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Via della Garzetta 48, 25133 Brescia, Italy

Abstract. We study a class of planar Schrödinger-Poisson systems{
−∆u+ λV (x)u+ ϕu = f(u), x ∈ R2,
∆ϕ = u2, x ∈ R2,

where λ > 0 is a parameter, V ∈ C(R2,R+) has a potential well Ω :=

intV −1(0), and the nonlinearity f fulfills the supercritical exponential growth

at infinity in the Trudinger-Moser sense. By exploiting the mountain-pass theo-
rem and elliptic regularity theory, we establish the existence and concentrating

behavior of ground state solutions for sufficiently large λ.

1. Introduction and main results. In this paper, we focus on the existence and
concentrating behavior of ground state solutions for a class of planar Schrödinger-
Poisson systems {

−∆u+ λV (x)u+ ϕu = f(u), x ∈ R2,
∆ϕ = u2, x ∈ R2,

(1)

where λ > 0 is a parameter, V ∈ C(R2,R+) has a potential well Ω := intV −1(0),
and the nonlinearity f possesses the supercritical exponential growth at infinity in
the Trudinger-Moser sense. More precisely, throughout the whole paper, we shall
suppose f has the form

f(t) = h(t)eα|t|
τ

, ∀t ∈ R, (2)

for some α > 0 and τ ≥ 2. In what follows, we assume that h : R → R is a function
satisfying:

(h1) h ∈ C(R) vanishes for every t ∈ (−∞, 0] and h(t) = o(t) as t→ 0;
(h2) The function h(t)/t3 is increasing for all t > 0;

(h3) There exist δ ∈ (0, 2) and γ,M > 0 such that |h(t)| ≤ M(eγ|t|
δ − 1) for each

t ∈ R+ = (0,+∞).

2020 Mathematics Subject Classification. Primary: 35J60, 35Q55; Secondary: 53C35.
Key words and phrases. Schrödinger-Poisson system, steep potential well, supercritical expo-

nential growth, elliptic regularity theory, ground state solution, concentrating behavior.
L. J. Shen is partially supported by NSFC (Grant No. 12201565) and ZJNSF (Grant No.

LMS25A010006). M. Squassina is member of Gruppo Nazionale per l’Analisi Matematica, la

Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (IN-
dAM).

∗Corresponding author: Marco Squassina.

1

http://dx.doi.org/10.3934/dcdss.2025036
mailto:ljshen@zjnu.edu.cn
mailto:marco.squassina@unicatt.it


2 LIEJUN SHEN AND MARCO SQUASSINA

Over the past several decades, a lot of attentions has been paid to the standing,
or solitary, wave solutions of Schrödinger-Poisson systems of the type{

i∂ψ∂t = −∆ψ +W (x)ψ +mϕψ − f̃(|ψ|)ψ, in R+ × Rd,
∆ϕ = |ψ|2, in Rd, (3)

where ψ : Rd × R → C denotes the time-dependent wave function, W : Rd →
R is a real external potential, m ∈ R is a parameter, ϕ represents an internal
potential for a nonlocal self-interaction of the wave function, and the nonlinear

term f(ψ) := f̃(|ψ|)ψ describes the interaction effect among particles. Let ψ(x, t) =
exp(−iωt)u(x) with ω ∈ R. Then, the standing wave solutions of (3) also lead to
the Schrödinger-Poisson system{

−∆u+ V (x)u+mϕu = f(u), in Rd,
∆ϕ = u2, in Rd, (4)

where here and in what follows V̄ (x) = W (x) + ω. In view of [27], the second
equation in (4) determines ϕ : Rd → R only up to harmonic functions. Conversely, it
is natural to choose ϕ as the negative Newton potential of u2, that is, the convolution
of u2 with the fundamental solution Φd of the Laplacian, which is denoted by
Φd(x) = −1/(d(d − 2)ωd)|x|2−d if d ≥ 3, and Φ2(x) = − 1

2π log(|x|) if d = 2. Here,

ωd denotes the volume of the unit ball in Rd. With this inversion of the second
equation in (4), we arrive at the integro-differential equation

−∆u+ V̄ (x)u+m
(
Φd ∗ u2

)
u = f(u), in Rd. (5)

When m ̸= 0, the Poisson term (Φd ∗ u2)u results in that (5) is not a point-
wise identity any longer such that there are some mathematical difficulties which
make the study of it more interesting. In the three-dimensional case, because of the
relevances in physics, we have a rich literature associated with (5) and its general-
izations under the variant assumptions on V̄ and f via variational methods. The
interested reader can refer to [1, 8, 20,33,42,48] and the references therein.

For d = 2, the Schrödinger-Poisson equation (5) can be rewritten as the form

−∆u+ V̄ (x)u+
m

2π

(
log(|x|) ∗ u2

)
u = f(u) in R2, (6)

whose variational functional is defined by

I(u) =
1

2

∫
R2

[
|∇u|2 + V̄ (x)u2

]
dx

+
m

8π

∫
R2

∫
R2

log(|x− y|)u2(x)u2(y)dxdy −
∫
R2

F (u)dx,

where here and in what follows F (u) :=
∫ u
0
f(t)dt. As mentioned by Stubbe in [51],

the functional I would not be well-defined on H1(R2). To overcome this difficulty,
he introduced a new Hilbert space

X =

{
u ∈ H1(R2) :

∫
R2

log(1 + |x|)u2dx < +∞
}
,

endowed with the inner product and norm

(u, v)X =

∫
R2

[
∇u∇v + uv + log(1 + |x|)uv

]
dx and ∥u∥X =

√
(u, u)X .



PLANAR SCHRÖDINGER-POISSON SYSTEM WITH STEEP POTENTIAL WELL 3

In Stubbe’s argument, it depends strongly on the crucial identity

log r = log(1 + r)− log

(
1 +

1

r

)
, ∀r > 0,

because it permits us to define the variational functionals V1, V2 : X → R by

V1(u) :=

∫
R2

∫
R2

log(1 + |x− y|)u2(x)u2(y)dxdy, ∀u ∈ X,

and

V2(u) :=

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
u2(x)u2(y)dxdy, ∀u ∈ X.

Stubbe [51] proved that V1, V2 ∈ C1(X,R), and found the equality

V0(u) :=

∫
R2

∫
R2

log(|x− y|)u2(x)u2(y)dxdy = V1(u)− V2(u), ∀u ∈ X,

which implies that I given in (6) is of class C1(X).
In [27], Cingolani and Weth made full use of the above variational framework to

study the existence and multiplicity of nontrivial solutions for the equation

−∆u+ u+
m

2π

(
log(|x|) ∗ u2

)
u = b|u|p−2u in R2, (7)

where b ≥ 0 and p ≥ 4. With the help of variational methods and the action of
groups, they investigated the existence of multiple solutions and obtained a ground
state solution by minimizing the energy functional over the Nehari manifold for Eq.
(7). Subsequently, considering (7) with b = 1 and p ∈ (2, 4], Du-Weth [32] proved
that it possesses a nontrivial solution if p ∈ (2, 3), and a ground state solution if
p ∈ (3, 4] by constructing a asymptotic (PS) sequence, where the Pohoz̆aev identity
was established. In [14], Bonheure et al. concluded the asymptotic decay of the
unique positive, radially symmetric solution to (7) with b = 0. Afterwards, Chen,
Shi, and Tang [22] extended the main results in [32] to a general nonlinearity. It is
important to note that the above cited papers rely on the fact that the potential is
constant or Z2-periodic. To handle the obstacle, the authors in [24,25], restricting in
an axially symmetric space which is weaker than the classic radially symmetric one,
succeeded in finding nontrivial solutions for (7) with a non-constant or non-periodic
potential. Regarding some other meaningful research works associated with (7), we
suggest the reader to refer to [10, 26, 31] and the references therein, even if these
references are far from exhaustive.

Another interesting point for considering Schrödinger-Poisson equations, like Eq.
(6), is the space dimension d = 2. Moreover, to our best knowledge, the existence
result for the Schrödinger-Poisson equation with steep potential well has not been
studied yet, especially with the nonlinearity involving the supercritical exponential
growth. Therefore, one of the main purposes of the present paper is to fill these
blanks. Generally speaking, we aim at establishing the existence and concentrating
behavior of ground state solutions for Eq. (1).

As is known, for every bounded domain Ω ⊂ R2, the imbedding H1
0 (Ω) ↪→ Lp(Ω)

with 1 ≤ p < +∞ does not imply that H1
0 (Ω) ↪→ L∞(Ω). As a consequence, one

naturally wonders if there exists another kind of maximal growth in this situation.
Indeed, the authors in [44, 45, 52] got the following sharp maximal exponential
integrability for functions in H1

0 (Ω):

sup
u∈H1

0 (Ω), ∥∇u∥L2(Ω)≤1

∫
Ω

eαu
2

dx ≤ Cmeas(Ω) if α ≤ 4π, (8)
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where the constant C = C(α) > 0, and meas(Ω) stands for the Lebesgue measure
of Ω. As is known, (8) is the celebrated Trudinger-Moser type inequality, related
to elliptic problems with critical exponential growth, meaning that a function f
satisfies the following: There exists α0 > 0 such that

lim
|t|→+∞

|f(t)|
eαt2

=

{
0, ∀α > α0,
+∞, ∀α < α0.

(9)

This definition was introduced by Adimurthi and Yadava [2]; see also de Figueiredo,
Miyagaki, and Ruf [28] for example. Motivated by the previous works in [6,7], there
exist two ways to understand that the function h, defined in (2) together with (h3),
satisfies the so-called supercritical exponential growth in the following sense:{

(I) τ > 2 is arbitrary and α > 0 is fixed;
(II) α > 0 is arbitrary and τ ≥ 2 is fixed.

(10)

Moreover, one could call Cases (I) and (II) in (10) the subcritical-supercritical ex-
ponential growth and critical-supercritical exponential growth, respectively.

As to the whole space R2, the author in [30] established the following version of
the Trudinger-Moser inequality (see also [17] for example):

eαu
2

− 1 ∈ L2(R2), ∀α > 0 and u ∈ H1(R2). (11)

Moreover, for all u ∈ H1(R2) with ∥u∥L2(R2) ≤M < +∞, there is a C = C(M,α) >
0 such that

sup
u∈H1(R2), ∥∇u∥L2(R2)≤1

∫
R2

(
eαu

2

− 1
)
dx ≤ C if α < 4π. (12)

Concerning some other generalizations, extensions, and applications of the
Trudinger-Moser inequalities for bounded and unbounded domains, we refer to
[28,29,36,47] and the references therein.

As far as we are concerned, Alves and Figueiredo [4] first applied (9) to the
Schrödinger-Poisson equation (6), and investigated the existence of ground state
solutions by using the Nehari manifold method. In this direction, there are more and
more research works concerning this topic, including the two-dimensional Choquard
problem with logarithmic kernel, see [3, 19,21,23,25,38–40,49] for example.

Before stating the main results in this paper, on V we shall impose the following
assumptions:

(V1) V ∈ C(R2,R) with V (x) ≥ 0 on R2.
(V2) Ω := intV −1(0) is nonempty and bounded with smooth boundary, and Ω =

V −1(0).
(V3) There exists b > 0 such that Ξ := {x ∈ R2 : V (x) < b} is nonempty and has

finite measure.

Assumptions like (V1) − (V3) were first proposed by Bartsch et al. in [11, 12].
Particularly, the harmonic trapping potential

V (x) =

{
ω1|x1|2 + ω2|x2|2 − ω, if |(√ω1x1,

√
ω2x2)|2 ≥ ω,

0, if |(√ω1x1,
√
ω2x2)|2 ≤ ω,

with ω > 0 satisfies (V1)−(V3), where ωi > 0 is called by the anisotropy factor of the
trap in quantum physics and trapping frequency of the ith-direction in mathematics,
see e.g. [13,18,41]. Indeed, the potential λV (x) with the above hypotheses is usually
known as the steep potential well.
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For all fixed λ > 0, by (V1), define the Hilbert space

Eλ :=

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and

∫
R2

λV (x)|u|2dx < +∞
}

equipped with the inner product and norm

(u, v)Eλ
=

∫
R2

[
∇u∇v + λV (x)uv

]
dx and ∥u∥Eλ

=
√

(u, u)Eλ
, ∀u, v ∈ Eλ.

Hereafter, let us denote E and ∥ · ∥E by Eλ and ∥ · ∥Eλ
for λ = 1, respectively. It

is simple to observe that ∥ · ∥E ≤ ∥ · ∥Eλ
for every λ ≥ 1. Therefore, due to Lemma

2.4 below, Eλ could be continuously imbedded into H1(R2), and then into X. With
these discussions, we could introduce the work space

Xλ :=

{
u ∈ X :

∫
R2

λV (x)|u|2dx < +∞
}

which is a Hilbert space equipped with the inner product and norm

(u, v)Xλ
=

∫
R2

[
∇u · ∇v + (λV (x) + log(1 + |x|))uv

]
dx and ∥u∥Xλ

=
√
(u, u)Xλ

,

for all u, v ∈ Xλ. Obviously, ∥ · ∥Xλ
=

√
∥ · ∥2Eλ

+ ∥ · ∥2∗, where ∥u∥∗ = (
∫
R2 log(1 +

|x|)|u|2dx) 1
2 for all u ∈ X.

Now, we shall exhibit the first main result in this paper as follows.

Theorem 1.1. Let V satisfy (V1) − (V3). Suppose that the nonlinearity f defined
in (2) requires (h1) − (h3). Then, for each τ > 2, there are α∗ = α∗(τ) > 0 and
λ0 > 0 such that Eq. (1) has a nonnegative ground state solution in Xλ for all
α ∈ (0, α∗) and λ > λ0. Moreover, if we suppose that

(h4) there are constants ξ > 0 and p > 4 such that H(t) =
∫ t
0
h(s)ds ≥ ξtp for all

t ∈ [0, 1],

then for every α > 0, there exist τ∗ = τ∗(α) > 2, λ′0 > 0, and ξ0 > 0 such that
Eq. (1) possesses a nonnegative ground state solution in Xλ for every τ ∈ [2, τ∗),
λ > λ′0, and ξ > ξ0.

From a variational method point of view, in order to find nontrivial solutions
corresponding to Eq. (1), it would be equivalent to finding critical points for the
variational functional Jλ : Xλ → R defined by

Jλ(u) =
1

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
1

4
V0(u)−

∫
R2

F (u)dx, ∀u ∈ Xλ.

Alternatively, although the property of Xλ is good enough, adopting (11), one could
never show that Jλ is well-defined in Xλ, which is caused by the appearance the
nonlinearity f involving the supercritical exponential growth (10) in the Trudinger-
Moser sense. As one will see later, this is the biggest difference from [4, 25], which
prevents us from reusing the approaches in the cited papers to conclude Theorem
1.1.

Inspired by [6, 7], given a fixed constant R > 0, we need to introduce a cut-

off function fR,δ̄ and consider an auxiliary equation which involves a (sub)critical
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exponential growth. Roughly speaking, we define fR,δ̄ : R → R as follows:

fR,δ̄(t) =


0, t ≤ 0,
h(t)eαt

τ

, 0 ≤ t ≤ R,

h(t)eαR
τ−δ̄tδ̄ , t ≥ R,

(13)

where

δ̄ :=

{
δ, if Case I in (10) is considered,
2, if Case II in (10) is considered.

In light of such a fR,δ̄, we consider the auxiliary equation below

−∆u+ λV (x)u+
(
log(|x|) ∗ u2

)
u = fR,δ̄(u) in R2, (14)

where here and in what follows FR,δ̄(t) =
∫ t
0
fR,δ̄(s)ds. Obviously, for each fixed

R > 0, by (h3), it is simple to find that fR,δ̄ admits a subcritical or critical expo-

nential growth at infinity. Hence, the variational functional JR,δ̄λ : Xλ → R given
by

JR,δ̄λ (u) =
1

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
1

4
V0(u)−

∫
R2

FR,δ̄(u)dx

associated with Eq. (14) is well-defined and of class C1(Xλ). Moreover, we could
certify that every critical point of it is a (weak) solution of Eq. (14). Recalling [53,
Subsection 4.1], let us call the solution uR ∈ E the ground state solution of Eq.
(14) if it satisfies

JR,δ̄λ (u) = inf
u∈NR,δ̄

λ

JR,δ̄λ (v) := mR,δ̄
λ , (15)

where the corresponding Nehari manifold is given as

NR,δ̄
λ :=

{
u ∈ Xλ\{0} : (JR,δ̄λ )′(u)[u] = 0

}
.

It can easily be concluded that if every ground state solution uR ∈ E of Eq. (14)
satisfies |uR|∞ ≤ R, then uR is a ground state solution of Eq. (1), where | · |q stands
for the standard Lq-norm with 1 ≤ q ≤ ∞. With this in mind, we should establish
such a solution uR to derive the proof of Theorem 1.1. So, it is necessary to show
the following result.

Theorem 1.2. Let V satisfy (V1) − (V3). Suppose that the nonlinearity f defined
in (2) requires (h1) − (h3). Then, for every fixed R > 0, there exists a λ0(R) > 0
dependent of R such that Eq. (14) with δ̄ = δ has a nonnegative ground state
solution in Xλ for all λ > λ0(R). Moreover, if, in addition, we suppose that (h4),
then there exist λ′0(R) > 0 and ξ0(R) > 0 such that Eq. (14) with δ̄ = 2 possesses
a nonnegative ground state solution in Xλ for all λ > λ′0(R) and ξ > ξ0(R).

Remark 1.3. It is worth pointing out that, to the best of our knowledge, Theorem
1.2 seems to be the first result concerning the planar Schrödinger-Poisson system
with steep potential well involving subcritical or critical exponential growth. Al-
though there may be existence results for such problem with non-constant or non-
periodic potential, the results in Theorem 1.2 are new in our setting. We mention
the paper [46] in which the authors obtained the existence and concentrating behav-
ior of ground state solutions for the generalized Chern-Simons-Schrödinger equation
with steep potential well in the critical exponential case. Nevertheless, compared to
it, we have to present some new tricks and analytic skills because of the indefinite
Poisson term log(|x|) ∗ u2, bringing additionally distinct challenges.
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Next, we shall contemplate the asymptotical behavior of the ground state solu-
tions obtained in Theorem 1.1 as λ→ +∞. Let u ∈ Xλ be a ground state solution
for Eq. (1). There is no doubt that it depends on the parameter λ > λ0 > 0 (or,
λ > λ′0 > 0), so we relabeled it by uλ to emphasize this dependence, where λ0 > 0
(or, λ′0 > 0) is a constant appearing in the proof of Theorem 1.1 below. Therefore,
we can prove the following result.

Theorem 1.4. Under the assumptions in Theorem 1.1, going to a subsequence,
uλ → u0 in X as λ→ +∞, where u0 is a ground state solution for the Schrödinger-
Poisson equation −∆u+

(∫
Ω

log |x− y|u2(y)dy
)
u = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(16)

Remark 1.5. Let us recall the main results in Theorems 1.1 and 1.2, dealing with
the planar Schrödinger-Poisson system with non-constant or non-periodic potential
involving critical exponential growth. The well-known Ambrosetti-Rabinowitz con-
dition, namely f(t)t − µF (t) ≥ 0 with µ > 4 for all t ∈ R, plays a significant role
in concluding the boundness of (C) sequence corresponding to the variational func-
tional. In view of (h2) (or (28) below), nevertheless, we can remove it successfully
by the steep potential well λV under the assumptions (V1)− (V3).

Although we have briefly introduced the essential ideas of the main results in
this article, it is still far from enough to get the detailed proofs of Theorems 1.1,
1.2, and 1.4. Alternatively, the key to considering such supercritical problem is to
transform it into a subcritical or critical one. As to the L∞-estimate on nontrivial
solutions for a class of supercritical problems, the elliptic regular result or Nash-
Moser iteration procedure are effective tools. Moreover, we truly anticipate that
the results in the present paper shall be conducive to further studies on the planar
Schrödinger-Poisson system with (sub)critical or supercritical exponential growth.

The outline of the paper is organized as follows. In Section 2, we mainly present
some preliminary results. In Section 3, we consider the (sub)critical problem (14)
and give the proof of Theorem 1.2. Section 4 is devoted to the proofs of Theorems
1.1 and 1.4. Some remarks are given in Section 5.

Notations. From now on in this paper, unless otherwise mentioned, we ultilize the
following notations:

• C,C1, C2, · · · denote any positive constant, whose value is not relevant, and
R+ := (0,+∞).

• Let (Z, ∥ · ∥Z) be a Banach space with dual space (Z−1, ∥ · ∥Z−1), and Φ be
functional on Z.

• The (C) sequence at a level c ∈ R ((C)c sequence in short) corresponding to Φ
means that Φ(xn) → c and (1 + ∥xn∥Z)∥Φ′(xn)∥Z−1 → 0 in X−1 as n → ∞,
where {xn} ⊂ Z.

• | |p stands for the usual norm of the Lebesgue space Lp(R2) for all p ∈ [1,+∞],
and ∥ ∥Hi denotes the usual norm of the Sobolev space Hi(R2) for i = 1, 2.

• For any ϱ > 0 and every x ∈ R2, Bϱ(x) := {y ∈ R2 : |y − x| < ϱ}.
• on(1) denotes real sequences by on(1) → 0 as n→ +∞.
• “ → ” and “ ⇀ ” stand for the strong and weak convergence in the related

function spaces, respectively.
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2. Preliminaries. In this section, we exhibit some preliminary results which shall
be exploited frequently in this paper. Let us begin defining the following three
auxiliary symmetric bilinear forms X ×X → R

(u, v) 7→ B1(u, v) =

∫
R2

∫
R2

log(1 + |x− y|)u(x)v(y)dxdy,

(u, v) 7→ B2(u, v) =

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
u(x)v(y)dxdy,

(u, v) 7→ B(u, v) = B1(u, v)−B2(u, v) =

∫
R2

∫
R2

log(|x− y|)u(x)v(y)dxdy.

The above definitions are understood as being over measurable functions u, v :
R2 → R, such that the integrals are defined in the Lebesgue sense. Then, Vi(u) =
Bi(u

2, u2), where Vi is given as in the introduction for i ∈ {0, 1, 2}.

Lemma 2.1. ( [27, Lemma 2.2]) (i) The space X is compactly embedded in Ls(R2),
for all s ∈ [2,∞).
(ii) 0 ≤ V1(u) ≤ 2|u|22|u|2∗ ≤ 2∥u∥4X and V1 is weakly semicontinuous in H1(R2).
(iii) V ′

i (u)[v] = 4Bi(u
2, uv), and so V ′

i (u)[u] = 4Vi(u) for u, v ∈ X and i ∈ {0, 1, 2}.
(iv) There is K0 > 0 such that |B2(u, v)| ≤ K0|u| 4

3
|v| 4

3
,∀u, v ∈ L

4
3 (R2). Hence,

|V2(u)| ≤ K0|u|48
3
, ∀u ∈ L

8
3 (R2). (17)

(v) V2 is completely continuous in X, that is,

un ⇀ u in X =⇒ V2(un) → V2(u).

Lemma 2.2. ( [27, Lemma 2.6]) Let {un}, {vn}, and {wn} be bounded sequences in
X such that un ⇀ u in X. Then, for every z ∈ X, we have B1(vnwn, z(un−u)) → 0,
as n→ +∞.

Taking into account the uniform L∞-estimate for the nontrivial solutions estab-
lished in Theorem 1.2, we obtain the result below.

Lemma 2.3. It holds that gu(x) := log(1+|·|−1)∗|u|2 ∈ L∞(R2) for all u ∈ H1(R2).
Moreover,

|gu(x)|∞ ≤ 4π(|u|22 + |u|26). (18)

Proof. The original idea comes from [5,50], and we exhibit it in detail for the sake
of the reader’s continence. For all x ∈ R2, there holds

|gu(x)| =
∫
B1(x)

log

(
1 +

1

|x− y|

)
|u(y)|2dy +

∫
R2\B1(x)

log

(
1 +

1

|x− y|

)
|u(y)|2dy

≤
∫
B1(x)

|u(y)|2

|x− y|
dy + log 2

∫
R2\B1(x)

|u(y)|2dy. (19)

It follows from Hölder’s inequality that∫
B1(x)

|uR(y)|2

|x− y|
dy ≤

(∫
B1(x)

1

|x− y| 32
dy

) 2
3
(∫

R2

|u(y)|6dy
) 1

3

= (4π)
2
3

(∫
R2

|u(y)|6dy
) 1

3

. (20)

Combining (19) and (20), we get the desired result (18). The proof is complete.
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Next, we have to prove the following imbedding result, which guarantees the
reasonableness of the work space Xλ, whence λ ≥ 1.

Lemma 2.4. Suppose that (V1) − (V3). Then, the imbedding E ↪→ H1(R2) is
continuous. In particular, Eλ can be continuously imbedded into H1(R2) for all
λ ≥ 1.

Proof. For every u ∈ H1(R2), by adopting (V1) and (V3) as well as the Gagliardo-
Nirenberg inequality, one has∫

R2

|u|2dx =

∫
Ξ

|u|2dx+

∫
R2\Ξ

|u|2dx

≤
√
meas(Ξ)

(∫
R2

|u|4dx
) 1

2

+
1

b

∫
R2\Ξ

V (x)|u|2dx

≤ κGN

√
meas(Ξ)

(∫
R2

|u|2dx
) 1

2
(∫

R2

|∇u|2dx
) 1

2

+
1

b

∫
R2

V (x)|u|2dx

≤ 1

2

∫
R2

|u|2dx+
1

2
κ2GNmeas(Ξ)

∫
R2

|∇u|2dx+
1

b

∫
R2

V (x)|u|2dx,

where κGN > 0 denotes the best constant associated with the Gagliardo-Nirenberg
inequality. From this inequality, we obtain∫

R2

|u|2dx ≤ κ2GNmeas(Ξ)

∫
R2

|∇u|2dx+
2

b

∫
R2

V (x)|u|2dx

≤ max

{
κ2GNmeas(Ξ),

2

b

}
∥u∥2E

indicating that ∥u∥2H1(R2) ≤ CΞ,b∥u∥2E , where CΞ,b := max{1+κ2GNmeas(Ξ), b+2
b } >

0. The proof of this lemma is finished.

Remark 2.5. With the help of Lemma 2.4, for all λ ≥ 1 we can redefine the space
Xλ by

Xλ :=

{
u ∈ Eλ :

∫
R2

log(1 + |x|)|u|2dx < +∞
}
.

Finally, we consider the compact results for the nonlinearity fR,δ̄ (defined in (13))
which would be very important in receiving the boundedness of the (C) sequence
for Jλ.

Lemma 2.6. Suppose (h1) and (h3). Let {un} ⊂ H1(R2) be a sequence such that
un → u0 in Lp(R2) and un → u0 a.e. in R2. Then, for all fixed R > 0, passing to
a subsequence if necessary,

lim
n→∞

∫
R2

fR,δ(un)undx =

∫
R2

fR,δ(u0)u0dx,

lim
n→∞

∫
R2

FR,δ(un)dx =

∫
R2

FR,δ(u0)udx.

(21)
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If in addition we suppose that lim sup
n→∞

∥un∥2H1(R2) <
π

γ+αRτ−2 , then for every fixed

R > 0, passing to a subsequence if necessary,
lim
n→∞

∫
R2

fR,2(un)undx =

∫
R2

fR,2(u0)u0dx,

lim
n→∞

∫
R2

FR,2(un)dx =

∫
R2

FR,2(u0)udx.

(22)

Proof. It suffices to verify the first formulas in (21) and (22), respectively. First,
we study (21). In this situation, without loss of generality, we can suppose that
sup
n∈N

∥un∥2H1(R2) < Σ(R), where the constant Σ(R) > 0 is dependent on R > 0, and

independent of n ∈ N. Then, we claim that for every ε > 0 independent of R, there
is a constant Cε(R) > 0, which may depend on R, such that

|fR,δ(t)| ≤ ε|t|+ Cε(R)|t|q−1[e(Σ(R)+1)−1|t|2 − 1], ∀t ∈ R, (23)

where q > 1 is arbitrary. To see it, via (h1),

lim
t→0

fR,δ(t)

t
= lim
t→0

eαt
τ

lim
t→0

h(t)

t
= 0 uniformly in R > 0.

On the other hand, we need the following two facts: (1) For t0 > 0, there are
b > a > 0 such that

aet
δ

≤ bet
2

, ∀t ≥ t0;

(2) For t0 > 0, since lim
t→+∞

et
2

et2−1
= 1, there is a constant C > 0 such that

et
2

≤ C(et
2

− 1), ∀t ≥ t0.

Thereby, for all |t| ≥ 1, by using (h3), there are M2(R) > M1(R) > M such that

|fR,δ(t)| ≤M(eγ|t|
δ

− 1)eαR
τ−δ|t|δ

≤Me(γ+αR
τ−δ)|t|δ

≤M1(R)e
(Σ(R)+1)−1|t|2

≤M2(R)[e
(Σ(R)+1)−1|t|2 − 1]

≤M2(R)|t|q−1[e(Σ(R)+1)−1|t|2 − 1].

So, we derive (23) by the above two formulas. Combining (23) and (12), we obtain
that∫

R2

|fR,δ(un)un|dx ≤ε
∫
R2

|un|2dx+ Cε(R)

∫
R2

|un|q[e(Σ(R)+1)−1|un|2 − 1]dx

≤ε
∫
R2

|un|2dx+ Cε(R)

(∫
R2

|un|2qdx
) 1

2

×
(∫

R2

[e

2∥un∥2
H1(R2)

Σ(R)+1

(
|un|/∥un∥2

H1(R2)

)2

− 1]dx

) 1
2

≤ε
∫
R2

|un|2dx+ C̄ε(R)

(∫
R2

|un|2qdx
) 1

2

.
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Thanks to un → u0 in L2q(R2), since q > 1, we could exploit the generalized
Lebesgue’s dominated convergence theorem to get the desired result by n → ∞,
and then ε→ 0+.

Next, we consider (22). Similar to (23), we claim that there is a C ′
ε(R) > 0 such

that

|fR,2(t)| ≤ ε|t|+ C ′
ε(R)|t|q−1[e(γ+αR

τ−2)|t|2 − 1], ∀t ∈ R. (24)

Indeed, for all |t| ≥ 1, by using (h3), there are M̃(R) > M̄ > M such that

|fR,2(t)| ≤M(eγ|t|
δ

− 1)eαR
τ−2|t|2

≤Meγ|t|
δ

eαR
τ−2|t|2

≤ M̄eγ|t|
2

eαR
τ−2|t|2

≤ M̃(R)[eγ|t|
2

− 1][eαR
τ−2|t|2 − 1]

≤ M̃(R)[e(γ+αR
τ−2)|t|2 − 1]

≤ M̃(R)|t|q−1[e(γ+αR
τ−2)|t|2 − 1]

jointly with fR,2(t) = o(t) uniformly in R > 0 as t → 0. As a consequence of (24)
and (12), there holds∫

R2

|fR,2(un)un|dx ≤ε
∫
R2

|un|2dx+ C ′
ε(R)

∫
R2

|un|q[e(γ+αR
τ−2)|un|2 − 1]dx

≤ε
∫
R2

|un|2dx+ C ′
ε(R)

(∫
R2

|un|2qdx
) 1

2

×
(∫

R2

[e
2(γ+αRτ−2)∥un∥2

H1(R2)

(
|un|

∥un∥2
H1(R2)

)2

− 1]dx

) 1
2

≤ε
∫
R2

|un|2dx+ C̄ ′
ε(R)

(∫
R2

|un|2qdx
) 1

2

.

Repeating the above arguments, we can verify the validity of (22). So, we can
accomplish the proof of this lemma.

Remark 2.7. Thanks to the calculations in Lemma 2.6, for all u ∈ H1(R2), we
immediately derive that∫

R2

|fR,δ̄(u)u|dx ≤ ε

∫
R2

|u|2dx+ Cε(R)

(∫
R2

|u|2qdx
) 1

2

(25)

provided ∥u∥2H1(R2) is sufficiently small, where q > 1 could be selected as required.

3. On problem (14): The (sub)critical case. In this section, we mainly make
full use of the mountain-pass theorem introduced in [16,43] to establish the existence
of ground state solutions for Eq. (14). Now, we state the theorem, which is a
consequence of the Ekeland variational principle developed in [9] as follows.

Proposition 3.1. Let Z be a Banach space and Ψ ∈ C1(Z,R) Gateaux differentiable
for all v ∈ Z, with G-derivative Φ′(v) ∈ Z−1 continuous from the norm topology of
Z to the weak ∗ topology of Z−1 and Φ(0) = 0. Let S be a closed subset of Z which
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disconnects (archwise) Z. Let v0 = 0 and v1 ∈ Z be points belonging to distinct
connected components of Z\S. Suppose that

inf
S

Φ ≥ A > 0 and Φ(v1) ≤ 0

and let Γ = {γ ∈ C([0, 1], Z) : γ(0) and γ(1) = v1}. Then,

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) ≥ A > 0

and there is a (C)c sequence for Φ.

In what follows, if not otherwise specified, we shall always assume (V1) − (V3)
and (h1)− (h3) for simplicity.

Lemma 3.2. Let R > 0 be fixed, then for all λ ≥ 1, we have the following conclu-
sions:

• There exist A, ρ > 0 independent of λ ≥ 1 such that JR,δ̄λ (u) ≥ A for all
∥u∥Eλ

= ρ;

• There exists ū ∈ Xλ such that JR,δ̄λ (ū) ≤ 0 with ∥ū∥Eλ
> ρ.

Proof. For all u ∈ Xλ, it follows from (17) and (25) with ∥u∥λ small enough that

JR,δ̄λ (u) =
1

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
1

4
V0(u)−

∫
R2

FR,δ̄(u)dx

≥ 1

2
∥u∥2Eλ

− K0

4
|u|38

3
− ε|u|22 − Cε(R)|u|q2q

≥
(
1

2
− εC0

)
∥u∥2Eλ

− C1∥u∥4Eλ
− C2∥u∥qEλ

, (26)

where Ci > 0 with i ∈ {1, 2} is dependent on R and the imbedding constant for
Eλ ↪→ Lp(R2) for each 2 ≤ p < +∞ by Lemma 2.4. Choosing ε > 0 sufficiently
small and q > 4 in (25), there exist A > 0 and ρ > 0 which are independent of

λ ≥ 1 such that JR,δ̄λ |Sλ
≥ A, where Sλ := {u ∈ Xλ : ∥u∥Eλ

= ρ}. The closed set
Sλ disconnects Xλ in the two arcwise connected components

X1
λ := {u ∈ Xλ : ∥u∥Eλ

< ρ} and X2
λ := {u ∈ Xλ : ∥u∥Eλ

> ρ}.
Furthermore, we can conclude that 0 ∈ X1

λ and there exists a ū ∈ X2
λ such that

JR,δ̄λ (ū) ≤ 0 because lim
t→∞

JR,δ̄λ (tu) = −∞ for all u ∈ Xλ\{0}. Then, the value

cR,δ̄λ := inf
γ∈Γ

max
t∈[0,1]

JR,δ̄λ (γ(t)) ≥ A > 0 (27)

determined by Propositions 3.1 is well-defined, where ΓR,δ̄λ = {γ ∈ C([0, 1], Xλ) :

γ(0) = 0, γ(1) ∈ X2
λ and JR,δ̄λ (γ(1)) ≤ 0}. The proof is complete.

To characterize the mountain-pass level cR,δ̄λ , we have the following lemma.

Lemma 3.3. Let R > 0 be fixed, and λ ≥ 1. Then, for every u ∈ Xλ\{0}, there
exists a unique tu > 0 such that tuu ∈ NR,δ̄

λ . Moreover, the maximum of JR,δ̄λ (tu)
for t ≥ 0 is achieved at t = tu.

Proof. According to the definition of fR,δ̄ defined by (13), due to (f2), it simply
concludes that

the function fR,δ̄(t)/t3 is increasing on t ∈ R+. (28)
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Let u ∈ Xλ\{0} be fixed, and define the function ζ(t) := JR,δ̄λ (tu) for t ≥ 0. It can

be easily noticed that ζ ′(t) := (JR,δ̄λ )′(tu)[u] if and only if tuu ∈ NR,δ̄
λ . Moreover,

ζ ′(t) = 0 is equivalent to

1

t2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+ V0(u) =

∫
R2

fR,δ̄(tu)

(tu)3
u4dx.

By using (28), the functions on the left and right-hand sides are decreasing and
increasing, respectively. Moreover, we compute that

ζ(t) =
1

t4

(
t2

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
1

4
V0(u)−

∫
R2

FR,δ̄(tu)dx

)
.

Using some very similar calculations in Lemma 3.2, ζ(t) > 0 for t > 0 small.

Moreover, ζ(0) = 0 and ζ(t) = JR,δ̄λ (tu) < 0 for t > 0 large. Therefore, from the
previous conclusions, there exists a unique tu > 0 such that ζ ′(tu) = 0, that is,

tuu ∈ NR,δ̄
λ . Furthermore, ζ(tu) = maxt≥0 ζ(t).

Next, we consider the number

dR,δ̄λ := inf
u∈Xλ\{0}

max
t≥0

JR,δ̄λ (tu). (29)

We derive the characterization with respect to cR,δ̄λ .

Lemma 3.4. Let R > 0 be fixed, Then, for every λ ≥ 1, there holds mR,δ̄
λ = cR,δ̄λ =

dR,δ̄λ , where mR,δ̄
λ and cR,δ̄λ are defined by (15) and (27), respectively.

Proof. The preceding lemma implies that mR,δ̄
λ = dR,δ̄λ . Since ζ(t) = JR,δ̄λ (t0u) < 0

for u ∈ Xλ\{0} and t0 large, define γR,δ̄λ [0, 1] → Xλ by γ
R,δ̄
λ (t) = tt0u. It follows that

γR,δ̄λ ∈ ΓR,δ̄λ , and, consequently, cR,δ̄λ ≤ dR,δ̄λ . Next, we show that mR,δ̄
λ ≤ cR,δ̄λ . To

end it, it suffices to prove that the manifoldNR,δ̄
λ separatesXλ into two components.

Proceeding as in Lemma 3.2, we have

(JR,δ̄λ )′(u)[u] ≥
(
1

2
− εC̄0

)
∥u∥2Eλ

− C̄1∥u∥4Eλ
− C̄2∥u∥qEλ

with ∥u∥Eλ
small and q > 4. So, there exists ρ̄ > 0 independent of λ ≥ 1, such that

(JR,δ̄λ )′(u)[u] > 0 when 0 < ∥u∥Eλ
< ρ̄. This proves that the component containing

the origin also contains a small ball around the origin. Moreover, JR,δ̄λ (u) ≥ 0

for all u in this component, because (JR,δ̄λ )′(tu)[u] ≥ 0 for all 0 ≤ t ≤ tu. Thus,

γR,δ̄λ (0) = 0 and γR,δ̄λ (1) are in different components, which indicates that every

path γR,δ̄λ ∈ ΓR,δ̄λ has to cross NR,δ̄
λ . Therefore, we must have mR,δ̄

λ ≤ cR,δ̄λ and

dR,δ̄λ ≤ cR,δ̄λ , and the lemma is proved.

Now, let us turn to concentrate ourself on the properties for the (C) sequence at

the mountain-pass level cR,δ̄λ .

Lemma 3.5. Let R > 0 be fixed, and for all λ ≥ 1, there is a constant cR,δ > 0

independent of λ ≥ 1 such that cR,δλ ≤ cR,δ for every λ ≥ 1. Moreover, if we
additionally suppose (h4), then there exists a ξ0 = ξ0(R) > 0 such that, for all
ξ > ξ0,

cR,2λ <
π

4CΞ,b(1 + γ + αRτ−2)
, ∀λ ≥ 1,
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where γ > 2 and CΞ,b > 0 come from (h3) and Lemma 2.4, respectively.

Proof. Let ψ ∈ C∞
0 (Ω) satisfy 0 ≤ ψ ≤ 1. Since V (x) ≡ 0 for all x ∈ Ω by (V2),

then

JR,δλ (tψ) =
t2

2

∫
Ω

|∇ψ|2dx+
t4

4
V0(ψ)−

∫
Ω

FR,δ(tψ)dx.

In view of the proof of Lemma 5.16, JR,δλ (tψ) > 0 for t > 0 small and JR,δλ (tψ) ≤ 0

for t > 0 large, and so the maximum of JR,δλ (tψ) for t ≥ 0 is achieved at t = tψ > 0,

namely max
t≥0

JR,δλ (tψ) = JR,δλ (tψψ). We choose cR,δ = JR,δλ (tψψ) independent of

λ ≥ 1, and get the desired result by Lemma 29.
Without loss of generality, we could suppose that 0 ∈ Ω. Since Ω is an open set,

there is a constant ϱ > 0 such that Bϱ(0) ⊂ Ω. Let us assume that ρ = 1 just for
the convenience of calculations. Now, we shall choose a φ0 ∈ C∞

0 (B1(0)) satisfying
0 ≤ φ0 ≤ 1, φ0(x) ≡ 1 if |x| ≤ 1/2, φ0(x) ≡ 0 if |x| ≥ 1, and |∇φ0| ≤ 1 for all
x ∈ R2. Recalling the definition of fR,2 and (h4), F

R,2(t) ≥ ξtp with p > 4 for all
t ∈ [0, 1]. Thus, using Lemma 2.1-(ii),

JR,2λ (φ0) ≤
1

2

∫
B1(0)

|∇φ0|2dx+
1

2

∫
B1(0)

|φ0|2dx
∫
B1(0)

log(1 + |x|)|φ0|2dx

−
∫
B1(0)

FR,2(φ0)dx

<
1

2
(1 + π log 2)π − ξ

∫
B1/2(0)

|φ0|pdx

≤1

2
(1 + π log 2)π − ξ1

4
π

=0. (30)

where ξ1 = 2(1 + π log 2). In particular, invoking (30), we have that

1

2

∫
B1(0)

[|∇φ0|2 + λV (x)|φ0|2]dx+
1

4
V0(φ0) < ξ1

∫
B1/2(0)

|φ0|pdx. (31)

Defining γR,20 (t) = tφ0, one deduces that γR,20 ∈ ΓR,2λ = {γ ∈ C([0, 1], Xλ) : γ(0) =

0, JR,2λ (γ(1)) < 0} by (31). Therefore, we have that

max
t∈[0,1]

JR,2λ (tφ0) ≤ max
t∈[0,1]

{
t2

2
(1 + π log 2)π − ξtp

∫
B1/2(0)

|φ0|pdx
}

≤ max
t≥0

{
t2

2
(1 + π log 2)− πξ

4
tp
}

=
π(p− 1)(1 + π log 2)

2p

[
2(1 + π log 2)

pξ

] 2
p−2

.

As a consequence, we can let the constant ξ0 = ξ0(R) be as follows:

ξ0 = max

{
ξ1,

2(1 + π log 2)

p

[
4CΞ,b(p− 1)(1 + π log 2)(1 + γ + αRτ−2)

2p

] p−2
2
}
.

According to the definition of cR,2λ , we conclude it. So, we can accomplish the proof
of this lemma.
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With Lemma 3.5 in hand, we start verifying the boundedness of the (C) sequence

at the level cR,δ̄λ of JR,δ̄λ . Specifically, if {un} ⊂ Xλ is a (C)
cR,δ̄
λ

sequence of JR,δ̄λ ,

we aim at showing ∥un∥Xλ
is uniformly bounded in n ∈ N for all λ ≥ 1 if R > 0 is

fixed. Before proceeding, we introduce the following two lemmas developed by P.
L. Lions [37].

Lemma 3.6. Let {ρn} ⊂ L1(R2) be a bounded sequence and ρn ≥ 0. Then, there
exists a subsequence, still denoted by ρn, such that one of the following two possi-
bilities occurs:

(i) (Vanishing) lim
n→∞

sup
y∈R2

∫
Bϱ(y)

ρndx = 0 for all ϱ > 0;

(ii) (Non-Vanishing) there are β > 0 and ϱ < +∞ such that

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

ρndx = β.

Lemma 3.7. Suppose that {un} is bounded in L2(R2), and {|∇un|} is bounded in
L2(R2) as well as

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|2dx = 0.

Then, un → 0 in Ls(R2) for s ∈ (2,+∞).

Lemma 3.8. Let R > 0 be fixed, and for all λ ≥ 1, suppose that {un} ⊂ Xλ is

a (C) sequence at the level cR,δ̄λ of JR,δ̄λ . If (h4) is additionally satisfied for δ̄ = 2,
then {∥un∥Eλ

} is uniformly bounded in n ∈ N. Moreover, for all ϱ > 0,

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|2dx = 0 (32)

could never occur.

Proof. It follows from (28) that

fR,δ̄(t)t− 4FR,δ̄(t) ≥ 0, ∀t ∈ R+.

From this inequality, we obtain that

cR,δ̄λ + on(1) ≥ JR,δ̄λ (un)−
1

4
(JR,δ̄λ )′(un)[un] ≥

1

4
∥un∥2Eλ

(33)

showing the first part of this lemma. In view of Lemma 2.4, both {|un|r} and
{|∇un|2} are uniformly bounded in n ∈ N for some r > 2. Suppose by contradiction,
we suppose that (32) holds true. Thus, un → 0 in Ls(R2) for all s ∈ (2,+∞) by
Lemma 3.7, which, together with (33) as well as Lemmas 2.4 and 3.5, we have
obtained that {un} ⊂ H1(R2) satisfies the assumptions in Lemma 2.6. Hence,

∥un∥2Eλ
+ V1(un) = V2(un) +

∫
R2

fR,δ̄(un)undx+ on(1) = on(1)

where we have used Lemma 2.1-(v) and (22). By the positivity of V1, there holds

∥un∥2Eλ
= on(1) and V1(un) = on(1)

jointly with Lemma 2.1-(v), and (21) again indicates that

cR,δ̄λ =
1

2
∥un∥2Eλ

+
1

4
V1(un)−

1

4
V2(un)−

∫
R2

FR,δ̄(un)dx+ on(1) = on(1).

Thereby, we arrive at a contradiction by (27). The proof is complete.
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Thanks to Lemma 3.6, with the help of Lemma 3.8, we derive the following result
which is crucial to prove that the sequence {un} ⊂ Xλ is uniformly bounded in Xλ.

Lemma 3.9. Under the assumptions in Lemma 3.8, there exists a constant β0 > 0,
independent of λ ≥ 1, such that

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|2dx = β0.

Proof. Letting ρn = |un|2 ∈ L1(R2), we know that only the Non-Vanishing in
Lemma 3.6 occurs because of Lemma 3.8. Then, we divide the proof into interme-
diate steps.

Step 1. There exists a constant βλ = β(λ) > 0 such that

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|2dx = βλ.

Suppose, by contradiction, that un → 0 in Ls(R2) for s ∈ (2,+∞). It is very
similar to the proof of Lemma 3.8, and one derives a contradiction.

Step 2. Conclusion.
Suppose by contradiction that the uniform control from below of the L2(R2)-

norm is false. So, for any k ∈ N, k ̸= 0, there exist λk > 1 and a (C)
cR,δ̄
λk

sequence

{uk,n} of JR,δ̄λ such that

|uk,n|2 <
1

k
, definitely.

Then, by a diagonalization argument, for any k ≥ 1, we can find an increasing
sequence {nk} in N and unk

∈ Xλnk
such that

JR,δ̄λnk
(unk

)=cR,δ̄λnk
+ok(1), (1+∥unk

∥Xλnk
)∥(JR,δ̄λnk

)′(unk
)∥X−1

λnk

=ok(1), |unk
|2=ok(1),

where ok(1) is a positive quantity which goes to zero as k → +∞. In this situation,
we can repeat the proof of Lemma 3.8 to reach a contradiction, again. The proof
of this lemma is finished.

Now, we can prove that the sequence {un} ⊂ Xλ in Lemma 3.8 is uniformly
bounded in Xλ for some sufficiently large λ > 0.

Lemma 3.10. Let R > 0 be fixed, and suppose that {un} ⊂ Xλ is a (C) sequence at

the level cR,δ̄λ of JR,δ̄λ . Moreover, we shall additionally suppose (h4), whence δ̄ = 2.
Then, there is a λ0 = λ0(R) > 1 (λ′0 = λ′0(R) > 1 for δ̄ = 2) such that the sequence
{∥un∥Xλ

} is uniformly bounded in n ∈ N, and λ > λ0 (or λ > λ′0 for δ̄ = 2).

Proof. Combining Lemmas 3.8 and 3.9, there exists a constant β0 > 0, independent
of λ ≥ 1, such that

lim
n→∞

sup
y∈R2

∫
B1(y)

|un|2dx = β0,

where we have supposed that ϱ = 1 in Lemma 3.9. Up to a subsequence if necessary,
there exists a sequence {yn} ⊂ R2 such that∫

B1(yn)

|un|2dx =
1

2
β0. (34)
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We claim that {yn} is uniformly bounded in n ∈ N. Otherwise, we could suppose
that |yn| → ∞ in the sense of a subsequence. Define

Ξ1
n := {x ∈ B1(yn) : V (x) < b} and Ξ2

n := {x ∈ B1(yn) : V (x) ≥ b}.
Since the set Ξ := {x ∈ R2 : V (x) < b} is nonempty and has finite measure, one
concludes that

meas(Ξ1
n) ≤ meas({x ∈ R2 : |x| ≥ |yn| − 2, V (x) < b}) → 0 as n→ ∞. (35)

In view of Lemma 3.8, |un|r with r > 2 is uniformly bounded in n ∈ N. Then, using
(35), ∫

Ξ1
n

|un|2dx ≤ [meas(Ξ1
n)]

r−2
r |un|2r = on(1)

which reveals that∫
Ξ2

n

|un|2dx =

∫
B1(yn)

|un|2dx−
∫
Ξ1

n

|un|2dx =
1

2
β0 + on(1).

Thanks to V (x) ≥ 0 for all x ∈ R2 by (V1), using the definition of Ξ2
n,∫

R2

V (x)|un|2dx ≥
∫
Ξ2

n

V (x)|un|2dx ≥ b

∫
Ξ2

n

|un|2dx =
1

2
bβ0 + on(1). (36)

Besides, in view of the proof of Lemma 3.8 again, we have that

{V2(un)} and
{∫

R2

FR,δ̄(un)dx

}
are uniformly bounded in n ∈ N and λ ≥ 1. (37)

So, combining (36) and (37), we derive

cR,δ̄λ ≥ 1

2

∫
R2

λV (x)|un|2dx− 1

4
V2(un)−

∫
R2

FR,δ̄(un)dx+ on(1)

≥ λbβ0
4

− C + on(1), (38)

where the positive constants b, β0, and C are independent of λ ≥ 1. Using Lemma
3.5, there exists a sufficiently large λ0 = λ0(R) > 1 (λ′0 = λ′0(R) > 1 for δ̄ = 2)
such that (38) is false provided λ > λ0. Hence, the sequence {yn} ⊂ R2 appearing
in (34) is uniformly bounded in n ∈ N.

Consequently, passing to a subsequently if necessary, we suppose that yn → y0
in R2. Taking (34) into account, there holds∫

B2(y0)

|un|2dx ≥ 1

4
β0 > 0. (39)

Next, we shall investigate that |un|∗ = (
∫
R2 log(1+ |x|)u2ndx)

1
2 is uniformly bounded

in n ∈ N. Let us choose a constant δ > 0 large enough to satisfy δ > |y0| + 2.
Moreover, one has

1 + |x− y| ≥ 1 +
|y|
2

≥
√

1 + |y|, ∀x ∈ Bδ(0), ∀y ∈ R2\B2δ(0).

Due to this choice for δ implying that B2(y0) ⊂ Bδ(0), by means of (39),

V1(un) =

∫
R2

(∫
R2

log(1 + |x− y|)u2n(x)dx
)
u2n(y)dy

≥
∫
R2\B2δ(0)

(∫
Bδ(0)

log(1 + |x− y|)u2n(x)dx
)
u2n(y)dy
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≥
(∫

Bδ(0)

u2n(x)dx

)[∫
R2\B2δ(0)

log

(
1 +

|y|
2

)
u2n(y)dy

]
≥ β0

8

∫
R2\B2δ(0)

log(1 + |y|)u2n(y)dy

=
β0
8

(
∥un∥2∗ −

∫
B2δ(0)

log(1 + |y|)u2n(y)dy
)

≥ β0
8
(∥un∥2∗ − log(1 + 2δ)|un|22). (40)

Since we have proved that |un|2 is uniformly bounded in n ∈ N for all λ > λ0, with
(40), it suffices to show that {V1(un)} is uniformly bounded in n ∈ N for all λ > λ0.
In fact, adopting (37),

0 ≤ V1(un) ≤ 4cR,δ̄λ + V2(un) + 4

∫
R2

FR,δ̄(un)dx+ on(1)

finishing the proof of this lemma.

We are in a position to present the proof of Theorem 1.2.

Proof of Theorem 1.2. Combining Proposition 3.1 and Lemma 3.2, for every fixed

R > 0, the variational functional JR,δ̄λ admits a (C) sequence {un} ⊂ Xλ at the

level cR,δ̄λ for all λ ≥ 1. With the help of Lemma 3.10, {un} is bounded in Xλ

whenever λ ≥ λ0, where λ0 > 0 depending on R > 0 is determined by Lemma 3.10.
Passing to a subsequence if necessary, there is a u ∈ Xλ such that un ⇀ u in Xλ,
un → u in Ls(R2) for every 2 ≤ s <∞ by Lemma 2.1-(i), and un → u a.e. in R2 as
n→ ∞. So, the remaining part is to verify that un → u in Xλ by (27) and Lemma
3.4. Moreover, u ≥ 0 by (h1), and we omit the details.

It follows from Lemma 2.1-(ii) and (iii) as well as Lemma 2.2 that

V ′
1(un)[un − u] = 4B1(u

2
n, un(un − u))

= 4B1(u
2
n, (un − u)2) + 4B1(u

2
n, u(un − u))

= 4B1(u
2
n, (un − u)2) + on(1)

≤ 8|un − u|2∥un∥2∗ + on(1)

= on(1). (41)

Using Lemma 2.1-(i) and (iv),

|V ′
2(un)[un − u]| = 4|B2(u

2
n, un(un − u))||

≤ 4|B2(u
2
n, (un − u)2)|+ 4|B2(u

2
n, u(un − u))|

= 4K0|u2n| 43 |(un − u)2| 4
3
+ 4K0|u2n| 43 |u(un − u)| 4

3

≤ 4K0|un|28
3
|un − u|28

3
+ 4K0|un|28

3
|u| 8

3
|un − u| 8

3

= on(1). (42)

Using the same arguments in Lemma 3.8, one could verify {un} satisfies all of the
assumptions in Lemmas 2.6, and so∫

R2

fR,δ̄(un)(un − u)dx = on(1). (43)
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As a consequence of (41), (42), and (43), we obtain

on(1) = (JR,δ̄λ )′(un)[un − u]

=

∫
R2

[
∇un∇(un − u) + λV (x)un(un − u)

]
dx+ on(1)

= ∥un∥2Eλ
− ∥u∥2Eλ

+ on(1)

= ∥un − u∥2Eλ
+ on(1).

Next, we deduce that ∥un − u∥∗ = on(1) and then we are done. Indeed, proceeding
exactly as (40), one has

on(1) = B1(u
2
n, (un − u)2) ≥ β0

8
(∥un − u∥2∗ − log(1 + 2δ)|un − u|22)

yielding the desired result. The proof is complete.

4. Proofs of Theorems 1.1 and 1.4. In this section, following our discussions in
the introduction, we must take the uniform L∞-estimate for the nontrivial solution
obtained in Theorem 1.2. Let uR ∈ Xλ be a ground state solution associated with
Eq. (14), according to the definition of fR,δ̄, which is defined as in (10). Then,
it is a ground state solution for Eq. (1) provided |uR|∞ ≤ R. So, the key idea is
to find a constant C0 > 0 which is independent of R > 0 satisfying |uR|∞ ≤ C0.
Therefore, we define R to equal to such a constant C0. With this in mind, we derive
our direction in this section.

To the aim, we must first prove that the constants λ0(R), λ
′
0(R), and ξ0(R)

appearing in Theorem 1.2 do not depend on R. Let us recall the two cases in
Theorem 1.2. To proceed clearly, we split it into two subsections: (I) δ̄ = δ ∈ (0, 2),
and (II) δ̄ = 2.

In Cases (I) and (II), we shall choose α∗ = 1
Rτ−δ > 0 and τ∗ = 2 + 1

R > 0,
respectively.

4.1. The Case (I) in (10): δ̄ = δ ∈ (0, 2). In this subsection, we shall suppose that
V satisfies (V1)− (V3), and the nonlinearity f defined in (2) requires (h1)− (h3).

With the choice of α∗ = 1
Rτ−δ > 0 in this subsection, we improve (23) in the

sense that, for each ε > 0, there is a constant Cε > 0 independent of R > 0 such
that

|fR,δ(t)| ≤ ε|t|+ Cε|t|q−1[e(K+1)−1|t|2 − 1], ∀t ∈ R, (44)

where q > 1 is arbitrary and K > 0 is independent of R > 0, which is determined
later. Via the two facts in the proof of Lemma 2.6, for all α ∈ (0, α∗) and |t| ≥ 1,
there are M2 ≥M1 ≥M independent of R > 0 such that

|fR,δ(t)| ≤M(eγ|t|
δ

− 1)eα
∗Rτ−δ|t|δ

≤Me(γ+1)|t|δ

≤M1e
(K+1)−1|t|2

≤M2[e
(K+1)−1|t|2 − 1]

≤M2|t|q−1[e(K+1)−1|t|2 − 1]

jointly with fR,δ(t) = o(t) uniformly in R as t→ 0, we have (44) at once.



20 LIEJUN SHEN AND MARCO SQUASSINA

Lemma 4.1. If λ ≥ 1, and we let {un} ⊂ Xλ be a (C) sequence of JR,δλ at the

level cR,δλ , then {un} is is uniformly bounded in n ∈ N and R > 0, that is, there is
a constant K > 0 independent of n ∈ N and R > 0 such that

sup
n∈N

∥un∥2H1(R2) <
2πK

q
< +∞. (45)

Proof. We claim that there are constants A0 > 0 and c > 0 independent of R > 0
and λ ≥ 1 such that

A0 < cR,δλ ≤ c < +∞, ∀R > 0 and λ ≥ 1. (46)

Indeed, recalling the definition of fR,δ, one has that FR,δ(t) ≥ H(t) for all t ∈ R,
and so JR,δλ (u) ≥ Iλ(u) for all u ∈ Xλ, where the variational functional Iλ : Xλ → R
is defined by

Iλ(u) =
1

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
1

4
V0(u)−

∫
R2

H(u)dx. (47)

Let us choose the constant cλ > 0 to be a mountain-pass level associated with Iλ,
the existence of such number follows Lemma 3.2. In light of ψ as in Lemma 3.5,
one has

Iλ(tψ) =
t2

2

∫
Ω

|∇ψ|2dx+
t4

4
V0(ψ)−

∫
Ω

H(tψ)dx.

Then, using the same arguments in Lemma 3.5, we could find a c > 0 independent
of λ ≥ 1 such that cλ ≤ c. Besides, by exploiting (44), we proceed as with (26) to

derive such a constant A0 > 0 satisfying cR,δλ ≥ A0. So, (46) holds true. Combining
(33) and (46) as well as Lemma 2.4, we would receive the desired result (45). The
proof is complete.

Remark 4.2. In view of (38), due to (46), one can see that we can determine the
constant λ0(R) to be independent of R > 0. Moreover, by using (44) and (45), one
would conclude that (21) holds independently with respect to R > 0.

Lemma 4.3. Let uR ∈ Xλ be a nonnegative solution of Eq. (14) with δ̄ = δ
established by Theorem 1.2 for all fixed R > 0. If α∗ = 1

Rτ−δ > 0, then for all
α ∈ (0, α∗) and τ > 2, we have

|uR|∞ ≤ C0, ∀R > 0,

for some C0 > 0 independent of R > 0 and λ > λ0(R).

Proof. In view of Section 3, we know that the nonnegative solution uR ̸= 0 of Eq.
(14) is established by looking for the weak limit of {un} ⊂ Xλ, which is a (C)

sequence of JR,δλ at the level cR,δλ . So, combining the Fatou’s lemma and (45),

∥uR∥2H1(R2) ≤
2πK
q for all R > 0, where K > 0 is a constant independent of R > 0.

We claim that there is a constant C1 > 0 independent of R > 0

|fR,δ(uR)|2 ≤ C1 < +∞. (48)

In fact, due to (44), by applying (12), then it suffices to show that∫
R2

|uR|2(q−1)[e2(K+1)−1|uR|2 − 1]dx

≤
(∫

R2

|uR|2qdx
) q−1

q
(∫

R2

[e2q(K+1)−1|uR|2 − 1]dx

) 1
q
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=

(∫
R2

|uR|2qdx
) q−1

q
(∫

R2

[e
2q∥uR∥2

H1(R2)
K+1

(
|uR|/∥uR∥H1(R2)

)2

− 1]dx

) 1
q

≤ C

for some C > 0 independent of R > 0.
Then, proceeding as with the proof of [5, Lemma 4.10], we shall show that

|uR|∞ ≤ C0, where C0 > 0 is independent of R > 0. Taking the convenience
of the reader into account, it should be done in detail. Since uR is a nonnegative
solution of Eq. (14), by (V1), uR must satisfy the inequality

−∆uR + uR ≤ [1 + guR
(x)]uR + fR,δ(uR), x ∈ R2,

where guR
(x) is defined as in Lemma 2.1. Set Υ := 1+ |guR

|∞. Then, Υ ∈ (1,+∞)
does not depend on R > 0 by Lemma 2.1 and (45). From this and (48), there is a
vR ∈ H2(R2) such that

−∆vR + vR = ΥuR + fR,δ(uR) in R2.

Next, we fix the test function

zr(x) = ϕ(x/r)(uR − vR)
+(x) ∈ Xλ,

where ϕ ∈ C∞
0 (R2) satisfies

0≤ ϕ(x)≤ 1 ∀x ∈ R2, ϕ(x) = 1 ∀x ∈ B1(0) and ϕ(x) = 0 ∀x ∈ R2\B2(0).

Using the function test zr on −∆(uR − vR) + (uR − vR) ≤ 0 in R2, we get the
inequality below∫

R2

[∇(uR − vR)∇zr + (uR − vR)zr] dx ≤ 0, ∀r > 0.

Since
zr → (uR − vR)

+ as r → +∞ in H1(R2),

by Lebesgue’s dominated convergence theorem, we arrive at∫
R2

|∇(uR − vR)
+|2 + |(uR − vR)

+|2 dx ≤ 0,

implying that
0 ≤ uR(x) ≤ vR(x), ∀x ∈ R2.

By using the continuous Sobolev embedding H2(R2) ↪→ L∞(R2), there is C2 > 0
independent of R > 0 such that

|vR|∞ ≤ C2∥vR∥H2(R2), ∀R > 0

which, together with the last fact, gives that

|uR|∞ ≤ C3∥vR∥H2(R2), ∀R > 0.

On the other hand, by Brézis [15, Theorem 9.25], there is C4 > 0 independent of
R > 0 such that

∥vR∥H2(R2) ≤ C4|ΥuR + fR,δ(uR)|2, ∀R > 0,

where from (45) as well as (48), it follows that

∥vR∥H2(R2) ≤ C5, ∀R > 0

for some C5 > 0 independent of R > 0. With this in mind, we must have

|uR|∞ ≤ C0, ∀R > 0.

for some C0 > 0 independent of R > 0, showing the desired result.
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4.2. The Case (II) in (10): δ̄ = 2. In this subsection, we shall suppose that V
satisfies (V1)− (V3) and the nonlinearity f defined in (2) requires (h1)− (h3) as well
as (h4).

With the choice of τ∗ = 2 + 1
R > 0 in this subsection, we improve (24) in the

sense that, for all ε > 0, there is a constant C ′
ε > 0 independent of R > e such that

|fR,2(t)| ≤ ε|t|+ C ′
ε|t|q−1[e(γ+αe

1
e )|t|2 − 1], ∀t ∈ R. (49)

First, one can observe that lim
R→+∞

R
1
R = 1, and the function R

1
R is strictly decreas-

ing in R ∈ (e,+∞). Then, 0 < R
1
R ≤ e

1
e for each R ∈ (e,+∞). For all |t| ≥ 1, by

using (h3), there is M1 > M independent of R > e such that

|fR,2(t)| ≤M(eγ|t|
δ

− 1)eαR
τ∗−2|t|2

=Meγ|t|
δ

eαR
1
R |t|2

≤Meγ|t|
δ

eαe
1
e |t|2

≤M1[e
γ|t|2 − 1][eαe

1
e |t|2 − 1]

≤M1[e
(γ+αe

1
e )|t|2 − 1]

≤M1|t|q−1[e(γ+αe
1
e )|t|2 − 1]

together with fR,2(t) = o(t) uniformly in R > 0 as t→ 0.

Lemma 4.4. If λ ≥ 1, there are some constants Ā0 > 0 and ξ0 > 0 independent of
R > e such that, for all ξ > ξ0, there holds

Ā0 ≤ cR,2λ <
π

4CΞ,b(1 + γ + αe
1
e )
, ∀R > e. (50)

Proof. Applying (49) to (26), one can find such Ā0 > 0, and the details are omitted.

By the definition of fR,2, then cR,2λ ≤ cλ, where cλ is a mountain-pass level corre-
sponding to the variational functional Iλ defined by (47). Let φ0 be as in Lemma
3.5. Then, according to (h3) and Lemma 2.1-(ii),

Iλ(φ0) ≤
1

2

∫
B1(0)

|∇φ0|2dx

+
1

2

∫
B1(0)

|φ0|2dx
∫
B1(0)

log(1 + |x|)|φ0|2dx−
∫
B1(0)

H(φ0)dx

<
1

2
(1 + π log 2)π − ξ

∫
B1/2(0)

|φ0|pdx

≤ 1

2
(1 + π log 2)π − ξ1

4
π

= 0, (51)

where ξ1 = 2(1 + π log 2). In particular, invoking (51), we have that

1

2

∫
B1(0)

[|∇φ0|2 + λV (x)|φ0|2]dx+
1

4
V0(φ0) < ξ1

∫
B1/2(0)

|φ0|pdx. (52)
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Defining γ0(t) = tφ0, one deduces that γ0 ∈ Γλ = {γ ∈ C([0, 1], Xλ) : γ(0) =
0, Iλ(γ(1)) < 0} by (31). Therefore, we have that

max
t∈[0,1]

Iλ(t) ≤ max
t∈[0,1]

{
t2

2
(1 + π log 2)π − ξtp

∫
B1/2(0)

|φ0|pdx
}

≤ max
t≥0

{
t2

2
(1 + π log 2)− πξ

4
tp
}

=
π(p− 1)(1 + π log 2)

2p

[
2(1 + π log 2)

pξ

] 2
p−2

As a consequence, the constant ξ0 independent of R > e can be chosen as

ξ0 = max

{
ξ1,

2(1 + π log 2)

p

[
4CΞ,b(p− 1)(1 + π log 2)(1 + γ + αe

1
e )

2p

] p−2
2
}

showing that cλ <
π

4CΞ,b(1+γ+αe
1
e )

for all R > e. By the fact cR,2λ ≤ cλ for every

R > 0, we get the desired result immediately. The proof is completed.

Remark 4.5. With Lemma 4.4 in hand, for all λ ≥ 1, we obtain that

lim sup
n→∞

∥un∥2H1(R2) <
π

γ + αe
1
e

∀R > e, (53)

where {un} ⊂ Xλ is a (C) sequence of JR,2λ at the level cR,2λ . Indeed, using (33)
and (50) together with Lemma 2.4, it is obvious. With the help of (38) and (50),
we can also conclude that the constant λ′0 > 0 is independent of R > e. Moreover,
it follows from (49) and (53) that (22) holds independently with respect to R > e.

Lemma 4.6. Let uR ∈ Xλ be a nonnegative solution of Eq. (14) with δ̄ = 2
established by Theorem 1.2 for all fixed R > e. If τ∗ = 2+ 1

R > 0, then for all α > 0
and τ ∈ [2, τ∗), we have

|uR|∞ ≤ C ′
0, ∀R > e.

for some C ′
0 > 0 independent of R > e and λ > λ′0(R).

Proof. In light of Lemma 4.3, it suffices to prove that

|fR,2(uR)|2 ≤ C ′
1 (54)

for some C ′
1 > 0 independent of R > e. First, due to the Fatou’s lemma, ∥uR∥2H1(R2)

< π

γ+αe
1
e

by (53) for all R > e. Hence, using (49) with q = 4, we exploit (12) to

have∫
R2

|fR,2(uR)|2dx ≤
∫
R2

|uR|2dx+ C ′
∫
R2

|uR|2(q−1)[e(γ+αe
1
e )|uR|2 − 1]dx

≤
∫
R2

|uR|2dx+ C ′
(∫

R2

|uR|8dx
) 3

4

×
(∫

R2

[e
4(γ+αe

1
e )∥uR∥2

H1(R2)
(|uR|/∥uR∥H1(R2))

2

− 1]dx

) 1
4

≤C ′
1

as required.

Now, we can present the proof of Theorem 1.1 below.
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Proof of Theorem 1.1. Recalling Theorem 1.2, we have established a nonnegative
ground state solution for Eq. (14) under the suitable assumptions. Let us denote the
obtained ground state solution by uR. Thanks to the explanations in Remarks 4.2
and 4.5, the constants λ0 for δ̄ = δ ∈ (0, 2) and λ′0 and ξ0 for δ̄ = 2 are independent
of R > 0 and R > e, respectively. It follows from Lemmas 4.4 and 4.6 that we can
choose R = C0 and R = max{C ′

0, e} for δ̄ = δ ∈ (0, 2) and δ̄ = 2, respectively. In
this situation, α∗ = 1

Cτ−δ
0

and τ∗ = 2 + 1
max{C′

0,e}
. So, uR is a nonnegative ground

state solution of Eq. (1). The proof is completed.

Finally, we are concerned with the asymptotical behavior of ground state solu-
tions of Eq. (1) obtained in Theorem 1.1 as λ→ +∞.

Before showing the proof of Theorem 1.4, via the same constant R > 0 deter-
mined in the proof of Theorem 1.2, we need the variational functionals below:

JΩ(u) =
1

2

∫
Ω

|∇u|2dx+
1

4
V0|Ω(u)−

∫
Ω

F (u)dx, ∀u ∈ H1
0 (Ω),

JR,δ̄Ω (u) =
1

2

∫
Ω

|∇u|2dx+
1

4
V0|Ω(u)−

∫
Ω

FR,δ̄(u)dx, ∀u ∈ H1
0 (Ω),

where the functional V0|Ω : H1
0 (Ω) → R is defined by V0|Ω = V1|Ω − V2|Ω with

V1|Ω(u) :=
∫
Ω

∫
Ω

log(1 + |x− y|)u2(x)u2(y)dxdy, ∀u ∈ H1
0 (Ω),

and

V2|Ω(u) :=
∫
Ω

∫
Ω

log

(
1 +

1

|x− y|

)
u2(x)u2(y)dxdy, ∀u ∈ H1

0 (Ω),

Since meas(Ω) < +∞, there is a constant ϱ > 0 such that Ω ⊂ Bϱ(0), and so

0 ≤ log(1 + |x− y|) ≤ log(1 + 2ϱ), ∀x, y ∈ Ω

indicating that V1|Ω is well-defined and of class of C1 in H1
0 (Ω) endowed with its

usual norm.
Moreover, we define the ground state c0 associated with (60) by

mΩ := inf
u∈NR,δ̄

Ω

JR,δ̄Ω (u), where NR,δ̄
Ω = {u ∈ H1

0 (Ω)\{0} : u ̸= 0, (JR,δ̄Ω )′(u)[u] = 0}.

Now, we are ready to prove Theorem 1.4 as follows.

Proof of Theorem 1.4. Let uλ ∈ Xλ be a ground state solution for Eq. (1), choosing
a subsequence λn → +∞ as n→ ∞, we denoted {uλn} by the subsequence of {uλ}.
In view of the proof of Theorem 1.1, we know that

sup
n∈N

∥uλn
∥2H1(R2) <

2πK

q
and sup

n∈N
|uλn |∞ ≤ C0 (55)

and

lim sup
n→∞

∥uλn∥2H1(R2) <
π

γ + αe
1
e

and sup
n∈N

|uλn |∞ ≤ C ′
0 (56)

for δ̄ = δ ∈ (0, 2) and δ̄ = 2, respectively. Moreover, due to the proof of Lemma
3.10, we deduce that ∥uλn∥Xλn

is uniformly bounded in n ∈ N since we have shown

the facts that (46) and (50) are true for all λ ≥ λ0 if δ̄ = δ ∈ (0, 2), or λ ≥ λ′0 if
δ̄ = 2. Going to a subsequence if necessary, there is a u ∈ X such that uλn

⇀ u in
X, uλn → u in Ls(R2) for each 2 ≤ s < ∞ by Lemma 2.1-(i), and uλn → u a.e. in
R2 as n→ ∞.
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We claim that u ≡ 0 in Ωc. Otherwise, there is a compact subset Θu ⊂ Ωc with
dist(Θu, ∂Ω

c) > 0 such that u ̸= 0 on Θu, and by Fatou’s lemma,

lim inf
n→∞

∫
R2

u2λn
dx ≥

∫
Θu

u2dx > 0. (57)

Moreover, there exists ε0 > 0 such that V (x) ≥ ε0 for any x ∈ Θu by assumptions
(V1) and (V2). Combining (28) and (57), one has

cR,δ̄λn
= lim inf

n→∞
JR,δ̄λn

(uλn
)

= lim inf
n→∞

[
JR,δ̄λn

(uλn
)− 1

4
(JR,δ̄λn

)′(uλn
)[uλn

]
]

≥ 1

4
lim inf
n→∞

∫
R2

λnV (x)|uλn |2dx

≥ ε0
4

(∫
Θu

u2dx

)
lim inf
n→∞

λn

= +∞,

violating (46) and (50). Consequently, u ∈ H1
0 (Ω) by the fact that ∂Ω is smooth.

Recalling (JR,δ̄λn
)′(uλn

) = 0 for each fixed n ∈ N, we now claim that (JR,δ̄Ω )′(u) =

0. In fact, for every ψ ∈ C∞
0 (Ω), it is very similar to (41) and (42) in that

V ′
i (uλn

)[ψ]− V ′
i (u)[ψ] = 4Bi(u

2
λn
, uλn

ψ)− 4Bi(u
2, uψ)

= 4Bi(u
2
λn
, (uλn − u)ψ) + 4Bi(uψ, u

2
λn

− u2)

= on(1). (58)

By means of the Vitali’s dominated convergence theorem, one can easily verify that∫
R2

fR,δ̄(uλn
)ψdx =

∫
R2

fR,δ̄(u)ψdx+ on(1). (59)

With the above two formulas in hand, by using (V2), we derive

0 = (JR,δ̄λn
)′(uλn)[ψ]

=

∫
R2

∇uλn∇ψdx+ V ′
1(uλn)[ψ]− V ′

2(uλn)[ψ]−
∫
R2

fR,δ̄(uλn)ψdx

=

∫
Ω

∇u∇ψdx+ V ′
1 |Ω(u)[ψ]− V2|′Ω(u)[ψ]−

∫
R2

fR,δ̄(u)ψdx+ on(1)

= (JR,δ̄Ω )′(u)[ψ] + on(1),

which is the claim. Next, we begin by showing that u ̸= 0. Arguing it indirectly
and supposing that u ≡ 0, since {uλn

} is uniformly bounded in L2(R2), recalling
(V3), we can proceed as with the calculations in the proof of Lemma 3.10 to find a
sufficiently large constant ϱ > 0 such that∫

Bc
ϱ(0)∩Ξ

|uλn
|2dx ≤ β0

4
, for n sufficiently large.

Adopting V (x) ≥ b on Ξc by (V3), and since ∥uλn
∥Xλn

is uniformly bounded, there
holds∫
Bc

ϱ(0)∩Ξc

|uλn
|2dx ≤ 1

λnb

∫
Bc

ϱ(0)∩Ξc

λnV (x)|uλn
|2dx ≤ β0

4
, for n sufficiently large.
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Let us recall that uλn → 0 along a subsequence in L2(Bϱ(0)). Then,∫
Bϱ(0)

|uλn
|2dx ≤ β0

4
, for n sufficiently large.

Combining the above three formulas, there would be a contradiction to Lemma 3.9.
So, u ̸= 0.

Finally, the remaining part is to verify JR,δ̄Ω (u) = cR,δ̄Ω because each of (55) and

(56) indicate that FR,δ̄ = F , which yields that JR,δ̄Ω = JΩ. Obviously, NR,δ̄
Ω ⊂ NR,δ̄

λn

for all fixed n ∈ N, and so we have that

cR,δ̄Ω ≥ lim inf
n→∞

(
JR,δ̄λn

(uλn)−
1

4
(JR,δ̄λn

)′(uλn)[uλn ]
)

≥ JR,δ̄Ω (u)− 1

4
(JR,δ̄Ω )′(u)[u]

= JR,δ̄Ω (u)

≥ cR,δ̄Ω

indicating that uλn
→ u in X and JR,δ̄Ω (u) = cR,δ̄Ω , where we have exploited Fatou’s

lemma together with (JR,δ̄Ω )′(u) = 0 and u ̸= 0. The proof is finished.

5. Some further remarks. In this section, we tend to present some further re-
sults on Eq. (1) with steep potential well and supercritical exponential growth.
Inspired by [54, Theorem 1.3], one could prove that assumption (h2) is unnecessary
to manipulate Theorems 1.1 and 1.4. Speaking simply, there are a wider class of
nonlinearities which are suitable for the main results in this article. Hence, we shall
mainly discuss how to relax the restriction associated with (h2). For this purpose,
we suppose that:

(h21) There is a constant θ > 3 such that h(t)t ≥ θH(t) for all t ∈ R+;
(h22) The function h(t)/t2 is nondecreasing on t ∈ R+.

Concerning the potential V , we need to put forward some additional conditions
below:

(V 1
4 ) V ∈ C1(R2,R) and 2V (x) + (∇V, x) ≥ 0 for all x ∈ R2;

(V 2
4 ) V ∈ C1(R2,R) and t 7→ t2[2V (tx)− (∇V (tx), tx)] is nondecreasing on t ∈ R+

for all x ∈ R2 as well as V (x)− (∇V (x), x) ≥ 0 for all x ∈ R2.

The main results in this section are as follows.

Theorem 5.1. Let V satisfy (V1) − (V3) and (V 1
4 ). Suppose that the nonlinearity

f defined in (2) requires (h1), (h3), and (h21). Then, for all τ > 2, there are
α∗
1 = α∗

1(τ) > 0 and λ10 > 0 such that Eq. (1) has a nonnegative nontrivial solution
in Xλ for all α ∈ (0, α∗

1) and λ > λ10. Moreover, if we suppose that

(h4) there are constants ξ > 0 and p > 4 such that H(t) =
∫ t
0
h(s)ds ≥ ξtp for all

t ∈ [0, 1],

then for every α > 0, there exist τ1∗ = τ1∗ (α) > 2, λ̄′0 > 0, and ξ10 > 0 such that Eq.
(1) possesses a nonnegative nontrivial solution in Xλ for every τ ∈ [2, τ1∗ ), λ > λ̄′0,
and ξ > ξ10 .

Theorem 5.2. Let V satisfy (V1) − (V3) and (V 1
4 ) − (V 2

4 ). Suppose that the non-
linearity f defined in (2) requires (h1), (h3), and (h21)− (h22). Then, for all τ > 2,



PLANAR SCHRÖDINGER-POISSON SYSTEM WITH STEEP POTENTIAL WELL 27

there are α∗
2 = α∗

2(τ) > 0 and λ20 > 0 such that Eq. (1) has a nonnegative ground
state solution in Xλ for all α ∈ (0, α∗

2) and λ > λ20. Moreover, if we suppose that

(h4) there are constants ξ > 0 and p > 4 such that H(t) =
∫ t
0
h(s)ds ≥ ξtp for all

t ∈ [0, 1],

then for every α > 0, there exist τ2∗ = τ2∗ (α) > 2, λ̃′0 > 0, and ξ20 > 0 such that
Eq. (1) possesses a nonnegative ground state solution in Xλ for every τ ∈ [2, τ2∗ ),

λ > λ̃′0, and ξ > ξ20 .

Remark 5.3. It is simple to observe that (h2) is definitely stronger than (h21) and
(h22). Chen et al. [23] obtained the existence of nontrivial solutions for Eq. (14)
with λ ≡ 0 and θ = 3 in (h12), but the novelty is that we consider λ > 0, and f can
be admitted a supercritical exponential growth.

Remark 5.4. There are a lot of functions V satisfying (V1)−(V3) and (V 1
4 )−(V 2

4 ).
For example, in the sense of ignoring a zero measure set, we define V (x) = V (|x|)
for a.e. x ∈ R2 given by

V (x) =

{
0, 0 ≤ |x| ≤ 1.
|x|, |x| ≥ 1.

Due to the discussions in the introduction, to accomplish the proofs of Theorems
5.1 and 5.2, we have to establish the following two results.

Theorem 5.5. Let V satisfy (V1) − (V3) and (V 1
4 ). Suppose that the nonlinearity

f defined in (2) requires (h1), (h3), and (h21). Then, for each fixed R > 0, there
is a λ̄0(R) > 0 dependent of R such that Eq. (14) with δ̄ = δ has a nonnegative
nontrivial solution in Xλ for all λ > λ̄0(R). Moreover, if in addition we suppose
that (h4), then there exist λ̄′0(R) > 0 and ξ̄0(R) > 0 such that Eq. (14) with δ̄ = 2
possesses a nonnegative nontrivial solution in Xλ for all λ > λ̄′0(R) and ξ > ξ̄0(R).

Theorem 5.6. Let V satisfy (V1) − (V3) and (V 1
4 ) − (V 2

4 ). Suppose that the non-
linearity f defined in (2) requires (h1), (h3), and (h21)− (h22). Then, for each fixed

R > 0, there is a λ̃0(R) > 0 dependent on R such that Eq. (14) with δ̄ = δ has a

nonnegative ground state solution in Xλ for all λ > λ̃0(R). Moreover, if in addition

we suppose that (h4), then there exist λ̃′(R) > 0 and ξ̃0(R) > 0 such that Eq. (14),

where δ̄ = 2 admits a nonnegative ground state solution in Xλ for all λ > λ̃′0(R)

and ξ > ξ̃0(R).

Remark 5.7. Without considering the computations in Theorem 5.5 or 5.6, com-
bining the arguments in Section 3 and [24, Theorem 1.1], one can get the desired
results. Nevertheless, the most challenging difficulty is how to investigate the L∞-
estimate of the solution obtained by Theorem 5.5 or 5.6. To be more eloquent,
because of the lack of (33), we must come up with some new analytic tricks to
receive the analogous estimate in (45) or (53). Let us point out here that, although
it can be obtained easily with the help of the method in [49], which should make
the nonlinearity f have to be imposed on some more stronger restrictions, this is
not what we expected in this section.

Finally, we invite the reader to note that the so-called ground state in Theorems
5.2 and 5.6 is of class Pohoz̆aaev-Nehari type, instead of the Nehari type in Theorems
1.1 and 1.2.

Following very similar calculations as in Theorem 1.4, we can conclude the asymp-
totical behavior of uλ, which is the solution established by Theorem 5.1 (or Theorem
5.2). Let us state it without the detailed proof as follows.
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Theorem 5.8. Under the assumptions in Theorem 5.1 (or Theorem 5.2), passing
to a subsequence, uλ → u0 in X as λ → +∞, where u0 is a nontrivial (or ground
state) solution for the Schrödinger-Poisson equation −∆u+

(∫
Ω

log |x− y|u2(y)dy
)
u = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(60)

Now, we start with some brief proofs of the main results in Theorems 5.1, 5.2,
5.5, and 5.6 in this section.

5.1. Proofs of Theorems 5.5 and 5.6. The proofs are divided into two parts
below.

5.1.1. Proof of Theorem 5.5. First, we recall the following result introduced by
Jeanjean [34,35], which is crucial for finding a bounded (PS) sequence without the
Ambrosetti-Rabinowitz condition, namely θ ≥ 4 in (h12).

Proposition 5.9. Let (Z, ∥ ·∥Z) be a Banach space, and let Λ ⊂ R+ be an interval.
Consider a family {Φµ}µ∈Λ on Z of C1-functional having the form

Φµ(u) = A(u)− µB(u), ∀µ ∈ Λ,

with B(u) ≥ 0 for all u ∈ Z and either A(u) → +∞ or B(u) → +∞ as ∥u∥Z →
+∞. Assume that there are two points v1, v2 ∈ Z such that

cµ = inf
γ∈Γ

max
t∈[0,1]

Φµ(γ(t)) > max{Φµ(v1),Φµ(v2)},

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = v2}. Then, for a.e. µ ∈ Λ, there is a
bounded (PS)cµ sequence for Φµ in Z, namely a sequence {un(λ)} ⊂ X satisfying

(i) {un(λ)} is bounded in Z;
(ii) Φµ(un(λ)) → cµ as n→ ∞;
(iii) Φ′

µ(un(λ)) → 0 in Z−1.

Moreover, cµ is non-increasing on µ ∈ Λ.

To apply Proposition 5.9 successfully, inspired by [24], we have to modify the
work space (Xλ, ∥ · ∥Xλ

) mildly. Speaking clearly, according to Remark 2.5, for all
λ ≥ 1, we redefine the space Xλ by

Xλ :=

{
u ∈ Eλ :

∫
R2

log(2 + |x|)|u|2dx < +∞
}

which is a Hilbert space equipped with the inner product and norm

(u, v)Xλ
=

∫
R2

[
∇u∇v + (λV (x) + log(2 + |x|))uv

]
dx and ∥u∥Xλ

=
√
(u, u)Xλ

, ∀u, v ∈ Xλ.

So, ∥ ·∥Xλ
=

√
∥ · ∥2Eλ

+ ∥ · ∥2∗, where ∥u∥∗ = (
∫
R2 log(2+ |x|)|u|2dx) 1

2 for all u ∈ X,

where

X =

{
u ∈ H1(R2) :

∫
R2

log(2 + |x|)u2dx < +∞
}
.

With this space X, we rewrite V1 and V2 on X in this subsection below:

V1(u) :=

∫
R2

∫
R2

log(2 + |x− y|)u2(x)u2(y)dxdy, ∀u ∈ X,
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and

V2(u) :=

∫
R2

∫
R2

log

(
1 +

2

|x− y|

)
u2(x)u2(y)dxdy, ∀u ∈ X.

As one could observe that there is no essential difference between the above def-
initions and those in Sections 1-2. Thereby, we keep the same notations in this
subsection just for simplicity when there is no misunderstanding.

Setting Φµ(u) = JR,δ̄λ,µ (u) on the work space (Z, ∥ · ∥Z) = (Xλ, ∥ · ∥Xλ
) with λ ≥ 1,

where

JR,δ̄λ,µ (u)=
1

2

∫
R2

[|∇u|2+λV (x)|u|2]dx+1

2
∥u∥2∗+

1

4
V0(u)−µ

(∫
R2

FR,δ̄(u)dx+
1

2
∥u∥2∗

)
for all µ ∈ [ 12 , 1], let us rewrite J

R,δ̄
λ,µ (u) = A(u)− µB(u) on Xλ with

A(u) :=
1

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
1

2
∥u∥2∗ +

1

4
V0(u),

B(u) :=

∫
R2

FR,δ̄(u)dx+
1

2
∥u∥2∗.

Lemma 5.10. Let V satisfy (V1) − (V3). Suppose that f defined by (2) satisfies
(h1) and (h3). Then, for all fixed R > 0 and λ ≥ 1, then B(u) ≥ 0 for any u ∈ Xλ.
Moreover, either A(u) → +∞ or B(u) → +∞ as ∥u∥Xλ

→ +∞.

Proof. By (h3), one observes that B(u) ≥ 0 for each u ∈ Xλ. In consideration of
the completeness, we borrow the ideas in [24, Lemma 3.2] to conclude the proof.
Arguing it indirectly, we could suppose that, up to a subsequence if necessary, there
is a sequence {un} ⊂ Xλ such that

∥un∥Xλ
→ +∞, A(un) ≤ C and B(un) ≤ C. (61)

So, recalling the definition of ∥ · ∥∗ in this subsection and (61),

|un|22 ≤ 1

log 2
∥un∥2∗ ≤ 1

log 2
B(un) ≤ C

which, together with (17) and the Gagliardo-Nirenberg inequality, indicates that

V2(un) ≤ K0|un|48
3
≤ C|un|32|∇un|2 ≤ C∥un∥Xλ

.

As a consequence of the above formula and (61), there holds

C ≥ A(un) ≥
1

2
∥un∥2Xλ

− 1

4
V2(un) ≥

1

2
∥un∥2Xλ

− C

4
∥un∥Xλ

which contradicts with ∥un∥Xλ
→ +∞. The proof is complete.

Lemma 5.11. Let V satisfy (V1) − (V3). Suppose that f defined by (2) satisfies
(h1) and (h3). Then, for all fixed R > 0 and λ ≥ 1, we have that:

(i) There exists a v0 ∈ Xλ\{0} independent of µ and λ such that JR,δ̄λ,µ (v0) ≤ 0

for all µ ∈ [ 12 , 1];

(ii) Denoting ΓR,δ̄λ,µ = {γ ∈ C([0, 1], Xλ) : γ(0) = 0, γ(1) = v0}, then

cR,δ̄λ,µ := inf
γ∈ΓR,δ̄

λ,µ

max
t∈[0,1]

JR,δ̄λ,µ (γ(t)) ≥ A1 > max{JR,δ̄λ,µ (0), J
R,δ̄
λ,µ (v0)}, ∀µ ∈ [

1

2
, 1];

(iii) There exists a constant MR,δ > 0 independent of µ and λ such that cR,δλ,µ ≤
MR,δ.
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Proof. (i) Without loss of generality, we suppose that 0 ∈ Ω, and then there exists
an ε0 > 0 such that Bε0(0) ⊂ Ω by (V2). Let ψ ∈ C∞

0 (Bε0(0)), and set ψt := t2ψ(t·)
for all t > 1, hence suppψt ∈ Bε0(0). By some direct computations, we have

∫
R3

|∇ψt|2dx = t4
∫
Bε0

(0)

|∇ψ|2dx,
∫
R2

FR,δ̄(ψt)dx = t−2

∫
Bε0

(0)

FR,δ̄(tψ)dx,∫
R2

log(2 + |x|)|ψt|2dx = t2
∫
Bε0

(0)

log(2 + t−1|x|)|ψ|2dx

≤ log(2 + ε0)t
2
∫
Bε0

(0)
|ψ|2dx,

V0(ψt) = t4V0(ψ)− t4 log t|ψ|42

≤ t4
[
log(2 + ε0)

∫
Bε0 (0)

|ψ|2dx+ log t

(∫
Bε0 (0)

|ψ|2dx
)2]

.

(62)

Due to (h1) and (h3) together with (62), there holds FR,δ̄(t) ≥ C1t
θ − C2t

2 for all
t > 0, and thus

JR,δ̄
λ, 12

(ψt)

t4 log t
≤ 1

4

(∫
Bε0

(0)

|ψ|2dx
)2

− t2(θ−3)

2 log t

∫
R2

FR,δ̄(t2ψ)

(t2ψ)θ
ψθdx+ot(1) → −∞ (63)

as t → +∞ because θ > 3. Choosing v0 = ψt with t sufficiently large, we have

JR,δ̄λ,µ (v0) ≤ JR,δ̄
λ, 12

(v0) < 0 for all µ ∈ [ 12 , 1].

(ii) We can repeat the calculations in Lemma 3.2-(i) to find such a constant
A1 > 0 independent of µ ∈ [ 12 , 1] and λ ≥ 1.

(iii) Since cR,δλ,µ ≤ maxt>0 J
R,δ̄
λ,µ (ψt) ≤ JR,δ̄

λ, 12
(ψt) for all µ ∈ [ 12 , 1], the conclusion

immediately follows from (63). Thus, we finish the proof of this lemma.

Lemma 5.12. Under the assumptions of Lemma 5.11, if in addition we suppose
that (h4), then there exists a ξ

0
= ξ

0
(R) > 0 such that, for all ξ > ξ̄0,

cR,2λ,µ <
π(θ − 2)

2θCΞ,b(1 + γ + αRτ−2)
, ∀λ ≥ 1, µ ∈ [

1

2
, 1],

where γ > 2, θ > 3, and CΞ,b > 0 come from (h3), (h21), and Lemma 2.4, respec-
tively.

Proof. We postpone the proof and refer the reader to Lemma 5.15 below for the
details.

It is essentially same as the proof of [32, Lemma 2.4]. We can derive the following
lemma.

Lemma 5.13. Let V satisfy (V1)− (V3) and (V 1
4 ). Assume that the nonlinearity f

defined in (2) requires (h1) and (h3). For each fixed R > 0 and λ ≥ 1, if ū ∈ Xλ is

a critical point of JR,δ̄λ,µ , then it satisfies the Pohoz̆aev identity PR,δ̄λ,µ (ū) ≡ 0, where

PR,δ̄λ,µ : Xλ → R is given by

PR,δ̄λ,µ (u) =
1

2

∫
R2

λ[2V (x) + (∇V, x)]|u|2dx+
1

4
|u|42 + V0(u)

+
1− µ

2

(
2∥u∥2∗ +

∫
R2

|x|
2 + |x|

u2dx

)
− 2µ

∫
R2

FR,δ̄(u)dx.
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Lemma 5.14. Let V satisfy (V1)− (V3) and (V 1
4 ). Assume that the nonlinearity f

defined in (2) requires (h1), (h3), and (h21). Then, for each fixed R > 0 and λ ≥ 1,
there is a uµ ∈ Xλ\{0} such that

(JR,δ̄λ,µ )
′(uµ) = 0 and JR,δ̄λ,µ (uµ) ∈ (0, cR,δ̄λ,µ ], ∀a.e. µ ∈ [

1

2
, 1], (64)

where we must additionally suppose (h4) with ξ > ξ
0
appearing in Lemma 5.12,

whence δ̄ = 2.

Proof. Combining Proposition 5.9 and Lemmas 5.10 and 5.11, for a.e. µ ∈ [ 12 , 1],
there is a sequence {un(µ)} ⊂ Xλ (we denote it by {un} just for short) such that

∥un∥Xλ
≤ C, JR,δ̄λ,µ (un) → cR,δ̄λ,µ > 0 and (JR,δ̄λ,µ )

′(un) → 0 in X−1
λ . (65)

Since ∥un∥Xλ
≤ C, passing to a subsequence if necessary, there is a uµ ∈ Xλ such

that un ⇀ uµ in Xλ, un → uµ in Ls(R2) for every s ∈ [2,+∞), and un → uµ a.e. in
R2. We then claim that uµ ̸= 0. By contradiction, using Lemma 2.1-(ii) and (iv),
we have

|V0(un)| ≤ V1(un) + V2(un) ≤ 2|un|22∥un∥2∗ +K0|un|48
3
= on(1), (66)

where we have used the fact ∥un∥2∗ ≤ C2. By means of (65) and (66) jointly with
(h21), there holds

cR,δ̄λ,µ = JR,δ̄λ,µ (un)−
1

θ
(JR,δ̄λ,µ )

′(un)[un] + on(1)

=
2θ

θ − 2
∥un∥2Eλ

+
2θ(1− µ)

θ − 2
∥un∥2∗

+
µ

θ

∫
R2

[fR,δ̄(un)un − θFR,δ̄(un)]dx+ on(1)

≥ 2θ

θ − 2
∥un∥2Eλ

+ on(1)

which, together with Lemma 5.11-(iii) and Lemma 5.12, reveals that all the assump-
tions in Lemma 2.6 holds true. Consequently, we deduce that

lim
n→∞

∫
R2

fR,δ̄(un)undx = 0 and lim
n→∞

∫
R2

FR,δ̄(un)dx = 0 (67)

With (66) and (67) in hand, we could derive ∥un∥Xλ
→ 0 by (JR,δ̄λ,µ )

′(un)[un] → 0.

As a consequence, it holds that 0 = lim
n→∞

JR,δ̄λ,µ (un) = cR,2λ,µ , which is absurd since

Lemma 5.11-(ii). So, uµ ̸= 0 is true.

Next, we shall show that (JR,δ̄λ,µ )
′(uµ) = 0. To see it, for all ϕ ∈ C∞

0 (R2),

proceeding as (58) and (59), there holds (JR,δ̄λ,µ )
′(uµ)[ψ] = lim

n→∞
(JR,δ̄λ,µ )

′(un)[ψ] = 0,

which indicates the desired result. Using Lemma 5.13, we obtain PR,δ̄λ,µ (uµ) = 0, and
so

JR,δ̄λ,µ (uµ) = JR,δ̄λ,µ (uµ)−
1

4

[
2(JR,δ̄λ,µ )

′(uµ)[uµ]− PR,δ̄λ,µ (uµ)
]

=
1

8

∫
R2

λ[2V (x) + (∇V, x)]|uµ|2dx+
1− µ

8

(
2∥uµ∥2∗ +

∫
R2

|x|
2 + |x|

u2µdx

)
+

1

16
|uµ|42 +

µ

2

∫
R2

[fR,δ̄(uµ)uµ − 3FR,δ̄(uµ)]dx
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implying that JR,δ̄λ,µ (uµ) > 0, where we have exploited (h12) and (V 1
4 ).

Finally, the remaining part is to verify JR,δ̄λ,µ (uµ) ≤ cR,δ̄λ,µ . To this aim, we claim

that V1(un) → V1(uµ) as n→ ∞. Indeed, in view of Lemma 2.1-(ii) and ∥un∥Xλ
≤

C,

V1(un) =

∫
R2

(∫
R2

log(2 + |x− y|)u2(y)dy
)
u2(x)dx

≤ 2∥un∥2∗
∫
R2

u2ndx

≤ 2C2

∫
R2

u2ndx

jointly with un → uµ in L2(R2) yields the claim. By adopting 2.1-(v) and (h21), it
follows from the Fatou’s lemma that

cR,δ̄λ,µ = lim inf
n→∞

[
JR,δ̄λ,µ (un)−

1

θ
(JR,δ̄λ,µ )

′(un)[un]
]

= lim inf
n→∞

{
2θ

θ − 2
∥un∥2Eλ

+
2θ(1− µ)

θ − 2
∥un∥2∗ +

θ − 4

4θ
[V1(un)− V2(un)]

+
µ

θ

∫
R2

[fR,δ̄(un)un − θFR,δ̄(un)]dx

}
≥ 2θ

θ − 2
∥uµ∥2Eλ

+
2θ(1− µ)

θ − 2
∥uµ∥2∗ +

θ − 4

4θ
[V1(uµ)− V2(uµ)]

+
µ

θ

∫
R2

[fR,δ̄(uµ)uµ − θFR,δ̄(uµ)]dx

= JR,δ̄λ,µ (uµ)−
1

θ
(JR,δ̄λ,µ )

′(uµ)[uµ]

= JR,δ̄λ,µ (uµ).

So, we accomplish the proof of this lemma.

As a direct consequence of Lemma 5.14, there exist two sequences {µn} ⊂ [ 12 , 1]
and {un(µn)} ⊂ Xλ still denoted by {un} such that

µn → 1−, JR,δ̄λ,µn
(un) := c̄R,δ̄λ,µn

∈ (0, cR,δ̄λ,µn
] and (JR,δ̄λ,µn

)′(un) = 0. (68)

Before presenting the proof of Theorem 5.5, we need to pull c̄R,δ̄λ,µn
down to some

critical threshold value, whence δ̄ = 2, namely the following lemma.

Lemma 5.15. Under the assumptions of Lemma 5.11, if in addition we suppose
that (h4), then there exists a ξ̄0 = ξ̄0(R)(≥ ξ

0
(R)) > 0 such that for all ξ > ξ̄0,

there holds

8(θ − 3)

θ − 2
cR,2λ,µ+16K2

0κ
3
GN

(
cR,2λ,µ

) 3
2 <

π

CΞ,b(1 + γ + αRτ−2)
, ∀λ ≥ 1, µ ∈ [

1

2
, 1], (69)

where γ > 2, θ > 3, K0 > 0, and CΞ,b > 0 are from (h3), (h21), and Lemmas 2.1-
(iv) and 2.4, respectively. Moreover, κGN > 0 denotes the best constant associated
with the Gagliardo-Nirenberg inequality.

Proof. Since cR,2λ,µ is non-increasing on µ ∈ [ 12 , 1] by Proposition 5.9, it suffices to

deduce that cR,2
λ, 12

satisfies (69). On the one hand, we could claim that cR,2
λ, 12

≤
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inf
u∈Xλ\{0}

max
t>0

JR,2
λ, 12

(tu). Indeed, this is a direct corollary of Lemma 5.11-(i) and (ii).

On the other hand, we can follow the calculations in Lemma 3.5 to determine some
suitable ξ

0
= ξ

0
(R) > 0 ξ̄0 = ξ̄0(R) > 0 to ensure Lemma 5.12, and this lemma

holds true. The proof is finished.

Now, we are ready to show the proof of Theorem 5.5 as follows.

Proof of Theorem 5.5. First, we fix the constants R > 0 and λ ≥ λ̄′0(R) ≥ 1.
Depending on the above results, we obtain two sequences {µn} ⊂ [ 12 , 1] and {un} ⊂
Xλ satisfying (68). Obviously, we have that PR,δ̄λ,µn

(un) = 0 by Lemma 5.13 and

(68). So, taking account of (V 1
4 ) and (h21), it holds that

c̄R,δ̄λ,µn
= JR,δ̄λ,µn

(un)

= JR,δ̄λ,µn
(un)−

1

4

[
2(JR,δ̄λ,µn

)′(un)[un]− PR,δ̄λ,µn
(un)

]
=

1

8

∫
R2

λ[2V (x) + (∇V, x)]|un|2dx+
1− µn

8

(
2∥un∥2∗ +

∫
R2

|x|
2 + |x|

u2ndx

)
+

1

16
|un|42 +

µn
2

∫
R2

[fR,δ̄(un)un − 3FR,δ̄(un)]dx

≥ 1

16
|un|42 +

θ − 3

4

∫
R2

FR,δ̄(un)dx

which indicates that

|un|22 ≤ 4

√
c̄R,δ̄λ,µn

and

∫
R2

FR,δ̄(un)dx ≤
4c̄R,δ̄λ,µn

θ − 3
. (70)

In light of (68) and (70), we apply Lemma 2.1-(iv) and the Gagliardo-Nirenberg
inequality to get

c̄R,δ̄λ,µn
=

1

2

∫
R2

[|∇un|2 + λV (x)|un|2]dx+
1

2
∥un∥2∗ +

1

4
V0(un)

− µn

(∫
R2

FR,δ̄(un)dx+
1

2
∥un∥2∗

)
≥ 1

2
∥un∥2Eλ

+
1

4
∥un∥2∗ −

1

4
V2(un)−

1

2

∫
R2

FR,δ̄(un)dx

≥ 1

2
∥un∥2Eλ

+
1

4
∥un∥2∗ −

K0κ
3
2

GN

4
|un|32|∇un|2 −

1

2

∫
R2

FR,δ̄(un)dx

≥ 1

4
∥un∥2Eλ

+
1

4
∥un∥2∗ − 4K2

0κ
3
GN

(
c̄R,δ̄λ,µn

) 3
2 −

2c̄R,δ̄λ,µn

θ − 3
.

In this situation, we conclude that

∥un∥2Xλ
= ∥un∥2Eλ

+ ∥un∥2∗ ≤ 8(θ − 3)

θ − 2
c̄R,δ̄λ,µn

+ 16K2
0κ

3
GN

(
c̄R,δ̄λ,µn

) 3
2 . (71)

Combining Lemma 5.11-(iii) and Lemma 5.15, {∥un∥Xλ
} is uniformly bounded in

n ∈ N. Moreover, due to Lemma 2.4, we deduce that {un} satisfies all assumptions
in Lemma 2.6. Repeating the proof of Theorem 1.2, we could verify that, going to
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a subsequence if necessary, un → u in Xλ as n → ∞. Besides, u ̸= 0 by (68), and
µn → 1− implies that

(JR,δ̄λ (u))′[ϕ] = lim
n→∞

(JR,δ̄λ,µn
(un))

′[ϕ] = 0, ∀ϕ ∈ C∞
0 (R2)

finishing the proof.

5.1.2. Proof of Theorem 5.6. Let us continue to use the work space (Xλ, ∥ · ∥Xλ
) in

this subsection.
Motivated by [24, Theorem 1.3], we shall take advantage of the Nehari-Pohoz̆aev

manifold method to consider Theorem 5.6, that is, looking for a minimizer of the
minimization problem

mR,δ̄
λ,V := inf

u∈MR,δ̄
λ,V

JR,δ̄λ (u) with MR,δ̄
λ,V = {u ∈ Xλ\{0} : GR,δ̄λ (u) = 0}, (72)

where GR,δ̄λ (u) = 2(JR,δ̄λ )′(u)[u] − PR,δ̄λ (u) for each u ∈ Xλ and PR,δ̄λ = PR,δ̄λ,1 in

Lemma 5.13. Recalling that every critical point u ∈ Xλ\{0} satisfies (JR,δ̄λ )′(u)[u] =

0 and PR,δ̄λ (u) = 0, it is natural to minimize JR,δ̄λ over MR,δ̄
λ,V .

Lemma 5.16. Let V satisfy (V1) − (V3) and (V 1
4 ) − (V 2

4 ). Suppose that the non-
linearity f defined in (2) requires (h1), (h3), and (h21) − (h22). Then, for each

u ∈ Xλ\{0}, there exists a unique tu > 0 such that t2uu(tu·) ∈ MR,δ̄
λ,V for each fixed

R > 0 and λ ≥ 1. Moreover,

mR,δ̄
λ,V = inf

u∈Xλ\{0}
max
t>0

JR,δ̄λ,V (t
2u(t·)).

Proof. According to the definition of fR,δ̄ defined in (13), we deduce that fR,δ̄(t)/t2

is increasing on t ∈ R+, and so [fR,δ̄(t)t − FR,δ̄(t)]/t3 is increasing on t ∈ R+ on
t ∈ R+ either. Proceeding as in the proofs of [24, Lemmas 4.3, 4.6, and 4.7], we can
get the desired result.

Lemma 5.17. Let V satisfy (V1) − (V3) and (V 1
4 ) − (V 2

4 ). Suppose that the non-
linearity f defined in (2) requires (h1), (h3) and (h21) − (h22), then for each fixed
R > 0 and λ ≥ 1, we conclude that

(i) There is a constant ϱ > 0 independent λ ≥ 1 such that ∥u∥H1(R2) ≥ ϱ for all

u ∈ MR,δ̄
λ,V ;

(ii) The minimum mR,δ̄
λ,V > 0, where it is defined in (72).

Proof. (i) We suppose it by a contradiction, namely there exists a sequence {un} ⊂
MR,δ̄

λ,V such that ∥un∥H1(R2) → 0. It follows from Lemma 2.4, (V 2
4 ), (17), and (25)

that

C1∥un∥2H1(R2) ≤ C2∥un∥4H1(R2) +
C1

2
∥un∥2H1(R2) + C2(R)∥un∥qH1(R2)

yielding a contradiction if we choose q > 2.

(ii) Arguing it indirectly, we suppose that mR,δ̄
λ,V = 0. Let {un} ⊂ Xλ be a

minimizing sequence of mR,δ̄
λ,V , that is, {un} ⊂ MR,δ̄

λ,V and JR,δ̄λ (un) → 0 as n → ∞.

Due to (h12) and (V 1
4 ), there holds

on(1) = JR,δ̄λ (un)−
1

4
GR,δ̄λ (un)
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=
1

8

∫
R2

λ[2V (x) + (∇V, x)]|un|2dx+
1

16
|un|42

+
1

2

∫
R2

[fR,δ̄(un)un − 3FR,δ̄(un)]dx

≥ 1

16
|un|42 +

θ − 3

2θ

∫
R2

fR,δ̄(un)undx

≥ 1

16
|un|42 +

θ − 3

2

∫
R2

FR,δ̄(un)dx

≥ 0

which reveals that

|un|2 = on(1),

∫
R2

fR,δ̄(un)undx = on(1) and

∫
R2

FR,δ̄(un)dx = on(1).

Using GR,δ̄λ (un) = 0 again, via the above formula, we obtain

2

∫
R2

|∇un|2dx ≤ V2(un) +
1

4
|un|42 + 2

∫
R2

[fR,δ̄(un)un − FR,δ̄(un)]dx

= V2(un) + on(1)

≤ K0κ
3
2

GN|un|
3
2|∇un|2 + on(1)

≤ 1

2
|∇un|22 +

1

2
K2

0κ
3
GN|un|62 + on(1)

=
1

2
|∇un|22 + on(1)

which is impossible by Point-(i). The proof of this lemma is finished.

Lemma 5.18. Let V satisfy (V1) − (V3) and (V 1
4 ) − (V 2

4 ). Suppose that the non-
linearity f defined in (2) requires (h1), (h3), and (h21)− (h22). Then, for each fixed
R > 0 and λ ≥ 1, any minimizing sequence {un} ⊂ Xλ satisfies

∥un∥2Eλ
≤ 8(θ − 3)

θ − 2
mR,δ̄
λ,V + 16K2

0κ
3
GN

(
mR,δ̄
λ,V

) 3
2 + on(1). (73)

Proof. Let {un} ⊂ Xλ be a minimizing sequence ofmR,δ̄
λ,V , that is, {un} ⊂ MR,δ̄

λ,V and

JR,δ̄λ (un) → mR,δ̄
λ,V as n→ ∞. Recalling GR,δ̄λ (un) = 2(JR,δ̄λ )′(un)[un]−PR,δ̄λ (un), it

is very similar to (70) that

|un|22 ≤ 4

√
mR,δ̄
λ,V + on(1) and

∫
R2

FR,δ̄(un)dx ≤
2mR,δ̄

λ,V

θ − 3
+ on(1).

According to this formula, using Lemma 2.1-(iv) and the Gagliardo-Nirenberg in-
equality,

mR,δ̄
λ,V + on(1) ≥

1

2
∥un∥2Eλ

− 1

4
V2(un)−

∫
R2

FR,δ̄(un)dx

≥ 1

2
∥un∥2Eλ

−
K0κ

3
2

GN

4
|un|32|∇un|2 −

2

θ − 3
[mR,δ̄

λ,V + on(1)]

≥ 1

4
∥un∥2Eλ

− 4K2
0κ

3
GN

[
mR,δ̄
λ,V + on(1)

] 3
2 − 2

θ − 3
[mR,δ̄

λ,V + on(1)]

showing the desired result. The proof of this lemma is complete.



36 LIEJUN SHEN AND MARCO SQUASSINA

Arguing as before, we have to verify that the minimum mR,δ̄
λ,V can be controlled

suitably.

Lemma 5.19. Let V satisfy (V1) − (V3). Suppose that f defined by (2) satisfies
(h1) and (h3). Then, for all fixed R > 0 and λ ≥ 1, there is a constant M̄R,δ > 0

such that mR,δ
λ,V ≤ M̄R,δ. Moreover, if in addition we suppose that (h4), then there

exists a ξ̃0 = ξ̃0(R) > 0 such that, for all ξ > ξ̃0, there holds

8(θ − 3)

θ − 2
mR,2
λ,V + 16K2

0κ
3
GN

(
mR,2
λ,V

) 3
2 <

π

CΞ,b(1 + γ + αRτ−2)
, ∀λ ≥ 1.

Proof. The proof is very similar to that of Lemma 5.15, so we omit it here.

Proof of Theorem 5.6. We divide the proof into intermediate steps.

Step 1. The minimization problem mR,δ̄
λ,V in (72) can be attained.

Let {un} ⊂ Xλ be a minimizing sequence of mR,δ̄
λ,V , that is, {un} ⊂ MR,δ̄

λ,V and

JR,δ̄λ (un) → 0 as n → ∞. In view of Lemma 5.18, {∥un∥Eλ
} is uniformly bounded

in n ∈ N. Using Lemma 5.18 again, thanks to Lemma 5.19, we can follow step
by step in Lemmas 3.8, 3.9, and 3.10 to find λ̃(R) if δ̄ = δ, or λ̃′(R) if δ = 2, to

assure that {∥un∥Xλ
} is uniformly bounded in n ∈ N for all λ > λ̃(R) if δ̄ = δ,

or λ > λ̃′(R) if δ = 2, respectively. Repeating the proof of Theorem 1.2, up to a
subsequence, there is a u ∈ Xλ such that un → u in Xλ. So, the nontrivial function
u is the desired attained function.

Step 2. The attained function of mR,δ̄
λ,V is indeed a nontrivial nonnegative critical

point of JR,δ̄λ,V .

We refer the interested reader to [24, Lemma 4.11] for the detailed proof since
there is no essential difference.

5.2. Proofs of Theorems 5.1 and 5.2. Let us note that, combining Lemma
5.11-(iii), Lemma 5.15, and (71), we can still derive (45) and (53) for the proof
of Theorem 5.1. On the other hand, with the help of (73) and Lemma 5.19, we
conclude (45) and (53) for the proof of Theorem 5.2. As a consequence, by repeating
the calculations in Section 4, we would accomplish the proofs of Theorems 5.1 and
5.2 immediately.
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[29] M. de Souza and J. M. do Ó, A sharp Trudinger-Moser type inequality in R2, Trans. Ame.
Math. Soc., 366 (2014), 4513-4549.
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