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Abstract. We establish the existence and asymptotic behavior of nontrivial solutions for the following
class of planar logarithmic Choquard equations

−∆u+ λV (x)u =

[
log

1

|x| ∗G(u)

]
g(u) in R2,

where V ∈ C0(R2,R+) denotes a potential well with λ > 0 and G is the primitive of g that fulfills the
supercritical exponential growth in the Trudinger-Moser sense. Thanks to an asymptotical approximation
approach and a powerful truncation argument, we conclude that this equation admits at least a nontrivial
solution for all sufficiently large λ > 0 using variational methods, where the decay rate of the obtained
solution as |x| → +∞ and its asymptotic behavior as λ → +∞ are also considered. In particular, we are

capable of supposing the “almost optimal” growth condition lim
t→+∞

tϑg(t)G(t)e−8πt2 > 0 for ϑ ∈ (0, 3].

1. Introduction and main results

This article focuses on the existence and asymptotic behavior of nontrivial solutions for the following
planar logarithmic Choquard equation

(1.1) −∆u+ λV (x)u =

[
log

1

|x|
∗G(u)

]
g(u) in R2,

where V ∈ C0(R2,R+) denotes a potential well with λ > 0 and F is the primitive of f that fulfills the
supercritical exponential growth in the Trudinger-Moser sense. The potential V is supposed to satisfy
the following set of assumptions:

(V1) V ∈ C0(R2,R) with V (x) ≥ 0 on R2;

(V2) Ω ≜ intV −1(0) is nonempty and bounded with smooth boundary, and Ω = V −1(0);

(V3) there exists a b > 0 such that the set Ξ ≜ {x ∈ R2 : V (x) < b} is nonempty and has a bounded
measure.

It is well-known that Bartsch and his collaborators firstly introduced the assumptions like (V1)− (V3)
in [11,12]. Particularly, the harmonic trapping potential

V (x) =

{
ω1|x1|2 + ω2|x2|2 − ω, if |(√ω1x1,

√
ω2x2)|2 ≥ ω,

0, if |(√ω1x1,
√
ω2x2)|2 ≤ ω,

with ω > 0 satisfies (V1)− (V3), where ωi > 0 is called by the anisotropy factor of the trap in quantum
physics and trapping frequency of the ith-direction in mathematics, see e.g. [13,17,41]. Actually, the
potential λV with the above hypotheses is usually denoted by the steep potential well.

Regarding the nonlinearities g and G, throughout the whole paper, we shall always suppose that

(1.2) G(s) = F (s)eσs
2
, ∀s ∈ R,
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where F : R → R satisfies the critical exponential growth at infinity and σ > 0. Owing to the celebrated
Trudinger-Moser type inequality, one might say that a function h has the critical exponential growth
at infinity if there exists a constant α0 > 0 such that

(1.3) lim
|s|→+∞

|h(s)|
eαs2

=

{
0, ∀α > α0,
+∞, ∀α < α0.

This definition was introduced by Adimurthi and Yadava [2], see also de Figueiredo, Miyagaki and
Ruf [27] for example. Very recently, some results extend it to a class of so-called supercritical exponential
growth in [7,8,52], see also [26,30,44] for example. In the present paper, we shall follow the same spirit
of [7,8,52], nevertheless, there are some interesting techniques to the essential improvements. Speaking
it more clearly, it is supposed that the function f satisfies (1.3) and the following assumptions

(f1) f ∈ C1(R,R), f(s) ≡ 0 for all s ≤ 0 and f(s) = o(s) as s→ 0+;
(f2) there exists a constant δ ∈ (0, 1) such that

F (s)f ′(s)

f2(s)
≥ δ, ∀s > 0, where F (s) =

ˆ s

0
f(t)dt is given in (1.2);

(f3) lim
s→+∞

F (s)f ′(s)

f2(s)
= 1 or equivalently, lim

s→+∞

d

ds

F (s)

f(s)
= 1;

(f4) there exist some constants β > 0 and ϑ ∈ (0, 3] such that

lim inf
s→+∞

sϑf(s)F (s)

e2α0s2
≥ β > β0,

where β0 = 0 if ϑ < 3, while if ϑ = 3, then β0 ≜ 16
πα2

0r
4
0
> 0 with a sufficiently small r0 ∈ (0, 1)

determined by Lemma 3.8 below.

Over the past several decades, a number of mathematicians have paid considerable attentions to the
following class of nonlocal Schrödinger equations

(1.4) −∆u+ V (x)u = [Iµ(x) ∗ F (u)] f(u), x ∈ RN ,

where V : RN → R denotes the external potential, F is the primitive function of the nonlinearity f
satisfying some technical assumptions and ∗ denotes the convolution operator with 0 ≤ µ < N . For all
x ∈ RN\(0), the kernel Iµ with N ≥ 2 is defined by

Iµ(x) ≜


Γ(µ/2)

Γ ((N − µ)/2)πN/22N−µ|x|µ
, if 0 < µ < N,

1

2N−1πN/2Γ(N/2)
log

1

|x|
, if µ = 0,

where Γ denotes the Euler’s Gamma function. Since Γ is positive, the reader will observe that Iµ has
totally different properties passing from µ > 0 to the limiting case µ = 0: one is positive definite while
the other is indefinite and does not vanish at infinity. As a consequence, there exists a quite different
framework to deal with the two cases in Eq. (1.4).

If 0 < µ < N in Eq. (1.4), it is closely associated with the so-called Choquard equation arising in the
study of Bose-Einstein condensation. In fact, for N = 3, µ = 1 and f(u) = u, it becomes the Choquard-
Pekar equation proposed by Pekar [49] to describe a polaron at rest in the quantum field theory. In [37],
Choquard exploited it to characterization an electron trapped in its own hole as an approximation
to the Hartree-Fock theory for a one component plasma. Subsequently, by means of the variational
methods, Lieb [35] and Lions [38] established the existence and uniqueness of positive solutions to
Eq. (1.4). Let us refer the reader to [42,46] for the regularity, radial symmetry and decay property
of its ground state solution. In the meanwhile, Moroz et al. [45] regarded Eq. (1.4) as the model for
self-gravitating particles in the context because it belongs to the classic Schrödinger-Newton equation,
see e.g. [23, 50, 59]. In recent years, owing to the appearance of the convolution type nonlinearities,
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a lot of improvements on Eq. (1.4) and its variants, see [1,4,9,33,33,34,46,54] and their references
therein, particular by [47], for a very abundant and meaningful review of the Choquard equations.

If µ = 0 in Eq. (1.4), when F (u) = u2, then it is of class the following form

(1.5) −∆u+ V (x)u+
(
log(|x|) ∗ u2

)
u = g(u) in R2,

whose variational functional is defined by

I(u) = 1

2

ˆ
R2

[
|∇u|2 + V̄ (x)u2

]
dx+

m

8π

ˆ
R2

ˆ
R2

log(|x− y|)u2(x)u2(y)dxdy −
ˆ
R2

G(u)dx,

where and in the sequel G(u) ≜
´ u
0 g(s)ds. Alternatively, the functional I would not be well-defined on

H1(R2) in general and it was pointed out by Stubbe in [58]. In order to deal with it, Stubbe introduced
a new Hilbert space

X =

{
u ∈ H1(R2) :

ˆ
R2

log(1 + |x|)u2dx < +∞
}
,

endowed with the inner product and norm

(u, v)X =

ˆ
R2

[
∇u∇v + uv + log(1 + |x|)uv

]
dx and ∥u∥X =

√
(u, u)X .

As we know, Stubbe’s argument relies strongly on the vital identity

log r = log(1 + r)− log

(
1 +

1

r

)
, ∀r > 0,

because it permits us to define the variational functionals V1, V2 : X → R by

V1(u) ≜
ˆ
R2

ˆ
R2

log(1 + |x− y|)u2(x)u2(y)dxdy, ∀u ∈ X,

and

V2(u) ≜
ˆ
R2

ˆ
R2

log

(
1 +

1

|x− y|

)
u2(x)u2(y)dxdy, ∀u ∈ X.

In [58], it has been deduced that V1, V2 ∈ C1(X,R) and found the equality

V0(u) ≜
ˆ
R2

ˆ
R2

log(|x− y|)u2(x)u2(y)dxdy = V1(u)− V2(u), ∀u ∈ X,

which implies that I given in (1.5) is of class C1(X). Afterwards, taking full advantage of this powerful
argument introduced in [58], there are some other interesting results in [10,15,21,24,25,29,56] and the
references therein.

We would like to mention here that the space dimension of Eq. (1.5) is two and so it causes some
interesting point. As a matter of fact, for every bounded or unbounded domain Ω ⊂ R2, the imbedding
H1

0 (Ω) ↪→ Lp(Ω) is continuous for all p ∈ [2,+∞). However, the nonlinearity g in (1.5) might behave

like eαt
2
for sufficiently large t ∈ R. In reality, one cannot conclude the fact that H1

0 (Ω) ↪→ L∞(Ω) from
the above imbedding. Thereby, to overcome this difficulty, the celebrated Trudinger-Moser inequality
introduced in [48,51,60] could act as an ideal candidate to be the suitable substitute of the Sobolev
inequality. First of all, let us exhibit the case on bounded domain Ω instead of the whole space R2.
In [48, 51, 60], the authors developed following sharp maximal exponential integrability for functions in
H1

0 (Ω):

(1.6) sup
u∈H1

0 (Ω):∥∇u∥L2(Ω)≤1

ˆ
Ω
eαu

2
dx ≤ C|Ω| if α < 4π,

where C = C(α) > 0 is a constant and |Ω| denotes the Lebesgue measure of Ω. Afterwards, the so
called concentration-compactness principle in the Trudinger-Moser inequality sense was established
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by Lions [39]: Let (un) be a sequence of functions in H1
0 (Ω) with ∥∇un∥L2(Ω) = 1 such that un ⇀ u0

weakly in H1
0 (Ω), it holds that

(1.7) sup
n∈N

ˆ
Ω
e4πpu

2
ndx < +∞, ∀0 < p < p̄α0(u) ≜

1

1− ∥∇u0∥2L2(Ω)

.

It would be obvious to observe that the supremum in (1.6) becomes infinite if the domain Ω ⊂ R2

satisfies |Ω| = ∞. The inequality above is therefore unavailable for the unbounded domains. To handle
it, the authors in [14,16] established the following version of the Trudinger-Moser inequality: For all
u ∈ H1(R2) with ∥u∥L2(R2) ≤M < +∞, there is a positive constant C = C(M,α) such that

(1.8) sup
u∈H1(R2):∥∇u∥L2(R2)≤1

ˆ
R2

(
eαu

2 − 1
)
dx ≤ C if α < 4π.

In spirit of [39], de Souza and do Ó [28] generalized the Lions’s concentration-compactness principle

to R2: Let (un) be in W 1,2
0 (R2) with ∥un∥W 1,2

0 (R2)
= 1 and suppose that un ⇀ u0 in W 1,2

0 (R2), there

holds

(1.9) sup
n∈N

ˆ
R2

(
e4πpu

2
n − 1

)
dx <∞, ∀0 < p < p̃α0(u) ≜

1

1− ∥u0∥2
W 1,2

0 (R2)

.

We would like to cite the results in [3,27] and the references therein concerning some other generalizations,
extensions and applications of the Trudinger-Moser inequalities for bounded and unbounded domain.

Up to our best knowledge, Alves and Figueiredo [5] firstly applied (1.3) to the Schrödinger-Poisson
equation (1.5) and studied the existence of ground state solutions via using Nehari manifold method.
Along this direction, there are more and more research works concerning this topic including the two
dimensional Choquard problem with logarithmic kernel, see [18,20,40] for example.

Very recently, by establishing a Pohoz̆aev-Trudinger log-weighted inequality, Cassani and Tarsi [20]
concluded that the following equation

(1.10) −∆u+ V (x)u =

[
log

1

|x|
∗ F (u)

]
f(u) in R2,

admits a nontrivial finite energy solution in the space H1
V L

q
w0(R2) which is equipped with the norm

∥u∥2 ≜ ∥u∥2H1(R2) +

(ˆ
R2

|u|q log(1 + |x|)dx
) 2

q

, q > 2,

where V : R2 → R is positive and periodic and the nonlinearity f satisfies (1.3) and (f1)− (f3) as well
as (f4) with ϑ = 3. Taking into account an asymptotical approximation approach introduced in [40],
Cassani, Du and Liu [19] investigated the existence of a positive solution in H1(R2) for Eq. (1.10) with
V ≡ 1 under the assumptions (f1)− (f3) and (f4) with ϑ = 1. Explaining it more precisely, given a
τ ∈ (0, 1), with the help of

lim
τ→0+

Gτ (x) ≜ lim
τ→0+

|x|−τ − 1

τ
= − log |x|,

the authors showed that
−∆u+ u = [Gτ (x) ∗ F (u)] f(u) in R2,

admits a positive solution uτ for all τ ∈ (0, 1). Then, by tending τ → 0+, they demonstrated that the
weak limit of uτ is in fact a positive solution of Eq. (1.10) with V ≡ 1. Another similar application to
deal with Eq. (1.10) can be also found in [22].

Whereas, as far as we are concerned, there seems no related existence results for Eq. (1.10) with
steep potential well. Moreover, we further perceive that no attempts on the nonlinearity f involving
supercritical exponential growth in Eq. (1.10) have been made yet up to now. We shall fill these blanks
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in this paper by introducing some subtle techniques. First of all, in order to exhibit the main results
legibly, let us first introduce the work space. Following as [55], for all fixed λ > 0, by (V1), we define
the space

Eλ ≜

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and

ˆ
R2

λV (x)|u|2dx < +∞
}

which is indeed an Hilbert space equipped with the inner product and norm

(u, v)Eλ
=

ˆ
R2

[
∇u∇v + λV (x)uv

]
dx and ∥u∥Eλ

=
√
(u, u)Eλ

, ∀u, v ∈ Eλ.

From here onwards, we shall denote E and ∥ · ∥E by Eλ and ∥ · ∥Eλ
for λ = 1, respectively. It is simple

to observe that ∥ · ∥E ≤ ∥ · ∥Eλ
for all λ ≥ 1. Moreover, thanks to [55], there exists a λ0 > 0 such that

Eλ could be continuously imbedded into H1(R2) for all λ > λ0.
Our first main result is concerned with the existence of nontrivial solutions for Eq. (1.1).

Theorem 1.1. Suppose that (V1)− (V3) hold and the nonlinearity G defined in (1.2) satisfies (1.3)
with (f1)− (f4). Then, there exist some constants σ∗ > 0 and λ∗ > 0 such that for every σ ∈ (0, σ∗)
and λ > λ∗, Eq. (1.1) has at least a nontrivial solution in Eλ ∩ L∞(R2).

Remark 1.2. It should be pointed out here that the supercritical exponential growth used in Theorem
1.1 was proposed in [53,57] for a suitable function ḡ(s) = eα|s|

τ
and it is one of the following cases

(1.11) (I) τ > 2 is arbitrary and α > 0 is fixed; (II) α > 0 is arbitrary and τ ≥ 2 is fixed,

see [7,8] in detail. As a matter of fact, we call (I) and (II) the subcritical-supercritical exponential
growth and critical-supercritical exponential growth, respectively. The reader is invited to find
that the nonlinearity G satisfying (1.2) and (1.3) belongs to (II). Because of the indefinite logarithmic
kernel, we have to make some suitable adjustments to the truncation technique in [53,57] to adapt to
our settings in Theorem 1.1.

Remark 1.3. In contrast to [19, 20, 22], we are going to take some delicate analyses to depend on the
assumption (f4) with ϑ = 1 and ϑ = 3 in a unified way. It is worth highlighting that our arguments
indicate that the constant β > 0 in (f4) can be accurately characterized to some extent. To demonstrate
the proof of Theorem 1.1, we can never repeat the methods exploited in these quoted papers simply
since a new maximal growth condition on the nonlinearity G has been imposed.

We are now in a position to exhibit the main ideas of the proof of Theorem 1.1. To look for nontrivial
solutions associated with Eq. (1.1), due to a variational method point of view, it will be found critical
points for the corresponding variational functional. Alternatively, since the arguments adopted in [20]
strongly relies on the periodicity of the potential V , we mainly borrow the amazing approach from [40]
to address this issue. On the other hand, the nonlinearity G possesses the supercritical exponential
growth at infinity, it seems unable to investigate the existence of nontrivial solutions for the following
equation directly

(1.12) −∆u+ λV (x)u = [Gτ (x) ∗G(u)] g(u) in R2,

since the variational functional is not well-defined in H1(R2) or even in Eλ, where and in the sequel
for all τ ∈ (0, 1), the function Gτ : R2 → R is defined by

(1.13) Gτ (x) ≜
|x|−τ − 1

τ
, ∀x ∈ R2\(0).

Motivated by [53,57], we are going to take advantage of a so-called truncation argument to explore the
existence of nontrivial solutions for Eq. (1.1). Speaking it more clearly, for each n ∈ N+, let us first
define

(1.14) ηn(s) = η
( s
n

)
, Fn(s) = s2ηn(s) and F′

n(s) = fn(s), ∀s ∈ R,
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where η ∈ C∞
0 (R2) denotes an even function with 0 ≤ η ≤ 1 and satisfies

η(s) =

{
1, |s| ≤ 1,
0, |s| ≥ 2,

with |η′(s)| ≤ 2 and |η′′(s)| ≤ 4, ∀s ∈ R.

We remark here that the cut-off function η above is more restrictive than that of in [53,57]. With ηn
in hands, it enables us to replace G and g in Eq. (1.12) with

(1.15) Gn(s) ≜ F (s)eσFn(s), ∀s ∈ R

and Gn(s) =

ˆ s

0
gn(t)dt, respectively. In other words, we shall consider the existence results for

(1.16) −∆u+ λV (x)u = [Gτ (x) ∗Gn(u)] gn(u) in R2.

As one knows, Eq. (1.16) admits a variational structure and, for all n ∈ N+, its variational functional
Jn : Eλ → R is defined by

Jn(u) =
1

2

ˆ
R2

[
|∇u|2 + λV (x)|u|2

]
dx− 1

2

ˆ
R2

[Gτ (x) ∗Gn(u)]Gn(u)dx.

In Section 2 below, we shall verify that Jn is not only well-defined, but also belongs to C1(Eλ,R). As a
consequence, each critical point of Jn is in fact a (weak) solution of Eq. (1.16). Moreover, according to
the definition of ηn in (1.14), any nontrivial critical point, saying it u, of Jn satisfying ∥u∥L∞(R2) < n
is a nontrivial solution of Eq. (1.12).

Next, we would like to explore the decay of the obtained nontrivial solution at infinity. The following
result reveals that the nontrivial solutions of Eq. (1.1) decay exponentially as |x| → ∞.

Theorem 1.4. Suppose that (V1)− (V3) hold and the nonlinearity G defined in (1.2) satisfies (1.3)
with (f1)− (f4). Let uλ ∈ Eλ ∩H1(R2) be a nontivial solution of Eq. (1.1) for every σ ∈ (0, σ∗) and
λ > λ∗. Then, we have

|uλ(x)| ≤ Aλ−
1
2 exp

[
−Bλ

1
2 (|x| −R)

]
, ∀|x| > R,

and the positive constants A, B, R are independent of σ and λ.

Remark 1.5. Although a similar result regarding the exponential decay of nontrivial solutions for Eq.
(1.10) with V ≡ 1 has been studied in [19, Lemma 4.2], as far as we know, it seems that Theorem 1.4
is a new result for planar logarithmic Choquard equation with steep potential well and supercritical
exponential growth. The adaptation procedure to our problem is therefore nontrivial at all due to the
presences of them.

Finally, let us focus on the asymptotic behaviors of the nontrivial solutions as σ → 0+ and λ→ +∞,
respectively. With aid of L∞-estimate of the obtained solution, we have the following results.

Theorem 1.6. Under the assumptions of Theorem 1.1, let uλ,σ ∈ Eλ ∩H1(R2) be a nontrivial solution
of Eq. (1.1) for every σ ∈ (0, σ∗) and λ > λ∗. If σ ∈ (0, σ∗) is fixed, then, going to a subsequence if
necessary, we have uλ,σ → u0,σ in H1(R2) as λ→ +∞, where u0,σ ∈ H1

0 (Ω) is a nontrivial solution of

(1.17)

 −∆u =

[ˆ
Ω
log

(
1

|x− y|

)
G(u(y))dy

]
g(u), in Ω,

u = 0, on ∂Ω.

Theorem 1.7. Under the assumptions of Theorem 1.1, let uλ,σ ∈ Eλ ∩H1(R2) be a nontrivial solution
of Eq. (1.1) for every σ ∈ (0, σ∗) and λ > λ∗. If λ > λ∗ is fixed, then we have uλ,σ → uλ,0 in Eλ as
σ → 0+ along a subsequence, where uλ,0 ∈ Eλ is a nontrivial solution of

(1.18) −∆u+ λV (x)u =

[
log

1

|x|
∗ F (u)

]
f(u) in R2.
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Remark 1.8. The similar results for a class of local Schrödinger equations with subcritical growths
exhibited in Theorems 1.4 and 1.6 have been explored in [11,12], whereas as what have mentioned in
Remark 1.5, there exist some additional efforts to overcome the difficulties in our problems. Last but not
the least, we believe that the result in Theorem 1.7 seems the first attempt to make a thorough inquiry
about the asymptotic behavior of the nontrivial solutions from supercritical exponential problems to
the critical ones in the literature.

Although the approaches to deal with a class of elliptic equations involving supercritical exponential
growth have already appeared in the previous papers [53,57], we have to try best to clean the unpleasant
obstacles existing in planar logarithmic Choquard equation with steep potential well and thereby it is
believed that the results in this article are new up to now.

In our opinion, one of the most significant contributions is that we succeed in dealing with the biggest
challenge that how to balance the mutual interactions between the too loose sign-changing logarithm
kernel and the supercritical exponential growth rate of a fairly general nonlinearity. Consequently, we
are certainly confident that our results would prompt some further explorations on related topics.

The outline of the paper is organized as follows. In Section 2, we mainly exhibit some preliminary
results including the truncation argument that will be exploited frequently in the whole article. Section
3 is mainly devoted to the existence results for the auxiliary problems (1.12) and (1.16). In Section
4, we will focus on the existence and decaying property of nontrivial solutions for Eq. (1.1), so the
detailed proofs of Theorems 1.1 and 1.4 conclude. Finally, the asymptotic behaviors of the nontrivial
solutions are studied in Section 5.

Notations: From now on in this paper, otherwise mentioned, we utilize the following notations:

• C,C1, C2, · · · denote any positive constant, whose value is not relevant and R+ ≜ (0,+∞).
• Let (Z, ∥ · ∥Z) be a Banach space with dual space (Z−1, ∥ · ∥Z−1), and Ψ be functional on Z.
• The Cerami sequence at a level c ∈ R ((C)c sequence in short) corresponding to Φ means that
Φ(xn) → c and (1 + ∥xn∥Z)∥Φ′(xn)∥Z−1 → 0 as n→ ∞, where (xn) ⊂ Z.

• For any ϱ > 0 and every x ∈ R2, Bϱ(x) ≜ {y ∈ R2 : |y − x| < ϱ}.
• ok(1) denotes the real sequences by ok(1) → 0 as k → +∞.
• “ → ” and “ ⇀ ” stand for the strong and weak convergence in the related function spaces,
respectively.

2. Variational Framework and Preliminaries

In this section, we shall formulate the variational structure for our problems and then present some
preliminary results that will play crucial roles in the next sections.

First of all, we recall the well-known Hardy-Littlewood-Sobolev inequality and it appears repeatedly
throughout the whole paper.

Proposition 2.1. (Hardy-Littlewood-Sobolev inequality [36, Theorem 4.3]). Suppose that s, r > 1
and 0 < µ < N with 1/s+ µ/N + 1/r = 2, g ∈ Ls(RN ) and h ∈ Lr(RN ). Then, there exists a sharp
constant CHLS = CHLS(s,N, µ, r) > 0, independent of g and h, such that

(2.1)

ˆ
RN

[|x|−µ ∗ g(x)]h(x)dx ≤ CHLS |g|s|h|r.

In the sequel we collect some basic estimates whose proofs are omitted.

Lemma 2.2. Let τ ∈ (0, 1], then

t−τ − 1

τ
≥ log t−1, ∀t ∈ (0, 1].
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Moreover, for all τ ′ > τ , there is a constant Cτ ′ > 0 such that

t−τ − 1

τ
≤ Cτ ′t

−τ ′ , ∀t ∈ (0,+∞).

Let us point out some immediate consequences of the nonlinearity f satisfying (1.3) and (f1)− (f4).
Due to (1.3) and (f1), for all ϵ > 0 and α > α0, there is a constant Cϵ > 0 such that

(2.2) |f(s)| ≤ ϵ|s|+ Cϵ|s|q̄−1
(
eαs

2 − 1
)
, ∀s ∈ R,

where q̄ ≥ 2 can be arbitrarily chosen later. By means of (f2), there holds

(2.3) |F (s)| ≤ ϵ|s|2 + Cϵ|s|q̄
(
eαs

2 − 1
)
, ∀s ∈ R.

Moreover, without mentioning any longer, let us exploit directly the following inequality (see e.g. [62,
Lemma 2.1]): (

eαs
2 − 1

)m
≤
(
eαms2 − 1

)
, ∀s ∈ R, α > 0 and m > 1.

In view of (f2), one sees f ′(s) ≥ 0 for all s > 0 and then f is nondecreasing on s ∈ (0,+∞). Therefore,
it holds that

(2.4) 0 < F (s) =

ˆ s

0
f(t)dt ≤ f(s)s, ∀s > 0.

In addition, we can use (f2) and (2.4) to show that

(2.5) 0 < F (s) ≤ (1− δ)f(s)s, ∀s > 0.

Actually, by (f2), we observe that (F (s)/f(s))′ ≤ 1− δ for any s > 0, then for all ε ∈ (0, s), one has

F (s)

f(s)
− F (ε)

f(ε)
=

ˆ s

ε

d

dt

(
F (t)

f(t)

)
dt ≤ (1− δ)

ˆ s

ε
dt = (1− δ)(s− ε)

which together with lim
ε→0+

F (ε)/f(ε) = 0 by (2.4) yields that (2.5) holds true. We repeat the calculations

in [19, (1.3)] to find two constants M0 > 0 and s0 > 0 such that

(2.6) F (s) ≤M0f(s), ∀s ≥ s0.

With the assumptions (f1)− (f4) and the above properties of f in hands, we next conclude the ones
for Gn defined in (1.15). Beginning with them, inspired by [52,53], there are the following facts

(2.7) 0 ≤ Fn(s) ≤ 4n2 and |fn(s)| ≤ 12n, ∀n ∈ N+ and s ∈ R,

and

(2.8) 0 ≤ Fn(s) ≤ s2, |fn(s)| ≤ 6|s| and |f′n(s)| ≤ 34, ∀n ∈ N+ and s ∈ R.

Lemma 2.3. Suppose (1.3) and (f1)− (f4), then for all n ∈ N+, we have the following conclusions:

(g1) gn ∈ C1(R,R), gn(s) ≡ 0 for all s ≤ 0 and gn(s) = o(s) as s→ 0+ uniformly in σ ∈ (0, 1
4n2 );

(g2) for the constant δ ∈ (0, 1) given in (f2), there is a σ1 > 0 such that for all σ ∈ (0, σ1),

Gn(s)g
′
n(s)

g2n(s)
≥ δ

4
, ∀s > 0, where gn(s) =

ˆ s

0
g′n(t)dt;

(g3) lim
s→+∞

Gn(s)g
′
n(s)

g2n(s)
= 1 or equivalently, lim

s→+∞

d

ds

Gn(s)

gn(s)
= 1 uniformly in n ∈ N+;

(g4) there is a σ2 > 0 such that for all σ ∈ (0, σ2), it holds that gn(s)Gn(s) ≥ 1
2f(s)F (s) for s > 0;

(g5) for all σ ∈ (0, σ2), we have Gn(s) ≤ 2M0gn(s) for all s ≥ s0, where s0 > 0 comes from (2.6).
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Proof. According to the definition of Gn defined in (1.15), one simply has that

gn(s) = [f(s) + σF (s)fn(s)] e
σFn(s), ∀s ∈ R.

Obviously, using (f1), we have that gn ∈ C1(R,R), gn(s) ≡ 0 for all s ≤ 0. For all σ ∈ (0, 1
4n2 ), we are

able to apply (2.8) to derive lim
s→0

gn(s)

s
= 0 easily and so point (g1) holds true. To prove point (g2), we

claim that

(2.9) F (s)f(s)|fn(s)| ≤ 24n2f2(s) and F 2(s)|f′n(s)| ≤ 136n2f2(s), ∀s > 0.

Indeed, we recall the definition of ηn defined in (1.14) to see that fn(s) ≡ 0 if s ≥ 2n. Then, with the
aid of (2.8), we have that |fn(s)s| ≤ 24n2 for all s > 0 which together with (2.4) indicates the first
part of this claim. Similarly, using the fact that f′n(s) ≡ 0 if s ≥ 2n, we exploit (2.8) again to obtain
|f′n(s)s2| ≤ 136n2 for all s > 0 and so (2.4) gives us the second part of this claim. Combining (2.9) and

(f2) with δ ∈ (0, 1), there is a σ1 ≜ δ
736n2 > 0 such that we have that

F (s)
[
f ′(s) + 2σf(s)fn(s) + σF (s)f′n(s) + σ2F (s)f2n(s)

]
− δ

2

[
f2(s) + δ2F 2(s)f2n(s)

]
≥ δ

2
f2(s) + F (s)

[
2σf(s)fn(s) + σF (s)f′n(s)

]
+

1

2
σ2F (s)f2n(s)

≥ δ

2
f2(s)− 2σF (s)f(s)|fn(s)| − σF 2(s)|f′n(s)|

≥
(
δ

2
− 184σn2

)
f2(s) ≥ δ

4
f2(s).

It is simple to calculate that

g′n(s) =
[
f ′(s) + 2σf(s)fn(s) + σF (s)f′n(s) + σ2F (s)f2n(t)

]
eσFn(s), ∀s ∈ R.

As a consequence, the above two formulas shows us that

Gn(s)g
′
n(s)

g2n(s)
=
F (s)

[
f ′(s) + 2σf(s)fn(s) + σF (s)f′n(s) + σ2F (s)f2n(s)

]
[f(s) + σF (s)fn(s)]

2

≥
F (s)

[
f ′(s) + 2σf(s)fn(s) + σF (s)f′n(s) + σ2F (s)f2n(s)

]
2f2(s) + 2σ2F 2(s)f2n(s)

≥ δ

4

finishing the proof of point (g2) if σ ∈ (0, σ1). Recalling the verification of point (g2), one will find that
point (g3) is a direct corollary of (f3). In order to verify point (g4), we continue depending on the fact
that fn(s) ≡ 0 if s ≥ 2n. Then, choosing σ2 =

1
48n2 , it follows from (2.4) and (2.8) that

gn(s) = [f(s) + σF (s)fn(s)] e
σFn(s) ≥ [f(s)− σF (s)|fn(s)|] eσFn(s)

≥
(
1− 24σn2

)
f(s)eσFn(s) ≥ 1

2
f(s)eσFn(s) ≥ 1

2
f(s), ∀s > 0,(2.10)

provided σ ∈ (0, σ2). Thereby, point (g4) concludes. If the last second inequality in (2.10) is considered,
then point (g5) follows (2.6) immediately. The proof is completed. □

Let τ ∈ (0, 1) be fixed, for all n ∈ N+, we define the functionals Ψ1
n : Eλ → R and Ψ2

n : Eλ → R by

Ψ1
n(u) =

1

2

(ˆ
R2

Gn(u)dx

)2

and

Ψ2
n(u) =

1

2

ˆ
R2

[
|x|−τ ∗Gn(u)

]
Gn(u)dx.

We have the following results.
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Lemma 2.4. Suppose that f satisfies (1.3) and (f1), for all n ∈ N+, then Ψj
n is well-defined on Eλ

for λ ≥ 1, where j = 1, 2. Actually, Ψj
n ∈ C1 with j = 1, 2 and the derivatives given by

(Ψ1
n)

′(u)(ψ) =

ˆ
R2

Gn(u)dx

ˆ
R2

gn(u)ψdx

for all ψ ∈ Eλ and

(Ψ2
n)

′(u)(ψ) =

ˆ
R2

[
|x|−τ ∗Gn(u)

]
gn(u)ψdx.

Proof. The verifications of Ψ1
n can follow [53, Lemma 2.6] lines by lines, and so we omit the details. In

order to derive that Ψ2
n is well-defined on Eλ, we find that Gn(s) ≤ F (s)e4σn

2
for all n ∈ N+ by (1.15)

and (2.7). Combining (2.1) and (2.3), for all u ∈ Eλ, one has that

ˆ
R2

[
|x|−τ ∗ F (u)

]
F (u)dx ≤ CHLS

(ˆ
R2

|F (u)|
4

4−τ dx

) 4−τ
2

≤ C0ϵ

(ˆ
R2

|u|
8

4−τ dx

) 4−τ
2

+ C1Cϵ

(ˆ
R2

|u|
4q̄ν′
4−τ dx

) 4−τ
2ν′
(ˆ

R2

(
e

4αν
4−τ

u2

− 1
)
dx

) 4−τ
2ν

.

From which, we conclude that Ψ2
n is well-defined on Eλ for all n ∈ N+ thanks to the classic Trudinger-

Moser inequality. We shall show that Ψ2
n has a continuous Gateaux derivative on Eλ, then Ψ2

n ∈ C1

by [61, Proposition 1.3].
Existence of the Gateaux derivative. Let u, ψ ∈ Eλ. Given x ∈ R2 and 0 < |t| < 1, taking into

account the mean value theorem, there exists a χ ∈ (0, 1) such that

1

2

ˆ
R2

[
|x|−τ ∗Gn(u+ tψ)

]
Gn(u+ tψ)dx− 1

2

ˆ
R2

[
|x|−τ ∗Gn(u)

]
Gn(u)dx

=
1

2

ˆ
R2

[
|x|−τ ∗Gn(u+ tψ)

]
Gn(u+ tψ)dx− 1

2

ˆ
R2

[
|x|−τ ∗Gn(u+ tψ)

]
Gn(u)dx

+
1

2

ˆ
R2

[
|x|−τ ∗Gn(u+ tψ)

]
Gn(u)dx− 1

2

ˆ
R2

[
|x|−τ ∗Gn(u)

]
Gn(u)dx

=
1

2

ˆ
R2

[
|x|−τ ∗Gn(u+ tψ)

]
gn(u+ χtψ)tψdx+

1

2

ˆ
R2

[
|x|−τ ∗Gn(u)

]
gn(u+ χtψ)tψdx

The standard arguments enable us to derive that |x|−τ ∗ Gn(u + tψ) → |x|−τ ∗ Gn(u) a.e. in R2 as
t→ 0, then the Lebesgue’s Dominated Convergence theorem indicates that

(Ψ2
n)

′(u)(ψ) = lim
t→0

Ψ2
n(u+ tψ)−Ψ2

n(u)

t
,

from where we know that the Gateaux derivative exists and can be computed as above.
Continuity of the Gateaux derivative. We suppose uk → u in Eλ, then uk → u a.e. in R2 along

a subsequence. Some simple calculations that can be found above provide us that∣∣(Ψ2
n)

′(uk)(ψ)− (Ψ2
n)

′(u)(ψ)
∣∣ = ok(1)∥ψ∥Eλ

, ∀ψ ∈ Eλ,

which gives the desired result. The proof of this lemma is completed. □

We conclude this section by the following convergent results related to the nonlinearity Gn and gn.

Lemma 2.5. Let g be given by (1.2) and satisfy (1.3) with (f1)− (f4). Then, for all σ ∈ (0, σ2) with
σ2 > 0 in Lemma 2.3-(g5), if (uk) ⊂ Eλ satisfies uk → u in Lp(R2) with 2 < p < +∞ and uk → u a.e.
in R2 with a constant C > 0, which is independent of k ∈ N+, such that

sup
k∈N+

ˆ
R2

gn(uk)ukdx ≤ C and sup
k∈N+

ˆ
R2

[Gn(uk)]
κ dx ≤ C,
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where 1 < κ < (1− ε)−
1
2 with ε ∈ (0, 1) given in (3.28) below, we have the following results

(2.11)


lim
k→∞

ˆ
R2

Gn(uk)dx =

ˆ
R2

Gn(u)dx,

lim
k→∞

ˆ
R2

gn(uk)ψdx =

ˆ
R2

gn(u)ψdx, ∀ψ ∈ C∞
0 (R2),

in the sense of subsequences if necessary. Moreover, if in addition 0 < τ < τκ ≜
2(κ− 1)

κ
, it holds that,

along some subsequences,

(2.12)


lim
k→∞

ˆ
R2

[
|x|−τ ∗Gn(uk)

]
Gn(uk)dx =

ˆ
R2

[
|x|−τ ∗Gn(u)

]
Gn(u)dx,

lim
k→∞

ˆ
R2

[
|x|−τ ∗Gn(uk)

]
gn(uk)ψdx =

ˆ
R2

[
|x|−τ ∗Gn(u)

]
gn(u)ψdx, ∀ψ ∈ C∞

0 (R2).

Proof. Recalling Lemma 2.3-(g5), the verification of (2.11) is very similar to that of [53, Lemma 2.9],
and so we omit the details. To derive (2.12), we firstly find thatˆ

R2

Gn(uk(y))

|x− y|τ
dy =

ˆ
|x−y|<1

Gn(uk(y))

|x− y|τ
dy +

ˆ
|x−y|≥1

Gn(uk(y))

|x− y|τ
dy

≤

(ˆ
|x−y|<1

|x− y|−
τκ
κ−1dy

)κ−1
κ (ˆ

R2

[Gn(uk)]
κdy

) 1
κ

+

ˆ
R2

Gn(uk)dx.

On the one hand, due to Lemma 2.3-(g1), we argue as the same way in (2.4) to see that Gn(s) ≤ gn(s)s
for all s > 0. On the other hand, since τ < τκ reveals that τκ

κ−1 < 2, we are capable of adopting Lemma

2.3-(g1) again to obtain

(2.13)

ˆ
R2

Gn(uk(y))

|x− y|τ
dy ≤ C

for some C > 0 independent of k ∈ N+. The proof of (2.12) would be done immediately if we can show
that |x|−τ ∗Gn(uk) → |x|−τ ∗Gn(u) a.e. in R2 as k → ∞. Actually, it is correct via applying (2.11)
and (2.13) to the generalized Dominated Lebesgue’s Convergence theorem. Alternatively, we shall not
demonstrate the detailed proof since it is essentially similar to that of [6, Lemma 4.6]. So, the proof is
completed. □

3. Existence results for the auxiliary problems

In this section, we are going to investigate the existence results for the auxiliary problems (1.12) and
(1.16) under the assumptions (V1)− (V3) and (1.3) as well as (f1)− (f4) for all τ ∈ (0, 1) and n ∈ N+.

On the one hand, we shall mainly focus on the following planar logarithmic Choquard equation

(3.1) −∆u+ λV (x)u = [Gτ (x) ∗Gn(u)] gn(u) in R2,

where Gτ and Gn are defined by (1.13) and (1.15), respectively. We recall that a solution u ∈ Eλ to
the Problem (3.1) corresponds to a critical point of the variational functional Jλ,τ,n : Eλ → R below

(3.2) Jλ,τ,n(u) =
1

2

ˆ
R2

[|∇u|2 + λV (x)|u|2]dx− 1

2

ˆ
R2

[Gτ (x) ∗Gn(u)]Gn(u)dx.

For all fixed λ ≥ λ0, we can derive from the discussions in Lemma 2.4 that the variational functional
Jλ,τ,n is well-defined and belongs to C1(Eλ,R) with its derivative given by

J ′
λ,τ,n(u)(v) =

ˆ
R2

[∇u∇v + λV (x)uv]dx−
ˆ
R2

[Gτ (x) ∗Gn(u)] gn(u)vdx, ∀u, v ∈ Eλ.
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As a matter of fact, due to (1.13), we can rewrite Jλ,τ,n as the form below

Jλ,τ,n(u) =
1

2

ˆ
R2

[|∇u|2 + λV (x)|u|2]dx+
1

2τ

(ˆ
R2

Gn(u)dx

)2

− 1

2τ

ˆ
R2

[
|x|−τ ∗Gn(u)

]
Gn(u)dx.

Then, the conclusion follows by Lemma 2.4.
The main result concerning Eq. (3.1) is the following:

Theorem 3.1. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).
Then there exist some constants σ∗ > 0, τ∗ > 0 and λ∗ > 0 such that for all σ ∈ (0, σ∗), τ ∈ (0, τ∗) and
λ > λ∗, Eq. (3.1) admits at least a nontrivial solution for all n ∈ N+.

The proof of the above theorem will be divided into several lemmas.
As a start, we shall verify that the variational functional Jλ,τ,n satisfies the mountain-pass geometry

structure for all n ∈ N+.

Lemma 3.2. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).
Then, for all σ ∈ (0, 1

4n2 ), τ ∈ (0, 12) and λ > λ0, there exists a constant ϱ > 0, independent of σ, τ, λ

and n ∈ N+, such that

(3.3) mρ ≜ inf
{
Jλ,τ,n(u) : u ∈ Eλ, ∥u∥Eλ

= ρ
}
> 0, ∀ρ ∈ (0, ϱ],

and

(3.4) m̄ρ ≜ inf
{
J ′
λ,τ,n(u)(u) : u ∈ Eλ, ∥u∥Eλ

= ρ
}
> 0, ∀ρ ∈ (0, ϱ].

Proof. In view of (2.7), we apply τ ′ = 1
2 in Lemma 2.2 to have that

Jλ,τ,n(u) ≥
1

2
∥u∥2Eλ

− 1

2

ˆ
R2

(ˆ
|x−y|≤1

|x− y|−τ − 1

τ
Gn(u(y))dy

)
Gn(u(x))dx

≥ 1

2
∥u∥2Eλ

− C

2

ˆ
R2

ˆ
R2

F (u(x))F (u(y))

|x− y|
1
2

dxdy,(3.5)

for some C > 0 independent of σ, τ, λ and n ∈ N+. Let ϵ = 1 in (2.3), we choose ϱ =
√

7π
2αν with 1

ν + 1
ν′

and ν, ν ′ > 1, then it depends on (2.1) and (1.8) to arrive at

(3.6)

ˆ
R2

ˆ
R2

F (u(x))F (u(y))

|x− y|
1
2

dxdy ≤ C1

(ˆ
R2

|u|
16
7 dx

) 7
4

+ C2

[ˆ
R2

|u|
8
7
q̄
(
e

8
7
αu2 − 1

)
dx

] 7
4

≤ C1

(ˆ
R2

|u|
16
7 dx

) 7
4

+ C2

[ˆ
R2

|u|
8
7
q̄ν′dx

] 7
4ν′
[ˆ

R2

(
e

8
7
ανu2 − 1

)
dx

] 7
4ν

≤ C3∥u∥4Eλ
+ C4∥u∥2q̄Eλ

,

where Cj > 0 is independent of σ, τ, λ and n ∈ N+ with j ∈ {1, 2, 3, 4}. With the aid of (3.5) and (3.6),
we can conclude (3.3) and (3.4) immediately. The proof is completed. □

Lemma 3.3. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).
Then, for all σ ∈ (0, 1), τ ∈ (0, 1) and λ > λ0, there exists a function e ∈ Eλ with ∥e∥Eλ

> ϱ such that
Jλ,τ,n(e) < 0, where e is independent of σ, τ, λ and n ∈ N+.

Proof. Choosing a nonnegative function ψ ∈ C∞
0 (R2) with ψ(x) ≡ 1 for all |x| ≤ 1

8 , ψ(x) ≡ 0 for all

|x| ≥ 1
4 and |∇ψ|∞ ≤ 16, then it simply has that

Jλ,τ,n(tψ) =
t2

2
∥ψ∥2Eλ

− 1

2

ˆ
|x−y|≤ 1

2

(ˆ
|x−y|≤ 1

2

|x− y|−τ − 1

τ
Gn(tψ(y))dy

)
Gn(tψ(x))dx
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≤ t2

2
∥ψ∥2Eλ

− 1

2

ˆ
|x−y|≤ 1

2

(ˆ
|x−y|≤ 1

2

|x− y|−τ − 1

τ
F (tψ(y))dy

)
F (tψ(x))dx

≤ t2

2
∥ψ∥2Eλ

− log 2

2

(ˆ
R2

F (tψ(x))dx

)2

,(3.7)

where we have used the facts ψ(x)ψ(y) ≡ 0 if |x− y| ≥ 1
2 , (2.3) and Lemma 2.2, respectively. Define

ξ(t) ≜
1

2

(ˆ
R2

F (tψ(x))dx

)2

, ∀t > 0,

and so

ξ′(t) =
1

t

(ˆ
R2

F (tψ(x))dx

)(ˆ
R2

f(tψ(x))tψ(x)dx

)
, ∀t > 0.

In view of (2.5), one has that
ξ′(t)

ξ(t)
≥ 2

(1− δ)t
for all t > 0. Integrating it on [1, s], it holds that

(3.8)
1

2

(ˆ
R2

F (sψ(x))dx

)2

= ξ(s) ≥ ξ(1)s
2

1−δ =
1

2

(ˆ
R2

F (ψ(x))dx

)2

s
2

1−δ , ∀s > 1.

Combining (3.7) and (3.8), we reach

Jλ,τ,n(tψ) ≤
t2

2
∥ψ∥2Eλ

− log 2

2

(ˆ
R2

F (ψ(x))dx

)2

t
2

1−δ , ∀t > 1.

Since δ ∈ (0, 1) in (f2), then Jλ,τ,n(tψ) → −∞ as t→ +∞. As a consequence, we can find a sufficiently
t0 > 0 such that e = t0ψ will be the desired function. The proof is completed. □

Relying on Lemmas 3.2 and 3.3, we shall exploit the following critical point theorem without the
(C) condition introduced in [43] to construct a (C) sequence for Jλ,τ,n.

Proposition 3.4. Let Z be a Banach space and φ ∈ C1(Z,R) Gateaux differentiable for all v ∈ Z,
with G-derivative φ′(v) ∈ Z−1 continuous from the norm topology of Z to the weak ∗ topology of Z−1

and φ(0) = 0. Let S be a closed subset of Z which disconnects (archwise) Z. Let v0 = 0 and v1 ∈ Z be
points belonging to distinct connected components of X̄\Z. Suppose that

inf
S
φ ≥ ϱ > 0 and φ(v1) ≤ 0

and let Γ = {γ ∈ C([0, 1], Z) : γ(0) and γ(1) = v1}. Then

c = inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)) ≥ ϱ > 0

and there is a (C)c sequence for φ.

Combining Lemmas 3.2 and 3.3 as well as Proposition 3.4, for all σ ∈ (0, 1
4n2 ), τ ∈ (0, 12) and λ > λ0,

there exists a sequence (uk) ⊂ Eλ such that

(3.9) Jλ,τ,n(uk) → cλ,τ,n and (1 + ∥uk∥Eλ
)∥J ′

λ,τ,n(uk)∥E−1
λ

→ 0,

for all n ∈ N+, where

(3.10) cλ,τ,n ≜ inf
γ∈Γλ,τ,n

max
t∈[0,1]

Jλ,τ,n(γ(t)) > 0

with Γλ,τ,n = {γ ∈ C([0, 1], Eλ) : γ(0) = 0 and Jλ,τ,n(γ(1)) < 0}.

Remark 3.5. The reader is invited to observe from the proofs of Lemmas 3.2 and 3.3 that there exist
some constants c̄, ĉ > 0, independent of σ, τ, λ and n ∈ N+, such that c̄ ≤ cλ,τ,n ≤ ĉ.
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Lemma 3.6. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).

Then, for all σ ∈ (0, σ3) with σ3 ≜ min{σ1, σ2, 1
4n2 } > 0, any sequence (uk) ⊂ Eλ satisfying (3.9) and

(3.10) is uniformly bounded in k ∈ N+. Moreover, there is a constant C0 > 0 independent of k ∈ N+

such that

(3.11)

∣∣∣∣ sup
k∈N+

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx

∣∣∣∣ ≤ C0 and

∣∣∣∣ sup
k∈N+

ˆ
R2

[Gτ (x) ∗Gn(uk)] gn(uk)ukdx

∣∣∣∣ ≤ C0.

Proof. To verify that (uk) ⊂ Eλ is uniformly bounded in k ∈ N+, we introduce a suitable test function
below

vk ≜


Gn(uk)

gn(uk)
, if uk > 0,(

1− δ

4

)
uk, if uk ≤ 0,

where δ ∈ (0, 1) is given by (f2). For all σ ∈ (0, σ1) with σ1 > 0 in Lemma 2.3-(g2), we claim that

(3.12) Gn(s) ≤
(
1− δ

4

)
gn(s)s, ∀s > 0.

In fact, Lemma 2.3-(g2) infers that
d

ds

Gn(s)

gn(s)
≤ 1− δ

4
for any s > 0, then for all ε ∈ (0, s), one has

Gn(s)

gn(s)
− Gn(ε)

gn(ε)
=

ˆ s

ε

d

dt

(
Gn(t)

gn(t)

)
dt ≤

(
1− δ

4

)ˆ s

ε
dt =

(
1− δ

4

)
(s− ε)

which together with lim
ε→0+

Gn(ε)

gn(ε)
= 0 uniformly in n ∈ N+ yields the claim by tending ε→ 0+. Thereby,

we are derived from (3.12) that (vk) ⊂ Eλ. To further show that ∥vk∥Eλ
≤ C∥uk∥Eλ

for some constant
C > 0 independent of k ∈ N+, due to Lemma 2.3-(g1), it suffices to show that

(3.13)
Gn(s)g

′
n(s)

g2n(s)
≤ C, ∀s > 0.

Indeed, it is a direct consequence of Lemma 2.3-(g3) and gn ∈ C1 in (g1). Adopting Jλ,τ,n(uk) → cλ,τ,n
in (3.9), it has that

(3.14) cλ,τ,n + ok(1) =
1

2

ˆ
R2

[
|∇uk|2 + λV (x)|uk|2

]
dx− 1

2

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx.

Combining Lemma 2.3-(g1), (g2) and (3.12) as well as (3.14), we reach

ok(1)∥uk∥Eλ
=

(
1− δ

4

)ˆ
uk≤0

[
|∇uk|2 + λV (x)|uk|2

]
dx+

ˆ
uk>0

|∇uk|2
[
1− Gn(uk)g

′
n(uk)

g2n(uk)

]
dx

+

ˆ
R2

λV (x)uk
Gn(uk)

gn(uk)
dx−

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx

≤
(
1− δ

4

)ˆ
R2

[
|∇uk|2 + λV (x)|uk|2

]
dx−

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx

= 2cλ,τ,n − δ

4
∥uk∥2Eλ

+ ok(1)

which reveals that ∥uk∥Eλ
≤ C for some C > 0 independent of k ∈ N+. Since ∥uk∥Eλ

∥J ′
λ,τ,n(uk)∥E−1

λ
→

0 in (3.9), then

(3.15) ok(1) =
1

2

ˆ
R2

[
|∇uk|2 + λV (x)|uk|2

]
dx−

ˆ
R2

[Gτ (x) ∗Gn(uk)] gn(uk)ukdx.

The remaining parts follow directly by (3.14) and (3.15). The proof is completed. □
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Remark 3.7. As a direct corollary of Lemma 3.6, without loss of generality, we shall always assume
that the Cerami sequence (uk) ⊂ Eλ in (3.9) is nonnegative. In fact, we define u−k = min{uk, 0} ∈ Eλ

and so u−k ≤ 0 for all k ∈ N+. Recalling gn(s) ≡ 0 for all s ≤ 0 by Lemma 2.3-(g1), then

ok(1) = ∥u−k ∥Eλ
∥J ′

λ,τ,n(uk)∥E−1
λ

≥ J ′
λ,τ,n(uk)(u

−
k )

= ∥u−k ∥
2
Eλ

−
ˆ
R2

[Gτ (x) ∗Gn(uk)] gn(uk)u
−
k dx

= ∥u−k ∥
2
Eλ

≥ 0.

Hence, we must have that u−k → 0 in Eλ and it permits us to conclude that (u+k ) is a Cerami sequence,

where u+k = max{uk, 0} ≥ 0.

Consider that the nonlinearity Gn possesses the supercritical exponential growth at infinity and it
causes the lack of compactness. To restore it, we proceed as the Brézis-Lieb method to pull the mountain-
pass level cλ,τ,n down below a critical value. Have this aim in mind, motivated by [2,3,16,27,28,32,62],
for a fixed constant r0 ∈ (0, 1], we shall consider the Moser sequence functions defined by

w̄k(x) ≜
1√
2π


√
log k, if 0 ≤ |x| ≤ r0

k ,

log( 1
|x| )√

log k
, if r0

k < |x| ≤ r0,

0, if |x| > r0,

where r0 > 0 is sufficiently small to satisfy Br0(0) ⊂ Ω. In fact, since Ω = intV −1(0) is open, without
loss of generality, we can suppose that 0 ∈ Ω and so such an r0 is available.

Lemma 3.8. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f4).

Then, for all σ ∈ (0, σ3) with σ3 ≜ min{σ1, σ2, 1
4n2 } > 0, we have that

0 < inf
n∈N+

cλ,τ,n ≤ sup
n∈N+

cλ,τ,n <
2π

α0
, ∀τ ∈

(
0,

1

2

)
and λ > λ0.

Proof. The first inequality is a corollary of Remark 3.5 and so we shall just exhibit the detailed proof of
the last inequality. First of all, some elementary calculations provide us that (w̄k) ⊂ Eλ and |∇wk|22 = 1

and |
√
λV w̄k|22 = 0 for all k ∈ N+. We define wk = w̄k

∥w̄k∥Eλ
, then ∥wk∥Eλ

≡ 1 for all k ∈ N+.

To conclude the proof, it suffices to determine a suitable B > 0, independent of σ, τ, λ and k, n ∈ N+,
such that there is a k0 ∈ N+ satisfying

(3.16) max
t≥0

Jλ,τ,n(twk0) < B.

Arguing it indirectly, we could suppose that there is a tk > 0 such that

Jλ,τ,n(tkwk) = max
t≥0

Jλ,τ,n(twk) ≥ B.

Consequently, one can infer that

(3.17)
t2k
2

≥ 1

2

ˆ
R2

[Gτ (x) ∗Gn(tkwk)]Gn(tkwk)dx+ B,

and

(3.18) t2k =

ˆ
R2

[Gτ (x) ∗Gn(tkuk)] gn(tkwk)tkwkdx.

In view of the support of w̄k, we choose r0 <
1
2 and so Gτ (x) ≥ 0 for all x ∈ suppwk. Using Lemma

2.3-(g1) and (3.17), there holds

(3.19) t2k ≥ 2B.
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Our next aim is to show that lim sup
k→+∞

t2k ≤ 2B. Otherwise, by (3.19), there would be a δ0 > 0 such that

(3.20) t2k ≥ 2B + δ0.

for some sufficiently large k ∈ N+. Hence, we are able to make full use of Lemma 2.2, Lemma 2.3-(g1),
(g4), and Hölder’s inequality to reach

B̂ ≜
ˆ
R2

ˆ
R2

|x− y|−τ − 1

τ
Gn(tkwk(y))gn(tkwk(x))tkwk(x)dxdy

≥
ˆ
B r0

k
(0)

ˆ
B r0

k
(0)

log

(
1

|x− y|

)
Gn(tkwk(y))gn(tkwk(x))tkwk(x)dxdy

≥ log

(
k

2r0

)ˆ
B r0

k
(0)
Gn(tkwk(x))dx

ˆ
B r0

k
(0)
gn(tkwk(x))tkwk(x)dx


≥ log

(
k

2r0

)ˆ
B r0

k
(0)

√
Gn(tkwk(x))gn(tkwk(x))tkwk(x)dx

2

≥ 1

2
log

(
k

2r0

)ˆ
B r0

k
(0)

√
F (tkwk(x))f(tkwk(x))tkwk(x)dx

2

.

According to (f4) and the definition of wk, for some sufficiently large k ∈ N+, it holds that

B̂ ≥ β

4
π2r40 log

(
k

2r0

)
t1−ϑ
k ∥w̄k∥ϑ−1

Eλ

(
log k

2π

) 1−ϑ
2

exp
[(α0

π
t2k∥w̄k∥−2

Eλ
− 4
)
log k

]
which together with (3.18) indicates that

(3.21) t1+ϑ
k ≥ β

4
π2r40 log

(
k

2r0

)
∥w̄k∥ϑ−1

Eλ

(
log k

2π

) 1−ϑ
2

exp
[(α0

π
t2k∥w̄k∥−2

Eλ
− 4
)
log k

]
.

Obviously, we must have that t2k ≤ 4π
α0

for large k ∈ N+ and so we choose

(3.22) B =
2π

α0
,

which enables us to arrive at a contradiction, namely it implies that lim sup
k→+∞

t2k ≤ 4π

α0
. Owing to (3.20),

without loss of generality, we shall suppose that, up to a subsequence if necessary,

(3.23) lim
k→+∞

t2k =
4π

α0
,

Finally, we are capable of finishing the proof. If ϑ < 3 in (f4), i.e. 1 +
1−ϑ
2 > 0, then (log k)1+

1−ϑ
2 →

+∞ as k → +∞ and so there would be a contraction by (3.21) and (3.23). In this situation, the proof
is done immediately because of β > β0 = 0 due to (3.16) and (3.22). If ϑ = 3 in (f4), then we apply
this and (3.23) in (3.21) to get (

4π

α0

)2

≥ β

4
π2r40(2π),

which contradicts with the choice of β0 in (f4). Consequently, we always conclude a contradiction when
(f4) holds true and so (3.16) is true. With (3.22) in hands, the proof of this lemma is completed. □

Because of the sign-changing logarithmic kernel, the following lemma is a key ingredient.
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Lemma 3.9. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).

Then, for all σ ∈ (0, σ3) with σ3 ≜ min{σ1, σ2, 1
4n2 } > 0, any sequence (uk) ⊂ Eλ satisfying (3.9) and

(3.10) has the following conclusions

(3.24) sup
k∈N+

ˆ
R2

gn(uk)ukdx ≤ C1 and sup
k∈N+

ˆ
R2

[Gn(uk)]
κ dx ≤ C1,

for some C1 > 0 independent of k ∈ N+, where 1 < κ < (1− ε)−
1
2 with ε ∈ (0, 1) given in (3.28) below.

Proof. First of all, inspired by [19], we introduce the auxiliary function

Hn(s) ≜
ˆ s

0

√
Gn(t)g′n(t)

g2n(t)
dt, ∀s > 0,

and define wk ≜ Hn(uk). Let us take some key estimate for ∥wk∥Eλ
. To end it, we choose vk determined

by Lemma 3.6 and then Remark 3.7 jointly with ∥vk∥Eλ
∥J ′

λ,τ,n(uk)∥E−1
λ

→ 0 in (3.9) implies that

ok(1) =

ˆ
R2

|∇uk|2
[
1− Gn(uk)g

′
n(uk)

g2n(uk)

]
dx+

ˆ
R2

λV (x)uk
Gn(uk)

gn(uk)
dx

−
ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx.

Due to the above formula, we apply Jλ,τ,n(uk) → cλ,τ,n in (3.9) to get

2cλ,τ,n + ok(1) =

ˆ
R2

[
|∇uk|2 + λV (x)|uk|2

]
dx−

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx

= ∥uk∥2Eλ
−
ˆ
R2

|∇uk|2
[
1− Gn(uk)g

′
n(uk)

g2n(uk)

]
dx−

ˆ
R2

λV (x)uk
Gn(uk)

gn(uk)
dx

=

ˆ
R2

|∇uk|2
Gn(uk)g

′
n(uk)

g2n(uk)
dx+

ˆ
R2

λV (x)

[
u2k − uk

Gn(uk)

gn(uk)

]
dx.(3.25)

As a consequence, combining (3.12) and (3.25), it holds that

|∇wk|22 =
ˆ
R2

|∇Hn(uk)|2dx =

ˆ
R2

|∇uk|2
Gn(uk)g

′
n(uk)

g2n(uk)
dx

= 2cλ,τ,n +

ˆ
R2

λV (x)

[
uk
Gn(uk)

gn(uk)
− u2k

]
dx+ ok(1)

≤ 2cλ,τ,n + ok(1).(3.26)

Moreover, it follows from Lemma 3.6 and (3.13) that

(3.27)

ˆ
R2

λV (x)w2
kdx =

ˆ
R2

λV (x)H2
n(uk)dx ≤ C

ˆ
R2

λV (x)u2kdx ≤ C∥uk∥2Eλ
≤ C.

Secondly, we recall Lemma 2.3-(g3), for all ε ∈ (0, 1), there is a sε > 0 such that

Gn(s)g
′
n(s)

g2n(s)
≥ 1− ε, ∀s ≥ sε.

With the help of it, we exploit Lemma 2.3-(g2) to have that

wk =

ˆ sε

0

√
Gn(t)g′n(t)

g2n(t)
dt+

ˆ uk

sε

√
Gn(t)g′n(t)

g2n(t)
dt ≥

√
δ

2
sε +

√
1− ε(uk − sε) ≥

√
1− ε(uk − sε)

from where it follows that

(3.28) uk ≤ sε +
wk√
1− ε

, ∀x ∈ R2.
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Finally, we are ready to exhibit the verifications of (3.24) in detail. In view of Lemma 3.8 and (3.26),
we choose α > α0 sufficiently close to α0 and ν > 1 sufficiently close to 1 in such a way that 1

ν + 1
ν′ = 1

with ν > 1 and

αν|∇wk|22 <
4π(1− ε)2

(1 + ε)2
,

where ε ∈ (0, 1) comes from (3.28). We define

ŵk =

√
αν(1 + ε)2

4π(1− ε)2
wk, ∀k ∈ N+.

So, we conclude that |∇ŵk|22 ≤ 1 and |
√
λV ŵk|22 ≤ C by (3.27) for some C > 0 independent of k ∈ N+.

Thanks to (1.8), these facts show us that

(3.29) sup
k∈N+

ˆ
R2

[
eαν(1+ε)2(1−ε)−1w2

k − 1
]
dx = sup

k∈N+

ˆ
R2

[
e4π(1−ε)ŵ2

k − 1
]
dx ≤ C < +∞.

To continue to proof, for the above fixed ε ∈ (0, 1) given in (3.28), we need the following two types of
Young’s inequality

|a+ b|2 ≤ (1 + ε)|a|2 + (1 + ε−1)|b|2, ∀a, b ∈ R
and

ea+b − d ≤ 1

1 + ε

[
e(1+ε)a − d

]
+

ε

1 + ε

[
e(1+ε−1)b − d

]
, ∀a, b, d ∈ R.

Letting q̄ ≥ 2 be given as (2.2), we are derived from Lemma 3.6 and (3.28)-(3.29) thatˆ
uk≥sε

|uk|q̄
(
eαu

2
k − 1

)
dx ≤

ˆ
uk≥sε

|uk|q̄
[
e
α
(
sε+

wk√
1−ε

)2

− 1

]
dx

≤
ˆ
uk≥sε

|uk|q̄
[
eα(1+ε−1)s2ε+α(1+ε)(1−ε)−1w2

k − 1
]
dx

≤
ˆ
uk≥sε

|uk|q̄
[(

ε

1 + ε
eα(1+ε−1)2s2ε − 1

)
+

(
1

1 + ε
eα(1+ε)2(1−ε)−1w2

k − 1

)]
dx

≤ Cε

ˆ
uk≥sε

|uk|q̄dx+
1

1 + ε

ˆ
uk≥sε

|uk|q̄
(
eα(1+ε)2(1−ε)−1w2

k − 1
)
dx

≤ Cε

ˆ
uk≥sε

|uk|q̄dx+
1

1 + ε

(ˆ
uk≥sε

|uk|q̄ν
′
dx

) 1
ν′
[ˆ

uk≥sε

(
eαν(1+ε)2(1−ε)−1w2

k − 1
)
dx

] 1
ν

≤ Cε.(3.30)

Since 1 < κ < (1− ε)−
1
2 , some simple calculations reveal that

sup
k∈N+

ˆ
R2

[
eακν(1+ε)2(1−ε)−1w2

k − 1
]
dx ≤ sup

k∈N+

ˆ
R2

[
e4π

√
1−εŵ2

k − 1
]
dx ≤ C < +∞.

From which, we proceed as the same way in (3.30) to arrive at

(3.31)

ˆ
uk≥sε

|uk|q̄κ
(
eακu

2
k − 1

)
dx ≤ Cε < +∞.

In view of (2.2) and (2.3) as well as (2.7), we conclude the proofs of this lemma immediately by taking
advantage of (3.30) and (3.31). The proof is completed. □

Lemma 3.10. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).
Then there exist some constants σ∗ > 0, τ∗ > 0 and λ∗ > 0 such that for all σ ∈ (0, σ∗), τ ∈ (0, τ∗) and
λ > λ∗, any sequence (uk) ⊂ Eλ satisfying (3.9) and (3.10) contains a strongly convergent subsequence.
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Proof. First of all, we choose σ ∈ (0, σ3) with σ3 ≜ min{σ1, σ2, 1
4n2 } > 0, σ ∈ (0, 12) and λ > λ0, then

all the conclusions above in this Section remain true. By Lemma 3.6, (uk) is bounded in Eλ and so,
there exists a u ∈ Eλ such that uk ⇀ u in Eλ, uk → u in Ls

loc(R2) with s ∈ [1,+∞) and uk → u a.e.
in R2. To conclude the proof clearly, we shall split it into several steps:

Step 1: Define vk ≜ uk−u, then there exists a Λ̂ > 0 such that vk → 0 in Lq(R2) for all q ∈ (2,+∞)

along a subsequence as k → ∞ when λ > Λ̂.
Actually, since (vk) is uniformly bounded in k ∈ N for all λ > Λ0, then we have one of the following

two possibilities for some r > 0:

(i): lim
k→∞

sup
y∈R2

ˆ
Br(y)

|vk|2dx > 0 and (ii): lim
k→∞

sup
y∈R2

ˆ
Br(y)

|vk|2dx = 0.

If (i) was true, there is a constant δ̃ > 0 independent of λ > Λ0 such that

lim
n→∞

sup
y∈R2

ˆ
Br(y)

|vn|2dx ≥ δ̃

for some r > 0. Since (uk) is uniformly bounded in Eλ, without loss of generality, we are assuming that
lim
n→∞

∥uk∥2Eλ
≤ Θ for some Θ ∈ (0,+∞). Clearly, there holds lim

n→∞
∥vk∥2Eλ

≤ 4Θ. Recalling vk → 0 in

Lq
loc(R

2) with q ∈ (2,+∞) and |AR| → 0 as R→ +∞ by (V2), where AR ≜ {x ∈ R2\BR(0) : V (x) < b},
we can determine a sufficiently large but fixed R > 0 to satisfy

(3.32) lim sup
k→∞

ˆ
BR(0)

|vk|2dx <
δ̃

4

and

(3.33) |AR| <

(
δ̃

16Θ

) q
q−2

(|Ξ|κGN)
− 2

q−2 ,

where κGN > 0 symbols as the optimal constant related to Gagliardo-Nirenberg inequality. Proceeding
as [55, (3.21)], one sees that

(3.34) lim sup
k→∞

ˆ
AR

|vk|2dx ≤ lim sup
k→∞

(ˆ
AR

|vk|qdx
) 2

q

|AR|
q−2
q ≤ 4Θ(|Ξ|κGN)

2
q |AR|

q−2
q <

δ̂

4
.

Let us choose Λ̂ = max
{
1,Λ0,

16Θ
δ̃b

}
, then for all λ > Λ̂, we reach

(3.35) lim sup
k→∞

ˆ
BR

|vk|2dx ≤ lim sup
n→∞

1

λb

ˆ
BR

λV (x)|vk|2dx ≤ 4Θ

λb
<
δ̃

4
,

where BR ≜ {x ∈ R2\BR(0) : V (x) ≥ b}. We gather (3.36), (3.37) and (3.35) to derive

δ̃ ≤ lim
k→∞

sup
y∈R2

ˆ
Br(y)

|vk|2dx ≤ lim sup
k→∞

ˆ
R2

|vk|2dx

= lim sup
k→∞

(ˆ
R2\BR(0)

|vk|2dx+

ˆ
BR(0)

|vk|2dx

)
≤ 3δ̃

4

which is impossible. The proof of this step is done.
Step 2: For all τ ∈ (0, τκ) with τκ in Lemma 2.5, we have that u ̸= 0, J ′

λ,τ,n(u) = 0 and Jλ,τ,n(u) ≥ 0.

We suppose, by contradiction, that u ≡ 0 and thus the Step 1 gives us that un → 0 in Lq(R2) for all

q ∈ (2,+∞) when Λ > Λ̂. According to Lemma 3.9, we realize that Lemma (2.5) is available and thus
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(2.11)-(2.12) can give us that

(3.36) lim
k→∞

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx = 0.

As a consequence, combining Jλ,τ,n(uk) → cλ,τ,n in (3.9), (3.36) and Lemma 3.8, it holds that

lim sup
k→∞

ˆ
R2

[|∇uk|2 + λV (x)u2k]dx = 2cλ,τ,n <
4π

α0
.

Thereby, we shall choose α > α0 sufficiently close to α0 and ν ′ > 1 sufficiently close to 1 in such a way
that 1

ν + 1
ν′ = 1 and

αν∥uk∥2Eλ
< 4π(1− ε), ∀k ∈ N+,

where ε ∈ (0, 1) comes from (3.28). It follows from (2.2), (2.7) with σ < 1
4n2 and the Holder’s inequality

thatˆ
R2

gn(uk)ukdx ≤ ϵ

ˆ
R2

|uk|2dx+ Cϵ

ˆ
R2

|uk|q̄(eαu
2
k − 1)dx

≤ ϵ

ˆ
R2

|uk|2dx+ Cϵ

(ˆ
R2

|uk|qν
′
dx

) 1
ν′
(ˆ

R2

(e4π(1−ε)2(uk/∥uk∥Eλ
)2 − 1)dx

) 1
ν

.

Recalling (1.8), we shall deduce that
´
R2 gn(uk)ukdx→ 0 by letting k → ∞ and then tending ϵ→ 0+.

Thanks to this and (2.13), it holds that
´
R2 [|x|−τ ∗Gn(uk)]gn(uk)ukdx→ 0. It is, therefore, to reach

(3.37) lim
k→∞

ˆ
R2

[Gτ (x) ∗Gn(uk)] gn(uk)ukdx = 0.

Adopting J ′
λ,τ,n(uk)(uk) → 0 in (3.9) and (3.37), it derives that ∥uk∥Eλ

→ 0 which together with (3.36)

and (3.9) reveals that cλ,τ,n = 0. It is absurd because of Lemma 3.8. So, u ̸= 0 concludes. Moreover,

J ′
λ,τ,n(u) = 0 is a direct consequence of J ′

λ,τ,n(uk) → 0 in E−1
λ and (2.11)-(2.12). In view of Remark

3.7, we are capable of supposing that u ≥ 0. Choosing v = Gn(u)
gn(u)

, it belongs to Eλ in the same spirit of

Lemma 3.6 and so J ′
λ,τ,n(u)(v) = 0 which is equivalent to

ˆ
R2

|∇u|2
[
1− Gn(u)g

′
n(u)

g2n(u)

]
dx+

ˆ
R2

λV (x)u
Gn(u)

gn(u)
dx−

ˆ
R2

[Gτ (x) ∗Gn(u)]Gn(u)dx = 0.

Using it, one has that

Jλ,τ,n(u) =
1

2
∥u∥2Eλ

− 1

2

ˆ
R2

[Gτ (x) ∗Gn(u)]Gn(u)dx

=
1

2
∥u∥2Eλ

− 1

2

ˆ
R2

|∇u|2
[
1− Gn(u)g

′
n(u)

g2n(u)

]
dx− 1

2

ˆ
R2

λV (x)u
Gn(u)

gn(u)
dx

=
1

2

ˆ
R2

|∇u|2Gn(u)g
′
n(u)

g2n(u)
dx+

1

2

ˆ
R2

λV (x)

[
u2 − u

Gn(u)

gn(u)

]
dx(3.38)

finishing the proof of this step.
Step 3: Choosing σ∗ = σ3, τ∗ = min{1

2 , τκ} and λ∗ = max{λ0, Λ̂}, then we have that uk → u in Eλ

along a subsequence as k → ∞ for all σ ∈ (0, σ∗), τ ∈ (0, τ∗) and λ > λ∗.
Combining Jλ,τ,n(uk) → cλ,τ,n in (3.9), the Fatou’s lemma and (2.11)-(2.12), there holds

cλ,τ,n =
1

2
∥uk∥2Eλ

− 1

2

ˆ
R2

[Gτ (x) ∗Gn(uk)]Gn(uk)dx+ ok(1)

=
1

2
∥uk − u∥2Eλ

+ Jλ,τ,n(u) + ok(1) ≥
1

2
∥uk − u∥2Eλ

+ ok(1).
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Due to Lemma 3.8, it permits us to choose α > α0 sufficiently close to α0 and ν > 1 sufficiently close
to 1 in such a way that 1

ν + 1
ν′ = 1 with ν, ν ′ > 1 and

αν∥uk − u∥2Eλ
<

4π(1− ε)

(1 + ε)2
, ∀k ∈ N+,

where ε ∈ (0, 1) comes from (3.28). Therefore, we apply (1.8) to arrive at

sup
k∈N+

ˆ
R2

[
eαν(1+ε)2|uk−u|2 − 1

]
dx ≤ sup

k∈N+

ˆ
R2

[
e4π(1−ε)(|uk−u|/∥uk−u∥Eλ

)2 − 1
]
dx ≤ C,

where C > 0 is independent of k ∈ N+. Exploiting again the two types of Young’s inequality introduced
in Lemma 3.9, we obtainˆ

R2

(
eανu

2
k − 1

)
dx ≤

ˆ
R2

[
eαν(1+ε−1)u2+αν(1+ε)|uk−u|2 − 1

]
dx

≤ ε

1 + ε

ˆ
R2

[
eαν(1+ε−1)2u2 − 1

]
dx+

1

1 + ε

ˆ
R2

[
eαν(1+ε)2|uk−u|2 − 1

]
dx

≤ C

for some C > 0 independent of k ∈ N+. So, letting k → ∞ and then tending ϵ→ 0+ we deriveˆ
R2

|gn(uk)(uk − u)| dx ≤ ϵ

ˆ
R2

|uk||uk − u|dx+ Cϵ

ˆ
R2

|uk − u||uk|q̄−1(eαu
2
k − 1)dx

≤ ϵ|uk|2|uk − u|2 + Cϵ|uk|q̄−1
q̄ν′ |uk − u|q̄ν′

[ˆ
R2

(
eανu

2
k − 1

)
dx

] 1
ν

→ 0.

As a by-product of it and (2.13), there holds
´
R2 [|x|−τ ∗Gn(uk)]gn(uk)(uk − u)dx→ 0 and so

lim
k→∞

ˆ
R2

[Gτ (x) ∗Gn(uk)] gn(uk)(uk − u)dx = 0,

which together with (3.9) yields that

ok(1) = J ′
λ,τ,n(uk)(uk − u)− J ′

λ,τ,n(u)(uk − u)

= ∥uk − u∥2Eλ
−
ˆ
R2

[Gτ (x) ∗Gn(uk)] gn(uk)(uk − u)dx

= ∥uk − u∥2Eλ
+ ok(1).

The proof is completed. □

At this stage, we are capable of showing the proof of Theorem 3.1.

Proof of Theorem 3.1. Given σ ∈ (0, σ∗), τ ∈ (0, τ∗) and λ > λ∗, hence the existence of a sequence
(uk) ⊂ Eλ is available. In view of Lemma 3.10, there is a nontrivial u ∈ Eλ such that Jλ,τ,n(u) = cλ,τ,n
and J ′

λ,τ,n(u) = 0 in E−1
λ . The proof is completed. □

Now, we are in a position to contemplate the existence of a nontrivial solution for Eq. (1.12). More
precisely, let us consider the following planar logarithmic Choquard equation

(3.39) −∆u+ λV (x)u = [Gτ (x) ∗G(u)] g(u) in R2.

In this direction, we have the result below.

Theorem 3.11. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f3).

Then there exist some constants σ̂∗ > 0, τ̂∗ > 0 and λ̂∗ > 0 such that for all σ ∈ (0, σ̂∗), τ ∈ (0, τ̂∗) and

λ > λ̂∗, Eq. (3.39) has at least a nontrivial solution.
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Let us recall the definition of ηn defined in (1.14), one may observe that if a solution v ∈ Eλ of Eq.
(3.1) satisfies |v|∞ < n and thereby it is in fact a solution of Eq. (3.39). In order to conclude Theorem
3.11, we are going to verify that the solution u ∈ Eλ obtained in Theorem 3.1 belongs to L∞(R2) and
its L∞-norm can be controlled by a positive constant which is independent of n ∈ N+.

To proceed with the proof, we claim that the constants, C, C0, C1, etc., are independent of n ∈ N+.
As a matter of fact, the reader is invited to observe that this would be correct if we are able to verify
that the constant C > 0 in (3.13) does not depend on n ∈ N+. On the one hand, combining (f1) and
(f3), there exists a constant C > 0 independent of n ∈ N+ such that F (s)f ′(s) ≤ Cf2(s) for all s > 0.
Using it and (2.9) as well as (2.8), one has that

F (s)
[
f ′(s) + 2σf(s)fn(s) + σF (s)f′n(s) + σ2F (s)f2n(s)

]
≤
[
C + (184 + 36σ)σn2

]
f2(s), ∀s > 0.

On the other hand, in view of (2.10), we are choosing σ4 ≜ 1
2σ∗ > 0 and the claim therefore concludes

for all σ ∈ (0, σ4). From now on until the end of this Section, we would like to highlight here that the
constants adopted are independent of n ∈ N+.

Before showing that u ∈ Eλ belongs to L∞(R2), we recall from Lemma 3.10 jointly with Remark 3.7
that there is a function ϖ ∈ Eλ which is independent of k, n ∈ N+ such that

(3.40) 0 ≤ u(x) ≤ ϖ(x), ∀x ∈ R2.

Lemma 3.12. Under the assumptions of Theorem 3.1 and let u ∈ Eλ be a nontrivial solution of Eq.
(3.1). Then, for all σ ∈ (0, σ4), we have that u ∈ L∞(R2). In particular, it holds that

|u|∞ ≤
(
2

q̃

) 2q̃

(2−q̃)2
(
C̄ q̃′

0

ˆ
R2

(eαq̃
′ϖ2 − 1)dx

) q̃
2q̃′(2−q̃)

|u|44,

where C̄0 > 0 is a constant independent of n ∈ N+, ϖ comes from (3.40) and q̃ ∈ (1, 2) with 1
q̃ +

1
q̃′ = 1.

Proof. Let γ > 1 and z ∈ N+ and we introduce the sets Az ≜ {x ∈ R2 : uγ−1 ≤ z} and Bz ≜ R2\Az.
Consider the sequences

uz =

{
u2γ−1, in Az,
z2u, in Bz,

and vz =

{
uγ , in Az,
zu, in Bz.

It is simple to observe that uz, vz ∈ Eλ, |uz| ≤ |u|2γ−1 and |vz|2 = uuz ≤ |u|2γ in R2. Moreover,

∇uz =
{

(2γ − 1)u2(γ−1)∇u, in Az,
z2∇u, in Bz,

and ∇vz =
{
γuγ−1∇u, in Az,
z∇u, in Bz,

which imply that

(3.41)


ˆ
R2

∇u∇uzdx = (2γ − 1)

ˆ
Az

u2(γ−1)|∇u|2dx+ z2
ˆ
Bz

|∇u|2dx,ˆ
R2

|∇vz|2dx = γ2
ˆ
Az

u2(γ−1)|∇u|2dx+ z2
ˆ
Bz

|∇u|2dx.

Combining (3.41) and the fact that γ > 1, one obtainsˆ
R2

|∇vz|2dx =

ˆ
R2

∇u∇uzdx+ (γ − 1)2
ˆ
Az

u2(γ−1)|∇u|2dx

≤
[
1 +

(γ − 1)2

2γ − 1

]ˆ
R2

∇u∇uzdx ≤ γ2
ˆ
R2

∇u∇uzdx.(3.42)

Since u ∈ Eλ is a nontrivial critical point of Jλ,τ,n, then J ′
λ,τ,n(u)(uz) = 0 which gives that

(3.43)

ˆ
R2

[∇u∇uz + λV (x)uuz] dx =

ˆ
R2

[Gτ (u) ∗Gn(u)] gn(u)uzdx.
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Next, we need to take some careful analyses for the two items in (3.43). Firstly, one may note that
uuz = v2z , it then follows from (3.42) and γ > 1 that

(3.44)

ˆ
R2

[
|∇vz|2 + λV (x)|vz|2

]
dx ≤ γ2

ˆ
R2

[∇u∇uz + λV (x)uuz] dx.

Using (2.13) and Lemma 3.9, there is a constant C > 0 independent of n ∈ N+ such that |Gτ (u) ∗Gn(u)| ≤
C. Moreover, for all σ ∈ (0, σ4), we apply (2.4) and (2.7) to get

gn(u)uz = [f(u) + σF (u)fn(u)]uze
σFn(u) ≤

(
1 + 24σn2

)
f(u)uze

σFn(u) ≤ 2ef(u)uz.(3.45)

As a consequence of the above two facts, it infers from (2.2) with q̄ = 2 and (3.40) thatˆ
R2

[Gτ (u) ∗Gn(u)] gn(u)uzdx ≤ ϵC

ˆ
R2

|vz|2dx+ Cϵ

ˆ
R2

|vz|2
(
eα|u|

2 − 1
)
dx

≤ 1

8
∥vz∥2Eλ

+ CIα,q̃′

(ˆ
R2

|vz|2q̃dx
) 1

q̃

,(3.46)

where and in the sequel

Iα,q̃′ ≜

[ˆ
R2

(
eαq̃

′|ϖ|2 − 1
)
dx

] 1
q̃′

.

According to (3.43), (3.44) and (3.46), we have that

ˆ
R2

[
|∇vz|2 + λV (x)|vz|2

]
dx ≤ CIα,q̃′γ

2

(ˆ
R2

|vz|2q̃dx
) 1

q

.

We fix q̃ ∈ (1, 2) with q̃′ = q̃/(q̃ − 1) and Eλ ↪→ L4(R2), then there is a constant C̄0 > 0 independent
γ and n ∈ N+ such that (ˆ

R2

|vz|4dx
) 1

2

≤ C̄0Iα,q̃′γ2
(ˆ

R2

|vz|2q̃dx
) 1

q

.

Once vz = uγ in Az and vz ≤ uγ in R2, there holds(ˆ
Az

|u|4γdx
) 1

2

≤ C̄0Iα,q̃′γ2
(ˆ

R2

|u|2q̃γdx
) 1

q̃

, ∀z ∈ N+.

Applying the Lebesgue’s Dominated Convergence theorem with z → ∞ to the above formula, one has

(3.47) |u|2γ4γ ≤ C̄0Iα,q̃′γ2|u|2γ2q̃γ .

We choose the constant µ = 2/q̃, then µ > 1 because q̃ ∈ (1, 2). For every j ∈ N+, define γj = µj

and thus 2q̃γj+1 = 2q̃µγj = 4γj . For j = 1, γ1 = µ > 1 which can be applied in (3.47) to derive

(3.48) |u|4µ ≤ µ
1
µ (C̄0Iα,q̃′)

1
2µ |u|4.

For j = 2, γ2 = µ2 > 1 and 2q̃γ2 = 4γ1 = 4µ and by (3.47),

(3.49) |u|4µ2 ≤ (µ2)
1
µ2 (C̄0Iα,q̃′)

1
2µ2 |u|4µ.

For j = 3, γ3 = µ3 > 1 and 2q̃γ3 = 4γ2 = 4µ2 and by (3.47),

(3.50) |u|4µ3 ≤ (µ3)
1
µ3 (C̄0Iα,q̃′)

1
2µ3 |u|4µ2 .

Similar to (3.48), (3.49) and (3.50), proceeding this iteration procedure j times, we can infer that

(3.51) |u|4µj ≤ µ
∑j

i=1
i

µi (C̄0Iα,q̃′)
1
2

∑j
i=1

1

µi |u|4



24 L. SHEN AND M. SQUASSINA

invoking that u ∈ L4µj
(R2) for every j ∈ N+. Clearly,

∞∑
i=1

i

µi
=

µ

(µ− 1)2
and

∞∑
i=1

1

µi
=

1

µ− 1
, thereby

we can take the limit in (3.51) as j → ∞ to obtain

|u|∞ ≤ µ
µ

(µ−1)2 (C̄0Iα,q̃′)
1

2(µ−1) |u|44
finishing the proof of this lemma. □

Proof of Theorem 3.11. Choosing σ̂∗ = σ∗, τ̂∗ = 1
2τ∗ and λ̂∗ = λ∗, then for all σ ∈ (0, σ̂∗), τ ∈ (0, τ̂∗)

and λ > λ̂∗, we know that the u ∈ Eλ obtained in Theorem 3.1 is still a nontrivial solution of Eq. (3.1).
Due to (3.38) and Lemma 3.8, we are derived from Lemma 2.3-(g2) and (3.12) that

(3.52) ∥u∥2Eλ
≤ 4π

α0min{1− δ
4 ,

δ
4}

which together with Lemma 3.12 yields that

|u|∞ ≤
(
2

q̃

) 2q̃

(2−q̃)2
[
C̄ q̃′

0

ˆ
R2

(eαq̃
′ϖ2 − 1)dx

] q̃
2q̃′(2−q̃)

T4
4

(
4π

α0min{1− δ
4 ,

δ
4}

)2

≜ Ĉ0,

where T4 > 0 denotes an imbedding constant of Eλ ↪→ L4(R2). Now, we arrive at the proof of Theorem

3.11 by fixing n > Ĉ0, because in this scenario u is a nontrivial solution of (3.39) due to the definition
of ηn in (1.14). The proof is completed. □

4. Existence and decaying property of solutions for Eq. (1.1)

In this section, we are concerned with the existence and decaying property of nontrivial solutions for
Eq. (1.1). To reach the proof of Theorem 1.1, we are based on the results obtained in Theorem 3.11.

In what follows, let us denote uλ,τ by the nontrivial solution obtained in Theorem 3.11 to emphasize
the dependence of the parameters λ and τ . As a matter of fact, we have that Jλ,τ,n(uλ,τ ) = cλ,τ,n and

J ′
λ,τ,n(uλ,τ ) = 0 in E−1

λ . In view of Remark 3.5 or Lemma 3.8, we are able to take the same arguments

to deduce that (uλ,τ ) is uniformly bounded in τ ∈ (0, τ̂∗). Consequently, as τ → 0+, up to subsequences
if necessary, there is a function uλ,0 ∈ Eλ such that

(4.1) uλ,τ ⇀ uλ,0 in Eλ, uλ,τ → uλ,0 in Ls
loc(R2) with s ≥ 2, uλ,τ → uλ,0 a.e. in R2.

To restore the compactness, regarding as a counterpart of Lemma 3.9, we shall establish the following
result.

Lemma 4.1. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f4).
Then, for all τ ∈ (0, τ̂∗), any sequence (uλ,τ ) ⊂ Eλ satisfying (4.1) has the following conclusions

(4.2) sup
τ∈(0,τ̂∗)

ˆ
R2

g(uλ,τ )uλ,τdx ≤ C2 and sup
τ∈(0,τ̂∗)

ˆ
R2

[G(uλ,τ )]
κ dx ≤ C2,

for some C2 > 0 independent of τ ∈ (0, τ̂∗), where 1 < κ < (1− ε)−
1
2 with ε ∈ (0, 1) given in (3.28).

Proof. Let us go back to the proof of Lemma 3.9, one might observe that the constant C and Cε are
independent of τ ∈ (0, τ̂∗). Setting wλ,τ ≜ Hn(uλ,τ ), then we are able to proceed as (3.26) and (3.27)
to derive

(4.3) |∇wλ,τ |22 ≤ 2cλ,τ,n + ok(1).

and there is a constant C > 0 independent of τ ∈ (0, τ̂∗) such that

(4.4)

ˆ
R2

λV (x)w2
λ,τdx ≤ C.
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Doe the ε > 0 in (3.28), we also can find an sε > 0 to satisfy

(4.5) uλ,τ ≤ sε +
wλ,τ√
1− ε

, ∀x ∈ R2.

With (4.3), (4.3) and (4.3) in hands, repeating the calculations exhibited in Lemma 3.9, we are capable
of applying Lemma 2.5 to reach the proof of this lemma, where a similar fact in (3.45) is used.. □

Our next aim is to investigate the decaying property of uλ,τ which yields the proof of Theorem 1.4.

Lemma 4.2. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f4).

Then, there is a λ̃∗ > 0 such that for all λ > λ̃∗, there are A,B > 0, independent of σ, τ, λ and n ∈ N+

such that

(4.6) |uλ,τ (x)| ≤ Aλ−
1
2 exp

[
−Bλ

1
2 (|x| −R)

]
, ∀|x| > R,

where the consatnt R is independent of σ, τ, λ and n ∈ N+.

Proof. First of all, we shall conclude that uλ,τ ∈ L∞(R2). To demonstrate it, we realize that uλ,τ (x) ≥ 0

for all x ∈ R2 by Remark 3.7. Since J ′
λ,τ,n(uλ,τ ) = 0 in E−1

λ , it allows us to obtain

−∆uλ,τ + λV (x)uλ,τ ≤

(ˆ
|x−y|<1

|x− y|−τ − 1

τ
Gn(uλ,τ )(y)dy

)
gn(uλ,τ ) in R2.(4.7)

Recalling τ̂∗ =
1
2τ∗ <

1
2τκ = κ−1

κ , because σ ∈ (0, σ̂∗) and τ ∈ (0, τ̂∗), we apply (4.2) to have

Π ≜
ˆ
|x−y|<1

|x− y|−τ − 1

τ
Gn(uλ,τ (y))dy ≤ Cκe

ˆ
|x−y|<1

G(uλ,τ (y))

|x− y|
κ−1
κ

dy

≤ Cκe

(ˆ
|x−y|<1

1

|x− y|
dy

)κ−1
κ (ˆ

R2

[G(uλ,τ (y))]
κ dy

) 1
κ

≤ C3(4.8)

for some C3 > 0 independent of τ , where we have adopted Lemma 2.2 with τ ′ =
κ− 1

κ
> τ . Combining

(4.7) and (4.8), it has that

−∆uλ,τ ≤ −∆uλ,τ + λV (x)uλ,τ ≤ C3gn(uλ,τ ) in R2.

Proceeding as the same calculations exhibited in Lemma 3.12, we can determine a suitable constant
C4 > 0 independent of τ such that |uλ,τ |∞ ≤ C4. By exploiting σ ∈ (0, σ̂∗) again, gn(uλ,τ ) ≤ C5uq̄−1

λ,τ for

some q̄ > 2 given in (2.2), where C5 > 0 is independent of τ . Let c(x) = −uq̄−2
λ,τ (x) for all x ∈ R3, then

one sees |c(x)|∞ ≤ C q̄−2
4 and

−∆uλ,τ + c(x)uλ,τ ≤ 0 in R2.

Consequently, we follow [31, Theorem 8.17] to find a C6 > 0 independent of τ such that

(4.9) sup
x∈B1(y)

uλ,τ (x) ≤ C6|uλ,τ |L2(B2(y)), ∀y ∈ R2.

By (V3), there exists an R1 > 0 such that Ξ ⊂ BR1(0), and so V (x) ≥ b for all |x| ≥ R1 which together
with (3.52) implies that

(4.10)

ˆ
L2(B2(y))

|uλ,τ |2dx ≤ 4π

α0min{1− δ
4 ,

δ
4}

(λb)−1, ∀|y| ≥ R1 + 2.

Combining (4.9) and (4.10), we obtain

(4.11) uλ,τ (x) ≤ C6

√
4π

α0min{1− δ
4 ,

δ
4}

(λb)−
1
2 ≜ C7λ−

1
2 , ∀|x| ≥ R1 + 1.
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Finally, to continue the proof, we define

Wλ,τ (x) ≜ λV (x)− C5uq̄−2
λ,τ , ∀x ∈ R2.

Since |uλ,τ |∞ ≤ C4 and V (x) ≥ b for all |x| ≥ R1, there is a λ̃∗ > 0 such that for all λ > λ̃∗, it has that

Wλ,τ (x) ≥
1

2
λb ≜ λB2, ∀|x| ≥ R1 + 1.

As a consequence, we reach

(4.12) −∆uλ,τ + λB2uλ,τ ≤ 0, ∀|x| ≥ R1 + 1.

Choosing ψλ,τ (x) = Aλ−
1
2 exp

[
−Bλ

1
2 (|x| −R)

]
with A = C7 and R = R1 + 1, it therefore follows from

(4.11) that

(4.13) uλ,τ (x) ≤ ψλ,τ (x), ∀|x| = R.

Moreover, it simply derives that

(4.14) −∆ψλ,τ + λB2ψλ,τ ≥ 0, ∀|x| ≠ 0.

Setting φλ,τ = ψλ,τ − uλ,τ , then we make use of (4.12), (4.13) and (4.14) to have that{
−∆φλ,τ + λB2φλ,τ ≥ 0, in |x| > R,
φλ,τ ≥ 0, on |x| = R.

According to the maximum principle (see e.g. [31, Theorem 8.1]), we shall demonstrate that φλ,τ (x) ≥ 0
for all |x| ≥ R. The proof is completed. □

With Lemma 4.1 and Lemma 4.2 in hands, we are capable of arriving at the compact result below.

Lemma 4.3. Let V satisfy (V1)− (V3) and suppose g given by (1.2) to require (1.3) with (f1)− (f4).

Then, for all σ ∈ (0, σ̂∗), τ ∈ (0, τ̂∗) and λ > max{λ̂∗, λ̃∗}, passing to a subsequence if necessary,

lim
τ→0+

ˆ
R2

[Gτ (x) ∗G(uλ,τ )]G(uλ,τ )dx =

ˆ
R2

[
log

(
1

|x|

)
∗G(uλ,0)

]
G(uλ,0)dx.

Proof. Since λ̃ > λ̂, we can repeat the same way in the Step 1 of the proof of Lemma 3.10 to conclude
that uλ,τ → uλ,0 in Ls(R2) for all s > 2 along a subsequence as τ → 0+.

On the one hand, due to (4.2) and Lemma 2.3-(g5) with τ ∈ (0, τ̂∗), it simply has that

(4.15) lim
τ→0+

ˆ
R2

G(uλ,τ )dx =

ˆ
R2

G(uλ,0)dx.

Recalling Π which is defined in (4.8) is uniformly bounded in R2, jointly with (4.15), we can show that
|x− y|−τ − 1

τ
1|x−y|<1G(uλ,τ (y)) → log

(
1

|x− y|

)
1|x−y|<1G(uλ,0(y)) a.e. in R2 as τ → 0+. Therefore,

we it follows from the generalized Lebesgue’s Dominated Convergence theorem that

lim
τ→0+

ˆ
R2

(ˆ
|x−y|<1

|x− y|−τ − 1

τ
G(uλ,τ (y))dy

)
G(uλ,τ )dx

=

ˆ
R2

[ˆ
|x−y|<1

log

(
1

|x− y|

)
G(uλ,0(y))dy

]
G(uλ,0)dx.

On the other hand, we begin with the term
|x− y|−τ − 1

τ
1|x−y|≥1. As a matter of fact, according to

the intermediate mean value theorem, there is a such that

|x− y|−τ − 1

τ
1|x−y|≥1 = −|x− y|−τζ log(|x− y|)1|x−y|≥1
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where ζ = ζ(|x− y|) ∈ (0, 1). Some elementary calculations provide us that∣∣∣∣ |x− y|−τ − 1

τ
1|x−y|≥1G(uλ,τ (y))G(uλ,τ (x))

∣∣∣∣ ≤ ∣∣log(|x− y|)1|x−y|≥1G(uλ,τ (y))G(uλ,τ (x))
∣∣

≤ |x|G(uλ,τ (y))G(uλ,τ (x)) + |y|G(uλ,τ (y))G(uλ,τ (x)).
As a consequence, we are able to observe observe thatˆ

R2

(ˆ
|x−y|≥1

∣∣∣∣ |x− y|−τ − 1

τ

∣∣∣∣G(uλ,τ (y))dy
)
G(uλ,τ )dx ≤ 2

(ˆ
R2

G(uλ,τ )dx

)(ˆ
R2

|x|G(uλ,τ )dx
)
.

We claim that there is a constant C8 > 0 independent of τ such that |xG(uλ,τ )|1 ≤ C8. To see it, with
aid of (4.2), it suffices to deduce thatˆ

|x|≥R
|x|G(uλ,τ )dx ≤ e

ˆ
|x|≥R

|x|
[
|uλ,τ |2 + |uλ,τ |2

(
eα|uλ,τ |2∞ − 1

)]
dx

≤ e1+αC4
ˆ
|x|≥R

|x||uλ,τ |2dx ≜ C8 < +∞,

where we have used |uλ,τ |∞ ≤ C4 and (4.6) in Lemma 4.2. Owing to (4.15), we obtain

lim
τ→0+

ˆ
R2

(ˆ
|x−y|≥1

|x− y|−τ − 1

τ
G(uλ,τ (y))dy

)
G(uλ,τ )dx

=

ˆ
R2

[ˆ
|x−y|≥1

log

(
1

|x− y|

)
G(uλ,0(y))dy

]
G(uλ,0)dx.

The proof is completed. □

Now,we can exhibit the proof of Theorem 1.1 in detail as follows.

Proof of Theorem 1.1. Choosing σ∗ = σ̂∗, τ
∗ = τ̂∗ and λ∗ = max{λ̃∗, λ̂∗}, then for all σ ∈ (0, σ∗),

τ ∈ (0, τ∗) and λ > λ∗, we take the similar arguments adopted in the proof of Lemma 3.10 to conclude

the proof. Since λ∗ > λ̂, as explained in Lemma 4.3, passing to some sequences if necessary, uλ,τ ⇀ uλ,0
in Eλ, uλ,τ → uλ,0 in Ls(R2) for all s > 2 and uλ,τ → uλ,0 a.e. in R2 as τ → 0+. We next claim that
uλ,0 ̸= 0. Otherwise, combining Lemma 4.3 and Jλ,τ,n(uλ,τ ) = cλ,τ,n with Lemma 3.8, it indicates that

lim sup
τ→0+

∥uλ,τ∥2Eλ
<

4π

α0
. Then, some standard calculations give that lim

τ→0+

ˆ
R2

g(uλ,τ )uλ,τdx = 0. We

adopt J ′
λ,τ,n(uλ,τ ) = 0 in E−1

λ and (4.8) to find that

0 = ∥uλ,τ∥2Eλ
−
ˆ
R2

[Gτ (x) ∗G(uλ,τ )] g(uλ,τ )uλ,τdx

≥ ∥uλ,τ∥2Eλ
−
ˆ
R2

(ˆ
|x−y|≤1

Gτ (x− y)G(uλ,τ (y))dy

)
g(uλ,τ )uλ,τdx

≥ ∥uλ,τ∥2Eλ
− Cκ

ˆ
R2

(ˆ
|x−y|≤1

G(uλ,τ (y))

|x− y|
dy

)
g(uλ,τ )uλ,τdx

≥ ∥uλ,τ∥2Eλ
− CκΠ

ˆ
R2

g(uλ,τ )uλ,τdx

= ∥uλ,τ∥2Eλ
+ oτ (1).

Hence, we are derived from it and Lemma 4.3 that lim
τ→0+

cλ,τ,n = lim
τ→0+

Jλ,τ,n(uλ,τ ) = 0 which contradicts

with Remark 3.5. So, the claim holds true.
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Using a very similar argument in Lemma 4.3, for all v ∈ C∞
0 (R2), we have

lim
τ→0+

ˆ
R2

[Gτ (x) ∗G(uλ,τ )] g(uλ,τ )vdx =

ˆ
R2

[
log

(
1

|x|

)
∗G(uλ,0)

]
g(uλ,0)vdx.

which together with J ′
λ,τ,n(uλ,τ )(v) = 0 implies that J ′

λ,τ,n(uλ,0)(v) = 0. Thereby, uλ,0 is a nontrivial

solution of Eq. (1.1). A similar idea in (3.38) shows us that Jλ,τ,n(uλ,0) ≥ 0. Thereby, proceeding as
the same way in the proof of Lemma 3.10, we are capable of demonstrating that uλ,τ → uλ,0 in Eλ as
τ → 0+. The proof is completed. □

Remark 4.4. As some by-products of uλ,τ → uλ,0 in Eλ as τ → 0+, we have the results below

(1) Since ∥uλ,τ∥ ≤ C9 for some C9 > 0 independent of σ, τ and λ, then

(4.16)

∣∣∣∣ˆ
R2

[
log

(
1

|x|

)
∗G(uλ,0)

]
G(uλ,0)dx

∣∣∣∣ ≤ C2
9 + 2c̄,

where c̄ > 0 comes from Remark 3.5. Analogously, for all v ∈ C∞
0 (R2), it holds that

(4.17)

∣∣∣∣ˆ
R2

[
log

(
1

|x|

)
∗G(uλ,0)

]
g(uλ,0)vdx

∣∣∣∣ ≤ C9∥v∥Eλ
,

(2) The proof of Theorem 1.4 follows immediately by (4.6) and so we omit it.

5. Asymptotic behaviors

In this section, we shall mainly study the asymptotic behaviors of the obtained solutions in Theorem
1.1 as λ→ +∞ and σ → 0+, respectively.

First of all, according to Theorem 1.1, we shall denoted the obtained solution by uλ,σ ∈ Eλ for all
σ ∈ (0, σ∗) and λ > λ∗.

5.1. Case 1: σ ∈ (0, σ∗) is fixed and λ→ +∞.
For any u ∈ H1

0 (Ω), we denote by ũ ∈ H1(R2) its trivial extension, namely

ũ ≜

{
u in Ω,

0 in Ωc = {x : x ∈ R2\Ω}.

We now define JΩ,τ,n : H1
0 (Ω) → R as

JΩ,τ,n(u) =
1

2

ˆ
Ω
|∇u|2dx−

ˆ
Ω

[ˆ
Ω
log

(
1

|x− y|

)
Gn(u(y))dy

]
Gn(u)dx.

Note that, as what we have done in Section 4, we always exploited the following fact directly without
mentioning if there is no misunderstanding

(5.1) F (uλ,σ) ≤ Gn(uλ,σ) = F (uλ,σ)e
σFn(uλ,σ) = F (uλ,σ)e

σ|uλ,σ |2 ≤ eF (uλ,σ)

for all σ ∈ (0, σ∗).

Proof of Theorem 1.6. Let λk → +∞ as k → +∞ and (uλk,σ) ⊂ Eλk
be a sequence of nontrivial

solutions of Eq. (1.1), that is, J ′
λk,σ,n

(uλk,σ) = 0 in E−1
λk

and Jλk,σ,n(uλk,σ) = cλk,σ,n. According to

Remark 3.5, we can argue as Lemma 3.6 show that (uλk,σ) is uniformly bounded in k ∈ N+. Passing to
some subsequence if necessary, uλk,σ ⇀ u0,σ in H1(R2), uλk,σ → u0,σ in Ls

loc(R2) for all 2 < s < +∞
and uλk,σ → u0,σ a.e. in R2 as k → +∞. We claim that u0,σ ≡ 0 in Ωc. Otherwise, there is a compact
subset Θu0,σ ⊂ Ωc with dist(Θu0,σ , ∂Ω

c) > 0 such that u0,σ ̸= 0 on Θu0,σ and by Fatou’s lemma

(5.2) lim inf
k→∞

ˆ
R2

u2λk,σ
dx ≥

ˆ
Θu0,σ

u0,σ
2dx > 0.
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Moreover, there exists ε0 > 0 such that V (x) ≥ ε0 for any x ∈ Θu0,σ by the assumptions (V1) and (V2).
Since ∥uλk,σ∥Eλk

is uniformly bounded, then the Fatou’s lemma gives us that

+∞ > lim inf
k→∞

ˆ
R2

λkV (x)u2λk,σ
dx ≥ ε0

(ˆ
Θu0,σ

u20,σdx

)
lim inf
k→∞

λk = +∞,

a contradiction. Therefore, u0,σ ∈ H1
0 (Ω) by the fact that ∂Ω is smooth. In order to finish the proof,

we are ready to verify that uλk,σ → u0,σ in Ls(R2) for all 2 < s < +∞ in the sense of a subsequence as
k → +∞. Arguing it indirectly, we follow the arguments in [55] to make full use of the Lions’ vanishing
lemma to find some δ̌, ř > 0 and x̌k ∈ R2 such thatˆ

Bř(x̌k)
|uλk,σ − u0,σ|2dx ≥ δ̌,

which implies that |x̌n| → ∞ and hence |Bř(x̌k) ∩ Ξ| → 0. Recalling ∥uλk,σ∥Eλk
is uniformly bounded,

then the Hölder’s inequality yields that

lim
k→+∞

ˆ
Bř(x̌k)∩Ξ

|uλk,σ − u0,σ|2dx = 0.

As a consequence, we are derived from the above two facts that

+∞ > lim inf
k→∞

λkb

ˆ
Bř(x̌k)∩Ξc

u2λk,σ
dx = lim inf

k→∞
λkb

ˆ
Bř(x̌k)∩Ξc

|uλk,σ − u0,σ|2dx

= lim inf
k→∞

λkb

(ˆ
Bř(x̌k)

|uλk,σ − u0,σ|2dx−
ˆ
Bř(x̌k)∩Ξ

|uλk,σ − u0,σ|2dx

)

≥ δ̌b

2
lim inf
k→∞

λk = +∞,

which is impossible. So, uλk,σ → u0,σ in Ls(R2) for all 2 < s < +∞. In view of (4.17), it is simple to
observe that, for all v ∈ C∞

0 (R2),

lim
k→∞

ˆ
R2

[
log

(
1

|x|

)
∗G(uλk,σ)

]
g(uλk,σ)vdx =

ˆ
R2

[ˆ
Ω
log

(
1

|x− y|

)
G(u0,σ(y))dy

]
g(u0,σ)vdx

jointly with J ′
λk,σ,n

(uλk,σ) = 0 in E−1
λk

yields that J ′
Ω,σ,n(u0,σ) = 0 in (H1

0 (Ω))
−1. Adopting the same

idea above, we are able to rule out the case u0,σ = 0 standardly. Therefore, u0,σ ∈ H1
0 (Ω) is a nontrivial

solution of Eq. (1.17). The proof is completed. □

5.2. Case 2: λ > λ∗ is fixed and σ → 0+.
The reader is invited to retrace the contents exhibited above and we are very sure that the constants

C and Cj are independent of σ.
We define the variational variational functional Jλ,0 : Eλ → R by

Jλ,0(u) =
1

2

ˆ
R2

[|∇u|2 + λV (x)|u|2]dx− 1

2

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
F (u(y))dy

]
F (u)dx

Let us show the proof of Theorem 1.7 as follows.

Proof of Theorem 1.7. Let σk → 0+ as k → +∞ and (uλ,σk
) ⊂ Eλ be a sequence of nontrivial

solutions of Eq. (1.1), that is, J ′
λ,σk,n

(uλ,σk
) = 0 in E−1

λ and Jλ,σk,n(uλ,σk
) = cλ,σk,n. According to

Remark 3.5, we can follow as Lemma 3.6 show that (uλ,σk
) is uniformly bounded in k ∈ N+. Passing

to some subsequence if necessary, uλ,σk
⇀ uλ,0 in Eλ, uλ,σk

→ uλ,0 in Ls
loc(R2) for all 2 < s < +∞ and

uλ,σk
→ uλ,0 a.e. in R2 as k → +∞. In view of the Step 2 of the proof of Lemma 3.10, we still have

that uλ,σk
→ uλ,0 in Ls(R2) for all 2 < s < +∞ as k → +∞.
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In view of Lemma 4.2, we have showed that |uλ,σk
|∞ ≤ C4 for some C4 > 0 independent of k ∈ N+.

Then, taking into account (2.2) and (2.3), it simply sees that

(5.3)


lim
k→∞

ˆ
R2

F (uλ,σk
)dx =

ˆ
R2

F (uλ,0)dx,

lim
k→∞

ˆ
R2

f(uλ,σk
)uλ,σk

dx =

ˆ
R2

f(uλ,σ0)uλ,0dx,

lim
k→∞

ˆ
R2

f(uλ,σk
)vdx =

ˆ
R2

f(uλ,0)vdx, ∀v ∈ C∞
0 (R2).

With (4.16), (5.1) and the first one in (5.3) in hands, the generalized Lebesgue’s Dominated Convergence
indicates that

lim
k→∞

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
Gn(uλ,σk

(y))dy

]
Gn(uλ,σk

)dx

=

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
F (uλ,0(y))dy

]
F (uλ,0)dx.

In the same spirit of it, we also conclude that

lim
k→∞

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
Gn(uλ,σk

(y))dy

]
gn(uλ,σk

)uλ,σk
dx

=

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
F (uλ,0(y))dy

]
f(uλ,0)uλ,0dx

and for all v ∈ C∞
0 (R2),

lim
k→∞

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
Gn(uλ,σk

(y))dy

]
gn(uλ,σk

)vdx

=

ˆ
R2

[ˆ
R2

log

(
1

|x− y|

)
F (uλ,0(y))dy

]
f(uλ,0)vdx.

Consequently, we are capable of taking advantage of the above three formulas to deduce that uλ,σk
→ uλ,0

in Eλ along a subsequence as k → +∞ and uλ,0 is in fact a nontrivial solution of Eq. (1.18). The
proof is completed. □
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