = T2n

4
(
∥tkw+

k ∥
2
L + ∥vk + tkw

−
k ∥

2
L

)
≤ T2n

4
[
t2k(1 + ok(1)) + ∥vk∥2L + 2tkA

−1
k ∥vk∥L

]
.

Since λ ∈ (0, 1
T2n4 ) and gn(x, t) ≥ 0 for all (x, t) ∈ R2 × R by (2.13), then (A.13) gives us that

(A.14)
3

2
t2k(1 + ok(1))−

1

2
∥vk∥2L + 3tkA

−1
k ∥vk∥L ≥ 0

which indicates that

(A.15)
∥vk∥L
tk

≤ 3A−1
k +

√
9A−2

k + 3(1 + ok(1)) =
Ak(1 + ok(1))√

1 + 1
3Ak(1 + ok(1))− 1

, ∀k ∈ N+.

Using dimX−
r < +∞ again and (A.15), for all x ∈ B r0

k
(0), we can conclude that

(A.16)

tkwk(x) + vk(x) ≥
tk
√
log k√
2π

− |vk|∞ ≥
tk
√
log k√
2π

− c4∥vk∥L

≥ tkAk

1− c4(1 + ok(1))√
1 + 1

3Ak(1 + ok(1))− 1

 ≜ tkAk(1− Ãk).

We claim that there is a t0 > 0 independent of n, k ∈ N+ such that lim inf
k→+∞

tk ≥ t0 along a subsequence.

Otherwise, we would assume that tk → 0 and so ∥vk∥L → 0 by (A.15) as k → +∞. In view of (A.12),

one could derive a contraction. With aid of this claim and (A.16), since Ak → +∞ and Ãk → 0, we are
to make full use of Lemma 2.2-(g3) and (g4). So, for all ϵ ∈ (0, β0/2), there is a constant Rϵ = R(ϵ) > t̂0
such that

gn(x, t) ≥ (β0/2− ϵ) t−ϑeα0|t|2 , ∀x ∈ R2 and t ≥ Rϵ.

For some sufficiently large k ∈ N+, one knows that tkwk(x) + vk(x) ≥ Rϵ on Br0/k(0). Hence,(
t2k∥w+

k ∥
2
L − ∥vk + tkw

−
k ∥

2
L

)
+
λ

2
N ′

n(vk + tkwk)(vk + tkwk)

≥
ˆ
R2

gn(x, vk + tkwk)(vk + tkwk)dx ≥
ˆ
Br0/k

(0)
gn(x, vk + tkwk)(vk + tkwk)dx

≥ π (β0/2− ϵ)
[
tkAk(1− Ãk)

]1−ϑ
eα0|tkAk(1−Ãk)|2

(r0
k

)2
= πr0

2 (β0/2− ϵ)
[
(2π)−1tk log k(1− Ãk)

]1−ϑ
e[α0(2π)−1t2k(1−Ãk)

2−2] log k.(A.17)
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It is similar to (A.14) that

(A.18)
log

[
3

2
t2k(1 + ok(1))−

1

2
∥vk∥2L + 3tkA

−1
k ∥vk∥L

]
≥ C log(1− Ãk) + (1− ϑ) [log tk + log(log k)] +

[
α0(2π)

−1t2k(1− Ãk)
2 − 2

]
log k

for some C > 0 independent of n, k ∈ N+. Thereby, with the help of (A.15), we must conclude that (tk)
is uniformly bounded in n, k ∈ N+ and without loss of generality, we are supposing that tk → t0 > 0 as
k → +∞ along a subsequence. Owing to Lemma A.3, we are derived from (A.12) that t20 ≥ 2c∗ = 4π

α0
.

If ϑ ∈ [0, 1) in (f4), since ∥vk∥L is uniformly bounded in n, k ∈ N+ by (A.15), it follows from (A.18)
that

C̃ + log t20 ≥ (1− ϑ) log(log k) + ok(1)

which is impossible if one tends k → +∞.
If ϑ = 1 in (f4), since β0 = +∞ in this situation, we are derived from (A.17) that

C̃ + log t20 ≥
β0
4

+ ok(1)

which also yields a contradiction. In summary, we would always demonstrate a contradiction if (A.11)
is false. The proof is completed. □
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