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Abstract. We are concerned with the existence of normalized solutions
for a class of generalized Chern–Simons–Schrödinger type problems with
supercritical exponential growth

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu + λu + A0u +
2∑

j=1

A2
ju = f(u),

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,∫

R2
|u|2dx = a2,

where a �= 0, λ ∈ R is known as the Lagrange multiplier and f ∈ C1(R)
denotes the nonlinearity that fulfills the supercritical exponential growth
in the Trudinger–Moser sense at infinity. Under suitable assumptions,
combining the constrained minimization approach together with the ho-
motopy stable family and elliptic regular theory, we obtain that the
problem has at least a ground state solution.
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1. Introduction and main results

In this article, we investigate the existence of solutions for the following gen-
eralized Chern–Simons–Schrödinger (CSS in short) system/equation with su-
percritical exponential growth

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δu + λu + A0u +
2∑

j=1

A2
ju = f(u),

∂1A2 − ∂2A1 = −1
2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

(1.1)

under the constraint ∫

R2
|u|2dx = a2, (1.2)

where a �= 0, λ ∈ R is known as the Lagrange multiplier and f ∈ C0(R)
denotes the nonlinearity that fulfills the supercritical exponential growth in
the Trudinger–Moser sense at infinity which would be specified later.

In recent years, the following time-dependent CSS system in two spatial
dimension ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

iD0ψ + (D1D1 + D2D2)ψ + g(|ψ|2)ψ = 0,

∂0A1 − ∂1A0 = −Im(ψD2ψ),
∂0A2 − ∂2A0 = Im(ψD1ψ),
∂1A2 − ∂2A1 = − 1

2 |ψ|2,

(1.3)

is usually exploited to describe the non-relativistic dynamics behavior of mas-
sive number of particles in Chern–Simons gauge fields, where i stands for
the imaginary unit, ∂0 = ∂

∂t , ∂1 = ∂
∂x1

, ∂2 = ∂
∂x2

for (t, x1, x2) ∈ R
1+2,

ψ : R1+2 → C is the complex scalar field, Aj : R1+2 → R denotes the gauge
field, Dj = ∂j +iAj is the covariant derivative for j = 0, 1, 2 and the function
g is the nonlinearity.

This model plays an important role in the study of the high-temperature
superconductor, Aharovnov–Bohm scattering, and quantum Hall effect, we
refer the reader to [25–27]. Moreover, there are some further physical moti-
vations for considering CSS system (1.3), see, e.g., [18,23,40,41].

For j = 0, 1, 2, we always deal with Aj(t, x) = Aj(x) for all (t, x1, x2) ∈
R

1+2. If the standing wave ansatz ψ(t, x) = eiλtu(x) with a given λ ∈ R for
u : R2 → R, then (1.3) reduces to
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δu + λu + A0u +
2∑

j=1

A2
ju = f(u),

∂1A2 − ∂2A1 = −1
2
|u|2,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

(1.4)

where f(u) = g(|u|2)u. Let us suppose that the gauge field Aj satisfies the
Coulomb gauge condition

∑2
j=0 ∂jAj = 0, then (1.4) becomes the original

CSS equation (1.1), namely
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δu + λu + A0u +
2∑

j=1

A2
ju = f(u),

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0.

(1.5)

Since ∂1A0 = A2|u|2 and ∂2A0 = −A1|u|2 in (1.5), there holds

ΔA0 = ∂1

(
A2|u|2) − ∂2

(
A1|u|2),

which leads to

A0[u](x) =
x1

2π|x|2 ∗ (
A2|u|2) − x2

2π|x|2 ∗ (
A1|u|2). (1.6)

Analogously, adopting ∂1A2 − ∂2A1 = − 1
2 |u|2 and ∂1A1 + ∂2A2 = 0 in (1.5)

to deduce that

ΔA1 = ∂2

( |u|2
2

)

and ΔA2 = −∂1

( |u|2
2

)

.

From which, the components Aj for j = 1, 2 in (1.5) can be represented as

A1[u](x) =
x2

2π|x|2 ∗
( |u|2

2

)

= − 1
4π

∫

R2

(x2 − y2)u2(y)
|x − y|2 dy, (1.7)

A2[u](x) = − x1

2π|x|2 ∗
( |u|2

2

)

=
1
4π

∫

R2

(x1 − y1)u2(y)
|x − y|2 dy. (1.8)

When there is no misunderstanding, for simplicity we shall write shortly Aj

in place of Aj [u], for j = 0, 1, 2. Further properties of Aj , for j = 0, 1, 2, will
be introduced in Sect. 2.

Actually, if u is radially symmetric in the standing wave ansatz ψ(t, x) =
eiλtu(x), CSS system (1.3) becomes a single equation. In [11], Byeon-Huh-
Seok considered the standing waves of type

ψ(t, x) = u(|x|)eiλt, A0(t, x) = k(|x|),
A1(t, x) =

x2

|x|2 h(|x|), A2(t, x) = − x1

|x|2 h(|x|), (1.9)

where k and h are real value functions depending only on |x|. Note that (1.9)
satisfies the Coulomb gauge condition with ς = ct+nπ, where n is an integer
and c is a real constant. To look for solutions of CSS system (1.3) of the type
(1.9), it suffices to solve the following semilinear elliptic equation

− Δu + λu +
(∫ ∞

|x|

h(s)
s

u2(s)ds +
h2(|x|)

|x|2
)

u = f(u) in R
2, (1.10)
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where h(s) =
∫ s

0
r
2u2(r)dr.

Now, we have two kinds of CSS type equations (1.1) and (1.10) in hands
and there are two aspects to the studies for them. On the one hand, one can
choose the frequency λ ∈ R to be fixed. In this situation, the existence,
nonexistence and multiplicity of nontrivial solutions have been considerably
contemplated by a lot of mathematicians, see [7,14,17,32,33,36,42,45–47,49,
53] and the references therein for example.

On the other hand, one can find solutions for (1.1) or (1.10) with an
unknown frequency λ ∈ R which appears as a Lagrange multiplier. As we
all know, the mass of each solution to the Cauchy problem for system (1.3)
is conserved along time, namely

∫

R2 |ψ(t, ·)|2dx =
∫

R2 |ψ(0, ·)|2dx for any
t ∈ [0, T ). In physics, there exists a crucial meaning concerning the mass
which is often adopted to represent the power supply in nonlinear optics or
the total number of atoms in Bose–Einstein condensation, see [19,20,44] for
example. As a consequence, taking physical point of views into account, it is
interesting to seek for solutions to (1.3) with prescribed mass.

This naturally leads to the study of solutions to (1.1)–(1.2) for a > 0
given. In this scenario, solutions to (1.1)–(1.2) are referred to as normalized
solutions. Indeed, solutions to (1.1)–(1.2) correspond to critical points of the
underlying energy functional E restricted on S(a), where

E(u) � 1
2

∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx −

∫

R2
F (u)dx (1.11)

and
S(a) �

{

u ∈ H1(R2) :
∫

R2
|u|2dx = a2

}

.

Moreover, from mathematical perspectives, the consideration of normalized
solutions turns out to be also meaningful since it benefits from understanding
dynamical properties of stationary solutions to equations like (1.3).

In recent years, the considerations for normalized solutions for (1.1) or
(1.10) have received more and more attentions. Speaking precisely, for f(u) =
|u|p−2u, Byeon et al. [11] derived the existence of normalized solution for
each a �= 0 if p ∈ (2, 3] and sufficiently small |a| if p ∈ (3, 4). Afterwards, the
authors in [35,58] generalized the results in [11] to p > 4. For the particular
case p = 4, Gou and Zhang [22] exhibited some very interesting results. There
exist some other related results on normalized solution in [38,43,56,57,59]
and the references therein.

It should be mentioned that the research interest could date back to the
Schrödinger equations with prescribed L2-norm. In [28], with the help of a
minimax approach and compactness argument, Jenajean contemplated the
existence of solutions for the following Schrödinger problem:

⎧
⎨

⎩

−Δu + λu = g(u) in R
N ,∫

RN

|u|2dx = a2 > 0.
(1.12)

Later on, there are some complements and generalizations in [30]. In [50], for
g(t) = μ|t|q−2t + |t|p−2t with 2 < q ≤ 2 + 4

N ≤ p < 2∗, Soave considered
the existence of solutions for problem (1.12), where 2∗ = 2N

N−2 if N ≥ 3
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and 2∗ = ∞ if N = 2. For this type of combined nonlinearities, Soave [51]
proved the existence of ground state and excited solutions when p = 2∗. As to
more results for problem (1.12), see, e.g., [8,29,31,37,54] and the references
therein.

Whereas, the planar case for critical problem (1.12) are definitely dif-
ferent from N ≥ 3. In reality, one can observe that 2∗ = ∞ if N = 2 and
H1(R2) �↪→ L∞(R2) which makes the problems special and quite delicate. So,
it is not easy to deal with the nonlinearity involving a (super)critical expo-
nential growth trivially. Due to the Trudinger–Moser type inequality, we can
say that a function f possesses the critical exponential growth at infinity if
there exists a constant α0 > 0 such that

lim
t→+∞

|f(t)|
eαt2

=

{
0, ∀α > α0,

+∞, ∀α < α0.
(1.13)

The above definition was introduced by Adimurthi and Yadava in [1], see
also de Figueiredo, Miyagaki and Ruf [15] for example. As to the subcritical
exponential growth at infinity for f , it says that

lim
t→+∞

|f(t)|
eαt2

= 0, ∀α > 0. (1.14)

Because of the appearance of the critical exponential growth in (1.13),
the results for problem (1.12) with N = 2 are fewer than those for N ≥ 3
involving Sobolev critical growth. Very recently, Alves et al. [3] firstly studied
problem (1.12) in the case N = 2 with g satisfying (1.13). Based on the
ideas in [3], the authors investigated the existence of normalized solutions for
(1.1) and (1.10) in [56,59], respectively. In this article, we continue to study
the existence of normalized solutions for (1.1) with supercritical exponential
growth which is definitely differently from (1.13).

To depict clearly the ideas how to handle the supercritical exponen-
tial case, we are going to derive the existence of normalized solutions for
CSS equation (1.1) with (sub)critical exponential growth. Let us impose the
assumptions on f as follows.

(f1) f ∈ C1(R) and there is a constant χ ≥ 4 such that f(s) = o(sχ−1) as
s → 0;

(f2) There is a constant θ > 4 such that 0 < θF (s) ≤ f(s)s for all s �= 0;
(f3) The function F̄ (s) = f(s)s − 2F (s) satisfies

F̄ (s)/|s|4 is strictly increasing in (0,+∞).

Since we are interested in positive solutions for Eq. (1.1), without loss
of generality, we suppose that f(s) ≡ 0 for all s ∈ (−∞, 0] until the end of
the present paper.

Now, we can state the first main result.
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Theorem 1.1. Suppose that f satisfies (1.14) and (f1) − (f3), then there is a
small a∗ > 0 such that problems (1.1)–(1.2) possess a couple weak solution
(u0, λ0) ∈ H1(R2) × R

+ for all a ∈ (0, a∗], where λ0 > 0, u0(x) > 0 for all
x ∈ R

2 and E(u0) = m(a) with

m(a) � inf
u∈M(a)

E(u), M(a) =
{
u ∈ S(a) : J(u) = 0

}
. (1.15)

Here the energy functional J : S(a) → R is defined by

J(u) =
∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx −

∫

R2
[f(u)u − 2F (u)]dx.

Given a u ∈ S(a), it follows from (f1) − (f2) that

E(tu(t·)) =
t2

2

∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx − t−2

∫

R2
F (tu)dx → −∞

as t → +∞ and so we cannot find critical points for E restricted on S(a)
directly. According to the discussions in Sect. 2 below, we see that M(a) is a
natural constraint manifold.

Next, we deal with the critical exponential growth case. To the end, we
additionally suppose that
(f4) there exist some constants s0 > 0, M0 > 0 and ϑ ∈ (0, 1] such that

0 < sϑF (s) ≤ M0f(s) for all s ≥ s0;

(f5) lim inf |s|→+∞ F (s)e−α0s2 ≥ β0 > 0, where β0 is an arbitrary but fixed
constant.
Our second main result reads in the following.

Theorem 1.2. Suppose that f satisfies (1.13) and (f1) − (f5), then there is
a small a∗ > 0 such that problems (1.1)–(1.2) admit a couple weak solution
(u0, λ0) ∈ H1(R2) × R

+ for all a ∈ (0, a∗], where λ0 > 0, u0(x) > 0 for all
x ∈ R

2 and E(u0) = m(a).

Remark 1.3. In light of the nonlinearity f in (1.1) is more general than its
counterparts in [22,35,38], so we can never simply repeat their methods to
conclude Theorem 1.1. The critical exponential case has been studied in [56,
59], but there are the following three important contributions which can be
regarded as a partial motivation to contemplate the problems behind this
article.

(1) We do not require any compact condition which allows us to study a
wider class of CSS equations. Explaining more precisely, to overcome the loss
of compactness, authors in [59] look for solutions in the radially symmetric
subspace H1

r (R2) which implies that the imbedding H1
r (R2) ↪→ Lp(R2) is

compact for all 2 < p < +∞; conversely, the authors in [56] find solutions in
the work space X = {u ∈ H1(R2) :

∫

R2 |x|2|u|2dx < +∞} which reveals that
the imbedding X ↪→ Lp(R2) is compact for all 2 ≤ p < +∞.

(2) Although with the above two types of compact imbedding results
in hands, authors in [56,59] have to suppose that a2 < 1 to recover the
compactness. With the help of some specific calculations, we would remove
this unpleasant restriction. In other words, we only need to suppose that the
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mass a2 is suitably small which is just caused by the Chern–Simons term∫

R2(A2
1 + A2

2)|u|2]dx. Actually, we could show that Theorems 1.1 and 1.2
holds true for all a �= 0 provided that it is absent.

(3) When taking the energy estimate, the assumption

(f ′
5) There are constants p > 2 and a sufficiently large ς > 0 such that

F (s) ≥ ς|s|p for all s ∈ R,

acts as a key role in [56,59]. Nevertheless, as pointed out in [6], it covers the
essential feature of the critical exponential growth given in (1.13) because
(f ′

5) is a global condition which requires f to be p-superlinear growth for all
t ∈ R and the parameter ς must be large. Therefore, we shall depend on
the slightly modified Moser sequence functions introduced in [6] to reach the
aim. However, owing to the presence of the Chern–Simons term

∫

R2(A2
1 +

A2
2)|u|2]dx, there are some additional challenges that we are necessary to

bring in some technical calculations, see, e.g., Lemma 4.1.

Finally, as the applications of Theorems 1.1 and 1.2, we are able to
investigate the existence of normalized solutions for CSS equation (1.1) with
supercritical exponential growth at infinity. Due to [4,5], we suppose that the
nonlinearity f has the form of the following particular type

f(t) = h(t)eᾱ0|t|τ , ∀t ∈ R, (1.16)

for some ᾱ0 > 0 and τ ≥ 2. Hereafter, the C1 function h that vanishes in
(−∞, 0]) satisfies

(h1) There is a constant χ ≥ 4 such that h(t) = o(tχ−1) as t → 0;
(h2) There exists a θ > 4 such that 0 < θH(t) ≤ h(t)t for all t �= 0, where

H(t) =
∫ t

0
h(s) ds;

(h3) The function H̄(s) = h(s)s − 2H(s) satisfies

H̄(s)/|s|4 is strictly increasing in (0,+∞).

(h4) There exist δ ∈ [8θ−1, 2) and γ,M > 0 such that 0 ≤ |h(t)| ≤ Meγ|t|δ

for all t ∈ R.
Motivated by [4,5], for the function f defined in (1.16) together with

(h2), one could observe that it possesses the so-called supercritical expo-
nential growth at infinity when τ > 2, for example

(I) τ > 2 is arbitrary if ᾱ0 > 0 is fixed; (II) ᾱ0 > 0 is arbitrary if τ ≥ 2 is fixed.
(1.17)

Let us exhibit the main result on this topic as follows.

Theorem 1.4. Suppose that the nonlinearity f defined in (1.16) requires (h1)−
(h4), then there is a small ā∗ > 0 such that, for each τ > 2, there exists a
ᾱ∗

0 = ᾱ0(τ) > 0 such that problems (1.1)–(1.2) possess a couple of weak
solution (ū0, λ̄0) for all fixed ᾱ0 ∈ (0, ᾱ∗

0) and a ∈ (0, ā∗]. Moreover, if in
addition

(h5) there are some constants ξ > 0 and p > 4 such that h(t) ≥ ξtp−1 for all
t ∈ [0,+∞),



   29 Page 8 of 50 L. Shen and M. Squassina

then there is a small ā∗ > 0 such that, given a ᾱ0 > 0, there exist τ∗ =
τ(ᾱ0) > 2 and ξ0 > 0 such that problems (1.1)–(1.2) admit a couple of weak
solution (ū0, λ̄0) for every fixed τ ∈ [2, τ∗), ξ > ξ0 and a ∈ (0, ā∗].

Remark 1.5. Up to the best knowledge of us so far, except [48], there are
not any existence results for CSS equation with supercritical exponential
critical growth. As a consequence, it seems the first paper to consider the
existence of normalized solutions for supercritical CSS equation in R

2. We
emphasize here that although the authors in [6] showed that the supercrit-
ical Schrödinger equation with Stein–Weiss convolution parts has at least a
normalized solution, one cannot derive Theorem 1.4 trivially because of the
Chern–Simons term

∫

R2(A2
1 + A2

2)|u|2]dx. What’s more, the absence of com-
pact imbedding results in this paper cannot also be ignored, see [6, Lemma
2.3] in detail.

Let us briefly sketch the proofs for our main results. To conclude the
proofs of Theorems 1.1 and 1.2, we first introduce some interesting results
for the Chern–Simons term

∫

R2(A2
1 + A2

2)|u|2]dx in the literature and the
Trudinger-Moser inequality developed by Cao [12] and so that the energy
functional E, defined in (1.11), is of class C1 over S(a). Then, we shall in-
vestigate some properties of M(a) including it is natural constrain manifold,
namely any minimizer of m(a) in (1.15) is indeed a weak solution of Eq.
(1.1) with a suitable λ ∈ R. In the meantime, with the help of the homotopy
stable family, we can prove that there is a sequence {un} ⊂ M(a) which is a
Palais–Smale sequence for E restricted on S(a) at the level m(a). To get the
proof of Theorem 1.1, combing the Vanishing lemma in [55] and Brézis–Lieb
lemma as well as the monotonicity of m(a), we have that E(u0) = m(a) and
limn→∞ |∇un|22 = |∇u0|22, where u0 is the weak limit of {un} in H1(R2) along
a subsequence. On the other hand, we derive the strong convergence of {un}
in H1(R2) by showing that the Lagrange multiplier λ0 associated with u0 is
positive. Compared with the proof of Theorem 1.1, to prove Theorem 1.2, we
make the following three additional adjustments: (a) We find a upper bound
by the Moser sequence functions for m(a) which is adopted to verify that the
weak limit u0 �= 0. (b) By taking advantage of (f2) jointly with the monotonic-
ity of m(a), we still prove that E(u0) = m(a) and limn→∞ |∇un|22 = |∇u0|22.
Let us stress here that this idea is also suitable for the subcritical case in
Theorem 1.1 and it should be reviewed as one of the striking novelties in the
present article. (c) As an application of limn→∞ |∇un|22 = |∇u0|22, we shall
derive that λ0 > 0 which leads to that ā 
→ m(ā) is strictly decreasing on a
right neighborhood of ā, where ā2 = |u0|22 ∈ (0, a2]. According to it, we must
have ā2 = a2 which reveals the strong convergence of {un} in H1(R2) and so
the proof is done.

Concerning the proof of Theorem 1.4, due to a variational method point
of view, we continue to search for critical points for the variational functional
E : S(a) → R. Unfortunately, we could not even show that E is well-defined
over S(a) directly which is caused by the appearance the nonlinearity f in-
volving the supercritical exponential growth (1.17) in the Trudinger-Moser
sense. Hence, the most imperative starting point is to deduce that E is of class
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C1. Given a fixed constant R > 0, followed by [4,5], we shall consider an aux-
iliary equation which possesses a (sub)critical exponential growth. Speaking
it clearly, introducing a cutoff function fR,δ̄ which is given by

fR,δ̄(t) =

⎧
⎨

⎩

0, t ≤ 0,
h(t)eᾱ0tτ

, 0 ≤ t ≤ R,

h(t)eᾱ0Rτ−δ̄tδ̄

, t ≥ R,

(1.18)

and

δ̄ �
{

δ, if the Case I in (1.17) is considered,
2, if the Case II in (1.17) is considered.

Here, the function h appears in (1.16) and the constant δ ∈ (0, 2) is proposed
in the condition (h4).

In consideration of such a nonlinearity fR,δ̄, let us study the following
auxiliary equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δu + λu + A0u +
2∑

j=1

A2
ju = fR,δ̄(u),

∂1A2 − ∂2A1 = −1
2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

(1.19)

Using (h4), it is ready to observe that fR,δ̄ admits the subcritical or critical
exponential growth at infinity for every fixed R > 0. Consequently, with
the help of Theorems 1.1 and 1.2, we are able to establish the existence of
normalized solutions for Eq. (1.19) by finding critical points of the energy
functional ER,δ̄ which is defined by

ER,δ̄(u) =
1
2

∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx −

∫

R2
FR,δ̄(u)dx (1.20)

over a suitable subset of S(a), where R > 0 is a fixed constant determined
later and FR,δ̄(t) =

∫ t

0
fR,δ̄(s)ds for all t ∈ R. Furthermore, it could simply

contemplate that if a couple of weak solution (ūR
0 , λ̄R

0 ) of problems (1.19) and
(1.2) satisfying |ūR

0 |∞ ≤ R, then it is a couple of weak solution of problems
(1.1)–(1.2). Have this in mind, we invite the reader to acquaint that one
should construct such a couple of weak solution (ūR

0 , λ̄R
0 ) to conclude the

proof of Theorem 1.4. As a consequence, it is necessary to get the following
result.

Theorem 1.6. Suppose that the nonlinearity f defined in (1.16) requires (h1)−
(h4), then for every fixed R > 0, there is a small ā∗

R > 0 such that, for each
τ > 2, there exists a ᾱ∗

0 = ᾱ0(τ) > 0 such that problems (1.19) and (1.2)
admit a couple of weak solution (ūR

0 , λ̄R
0 ) for every fixed ᾱ0 ∈ (0, ᾱ∗

0) and
a ∈ (0, ā∗

R]. Moreover, if in addition
(h5) there are some constants ξ > 0 and p > 4 such that h(t) ≥ ξtp−1 for all

t ∈ [0,+∞),
then there is a small āR

∗ > 0 such that, given a ᾱ0 > 0, there exist τ∗ =
τ(ᾱ0) > 2 and ξR

0 > 0 such that problems (1.19) and (1.2) have a couple of
weak solution (ūR

0 , λ̄R
0 ) for every fixed τ ∈ [2, τ∗), ξ > ξR

0 and a ∈ (0, āR
∗ ].
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Again the results in Theorem 1.4 and 1.6 are new for the normalized
solutions under the Chern–Simons–Schrödinger system setting. As described
above, one of the key ingredients in the proof of Theorem 1.4 is to derive the
L∞-estimate for ūR

0 . It is widely known that both the elliptic regular theory
and Nash–Moser iteration procedure are the effective tools and we shall argue
as [48] using the former one to reach the aim. Alternatively, we have to exhibit
some nontrivial calculations to show that (A0 + A2

1 + A2
2) ∈ L∞(R2) when

ūR
0 ∈ H1(R2), which differs from the counterparts in [48].

The outline of the present paper is organized as follows. In Sect. 2, we
introduce the variational settings and preliminaries. In Sects. 3 and 4, we will
exhibit the proofs of Theorems 1.1 and 1.2, respectively. Section 5 is mainly
devoted to the supercritical exponential case for problems (1.1)–(1.2).

Notations From now on in this paper, otherwise mentioned, we use the fol-
lowing notations:

• C,C1, C2, C̄1, C̄2, · · · denote any positive constant, whose value is not
relevant.

• Let (X, ‖ · ‖X) be a Banach space with dual space (X−1, ‖ · ‖X−1).
• | |p denotes the usual norm of the Lebesgue space Lp(R2), for every

p ∈ [1,+∞], ‖ ‖Hi(R2) denotes the usual norm of the Sobolev space
Hi(R2) for i = 1, 2.

• on(1) denotes a real sequence with on(1) → 0 as n → +∞ and R
+ �

[0,+∞).
• “→” and “⇀” stand for the strong and weak convergence in the related

function spaces, respectively.
• The tangent space S(a) at u ∈ H1(R2) is defined as

Tu =
{

v ∈ H1(R2) :
∫

R2
uvdx = 0

}

.

• The norm of the C1 restriction functional E|′S(a) at u ∈ H1(R2) is
defined by

‖E|′S(a)‖H−1(R2) = sup
v∈Tu,‖v‖H1(R2)=1

E′(u)[v].

2. Preliminary results

In this section, we are going to exhibit some preliminary results adopted to
prove the main results. To begin with, we shall give some useful observations.
Owing to the second equation and the last two equations in (1.1), for all
u ∈ H1(R2), one has

∫

R2
A0|u|2dx = 2

∫

R2
A0(∂2A1 − ∂1A2)dx

= 2
∫

R2
(A2∂1A0 − A1∂2A0)dx = 2

∫

R2
(A2

1 + A2
2)|u|2dx.

(2.1)
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It follows from the well-known Hardy–Littlewood–Sobolev inequality
[39, Theorem 4.3], we can derive the following estimates to the gauge fields
Aj for j = 0, 1, 2.

Lemma 2.1. (See [24, Propositions 4.2–4.3]) Assume 1 < r < 2 and 1
r − 1

r̂ =
1
2 , then

|Aj |r̂ ≤ Cr|u|22r for j = 1, 2, |A0|r̂ ≤ Cr|u|22r|u|24,
where Cr > 0 is a constant dependent of r.

With Lemma 2.1 in hand, one can easily conclude that

|Aju|2 ≤ |Aj |r̂|u| r
r−1

≤ Cr|u|22r|u| r
r−1

≤ C̄r‖u‖3
H1(R2), for j = 1, 2, (2.2)

because 2r > 2 and r/(r − 1) > 2, where C̄r > 0 depends only on r > 1. We
also need the following Brézis–Lieb type lemma for the Chern–Simons term.

Lemma 2.2. (See [22, Lemma 2.4]) If un ⇀ u in H1(R2) and un → u a.e. in
R

2, then one has Aj [un] → Aj [u] a.e. for j = 1, 2,
⎧
⎪⎨

⎪⎩

lim
n→∞

∫

R2
A0[un]unψdx =

∫

R2
A0[u]uψdx, ∀ψ ∈ H1(R2),

lim
n→∞

∫

R2
A2

j [un]unψdx =
∫

R2
A2

j [u]uψdx, ∀ψ ∈ H1(R2) with j = 1, 2,

(2.3)
and

lim
n→∞

∫

R2

[
A2

j [un]|un|2−A2
j [un−u]|un−u|2]dx =

∫

R2
A2

j [u]|u|2dx, for j = 1, 2.

(2.4)

Caused by the presence of (sub)critical exponential growth at infinity
associated with the nonlinearity f , let us introduce the following type of
Trudinger–Moser inequality due to Cao [12].

Lemma 2.3. For any u ∈ H1(R2) and for all α > 0, there holds
∫

R2
(eα|u|2 − 1)dx < +∞. (2.5)

Moreover, if |∇u|2 ≤ 1, |u|2 ≤ M̄ for some M̄ ∈ (0,+∞) and α < 4π, then
there exists a constant C = C(M̄, α) > 0 such that

∫

R2
(eα|u|2 − 1)dx ≤ C. (2.6)

Combining (1.14) and (f1), for all ε > 0 and α > 0, there is a constant
Cε > 0 such that

|f(s)| ≤ ε|s|χ−1 + Cε|s|q−1(eα|s|2 − 1), ∀s ∈ R, (2.7)

where q > 2 can be arbitrarily chosen later. Using (f2), there holds

|F (s)| ≤ ε|s|χ + Cε|s|q(eα|s|2 − 1), ∀s ∈ R. (2.8)
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Similarly, if the nonlinearity f has a critical exponential growth at infinity
with the critical exponent α0 appearing in (1.13). Then fix q > 2 as above,
for all ε > 0 and α > α0, there is a constant Cε > 0 such that

|f(s)| ≤ ε|s|χ−1 + Cε|s|q−1(eα|s|2 − 1), ∀s ∈ R, (2.9)

and
|F (s)| ≤ ε|s|χ + Cε|s|q(eα|s|2 − 1), ∀s ∈ R. (2.10)

Now, recalling the imbedding H1(R2) ↪→ Lp(R2) is continuous for all
2 ≤ p < +∞ and adopting (2.2), we can apply (2.8) and (2.10) in (2.5) to
verify that the energy functional E, defined in (1.11), is of C1 class on S(a)
whose derivative can be computed as

E′(u)[v] =
∫

R2

[∇u∇v + (A2
1 + A2

2 + A0)uv
]
dx −

∫

R2
f(u)vdx

for any u, v ∈ S(a). In particular, with the help of (2.1), one has

E′(u)[u] =
∫

R2

[|∇u|2 + 3(A2
1 + A2

2)|u|2]dx −
∫

R2
f(u)udx.

Therefore if (u, λ) ∈ S(a) × R is a critical point of E, then the quintuplet(
u,A0[u], A1[u], A2[u], λ

)
is a (weak) solution of system (1.1).

Next, we shall introduce the so-called Pohoz̆aev identity for Eq. (1.1)
which is more general but easier than its counterpart in [11, Propostion 2.3].

Lemma 2.4. Suppose that f satisfies (1.14) and (f1), or (1.13) and (f1). Let
u ∈ H1(R2) be a nontrivial weak solution of Eq. (1.1) with some suitable
λ > 0, then it satisfies the so-called Pohoz̆aev identity below

λ

∫

R2
|u|2dx + 2

∫

R2
(A2

1 + A2
2)|u|2dx − 2

∫

R2
F (u)dx = 0. (2.11)

Proof. We postpone its detailed proof in Lemma A.1 in the “Appendix”
below. �

As a direct consequence of Lemma 2.4, we know that each nontrivial
weak solution of Eq. (1.1) is contained in the set M(a). Indeed, let u be a
test function on Eq. (1.1), there holds

∫

R2

[|∇u|2 + 3(A2
1 + A2

2)|u|2]dx + λ

∫

R2
|u|2dx −

∫

R2
f(u)udx = 0. (2.12)

One immediately derives J(u) = 0 if (2.12) minuses (5.23). In other words,
the set M(a) is a natural constraint to find normalized ground state solutions
for problems (1.1) and (1.2).

In the sequel, we mainly focus on establishing some properties for M(a).
Because the subcritical case for the nonlinearity f is much simpler than the
critical one, let us only consider that f possesses the critical exponential
growth at infinity. From now on until the end of this section, without loss of
generality, we would always suppose that f satisfies (1.13) and (f1)− (f3) for
simplicity.
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Lemma 2.5. Let a �= 0. For every u ∈ S(a), there exists a unique tu > 0 such
that tuu(tu·) ∈ M(a) and E(utu

) = maxt>0 E(ut), where ut = tu(t·) for all
t > 0. Moreover, the map S(a) → (0,+∞) defined by u 
→ tu is continuous.

Proof. Let u ∈ S(a) be fixed and define the function ς(t) = E(ut) for any
t > 0. Since ut ∈ S(a), we simply have that

ς ′(t) = 0 ⇐⇒ t

∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx − t−3

∫

R2
[f(tu)tu − 2F (tu)]dx = 0

⇐⇒ 1

t
J(ut) = 0 ⇐⇒ J(ut) = 0 ⇐⇒ ut ∈ M(a).

We claim that ς(t) > 0 for some sufficiently small t > 0 and limt→+∞ ς(t) =
−∞. Firstly, let us recall the celebrated Gagliardo–Nirenberg inequality

|u|pp ≤ Cp|∇u|p−2
2 |u|22, ∀u ∈ H1(R2) and 2 < p < +∞. (2.13)

Let t1 > 0 small enough satisfy t21|∇u|22 < π
α with α > α0 appearing in

(2.10), then we can define ū =
√

α
π t1u which shows that |∇ū|22 ≤ 1 and

|ū|22 = α
π t21a

2 < +∞, using (2.6) to obtain
∫

R2
(e2αt21|u|2 − 1)dx =

∫

R2
(e2π|ū|2 − 1)dx ≤ C < +∞ (2.14)

which together with the Gagliardo–Nirenberg inequality (2.13) implies that

ς(t1) ≥ t21
2

∫

R2
|∇u|2dx − εtχ−2

1

∫

R2
|u|χdx − Cεt

q−2
1

∫

R2
|u|q(eαt21|u|2 − 1)dx

≥ t21
2

∫

R2
|∇u|2dx − εa2tχ−2

1

( ∫

R2
|∇u|2dx

) χ−2
2

−C̄εatq−2
1

( ∫

R2
|∇u|2dx

) q−1
2

,

where we need to require q > 4 in (2.10) in this situation. Therefore, we
choose ε = 1

4a2 if χ = 4 and ε = 1 if χ > 4 to see there is a sufficiently small
t2 ∈ (0, t1) such that ς(t2) > 0. According to (f2), it is very clear to show
that ς(t) → −∞ as t → ∞ since θ > 4. Thanks to the claim, it permits us to
find a such tu > 0 and its uniqueness follows directly from (f3).

Invoking from the above arguments, the map u 
→ tu is well defined.
Suppose that {un} ⊂ S(a) is a sequence satisfying un → u0 in H1(R2), then
we only need to conclude that tun

→ tu0 in (0,+∞) along a subsequence,
where tun

un(tun
·), tu0u0(tu0 ·) ∈ M(a). Note that tu0 exists since |u0|22 =

a2 > 0 which shows that u0 �= 0. On the one hand, we claim that {tn} is
uniformly bounded from above. Indeed, since J(tun

un(tun
·)) = 0 and (f2),

there holds
∫

R2
[|∇un|2 + (A2

1 + A2
2)|un|2]dx =

∫

R2

[
f(tnun)un − 2F (tnun)

(tnun)4

]

|un|4dx

≥ (θ − 2)
∫

R2

F (tnun)
(tnun)4

|un|4dx.

Using (f2) again which implies that lims→+∞ F (s)/s4 = +∞, then the right
hand goes to +∞ as n → ∞. However, the left hand can be controlled by
a universal constant independent of n ∈ N

+ by (2.2). Thereby, the claim
concludes. On the other hand, we claim that {tn} is uniformly bounded from
below by a positive constant. Otherwise, we should suppose that tun

→ 0 up
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to a subsequence. By exploiting a very similar calculations in (2.14), we can
certify that

lim
n→∞

∫

R2
[|∇un|2 + (A2

1 + A2
2)|un|2]dx = 0

which is impossible and the claim is true. So, passing to a subsequence if
necessary, there is t0 > 0 such that tun

→ t0 as n → ∞. Owing to the
Lemma A.2 in the “Appendix”, we immediately conclude that J(ut0) = 0 by
J(tun

un(tun
·)) = 0. This actually indicates that t0u0(t0·) ∈ M(a). Recalling

the above fact that tu0u0(tu0 ·) ∈ M(a), we must have t0 = tu0 determined by
the uniqueness of the map u0 
→ tu0 which means that tun

→ tu0 as n → ∞.
The proof is completed. �

Lemma 2.6. Let a �= 0. Then, for all u ∈ M(a), there is a constant � > 0
such that |∇u|22 ≥ �. In particular, it holds that the minimization m(a) > 0.

Proof. Arguing it indirectly, we suppose that there is a sequence {un} ⊂
M(a) such that |∇un|22 → 0 as n → ∞. Clearly, without loss of generality,
we can assume that supn∈N+ |∇un|22 ≤ K with some K ∈ (0, 2π

α ), where
α > α0 comes from (2.9). Denoting ūn = K− 1

2 un, then supn∈N+ |∇ūn|22 ≤ 1
and |ūn|22 = K−1a2 < +∞. Adopting (2.6) with 2Kα < 4π, we obtain

sup
n∈N+

∫

R2
(e2α|un|2 − 1)dx = sup

n∈N+

∫

R2
(e2Kα|ūn|2 − 1)dx ≤ C < +∞.

Choosing q > 3 in (2.9) and using the Gagliardo–Nirenberg inequality (2.13),
one has

∫

R2
f(un)undx ≤ ε

∫

R2
|un|χdx + Cε

∫

R2
|un|q(eα|un|2 − 1)dx

≤ εa2

(∫

R2
|∇un|2dx

)χ−2
2

+ Cε

(∫

R2
|un|2qdx

) 1
2

×
(∫

R2
(e2α|un|2 − 1)dx

) 1
2

≤ εa2

(∫

R2
|∇un|2dx

)χ−2
2

+ C̄εa

( ∫

R2
|∇un|2dx

) q−1
2

.

(2.15)

Since {un} ⊂ M(a) which gives that J(un) = 0, one sees that
∫

R2
|∇un|2dx ≤ εa2

( ∫

R2
|∇un|2dx

)χ−2
2

+ C̄εa

(∫

R2
|∇un|2dx

) q−1
2

which is absurd when χ > 4 and q > 3. It still remains valid when χ = 4 by
choosing ε = 1

2a2 > 0. So, we derive the first part of this lemma. According
to (f2), for all u ∈ M(a),

E(u) = E(u) − 1
θ − 2

J(u) ≥ θ − 4
2(θ − 2)

∫

R2
|∇u|2dx

showing the desired result. The proof is completed. �
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Lemma 2.7. Let {un} ⊂ M(a) be a minimizing sequence of m(a), then {un}
is uniformly bounded in H1(R2). Moreover, we further have that
{∫

R2
F (un)dx

}

and
{∫

R2
f(un)undx

}

are uniformly bounded in n ∈ N
+.

(2.16)

Proof. Since J(un) = 0 for all {un} ⊂ M(a), we conclude from (f2) that

m(a) + on(1) = E(un) = E(un) − 1
θ − 2

J(un)

=
θ − 4

2(θ − 2)

∫

R2
[|∇un|2 + (A2

1 + A2
2)|un|2]dx

+
1

θ − 2

∫

R2
[f(un)un − θF (un)] dx

≥ θ − 4
2(θ − 2)

∫

R2
[|∇un|2 + (A2

1 + A2
2)|un|2]dx

and

m(a) + on(1) = E(un) − 1
2
J(un) =

1
2

∫

R2
[f(un)un − 4F (un)] dx

≥ θ − 4
2

∫

R2
F (un)dx.

Since F (s) ≥ 0 for all s ∈ R, exploiting the definition of J , we can finish the
proof of this lemma. �

Next, we are going to show that any minimizer of the minimization
problem m(a) = infu∈M(a) E(u) is a solution of Eq. (1.1) with a suitable
λ ∈ R. In other words, we prove that each critical point of E|M(a) is indeed a
critical point of E|S(a). Taking this purpose into account, we need to introduce
the following result.

Lemma 2.8. (See [13, Corollary 4.1.2]) Let X be a real Banach space and
U ⊂ X be an open set. Suppose that h̃, g1, · · · , gm : U → R

1 are C1 functions
and x0 ∈ M satisfying h̃(x0) = infx∈M h̃(x) with

M = {x ∈ U : gi(x) = 0, i = 1, 2, · · · ,m}.

If {g′
i(x0)}m

i=1 is linearly independent, then there exist λ1, · · · , λm ∈ R such
that

h̃′(x0) +
m∑

i=1

λig
′
i(x0) = 0.

Lemma 2.9. Let a �= 0, then M(a) is a C1-manifold of codimension 2 in
H1(R2). Moreover, it is a C1-manifold of codimension 1 in S(a).

Proof. Given a u ∈ M(a), one sees that J(u) = 0 and P (u) �
∫

R2 u2dx−a2 =
0. Since f ∈ C1, we see that J and P are of C1 class. There exist the following
two possibilities: either (i) J and P are linearly dependent; or (ii) J and P
are linearly independent.
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If (i) holds true, then for all fixed u ∈ M(a), it means that there is a
constant λ∗ ∈ R satisfying

2
∫

R2
[∇u∇ψ +(A0 +A2

1 +A2
2)uψ]dx+2λ∗

∫

R2
uψdx =

∫

R2
[f ′(u)u−f(u)]ψdx

for all ψ ∈ H1(R2), that is,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δu + λ∗u + A0u +
2∑

j=1

A2
ju =

1
2
[f ′(u)u − f(u)],

∂1A2 − ∂2A1 = −1
2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
Using Lemma 2.4, we deduce that u must satisfy the equality

∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx =

1
2

∫

R2
[f ′(u)u2 − 3f(u)u + 4F (u)]dx.

Recalling that J(u) = 0 for u ∈ M(a), using the above equality, there holds
∫

R2
[f ′(u)u2 − 5f(u)u + 8F (u)]dx = 0

which is impossible by Lemma A.3 in the “Appendix” below. So, we have
that (i) cannot occur.

When (ii) holds true, then by Lemma 2.8, there are λ1, λ2 ∈ R such
that

E′(u) + λ1J
′(u) + λ2u = 0 in H−1(R2).

To derive the proof of this lemma, we shall show that λ1 = 0. First of all, we
know that

(1 + 2λ1)
∫

R2
[∇u∇ψ + (A0 + A2

1 + A2
2)uψ]dx + λ2

∫

R2
uψdx

=
∫

R2
[λ1f

′(u)u − (λ1 − 1)f(u)]ψdx

for all ψ ∈ H1(R2), that is,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−(1 + 2λ1)Δu + λ2u + (1 + 2λ1)A0u

+(1 + 2λ1)
2∑

j=1

A2
ju = λ1f

′(u)u − (λ1 − 1)f(u),

∂1A2 − ∂2A1 = −1
2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
It follows from Lemma 2.4 again that

(1 + 2λ1)
∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx =

∫

R2
[λ1f

′(u)u2 − (3λ1 − 1)f(u)u

+2(2λ1 − 1)F (u)]dx.

Since J(u) = 0 for u ∈ M(a) combined with the above equality, we have

λ1

∫

R2
[f ′(u)u2 − 5f(u)u + 8F (u)]dx = 0
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jointly with Lemma A.3 below again yields that λ1 = 0. The proof is com-
pleted. �

To look for minimizer of m(a), we shall construct a Palais–Smale se-
quence for E restricted on S(a) at the level m(a) using the minimax principle
based on the homotopy stable family of compact subsets of S(a). Due to [21],
we have its definition as follows.

Definition 2.10. Let B be a closed subset of a set Y ⊂ H1(R2). We say that
a class G of compact subsets of Y is a homotopy stable family with the closed
boundary B provided that

• every set in G is contained in B;
• for any A ∈ G and each function η ∈ C([0, 1]×Y, Y ) satisfying η(t, x) = x

for all (t, x) ∈ ({0} × Y ) ∪ ([0, 1] × B), then η({1} × A) ∈ G.

We borrow some ideas developed in [9,52] to consider the functional
Ψ : S(a) → R defined by

Ψ = E ◦ ζ,

where the map ζ : S(a) → M(a) is defined as u 
→ tuu(tu·) and tu > 0 is
determined by Lemma 2.5. Since u 
→ tu is a continuous map, motivated by
[52, Proposition 2.9], it allows us to show that Ψ is of C1 class over S(a) and
its derivative is computed as

Ψ′(u)[v] = E′(ζ(u))[vtu
] (2.17)

for any u ∈ S(a) and v ∈ Tu, see Lemma A.4 in the “Appendix” in detail.

Lemma 2.11. Let G be a homotopy stable family of compact subsets of S(a)
with closed boundary B and define

mG � inf
A∈G

max
u∈A

Ψ(u).

Suppose that B is contained in a connected component of M(a) and

max{sup Ψ(B), 0} < mG < +∞,

then there is a Palais–Smale sequence {un} ⊂ M(a) for E restricted on S(a)
at the level mG.

Proof. The idea can date bake to [9] and we will exhibit the detailed proof
for the convenience of the reader. According to the definition of mG , there is
a minimizing sequence {An} ⊂ G such that

max
u∈An

Ψ(u) = mG + on(1).

Define a map η : [0, 1]×S(a) → S(a) by η(t, u) � (1− t+ ttu)u((1− t+ ttu)·),
where tu > 0 comes from Lemma 2.5 and so η ∈ C([0, 1] × S(a)). Moreover,
adopting Lemma 2.5 again, one can see that η(t, u) = u for any (t, u) ∈
({0} × S(a)) ∪ ([0, 1] × B) since B ⊂ M(a) which yields that tu ≡ 1. In
light of G is a homotopy stable family of compact subsets of S(a) with closed
boundary B, then Dn � η({1} × An) = {utu

: u ∈ An} ∈ G by Definition
2.10. Using Definition 2.10 again, one knows that Dn ⊂ B ⊂ M(a), and for
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each v ∈ Dn, there is u ∈ An such that v = utu
. In view of Lemma 2.5, we

have that Ψ(v) = Ψ(utu
) = E(ζ(u)) = Ψ(u) which shows that

max
v∈Dn

Ψ(v) = max
u∈An

Ψ(u).

Therefore, there is another minimizing sequence {Dn} ⊂ M(a) such that

max
v∈Dn

Ψ(v) = max
u∈An

Ψ(u) = mG + on(1).

Thanks to the equivalent minimax principle [21, Theorem 3.2], it permits us
to derive a Palais–Smale sequence {ūn} ⊂ S(a) for Ψ restricted on S(a) at
the level mG and distH1(R2)(ūn,Dn) = on(1).

Taking advantage of ūn, we shall prove that un � ζ(ūn) ∈ M(a) is
a Palais–Smale sequence for Ψ restricted on S(a) at the level mG . Since
E(un) = E(ζ(ūn)) = Ψ(ūn) = mG + on(1) and = mG < +∞, due to Lemma
2.7, one obtains that {un} is uniformly bounded in n ∈ N

+. In particu-
lar, {|∇un|22} is uniformly bounded from above by a universal constant. Ex-
ploiting Lemma 2.6, one concludes that {|∇un|22} is uniformly bounded from
below by a universal constant. Then, we denote t̄n � tūn

> 0 such that
tūn

ūn(tūn
·) ∈ M(a) and so

t̄2n =
|∇un|22
|∇ūn|22

∈ [C1, C2],

for some positive constants C1, C2 independent of n ∈ N
+, where we have

depended on Lemma 2.6 and distH1(R2)(ūn,Dn) = on(1) with {Dn} ⊂ M(a).
In view of the definition of Tu, since

∫

R2
uvdx =

∫

R2
utu

vtu
dx

which implies that vtu
∈ Tutu

if, and only if, v ∈ Tu, then we know that the
map Tu → Tutu

, defined by v 
→ vtu
, is an isomorphism by Lemma 2.5 with

the inverse v 
→ vt−1
u

. So,

‖E|′S(a)(un)‖H−1(R2) = sup
v∈Tun ,‖v‖H1(R2)=1

E′(un)[v]

= sup
v∈Tun ,‖v‖H1(R2)=1

E′(ζ(ūn))[(vt̄−1
n

)t̄n
]

= sup
v∈Tun ,‖v‖H1(R2)=1

Ψ′(ūn)[vt̄−1
n

]

= sup
v

t̄
−1
n

∈Tūn ,‖v
t̄
−1
n

‖H1(R2)=1

Ψ′(ūn)[vt̄−1
n

],

where we have made full use of (2.17) in the third equality as well as vt̄−1
n

∈
Tūn

if, and only if, v ∈ Tun
in the last equality. In addition, by t̄2n ∈ [C1, C2]

and ‖vt̄−1
n

‖2
H1(R2) = t−2

n |∇v|22 + |v|22 < C < +∞, we derive that

‖E|′S(a)(un)‖H−1(R2) ≤ C̄ sup
w∈Tūn ,‖w‖H1(R2)=1

Ψ′(ūn)[w].
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Recalling {ūn} ⊂ S(a) is a Palais–Smale sequence for Ψ restricted on S(a) at
the level mG , thereby we see that {un} ⊂ M(a) is a Palais–Smale sequence
for E restricted on S(a) at the level mG . �

As a corollary of Lemma 2.11, we are able to derive the result below.

Lemma 2.12. Let a �= 0. Then, there is a Palais–Smale sequence {un} ⊂
M(a) for E restricted on S(a) at the level m(a).

Proof. Let G be all singletons in S(a) and B = ∅, then it is simple to check
that G is a homotopy stable family of compact subsets of S(a) without bound-
ary. Moreover, we obtain

mG = inf
A∈G

max
u∈A

Ψ(u) = inf
u∈S(a)

max
t>0

E(ut).

If we show that mG = m(a), then we are done by Lemma 2.11. On the one
hand, for each u ∈ S(a), there is unique tu > 0 such that tuu(tu·) ∈ M(a)
and maxt>0 E(ut) = E(utu

) by Lemma 2.5, then

inf
u∈S(a)

max
t>0

E(ut) ≥ inf
u∈M(a)

E(u).

On the other hand, we claim that, for all t > 0, there holds

�(t, s) � 1 − t2

2
[f(s)s − 2F (s)] + t−2F (ts) − F (s) ≥ 0, ∀s ∈ R.

Indeed, it suffices to consider the case s ≥ 0. Using some elementary calcula-
tions, one sees that

∂

∂t
�(t, s) = t−3[f(ts)ts − 2F (ts)] − t[f(s)s − 2F (s)]

= ts4

{
f(ts)ts − 2F (ts)

(ts)4
− f(s)s − 2F (s)

s4

}

{≥ 0, if t ∈ [1,+∞),
< 0, if t ∈ (0, 1),

where we have adopted (f3) in the last inequality. Hence, we know that
t 
→ �(t, s) is decreasing in (0, 1) and increasing in (1,+∞) for all s ∈ R,
respectively. It has that �(t, s) ≥ mint∈(0,+∞) �(t, s) = �(1, s) = 0 for all
s ∈ R and the claim follows. Due to the claim, for all u ∈ S(a) and t > 0,

E(u) − E(ut) − 1 − t2

2
J(u)

=
∫

R2

[
1 − t2

2
[f(u)u − 2F (u)] + t−2F (tu) − F (u)

]

dx ≥ 0.

Given a u ∈ M(a), we immediately conclude that E(u) ≥ maxt>0 E(ut) ≥
infu∈S(a) maxt>0 E(ut) and so

inf
u∈M(a)

E(u) ≥ inf
u∈S(a)

max
t>0

E(ut).

As a consequence, we must have that mG = m(a). The proof is completed.
�



   29 Page 20 of 50 L. Shen and M. Squassina

Lemma 2.13. Let {un} ⊂ M(a) be a Palais–Smale sequence for E restricted
on S(a) at the level m(a), then there is a uniformly bounded sequence {λn} ⊂
R such that

E′(un) + λnun = on(1) in H−1(R2). (2.18)

Proof. Since {un} is uniformly bounded in H1(R2) by Lemma 2.7 and
‖E|′S(a)(un)‖H−1(R2) → 0, we then obtain that ‖E′(un) −
([E′(un)]un)un‖H−1(R2) → 0 and it means that
∫

R2
[∇un∇ψ + (A0 + A2

1 + A2
2)unψ]dx + λn

∫

R2
unψdx −

∫

R2
f(un)ψdx → 0

for all ψ ∈ H1(R2) and the above formula is the desired result (5.10), where

λn � − 1
a2

{∫

R2
[|∇un|2 + 3(A2

1 + A2
2)u

2
n]dx −

∫

R2
f(un)undx

}

=
2
a2

{∫

R2
|∇un|2dx + 3

∫

R2
F (un)dx −

∫

R2
f(un)undx

}

. (2.19)

Here, we have exploited J(un) = 0 for all {un} ⊂ M(a) in the second equality.
According to Lemma 2.7, the sequence {λn} ⊂ R is uniformly bounded. The
proof is completed. �

With Lemmas 2.7 and 2.13 in hands, passing to a subsequence if neces-
sary, there exist a function u0 ∈ H1(R2) and a constant λ0 ∈ R such that

un ⇀ u0 in H1(R2), un → u0 in Lp
loc(R

2) for all 2 ≤ p < +∞ and un → u0 a.e. in R
2

(2.20)
and

λn → λ0. (2.21)

To conclude this section, we introduce the following result.

Lemma 2.14. Let {un} ⊂ M(a) be a Palais–Smale sequence for E restricted
on S(a) at the level m(a), up to s subsequence if necessary, there holds

lim
n→∞

∫

R2
f(un)ψdx =

∫

R2
f(u0)ψdx, ∀ψ ∈ C∞

0 (R2), (2.22)

where u0 ∈ H1(R2) comes from (2.20). In particular, u0 is a solution of (1.1)
with λ = λ0 in (2.21).

Proof. Since E(un) = m(a) + on(1) and (5.10) jointly with (2.22), the proof
is standard and we omit it here, see, e.g. [15]. �

3. The subcritical case

In this section, we give the proof of Theorem 1.1. For simplicity, we shall al-
ways suppose that the nonlinearity f satisfies (1.14) and (f1)− (f3) through-
out the present section.

First of all, since f admits the subcritical exponential growth at infinity,
then we have the following Brézis–Lieb type lemma associated with f .
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Lemma 3.1. Let {un} ∈ H1(R2) satisfies (2.20), going to a subsequence if
necessary, we have

lim
n→∞

∫

R2
[F (un) − F (un − u0)]dx =

∫

R2
F (u0)dx (3.1)

lim
n→∞

∫

R2
[f(un)un − f(un − u0)(un − u0)]dx =

∫

R2
f(u0)u0dx (3.2)

Proof. The proof is standard and we omit it here. �

As a direct consequence of Lemma 3.1, we immediately derive the results
below that play crucial roles in this section.

Lemma 3.2. Let {un} ∈ H1(R2) satisfies (2.20), going to a subsequence if
necessary, we have

lim
n→∞[E(un) − E(un − u0)] = E(u0) (3.3)

and
lim

n→∞[J(un) − J(un − u0)] = J(u0). (3.4)

Proof. Since un ⇀ u as n → ∞, it infers from the basic property of Hilbert
space that

lim
n→∞

∫

R2
[|∇un|2 − |∇un − ∇u0|2]dx =

∫

R2
|∇u0|2dx

which together with (2.3) and (3.1)–(3.2) yields the desired results. The proof
is completed. �

Before showing the detailed proof of Theorem 1.1, we need to certify
that the minimization m(a) is non-increasing with respect to a.

Lemma 3.3. For all 0 < a1 < a2, there holds that m(a1) ≥ m(a2).

Proof. According to the definition of m(a1), for any ε > 0, there is a u ∈
M(a) such that

E(u) ≤ m(a1) +
ε

4
.

Let us consider a cutoff function ψ ∈ C∞
0 (R2, [0, 1]) such that ψ(x) = 1 if

|x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2 and define uε(x) � ψ(εx)u(x) ∈ H1(R2)\{0},
then uε → u in H1(R2) as ε → 0+. In view of Lemma 2.5, there is a unique
tε � tuε

such that tuε
uε(tuε

·) ∈ M(a) and tε → tu � t0 = 1 as ε → 0+.
As a consequence, we conclude that E((uε)tε

) → E(u) as ε → 0+ with
the help of Lemma A.2 in the “Appendix” below and then one can fix a
sufficiently small ε0 > 0 to satisfy

E((uε0)tε0
) ≤ E(u) +

ε

4
≤ m(a1) +

1
2
ε.

Let v ∈ C∞
0 (R) satisfy suppv ⊂ B1+ 4

ε0
(0)\B 4

ε0
(0) and define

vε0 =
a2
2 − |uε0 |22

|v|22
v.
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We choose wt = uε0 + tvε0(t·) = uε0 +(vε0)t for all t ∈ (0, 1), then it is simple
to calculate that

distR2(suppuε0 , supp (vε0)t) ≥ 2
ε0

(
2
t

− 1
)

>
2
ε0

> 0

and so |wt|22 = a2
2 which means that wt ∈ S(a2). It simply invokes from

Lemma 2.5 that there exists a twt
> 0 such that (wt)twt

� twt
wt(twt

·) ∈
M(a2). We claim that {twt

} is uniformly bounded from above in t ∈ (0, 1). In-
deed, ‖wt‖2

H1(R2) = ‖uε0‖2
H1(R2) +‖(vε0)t‖2

H1(R2) ≤ ‖uε0‖2
H1(R2) +‖vε0‖2

H1(R2)

< +∞, we argue as the proof of Lemma 2.5 to reach the claim. Similarly,
‖wt‖2

H1(R2) ≥ ‖uε0‖2
H1(R2) > 0, we can derive that {twt

} is uniformly bounded
from below by a positive constant in t ∈ (0, 1). All in all, there are constants
T1, T2 > 0 independent of t ∈ (0, 1) such that 0 < T1 ≤ twt

≤ T2 < +∞. So

distR2

(
supp (uε0)twt

, supp ((vε0)t)twt

) ≥ 2
twt

ε0

(
2
t

− 1
)

>
2

T2ε0
> 0

which indicates that
⎧
⎪⎪⎨

⎪⎪⎩

∫

R2
|∇(wt)twt

|2dx =
∫

R2
|∇(uε0)twt

|2dx +
∫

R2
|∇((vε0)t)twt

|2dx,
∫

R2
F ((wt)twt

)dx =
∫

R2
F ((uε0)twt

)dx +
∫

R2
F (((vε0)t)twt

)dx,

and jointly with (1.7) and (1.8) yields that

Aj [(wt)twt
] = Aj [(uε0)twt

] + Aj [((vε0)t)twt
], for j = 1, 2.

According to Lemma A.5 in the “Appendix”, there holds
∫

R2
A2

j [(wt)twt
]|(wt)twt

|2dx

=

∫

R2
(A2

j [(uε0)twt
] + A2

j [((vε0)t)twt
] + 2Aj [(uε0)twt

]Aj [((vε0)t)twt
])(|(uε0)twt

|2

+|((vε0)t)twt
|2)dx

=

∫

R2
(A2

j [(uε0)twt
]|(uε0)twt

|2 + A2
j [((vε0)t)twt

]|((vε0)t)twt
|2)dx + ot(1),

where ot(1) → 0 as t → 0+. Consequently, by (uε0)tε0
∈ M(a), we obtain

that

E
(
(wt)twt

)
= E

(
(uε0)twt

)
+ E

(
((vε0)t)twt

)
+ ot(1) ≤ E

(
(uε0)tε0

)

+E
(
((vε0)t)twt

)
+ ot(1).

On the other hand, one easily exploits (f1) to verify that

E(((vε0)t)twt
) =

t2t2wt

2

∫

R2
[|∇vε0 |2

+(A2
1 + A2

2)|vε0 |2]dx − t−2t−2
wt

∫

R2
F (ttwt

vε0)dx = ot(1).
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Finally, since (wt)twt
∈ M(a2), we could fix t > 0 which is so close to 0+

such that

m(a2) ≤ E((wt)twt
) ≤ E((uε0)tε0

) +
ε

2
≤ m(a1) + ε

finishing the proof since ε > 0 is arbitrary. �

Now, we are ready to exhibit the proof of Theorem 1.1.

Proof of Theorem 1.1. According to Lemma 2.11, there is a Palais–Smale
sequence for E restricted on S(a) at the level m(a) and we denoted it by
{un}. Using Lemmas 2.7 and 2.13, we derive the two sequences appeared in
(2.21) and (2.20). To show the proof clearly, we split it into three steps.

Step 1 Without loss of generality, we could assume that the weak limit
u0 �= 0.

Since {un} ⊂ H1(R2) is uniformly bounded, for some ρ > 0, then we
have the following two cases

Case I : lim
n→∞ sup

y∈R2

∫

Bρ(y)

|un|2dx = 0; Case II : lim
n→∞ sup

y∈R2

∫

Bρ(y)

|un|2dx > 0.

If the Case I occurs, then un → 0 in Lp(R2) for all 2 < p < +∞ by the
Vanishing lemma. Exploiting some simple calculations, we obtain

lim
n→∞

∫

R2
F (un)dx = 0 and lim

n→∞

∫

R2
f(un)undx = 0

which indicate that

m(a) = lim
n→∞[E(un) − 1

2
J(un)] =

1
2

lim
n→∞

∫

R2
[f(un)un − 4F (un)] dx = 0.

It is impossible by Lemma 2.6. So, the Case (II) must occur and there is a
sequence {yn} ⊂ R

2 such that limn→∞
∫

Bρ(0)
|vn|2dx > 0, where vn = un(· −

yn). Recalling both E and J are translation-invariant, then {vn} ⊂ M(a) is a
Palais–Smale sequence for E restricted on S(a) at the level m(a). Repeating
the previous arguments, there is a v ∈ H1(R2) such that vn ⇀ v in H1(R2),
vn → v in Lp

loc(R
2) for all 2 < p < +∞ and vn → v a.e. in R

2. Clearly,
we deduce that v �= 0. Regardless of the abuse of notations, we adopt the
sequence {un} and u0 �= 0. The proof is done.

Step 2 E(u0) = m(a) and limn→∞ |∇un|22 = |∇u0|22.
In view of Lemma 2.14, u0 is a solution of (1.1) with λ = λ0 in (2.21)

and so J(u0) = 0 by Lemma 2.4. Since {un} ⊂ M(a) which is J(un) = 0 and
then limn→∞ J(un − u0) = 0 by (3.4). Thus, we have

E(un − u0) = E(un − u0) − 1
2
J(un − u0) + on(1)

=
1
2

∫

R2
[f(un − u0)(un − u0) − 4F (un − u0)] dx + on(1)

≥ θ − 4
2

∫

R2
F (un − u0)dx + on(1) ≥ on(1) (3.5)
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It follows from the Fatou’s lemma that |u0|22 ≤ limn→∞ |un|22 ≤ a2. In light
of u0 �= 0 by Step 1, we are derived from (3.3) and Lemma 3.3 that

lim
n→∞ E(un − u0) + E(u0) = lim

n→∞ E(un) = m(a) ≤ m(|u0|22) ≤ E(u0). (3.6)

It follows from (3.5) and (3.6) that

lim
n→∞

∫

R2
F (un − u0)dx = 0

and so
lim

n→∞

∫

R2
f(un − u0)(un − u0)dx = 0.

Combining the above two formulas and limn→∞ J(un − u0) = 0 again, we
conclude that

lim
n→∞

∫

R2
[|∇un − ∇u0|2 + (A2

1[un − u0] + A2
2[un − u0])|un − u0|2]dx = 0.

Furthermore, we obtain limn→∞ E(un − u0) = 0 jointly with (3.5) gives that
E(u0) = m(a).

Step 3 There is a small a∗ > 0 such that λ0 > 0 for all a ∈ (0, a∗]. So,
|u0|22 = a2.

It follows from (2.19) and (2.21) as well the calculations in Step 2 that

λ0 =
2
a2

{∫

R2
|∇u0|2dx + 3

∫

R2
F (u0)dx −

∫

R2
f(u0)u0dx

}

.

Since {un} is uniformly bounded in H1(R2), saying it supn∈N+ ‖un‖2
H1(R2) ≤

K̄, then one sees that ‖u0‖2
H1(R2) ≤ K̄ by Fatou’s lemma. Because α > 0 is

arbitrary in (2.7), we could choose it to satisfy 2K̄α < 4π. Taking the very
similar calculations in (2.15), for q = 2+χ

2 ≥ 3, we obtain
∫

R2
f(u0)u0dx ≤ εa2

(∫

R2
|∇u0|2dx

)χ−2
2

+ C̄εa

( ∫

R2
|∇u0|2dx

) q−1
2

.

Note that ε = 1
2a2 if χ = 4 and ε = 1 if χ > 4, then the constants C̄1/2a2 and

C̄1 are only dependent of f , χ and α. Let us define

a∗ �

⎧
⎨

⎩

1
2C̄1/2a2

, if χ = 4,

min
{

1
2C̄1, 1√

2

}

�
4−χ
2 , if χ > 4,

As a consequence, for all a ∈ (0, a∗], we can infer that

λ0 ≥ 6
a2

∫

R2
F (u0)dx > 0.

Finally, combining (5.10), Lemma 2.14 and the calculations in Step 2, we
have that

λ0|un − u0|22 = λ0|un|22 − λ0|u0|22 + on(1) = λn|un|22 − λ0|u0|22 + on(1)

=

∫

R2
f(un)undx −

∫

R2
[|∇un|2 + (A2

1 + A2
2)u

2
n]dx −

∫

R2
f(u0)u0dx

+

∫

R2
[|∇u0|2 + (A2

1 + A2
2)u

2
0]dx + on(1)
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= on(1)

showing that |u0|22 = limn→∞ |un|22 = a2 since λ0 �= 0. Thanks to Lemma 2.9,
we finish the proof. �

4. The critical case

In this section, we concentrate on the proof of Theorem 1.2. Since it is the
critical exponential case, it could be much complex than that of Theorem
1.1. Nevertheless, we can still find a Palais–Smale sequence {un} ⊂ S(a) at
the level m(a). Thereby, we can exploit the results in Sect. 2 directly.

Alternatively, the nonlinearity f has the critical exponential growth at
infinity as well as there is no compact result for H1(R2) ↪→ Lp(R2) with 2 <
p < +∞, thus we have to pull the minimization value m(a) defined in (1.15)
down to some threshold value which is crucial in restoring the compactness.
To the aim, motivated by [6], for the sufficiently integer n ≥ 2, we require
the constant Rn ≥ 2+log 2

2(2−log 2)ρ to satisfy

a2 =
ρ2

16 log n

(

2 log2 2 + 2 log 2 + 1 − 8
n2

log n − 4
n2

)

+
(2Rn − ρ)(2Rn + 3ρ) log2 2

48 log n
. (4.1)

Here the constant ρ > 0 is suitably large and meets that

ρ >
1

α0β̄0

√
π(θ − 2)

θ
. (4.2)

Moreover, it is simple to observe that

lim
n→∞ Rn = +∞, lim

n→∞
Rn

log n
= 0 and lim

n→∞
R2

n

log n
=

12a2

log2 2
. (4.3)

By the above discussions, inspired by [2,16,34], we define the following Moser
type functions

wn(x) � 1√
2π

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
log n, 0 ≤ |x| ≤ ρ

n ,

log(ρ/|x|)√
log n

, ρ
n ≤ |x| ≤ ρ

2 ,

2(Rn − |x|) log 2
(2Rn − ρ)

√
log n

, ρ
2 ≤ |x| ≤ Rn,

0, |x| ≥ Rn.

(4.4)

Clearly, {wn} ⊂ H1(R2) and one can calculate in a standard way that
∫

R2
|wn|2dx =

∫ ρ
n

0

r log ndr +
∫ ρ

2

ρ
n

log2(ρ/r)
log n

rdr +
∫ Rn

ρ
2

4(Rn − r)2 log2 2
(2Rn − ρ)2 log n

rdr

=
ρ2

16 log n

(

2 log2 2 + 2 log 2 + 1 − 8
n2

log n − 4
n2

)
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+
(2Rn − ρ)(2Rn + 3ρ) log2 2

48 log n

= a2

and

∫

R2
|∇wn|2dx =

1
log n

∫ ρ
2

ρ
n

1
r
dr +

∫ Rn

ρ
2

(2 log 2)2

(2Rn − ρ)2 log n
rdr

= 1 − log 2
log n

+
(2Rn + ρ) log2 2
2(2Rn − ρ) log n

≤ 1.

Due to the negative impact caused by the Chern–Simons term in the
energy functional E, defined by (1.11), we shall follow the ideas exploited in
[49, Lemma 3.10] to establish the following result.

Lemma 4.1. Let {wn} ⊂ H1(R2) be defined as (4.4), then, passing to a sub-
sequence if necessary, it holds that

lim
n→∞

∫

R2
(A2

1[wn] + A2
2[wn])w2

ndx = 0.

Proof. Recalling the definition of {wn}, we are able to see that

∫

|x|≤ ρ
n

|wn|4dx =
log2 n

(2π)2

∫

|x|≤ ρ
n

dx =
ρ2 log2 n

4πn2
= on(1),

and

∫

ρ
n ≤|x|≤ ρ

2

|wn|4dx =
1

(2π)2 log2 n

∫

ρ
n ≤|x|≤ ρ

2

log4(ρ/|x|)dx

=
1

2π log2 n

∫ ρ
2

ρ
n

log4(ρ/r)rdr

=
ρ2

8π log2 n
(2r4 − 4r3 + 6r2 − 6r + 4)e2r

∣
∣
∣
∣

log 1
2

log 1
n

= on(1).
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In view of (4.3), there holds
∫

ρ
2 ≤|x|≤Rn

|wn|4dx =
16 log4 2

(2π)2 log2 n

∫

ρ
2 ≤|x|≤Rn

(Rn − |x|)4
(2Rn − ρ)4

dx

=
8 log4 2

π log2 n

∫ Rn

ρ
2

(Rn − r)4

(2Rn − ρ)4
rdr

=
4 log4 2

15π log2 n

[
15(r − Rn)4r2 − 20(r − Rn)3r3 + 15(r − Rn)2r4

− 6(r − Rn)r5 + r6
]
∣
∣
∣
∣

Rn

ρ
2

=
4 log4 2

15π(2Rn − ρ)4 log2 n

[

R6
n − 15

(
ρ

2
− Rn

)4(
ρ

2

)2

+ 20

(
ρ

2
− Rn

)3(
ρ

2

)3

− 15

(
ρ

2
− Rn

)2(
ρ

2

)4

+ 6

(
ρ

2
− Rn

)(
ρ

2

)5

−
(

ρ

2

)6]

=
4 log4 2

15π(2Rn − ρ)4 log2 n

[
R6

n + on(1)
]

= on(1).

As a consequence of the above calculations, we derive |wn|44 → as n → ∞.
Since |wn|22 = a2, one will see that |wn|pp → 0 for each 2 < p ≤ 4 by the
interpolation inequality. Due to (2.2), we can finish the proof of this lemma.

�

Then, with (4.1) in hands, it permits us to take the estimate for the
minimization value m(a) as follows.

Lemma 4.2. Assume that f satisfies (1.13) and (f1) − (f5), then there holds

m(a) < c∗ � 2π

α0
. (4.5)

Proof. Due to the definition of m(a), it is obvious to conclude that m(a) ≤
infu∈Sa

maxt>0 E(ut). Since wn ∈ S(a) for all integer n ≥ 2, then it suffices
to show that maxt>0 E((wn0)t) < c∗ for some integer n0 ≥ 2. Suppose it by
a contradiction, we assume that maxt>0 E((wn)t) ≥ c∗ for all integer n ≥ 2.
It follows from some direct calculations in Lemma 2.5 that there is a tn > 0
such that

J((wn)tn
) = 0 and E((wn)tn

) = maxt>0 E((wn)t) ≥ c∗.

Combining |∇wn|22 ≤ 1 and J((wn)tn
) = 0 jointly with (f2), one has that

t4n + t4n

∫

R2
(A2

1[wn] + A2
2[wn])w2

ndx ≥ θ − 2
θ

∫

R2
F (tnwn) dx. (4.6)

Since F (s) ≥ 0 for all s ∈ R, using |∇wn|22 ≤ 1 again and E((wn)tn
) ≥ c∗,

there holds

t2n + t2n

∫

R2
(A2

1[wn] + A2
2[wn])w2

ndx ≥ 2c∗, for all integer n ≥ 2. (4.7)

Invoking from (f5), for all ε ∈ (0, β0), there is a constant Rε > 0 such that

F (s) ≥ (β0 − ε) eα0s2
,∀s ≥ Rε,
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which together with (4.6) implies that

t4n + t4n

∫

R2
(A2

1[wn] + A2
2[wn])w2

ndx ≥ θ − 2
θ

F

(
tn

√
log n√
2π

)∫

B ρ
n

(0)

dx

≥ (θ − 2)
(
β̄0 − ε

)

θ

(
eα0t2n(2π)−1 log n

) ∣
∣
∣B ρ

n
(0)

∣
∣
∣

=
π(θ − 2)

(
β̄0 − ε

)
ρ2

θ
e[α0t2n(2π)−1−2] log n.

(4.8)

So, with the help of (2.2), we obtain

4 log tn +log[C̄r(a2+2)] ≥ log
[
π(θ − 2)

(
β̄0 − ε

)
ρ2

θ

]

+[α0t
2
n(2π)−1−2] log n.

(4.9)
If {tn} is unbounded, up to a subsequence if necessary, we can assume that
tn → +∞ and then

4 log tn + log[C̄r(a2 + 2)]
t2n

≥ t−2
n log

[
π(θ − 2)

(
β̄0 − ε

)
ρ2

θ

]

+[α0(2π)−1 − 2t−2
n ] log n

which yields a contradiction if we tend n → ∞. Thereby, passing to a subse-
quence if necessary, there exists a positive constant t20 ≥ 2c∗ determined by
Lemma 4.1 and (4.7) such that

lim
n→∞ t2n = t20 ≥ 2c∗.

Moreover, we derive t20 = 2c∗. Otherwise, we arrive at a contradiction by
letting n → ∞ in (4.9). Let us tend n → ∞ and then ε → 0+ in (4.8), using
Lemma 4.1 again, there holds

(2c∗)2 = t40 ≥ π(θ − 2)β̄0ρ
2

θ

which contradicts with (4.2). The proof is completed. �

To deal with the lack of compactness, we also need the following type
of compact result.

Lemma 4.3. Let f meets (1.13) and (f1) − (f4). If the sequence {un} ⊂
H1(R2) satisfying un → 0 in Lp(R2) for all 2 < p < +∞, un → 0 a.e.
in R

2 and
sup
n∈N

∫

R2
f(un)undx ≤ C, (4.10)

then we have that F (un) → 0 in L1(R2) as n → ∞ along a subsequence.

Proof. The proof is standard and its detail is omitted, we refer the reader to
[15] for example. �

Note that the map a 
→ m(a) is non-increasing by Lemma 3.3, whereas
taking into account that the nonlinearity f admits the critical exponential
growth as the infinity, we are going to prove the following result which is
obviously stronger.
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Lemma 4.4. Let ã �= 0 and ũ ∈ M(ã) be a minimizer of m(ã). If there is a
λ̃ > 0 such that ũ is a solution of Eq. (1.1) with λ = λ̃, then m(ã) is strictly
decreasing in the right neighborhood of ã.

Proof. We follow the method exploited in [22, Proposition 5.1] to exhibit
the proof. For each t, γ > 0, define ũt,γ � γtũ(t·). With the help of the
two functionals E, J : S(a) → R before, we define the following two new
functionals ΦE(t, γ) � E(ũt,γ) and ΦJ(t, γ) � J(ũt,γ) which are given by

ΦE(t, γ) =
t2

2

∫

R2
[γ2|∇ũ|2 + γ6(A2

1[ũ] + A2
2[ũ])|ũ|2]dx − t−2

∫

R2
F (γtũ)dx

and

ΦJ (t, γ) = t2
∫

R2
[γ2|∇ũ|2 + γ6(A2

1[ũ] + A2
2[ũ])|ũ|2]dx − t−2

∫

R2
[f(γtũ)γtũ − 2F (γtũ)]dx.

Since ũ ∈ M(ã) which shows that J(ũ) = 0, then we have that ∂ΦE

∂t (1, 1) =
J(ũ) = 0 and

∂ΦE

∂γ
(1, 1) =

∫

R2
|∇ũ|2dx + 3

∫

R2
(A2

1[ũ] + A2
2[ũ])|ũ|2dx −

∫

R2
f(ũ)ũdx

= −λ̃

∫

R2
|ũ|2dx = −λ̃ã2 < 0,

where we choose ũ as a text function of Eq. (1.1) with u = ũ and λ = λ̃ as
well as (2.1).

Moreover, combining J(ũ) = 0 and Lemma A.3 in the “Appendix”
below, we can compute that

∂2ΦE

∂t2
(1, 1) =

∫

R2
[|∇ũ|2dx + (A2

1[ũ] + A2
2[ũ])|ũ|2]dx

−
∫

R2
[f ′(ũ)ũ2 − 4f(ũ)ũ + 6F (ũ)]dx

= −
∫

R2
[f ′(ũ)ũ2 − 5f(ũ)ũ + 8F (ũ)]dx < 0.

Thanks to the above three facts, for all |ιt| > 0 small enough and ιγ > 0,
there holds

E(ũ1+ιt,1+ιγ
) = ΦE(1 + ιt, 1 + ιγ) < ΦE(1, 1) = E(ũ). (4.11)

According to J(ũ) = 0 again, one sees that ΦJ (1, 1) = 0. Again adopting
Lemma A.3 in the “Appendix” below and J(ũ) = 0, there holds

∂ΦJ

∂t
(1, 1) = 2

∫

R2
[|∇ũ|2 + (A2

1[ũ] + A2
2[ũ])|ũ|2]dx

−
∫

R2
[f ′(ũ)ũ2 − 3f(ũ)ũ + 4F (ũ)]dx

= −
∫

R2
[f ′(ũ)ũ2 − 5f(ũ)ũ + 8F (ũ)]dx < 0.

It therefore concludes from the implicit function theorem that there exist a
constant ε > 0 and a continuous function g : [1 − ε, 1 + ε] → R satisfying
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g(1) = 1 such that ΦJ(g(γ), γ) = 0 for every γ ∈ [1 − ε, 1 + ε]. Particularly,
there holds ũg(1+ε),1+ε ∈ M((1 + ε)2ã). Consequently, we infer from (4.11)
that

m((1 + ε)2ã) ≤ inf
u∈M((1+ε)2ã)

E(u) ≤ E(ũg(1+ε),1+ε) < E(ũ) = m(ã)

showing the desired result. The proof is completed. �

At this point, we can exhibit the detailed proof of Theorem 1.2.

Proof of Theorem 1.2. Arguing as before, we can derive that there exists a
Palais–Smale sequence {un} ⊂ M(a) for E restricted on S(a) at the level
m(a). In fact, all of the conclusions in Sect. 2 remain true in this situation and
we shall exploit them directly when there is no misunderstanding. Following
the proof of Theorem 1.1, we continue to divide the proof into three steps.

Step I The weak limit u0 �= 0.
In view of the Step 1 in the proof of Theorem 1.1, the proof will be done

by ruling out the Case I. Suppose it by contradiction that, if the Case I holds
true, then un → 0 in Lp(R2) for all 2 < p < +∞. Since we obtain (4.10) by
Lemma 2.7, then F (un) → 0 in L1(R2) as n → ∞ by Lemma 4.3. Hence,
taking E(un) → m(a), (2.2) and Lemma 4.2 into account, we have that

lim sup
n→∞

∫

R2
|∇un|2dx = 2 lim sup

n→∞
E(un) = 2m(a) <

4π

α0
.

Thereby, we shall choose α > α0 sufficiently close to α0 and ν sufficiently
close to 1 in such a way that 1

ν + 1
ν′ = 1 and

|∇un|22 <
4π(1 − ε)

να
for some suitable ε ∈ (0, 1).

Define ūn =
√

να
4π(1−ε)un, then |∇ūn|22 < 1 and |ūn|22 = να

4π(1−ε)a
2 < +∞.

With these observations, we adopt (2.6) to obtain

sup
n∈N+

∫

R2
(eνα|un|2 − 1)dx = sup

n∈N+

∫

R2
(e4π(1−ε)|ūn|2 − 1)dx ≤ C < +∞.

which together with (2.9) with q > 2 gives that
∫

R2
f(un)undx ≤ C

∫

R2
|un|χdx + C

( ∫

R2
|un|qν′

dx

) 1
ν′

.

Recalling J(un) = 0, we take advantage of the above fact and Lemma 4.3 to
arrive at |∇un|22 → 0. However, it contradicts with Lemma 2.6 and so the
Case I cannot occur.

Step II E(u0) = m(a) and limn→∞ |∇un|22 = |∇u0|22.
Since u0 �= 0, one easily sees that 0 < |u0|22 � ã2 ≤ lim infn→∞ |un|22 =

a2 by Fatou’s lemma. Recalling Lemma 3.3 still holds true in this case,
J(u0) = 0 by Lemmas 2.4 and 2.14, it then concludes from (f2) and Fa-
tou’s lemma again that

m(a) ≤ m(ã) ≤ E(u0) = E(u0) − 1
2
J(u0) =

1
2

∫

R2
[f(u0)u − 4F (u0)] dx
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≤ 1
2

lim inf
n→∞

∫

R2
[f(un)un − 4F (un)] dx = lim inf

n→∞ [E(un) − 1
2
J(un)]

= lim inf
n→∞ E(un) = m(a)

showing that E(u0) = m(a) = m(ã) and

lim
n→∞

∫

R2
[f(un)un − 4F (un)] dx =

∫

R2
[f(u0)u0 − 4F (u0)] dx. (4.12)

With E(u0) = m(a) in hands, combining Fatou’s lemma and J(u0) = 0, we
also obtain that

m(a) = lim
n→∞ E(un) = lim sup

n→∞
[E(un) − 1

θ − 2
J(un)]

= lim sup
n→∞

{
θ − 4

2(θ − 2)

∫

R2
[|∇un|2 + (A2

1 + A2
2)|un|2]dx

+
1

θ − 2

∫

R2
[f(un)un − θF (un)] dx

}

≥ lim inf
n→∞

{
θ − 4

2(θ − 2)

∫

R2
[|∇un|2 + (A2

1 + A2
2)|un|2]dx

+
1

θ − 2

∫

R2
[f(un)un − θF (un)] dx

}

≥ θ − 4
2(θ − 2)

∫

R2
[|∇u0|2 + (A2

1 + A2
2)|u0|2]dx

+
1

θ − 2

∫

R2
[f(u0)u0 − θF (u0)] dx

= E(u0) − 1
θ − 2

J(u0) = E(u0) = m(a).

As a direct consequence of the above equality, we derive

lim
n→∞

∫

R2
|∇un|2dx =

∫

R2
|∇u0|2dx, lim

n→∞

∫

R2
(A2

1 + A2
2)|un|2dx

=
∫

R2
(A2

1 + A2
2)|u0|2dx,

and

lim
n→∞

∫

R2
[f(un)un − θF (un)] dx =

∫

R2
[f(u0)u0 − θF (u0)] dx. (4.13)

Hence, the Step II concludes.
Step III There is a small a∗ > 0 such that λ0 > 0 for all a ∈ (0, a∗]. So,

|u0|22 = a2.
Since |∇un − ∇u0|22 = on(1), we could continue to choose α > α0 and

ν, ν′ > 1 adopted in Step II to satisfy

|∇un − ∇u0|22 <
4π

να(1 + ε̄)4
for some suitable ε̄ ∈ (0, 1).

Define ũn =
√

να(1+ε̄)4

4π (un −u0), then |∇ũn|22 < 1 and |ũn|22 ≤ να(1+ε̄)4

4π 4a2 <

+∞. Besides, for the above fixed ε̄ ∈ (0, 1), we need the following two types
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of Young’s inequality

|a + b|2 ≤ (1 + ε̄)|a|2 + (1 + ε̄−1)|b|2, ∀a, b ∈ R

and

ea+b − 1 ≤ 1
1 + ε̄

[
e(1+ε̄)a − 1

]
+

ε̄

1 + ε̄

[
e(1+ε̄−1)b − 1

]
, ∀a, b ∈ R.

By means of the above facts together with (2.6), we derive
∫

R2
(eναu2

n − 1)dx ≤ 1
1 + ε̄

∫

R2
(e

4π
(1+ε̄)2

|ũn|2 − 1)dx

+
ε̄

1 + ε̄

∫

R2
(eνα(1+ε̄−1)2u2

0 − 1)dx

≤ C1

1 + ε̄
+

C2ε̄

1 + ε̄
≤ C3 < +∞, ∀n ∈ N

+.

Letting q = 2+χ
2 ≥ 3 in (2.9), we then make full use of the above fact and

(2.13) to deduce that
∫

R2
f(un)undx ≤ εa2

(∫

R2
|∇un|2dx

)χ−2
2

+ C̃εa

( ∫

R2
|∇un|2dx

) q−1
2

.

It follows from (4.12) and (4.13) that

lim
n→∞

∫

R2
f(un)undx =

∫

R2
f(u0)u0dx.

From which, adopting |∇un|22 → |∇u0|22 as n → ∞, there holds
∫

R2
f(u0)u0dx ≤ εa2

(∫

R2
|∇u0|2dx

)χ−2
2

+ C̃εa

( ∫

R2
|∇u0|2dx

) q−1
2

.

Repeating the calculations of Step 2 in the proof of Theorem 1.1, we could
determine a suitable a∗ > 0 such that λ0 > 0 for all a ∈ (0, a∗]. At this
stage, we reach a conclusion that u0 ∈ M(ã) is a minimizer of m(ã) and it
is a solution of Eq. (1.1) with λ = λ0 > 0. Owing to Lemma 4.4, m(ã) is
strictly decreasing in the right neighborhood of ã. So, we must have ã2 =
a2. Otherwise, there is a sufficiently small ε > 0 such that (1 + ε)2ã < a
and (1 + ε)2ã locates in a right neighborhood of ã. Therefore, there holds
m(ã) > m((1 + ε)2ã) ≥ m(a) which is impossible because of the Step II. So
u0 ∈ M(a) is a minimizer of m(a) and (u0, λ0) is a couple of weak solutions
of problems (1.1)–(1.2) when a ∈ (0, a∗]. The proof is completed. �

5. The supercritical case

In this section, we shall turn to the supercritical case for problems (1.1)–
(1.2) and it is the main topic in the present article. Note that if there is no
misunderstanding, it is always supposed that the C1 function h that vanishes
in (−∞, 0] satisfies (h1) − (h3) for simplicity.

To conclude Theorem 1.6, as explained before, we begin with verifying
the necessary assumptions for Theorems 1.1 and 1.2.
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Now, we shall deduce that the nonlinearities fR,δ and fR,2 given in
(1.18) satisfy some growth conditions which are the counterparts of (2.7),
(2.8), (2.9) and (2.10), respectively. On the one hand, for every fixed R > 0,
q > 2, α > 0 and ε > 0, there is a positive constant MR

ε which is dependent
of R > 0 and ε > 0 such that

|fR,δ(s)| ≤ ε|s|χ−1 + MR
ε |s|q−1(eα|s|2 − 1), ∀s ∈ R (5.1)

which together with (h2) implies that

|FR,δ(s)| ≤ ε|s|χ + MR
ε |s|q(eα|s|2 − 1), ∀s ∈ R. (5.2)

Actually, exploiting (h1) and (h3) with δ ∈ (0, 2), we have that

lim
s→0

fR,δ(s)
sχ−1

= lim
s→0

h(s)
sχ−1

= 0 uniformly in R > 0

and

0 ≤ lim
|s|→+∞

|fR,δ(s)|
eα|s|2 − 1

≤ lim
|s|→+∞

Me(γ+ᾱ0Rτ−δ)|s|δ

eα|s|2 − 1
= 0

implying the desired result (5.1). Similarly, we fix R > 0, q > 2 and ε > 0 to
find a M̄ > M which is independent of R such that

|fR,2(s)| ≤ ε|s|χ−1 + M̄ |s|q−1(e(γ+ᾱ0Rδ−2)|s|2 − 1), ∀s ∈ R, (5.3)

and
|FR,2(s)| ≤ ε|s|χ + M̄ |s|q(e(γ+ᾱ0Rδ−2)|s|2 − 1), ∀s ∈ R. (5.4)

Moreover, we have to show the counterparts of (f2) and (f3) for the
nonlinearity fR,δ̄ which are exhibited as follows.

Lemma 5.1. Let f be defined in (1.16) with the C1 function h satisfying (h2).
Then, for all fixed R > 0 one has

0 < FR,δ̄(t) ≤ θfR,δ̄(t)t, ∀t ∈ R\{0}.

Proof. The reader can refer to [4,5], whereas we should exhibit the detailed
proof for the completeness. For all t ∈ [0, R], we can see that fR,δ̄(t) = f(t)
and so FR,δ̄(t) = F (t), then the lemma is done for t ∈ [0, R]. Indeed, for all
t ∈ [0, R], one exploits (h2) to deduce that

F R,δ̄(t) = F (t) =

∫ t

0

h(s)eᾱ0sτ

ds ≤ eᾱ0tτ
∫ t

0

h(s)ds = eᾱ0tτ

H(t) ≤ θeᾱ0tτ

h(t)t

= θfR,δ̄(t)t.

Given a t ∈ [R,+∞), then

FR,δ̄(t) =
∫ t

0

fR,δ̄(s)ds =
∫ R

0

fR,δ̄(s)ds +
∫ t

R

h(s)eᾱ0Rτ−δ̄sδ̄

ds

= FR,δ̄(R) +
∫ t

R

h(s)eᾱ0Rτ−δ̄sδ̄

ds

= FR,δ̄(R) +
∫ t

0

h(s)eᾱ0Rτ−δ̄sδ̄

ds −
∫ R

0

h(s)eᾱ0Rτ−δ̄sδ̄

ds.
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We note that

FR,δ̄(R) =
∫ R

0

h(s)eᾱ0sτ

ds ≤
∫ R

0

h(s)eᾱ0Rτ−δ̄sδ̄

ds

leading to

FR,δ̄(t) ≤
∫ t

0

h(s)eᾱ0Rτ−δ̄sδ̄

ds ≤ eα0Rτ−δ̄tδ̄

∫ t

0

h(s)ds = eᾱ0Rτ−δ̄tδ̄

H(t).

Thereby, it follows from (h2) that

θFR,δ̄(t) ≤ θeᾱ0Rτ−δ̄tδ̄

H(t) ≤ eᾱ0Rτ−δ̄tδ̄

h(t)t = fR,δ̄(t)t, ∀t ≥ R.

The proof is completed. �

Lemma 5.2. Let f be defined in (1.16) with the C1 function h satisfying (h2)−
(h4). Then, for all fixed R > 0 one has

F̄R,δ̄(t)/t4 is strictly increasing in (0,+∞),

where F̄R,δ̄(t) = fR,δ̄(t)t − 2FR,δ̄(t) for all t ∈ R.

Proof. First of all, one simply observes that fR,δ̄(t) = f(t) for all t ∈ [0, R],
then (fR,δ̄)′(t) = f ′(t) and FR,δ̄(t) = F (t) for all t ∈ [0, R]. Then, for any
fixed t ∈ (0, R],

F (t) =
∫ t

0

h(s)eᾱ0sτ

ds = H(t)eᾱ0tτ −
∫ t

0

H(s)deᾱ0sτ

= H(t)eᾱ0tτ

− ᾱ0τ

∫ t

0

H(s)sτ−1eᾱ0sτ

ds

≥ H(t)eᾱ0tτ − ᾱ0τH(t)eᾱ0tτ

∫ t

0

sτ−1ds = H(t)eᾱ0tτ − ᾱ0H(t)tτeᾱ0tτ

.

Hence, for all t ∈ (0, R], using (h2), we deduce that

(fR,δ̄)′(t)t2 − 5fR,δ̄(t)t + 8FR,δ̄(t) = f ′(t)t2 − 5f(t)t + 8F (t)

≥ [
h′(t)t2 − 5h(t)t + 8H(t)

]
eᾱ0tτ

+ ᾱ0t
τeᾱ0tτ

[τh(t)t − 8H(t)]

> ᾱ0t
τeᾱ0tτ

(τθ − 8)H(t) > 0,

where we have applied a very similar result in Lemma A.3 in the “Appendix”
below to (h3) in the last second inequality. So, ∀t ∈ (0, R], it has that

d

dt

(
F̄R,δ̄(t)

t4

)

=
(fR,δ̄)′(t)t2 − 5fR,δ̄(t)t + 8FR,δ̄(t)

t5
> 0, (5.5)

showing the conclusions for all t ∈ (0, R].
We next consider the case for all t ∈ [R,+∞). Firstly, one can calculate

that

FR,δ̄(R) =
∫ R

0

h(s)eᾱ0sτ

ds =
∫ R

0

eᾱ0sτ

dH(s) = H(R)eᾱ0Rτ

− ᾱ0τ

∫ R

0

H(s)sτ−1eᾱ0sτ

ds
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≥ H(R)eᾱ0Rτ − ᾱ0H(R)eᾱ0Rτ

∫ R

0

τsτ−1ds = H(R)eᾱ0Rτ

− ᾱ0R
τH(R)eᾱ0Rτ

.

Similarly, one has that
∫ t

R

h(s)eᾱ0Rτ−δ̄sδ̄

ds =
∫ t

R

eᾱ0Rτ−δ̄sδ̄

dH(s) = H(t)eᾱ0Rτ−δ̄tδ̄ − H(R)eᾱ0Rτ

−
∫ t

R

H(s)deᾱ0Rτ−δ̄sδ̄

= H(t)eᾱ0Rτ−δ̄tδ̄ − H(R)eᾱ0Rτ − ᾱ0R
τ−δ̄ δ̄

∫ t

R

H(s)sδ̄−1eᾱ0Rτ−δ̄sδ̄

ds

≥ H(t)eᾱ0Rτ−δ̄tδ̄ − H(R)eᾱ0Rτ − ᾱ0R
τ−δ̄H(t)eᾱ0Rτ−δ̄tδ̄

∫ t

R

δ̄sδ̄−1ds

≥ H(t)eᾱ0Rτ−δ̄tδ̄ − H(R)eᾱ0Rτ − ᾱ0R
τ−δ̄H(t)tδ̄eᾱ0Rτ−δ̄tδ̄

+ ᾱ0R
τH(R)eᾱ0Rτ

.

From which, we obtain

FR,δ̄(t) = FR,δ̄(R) +
∫ t

R

h(s)eᾱ0Rτ−δ̄sδ̄

ds ≥ H(t)eᾱ0Rτ−δ̄tδ̄

− ᾱ0R
τ−δ̄H(t)tδ̄eᾱ0Rτ−δ̄tδ̄

Recalling δ ∈ [8θ−1, 2) in (h4) which implies that δ̄ − 8θ ≥ 0, adopting
(h2) − (h3), so there holds

(fR,δ̄)′(t)t2 − 5fR,δ̄(t)t + 8F R,δ̄(t)

≥ [
h′(t)t2 − 5 h(t)t + 8 H(t)

]
eᾱ0Rτ−δ̄tδ̄

+ ᾱ0R
τ−δ̄tδ̄eᾱ0Rτ−δ̄tδ̄

[δ̄h(t)t − 8 H(t)]

> ᾱ0R
τ−δ̄tδ̄eᾱ0Rτ−δ̄tδ̄

(δ̄ − 8θ)H(t) ≥ 0,

yielding that (5.5) remains true for all t ∈ [R,+∞). The proof is completed.
�

With (5.1), (5.2), (5.3), and (5.4) as well as Lemmas 5.1–5.2 in hands,
we could proceed as the proofs in Sect. 2 to get that, for all fixed R > 0, there
are two sequences {un} ⊂ Sa and {λR,δ̄

n } ⊂ R such that

ER,δ̄(un) = mR,δ̄(a) + on(1) as n → ∞, (5.6)

−Δun +λR,δ̄
n un +A0un +

2∑

j=1

A2
j [un]un −fR,δ̄(un) = on(1) as n → ∞, (5.7)

JR,δ̄(un) = on(1) as n → ∞, (5.8)

where ER,δ̄ : S(a) → R is given by (1.20) and

mR,δ̄(a) � inf
u∈MR,δ̄(a)

ER,δ̄(u) > 0, MR,δ̄(a) =
{
u ∈ S(a) : JR,δ̄(u) = 0

}
.

(5.9)
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Here the auxiliary energy functional JR,δ̄ : S(a) → R is defined by

JR,δ̄(u) =
∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx −

∫

R2
[fR,δ̄(u)u − 2FR,δ̄(u)]dx.

Combining (5.6), (5.7) and (5.8) as well as Lemma 5.1, we can repeat
the proof of Lemmas 2.7 and 2.13 to see that the sequence {un} ⊂ S(a) is
uniformly bounded in H1(R2) and

λR,δ̄
n =

2
a2

{∫

R2
|∇un|2dx + 3

∫

R2
FR,δ̄(un)dx −

∫

R2
fR,δ̄(un)undx

}

. (5.10)

Moreover, we can derive that (2.20) and (2.21) remain true in some suitable
forms in this situation.

In what follows, we shall handle the case δ̄ = δ and δ̄ = 2 in two
subsections.

5.1. The case δ̄ = δ

In this subsection, we know that the nonlinearity fR,δ̄ = fR,δ. According
to the above discussions, we can give the proof of the first part (subcritical
exponential case) of Theorem 1.6.

Proof of Theorem 1.6. The proof is totally similar to that of Theorem 1.1,
so we omit it here. �

Before presenting the proof of Theorem 1.4, we have to study the L∞-
estimate for the nontrivial solution (ūR

0 , λ̄R
0 ) established in Theorem 1.6. We

first show that any sequence satisfying (5.6), (5.7) and (5.8) is uniformly
bounded in n ∈ N

+ and R > 0 for some suitable ᾱ0 > 0.

Lemma 5.3. There is a constant ᾱ∗
0 = 1

Rτ−δ > 0 such that for all ᾱ0 ∈ (0, ᾱ∗
0)

and τ > 2, the sequence {un} ⊂ H1(R2) satisfying (5.7), (5.8) and (5.8) is
uniformly bounded in n ∈ N

+ and R > 0, that is, there is a constant Σ > 0
independent of n ∈ N

+ and R > 0 such that

sup
n∈N

|∇un|22 ≤ Σ < +∞ and 0 < λR,δ
n ≤ Σ < +∞. (5.11)

Proof. We claim that there is a constant m̄(a) > 0 which is independent of
R > 0 such that

0 < mR,δ(a) ≤ m̄(a) < +∞, ∀R > 0. (5.12)

Indeed, in view of the definition of fR,δ, one concludes that FR,δ(t) ≥ H(t)
for all t ∈ R, and so, ER,δ(u) ≤ I(u) for all u ∈ H1(R2), where the energy
functional I : H1(R2) → R is defined by

I(u) =
1
2

∫

R2
[|∇u|2 + (A2

1 + A2
2)|u|2]dx −

∫

R2
H(u)dx. (5.13)

Here, it is enough to choose the constant m̄(a) to be a minimization of I|M(a).
Secondly, we improve (5.1) and (5.2) in the sense that the positive con-

stant MR
ε is independent of R > 0 under some suitable ᾱ0 > 0. Indeed, for

each ᾱ0 ∈ (0, ᾱ∗
0) with ᾱ∗

0 = 1
Rτ−δ > 0, by (h4) with δ ∈ (0, 2), one has that

|fR,δ(s)| ≤ Meγ|s|δeᾱ∗
0Rτ−δ|s|δ ≤ Me(γ+1)|s|δ , ∀s ∈ R.
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Thus, given α > 0, there is M1 = M1(α) > 0 independent of R > 0, such
that

|fR,δ(s)| ≤ M1e
α|s|2 , ∀s ∈ R.

Therefore, there is Mε > 0 independent of R > 0 such that

|fR,δ(s)| ≤ ε|s|χ−1 + Mε|s|q−1(eα|s|2 − 1), ∀s ∈ R (5.14)

and
|FR,δ(s)| ≤ ε|s|χ + Mε|s|q(eα|s|2 − 1), ∀s ∈ R. (5.15)

Finally, by virtue of (5.12) and (5.14)–(5.15), we could repeat the cal-
culations exploited in Lemma 2.7 to derive the first part of (5.11). From it
and (5.12) combined with (5.6), we obtain the second part of (5.11). Hence,
the proof of this lemma is completed. �

Thanks to the growth conditions (5.14) and (5.15) with respect to the
nonlinearity fR,δ, we recall the choice of ā∗

R > 0 which is very similar to its
counterpart in the Step 3 in the proof of Theorem 1.1, it would conclude that
ā∗

R is independent of R > 0. Furthermore, we have the following result.

Lemma 5.4. Let (ūR
0 , λ̄R

0 ) established by Theorem 1.6 for all fixed R > 0, then
there is a constant ᾱ∗

0 = 1
Rτ−δ > 0 such that for all ᾱ0 ∈ (0, ᾱ∗

0) and τ > 2,
we have

sup
R>0

|A0[ūR
0 ] + A2

1[ū
R
0 ] + A2

2[ū
R
0 ]|∞ ≤ CA,

where CA ∈ (0,+∞) is a constant independent of R > 0.

Proof. According to the above observations, we derive that the constant a ∈
(0, ā∗

R] is independent of R > 0. On the one hand, using (1.7) and (1.8) for
j = 1, 2, there holds

|Aj [ū
R
0 ]|∞ ≤ 1

4π

∫

R2

|ūR
0 |2

|x − y|dy =
1

4π

∫

|x−y|<1

|ūR
0 |2

|x − y|dy +
1

4π

∫

|x−y|≥1

|ūR
0 |2

|x − y|dy

≤ 1
3
√

4π

(∫

R2
|ūR

0 |6dy

) 1
3

+
1

4π

∫

R2
|ūR

0 |2dy ≤ 1
3
√

4π
Σ

2
3 a

2
3 +

1

4π
a2,

where we have used (2.13) and (5.11). We exploit (1.6) to see that

|A0[ūR
0 ]|∞ ≤ |Aj [ūR

0 ]|∞
π

∫

R2

|ūR
0 |2

|x − y|dy.

Combining the above two formulas, we can finish the proof of this lemma.
�

At this position, we are ready to give the proof of Theorem 1.6.

Proof of Theorem 1.4. Firstly, with (5.11) and (5.14) in hands, we can easily
prove that |fR,δ(ūR

0 )|2 is uniformly bounded in R > 0.
Then, we would show that there is a constant C0 > 0 which is indepen-

dent of R > 0 such that |ūR
0 |∞ ≤ C0. To obtain it, since ūR

0 is a nontrivial
solution of Eq. (1.1) with a suitable λ̄R

0 , namely there holds

−ΔūR
0 + λ̄R

0 ūR
0 + (A0[ūR

0 ] + A2
1[ū

R
0 ] + A2

2[ū
R
0 ])ūR

0 = fR,δ(ūR
0 ) in R

2.
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Since h is nonnegative, without loss of generality, we can assume that ūR
0 ≥ 0

for all x ∈ R
2, and so,

−ΔūR
0 + ūR

0 ≤ (1+ λ̄R
0 )ūR

0 + |A0[ūR
0 ] +A2

1[ū
R
0 ] +A2

2[ū
R
0 ]|ūR

0 + fR,δ(ūR
0 ) in R

2.

According to (5.11), we have that λ̄R
a ≤ C̄ < +∞ for some constant C̄ > 0

which is independent of R > 0. As a consequence of Lemma 5.4, the Lax-
Milgram theorem gives the existence of a function w̄R

0 ∈ H2(R2) such that

−Δw̄R
0 + w̄R

0 = (1+ λ̄R
0 )ūR

0 + |A0[ūR
0 ]+A2

1[ū
R
0 ]+A2

2[ū
R
0 ]|ūR

0 +fR,δ(ūR
0 ) in R

2.

Next, we fix the test function

vr(x) = φ(x/r)(ūR
0 − w̄R

0 )+(x) ∈ H1(R2),

where φ ∈ C∞
0 (R2) satisfies

0 ≤ φ(x) ≤ 1, ∀x ∈ R
2; φ(x) = 1, ∀x ∈ B1(0); and φ(x) = 0 ∀x ∈ Bc

2(0).

Using the function test vr on −Δ(ūR
0 − w̄R

0 ) + (ūR
0 − w̄R

0 ) ≤ 0 in R
2, we get

the inequality below
∫

R2
∇(

ūR
0 − w̄R

0 )∇vr + (ūR
0 − w̄R

0 )vr

]
dx ≤ 0,

Since
vr → (ūR

0 − w̄R
0 )+ as r → +∞ in H1(R2),

by the Lebesgue’s Dominated Convergence theorem, we arrive at
∫

R2
|∇(ūR

0 − w̄R
0 )+|2 + |(ūR

0 − w̄R
0 )+|2 dx ≤ 0,

implying that
0 ≤ ūR

0 ≤ w̄R
0 , ∀x ∈ R

2.

Using the continuous Sobolev embedding H2(R2) ↪→ L∞(R2), there is a
C4 > 0 independent of R > 0 such that

|w̄R
0 |∞ ≤ C4‖w̄R

0 ‖H2(R2), ∀R > 0

which together with the last fact gives that

|ūR
0 |∞ ≤ C4‖w̄R

0 ‖H2(R2), ∀R > 0.

On the other hand, by Brézis [10, Theorem 9.25], there is a C5 > 0 indepen-
dent of R > 0 such that

‖w̄R
0 ‖H2(R2) ≤ C5

∣
∣(1 + λ̄R

0 )ūR
0 + |A0[ūR

0 ] + A2
1[ū

R
0 ]

+A2
2[ū

R
0 ]|ūR

0 + fR,δ(ūR
0 )

∣
∣
2
,∀R > 0,

from where it follows that

‖w̄R
0 ‖H2(R2) ≤ C6, ∀R > 0

for some C6 > 0 independent of R > 0. Have this in mind, we must have

|ūR
0 |∞ ≤ C0, ∀R > 0,

for some C0 > 0 independent of R > 0, showing the desired result.
Finally, we shall conclude that ūR

0 ∈ H1(R2) is a nontrivial solution of
the original Eq. (1.1) with λ = λ̄R

0 by choosing R = C0 > 0 in (1.18) and



Normalized solutions to the Chern–Simons–Schrödinger system Page 39 of 50    29 

hence ᾱ∗
0 = Cδ−τ

0 > 0. In other words, the couple (ūR
0 , λ̄R

0 ) is a weak solution
of problems (1.1)–(1.2). The proof is completed. �

5.2. The case δ̄ = 2
In this subsection, we have the nonlinearity fR,δ̄ = fR,2. Firstly, we derive
the following estimate for the mountain-pass value mR,2(a) defined in (5.9).

Lemma 5.5. Suppose (h5) additionally, then there is a sufficiently large ξR
0 >

0 such that for all ξ > ξR
0 , there holds

mR,2(a) <
2π

γ + ᾱ0Rδ−2
. (5.16)

Proof. Given a > 0, define ψ(x) = aπ− 1
2 e− 1

2 |x|2 for all x ∈ R
2 and so |∇ψ|22 =

|ψ|22 = a2. By (2.2),
∫

R2
(A2

1[ψ] + A2
2[ψ])|ψ|2dx ≤ 16C̄2

r a6.

For all t > 0, since fR,2(t) ≥ h(t) ≥ ξtp−1 for all t > 0, we have that

ER,2(ψt) ≤ max
t>0

(
t2

2

∫

R2
[|∇ψ|2 + (A2

1 + A2
2)|ψ|2]dx − ξtp−2

p

∫

R2
|ψ|pdx

)

≤ p − 4
2(p − 2)

[
p

(p − 2)ξ

] 2
p−4

(1 + 16C̄2
r a3)

2(p−2)
p−4 π

p−2
p−4 a− 2p

p−4 ,

where we have used |ψ|pp ≥ apπ− p−2
2 . By Lemma 2.5, one sees that mR,2(a) ≤

maxt>0 ER,2(ψt). Let us choose the constant ξ0(R) ro satisfy

ξR
0 =

p(1 + 16C̄2
r a3)p−2

(p − 2)ap
π

p−2
2

[
(p − 4)(γ + ᾱ0R

δ−2)
4π(p − 2)

] p−4
2

which indicates the desired result. The proof is completed. �

Now, we can exhibit the proof of the second part (critical exponential
case) of Theorem 1.6.

Proof of Theorem 1.6. (Completed). Due to Lemma 5.5, the proof is totally
similar to that of Theorem 1.2 and so we just show the counterpart of Step
I in this situation.

If the case I occurs, then we can derive

lim sup
n→∞

∫

R2
|∇un|2dx = 2 lim sup

n→∞
ER,2(un) = 2mR,2(a) <

4π

γ + ᾱ0Rδ−2
.

Choosing ν > 1 sufficiently close to 1 in such a way that 1
ν + 1

ν′ = 1 and

|∇un|22 <
4π(1 − ε)

ν(γ + ᾱ0Rδ−2)
for some suitable ε ∈ (0, 1).

Define ūn =
√

ν(γ+ᾱ0Rδ−2)
4π(1−ε) un, then |∇ūn|22 < 1 and |ūn|22 = ν(γ+ᾱ0Rδ−2)

4π(1−ε) a2 <

+∞. Using the above facts, we depend on (2.6) to see that
∫

R2
(eν(γ+ᾱ0Rδ−2)u2

n − 1)dx =
∫

R2
(e4π(1−ε)ū2

n − 1)dx ≤ C < +∞,
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The remaining part is trivial and we omit it here. The proof is completed.
�

Then, arguing as before, we begin considering the L∞-estimate for the
nontrivial solution (ūR

0 , λ̄R
0 ) established in Theorem 1.6. To the end, we prove

the following result.

Lemma 5.6. Let (h5) be satisfied. There is a constant τ∗ = 2 + 1
R > 0, then

for all for every α > 0, τ ∈ [2, τ∗) and R > e, each sequence {un} ⊂ H1(R2)
satisfying (5.6), (5.7) and (5.8) is uniformly bounded in n ∈ N and R > e,
that is, there is a constant Π > 0 independent of n ∈ N and R > 0 such that

sup
n∈N

|∇un|22 ≤ Π < +∞ and 0 < λR,δ
n ≤ Π < +∞, (5.17)

provided ξ0 > 0 in (h5) is sufficiently large, where the constant Π > 0 inde-
pendent of R > e satisfies

Π <
π

2αe
1
e

. (5.18)

Proof. We claim that there is a constant m̃(a) > 0 which is independent of
R > 0 such that

0 < mR,2(a) ≤ m̃(a) < +∞, ∀R > 0. (5.19)

Indeed, in view of the definition of fR,2, one concludes that FR,2(t) ≥ H(t)
for all t ∈ R, and so, ER,2(u) ≤ I(u) for all u ∈ H1(R2), where the energy
functional I : H1(R2) → R is defined by (5.13). Here, it is enough to choose
the constant m̃(a) to be a minimization of I|M(a). Exploiting the very similar
calculations in Lemma 5.5, we can find such a Π > 0 in (5.18) to satisfy

m̃(a) <
θ − 4

2(θ − 3)
Π. (5.20)

Secondly, we shall improve (5.3) and (5.4). Obviously, limR→+∞ R
1
R = 1

and the function R
1
R is strictly decreasing in R ∈ (e,+∞), then 0 < R

1
R ≤ e

1
e

for all R ∈ (e,+∞). Consider τ∗ = 2 + 1
R > 0 for the fixed R > e, ε > 0 and

q ≥ 2, there is a constant Mε > 0 independent of R > e such that

|fR,2(s)| ≤ ε|s|χ−1 + Mε|s|q−1(e2αe
1
e |s|2 − 1), ∀s ∈ R. (5.21)

Actually, using (h1), by some elementary calculations,

0 ≤ |fR,2(s)|
|s|χ−s

≤ |h(s)|eαRτ−2|s|2

|s|χ−1
≤ |h(s)|eαRτ∗−2|s|2

|s|χ−1
≤ |h(s)|eαR

1
R |s|2

|s|χ−1

≤ |h(s)|eαe
1
e |s|2

|s|χ−1
→ 0

uniformly in s → 0. On the other hand, there is a s0 > 0 independent of
R > e such that

|fR,2(s)| ≤ Meγ|s|δeαe
1
e |s|2 ≤ M̄e2αe

1
e |s|2 ≤ M̃ |t|q(e2αe

1
e t2 − 1), ∀|s| ≥ s0,

where the constants M̃ > M̄ > M are independent of R > e and we have
used (h3).
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0 ≤ fR,δ(t) ≤ Meγtδ

eα∗
0Rτ−δtδ ≤ Me(γ+1)tδ ≤ M1e

αt2 , ∀t ∈ R,

where M1 > 0 is a constant independent of R > 0. Similarly, there holds

|FR,δ(s)| ≤ ε|s|χ + Mε|s|q(e2αe
1
e |s|2 − 1), ∀s ∈ R. (5.22)

Finally, we show (5.17). In fact, we make full use (5.6) and (5.8) jointly
with Lemma 5.1 to get
∫

R2
|∇un|2dx = 2ER,2(un) −

∫

R2
(A2

1 + A2
2)|un|2dx +

∫

R2
F (un)dx + on(1)

≤ 2ER,2(un) +
2

θ − 4
[
ER,2(un) − 1

2
JR,2(un)

]
+ on(1)

=
2(θ − 3)
θ − 4

ER,2(un) + on(1) =
2(θ − 3)
θ − 4

mR,2(a) + on(1)

which together with (5.19) and (5.20) indicates the first part of (5.17). The
remaining part is trivial, we omit it here. The proof is completed. �

Proof of Theorem 1.4. (Completed). We claim that |fR,2(ūR
0 )|2 is uniformly

bounded in R > e. Let us contemplate w̄R
0 = Π− 1

2 ūR
0 , then |∇w̄R

0 |22 ≤ 1 and
|w̄R

0 |22 = Π−1a2 < +∞. According to the definition of τ∗, we deduce that
(5.21) still remains true. Since q ≥ 2 and (5.18) gives that

8αe
1
e Π < 4π,

we then apply (2.6) to conclude that
∫

R2
|ūR

0 |2(q−1)(e4αe
1
e |ūR

a |2 − 1)dx

≤
(∫

R2
|ūR

0 |4(q−1)dx

) 1
2
(∫

R2
(e8αe

1
e Π|w̄R

0 |2 − 1)dx

) 1
2

≤ C

for some C > 0 independent of R > e. Besides, 2(χ − 1) ≥ 6, it simply
calculates that ∫

R2
|ūR

0 |2(χ−1)dx ≤ C

for some C > 0 independent of R > e. Exploiting (5.21), we could derive the
claim. Repeating the remaining parts in proof of Theorem 1.4 in Subsection
5.1, we must have

|ūR
0 |∞ ≤ C̄0, ∀R > e.

for some C0 > 0 independent of R > e. Finally, we obtain that the couple
(ūR

0 , λ̄R
0 ) is a weak solutions to problems (1.1)–(1.2) by choosing R = C̃0 =

max{C̄0, e} > 0 in (1.18) and then τ∗ = 2 + 1
C̃0

> 0. The proof is completed.
�
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Appendix

Lemma A.1. Suppose that f satisfies (1.14) and (f1), or (1.13) and (f1). Let
u ∈ H1(R2) be a nontrivial weak solution of Eq. (1.1) with some suitable
λ > 0, then it satisfies the so-called Pohoz̆aev identity below

λ

∫

R2
|u|2dx + 2

∫

R2
(A2

1 + A2
2)|u|2dx − 2

∫

R2
F (u)dx = 0.

Proof. Since u �= 0, taking (1.6) and (1.7)–(1.8) into account, define

b(x) =
f(u(x))

u(x)
− (A0[u(x)] + A2

1[u(x)] + A2
2[u(x)]) − λ,

by means of (2.5) and using a similar arguments in Lemma 5.4, we can
conclude that b(x) ∈ L1

loc(R
2) and u satisfies the following elliptic equation

−Δu = b(x)u.

In view of the classic Brézis–Kato theorem, one would conclude that u ∈
Ls

loc(R
2) for all 1 ≤ s < +∞. Thus u ∈ W 2.s

loc (R2) for all 1 ≤ s < +∞ by the
Caldéron–Zygmund inequality.

To derive the Pohoz̆aev type identity for Eq. (1.1), we use a truncation
argument due to Kavian (see e.g. [55, Appendix B]). Let
ψ ∈ C∞([0,+∞), [0, 1]) such that ψ(r) = 1 for r ∈ [0, 1] and ψ(r) = 0

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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for r ∈ [2,+∞). Define ψn(x) � ψ(|x|2/n2) on R
2 for n ∈ N. Then there

exists C1 > 0 such that

0 ≤ ψn ≤ C1 and |x||∇ψn(x)| ≤ C1.

Multiplying Eq. (1.1) by ψn(x,∇u), we have for every n ∈ N,

0 =
{ − Δu + λu +

(
A0[u] + A2

1[u] + A2
2[u]

)
u − f(u)

}
ψn(x,∇u). (5.23)

For every n ∈ N, by virtue of the properties of the divergence, it is clear to
compute that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ψn(x,∇u)Δu = −div
{[

∇u(x,∇u) − x |∇u|2
2

]

ψn

}

− |∇u|2
2 (x,∇ψn) + (x,∇u)(∇ψn,∇u),

ψn(x,∇u)u = 1
2div[xu2ψn] − u2ψn − 1

2u2(x,∇ψn),
−ψn(x,∇u)f(u) = −div(xψnF (u)) + 2ψnF (u) + F (u)(x,∇ψn),

and by setting φu = A0[u] + A2
1[u] + A2

2[u] that

ψn(x,∇u)φuu=
1
2
div

[
φuxu2ψn

]−φuu2ψn−1
2
φuu2(x,∇ψn)−1

2
u2ψn(x,∇φu).

It follows from the divergence theorem and (5.23) that
∫

∂B2n(0)

{ |(x,∇u)|2
2n

− n|∇u|2 − nλu2 − nφuu2 + 2nF (u)
}

ψndσ

= −
∫

B2n(0)

{

λu2 + φuu2 +
1
2
(x,∇φu)u2 − 2F (u)

}

ψndx

− 1
2

∫

B2n(0)

{

|∇u|2 + λu2 + φuu2 − 2F (u)
}

(x,∇ψn)dx

+
∫

B2n(0)

(x,∇u)(∇ψn,∇u)dx.

Note that ∫

R2
(∇φu, x)u2dx = −2

∫

R2
(A2

1[u] + A2
2[u])u2dx.

Recalling ψn ≡ 0 on ∂B2n(0) together with the definitions of the cutoff
function ψn, then exploiting the Dominated Convergence theorem, we obtain

∫

R2
λu2dx + 2

∫

R2
(A2

1[u] + A2
2[u])u2dx − 2

∫

R2
F (u)dx

= lim
n→∞

∫

B2n(0)

{

λu2 + φuu2 +
1
2
(x,∇φu)u2 − 2F (u)

}

ψndx

= −1
2

lim
n→∞

∫

B√
2n(0)\B2n(0)

{

|∇u|2 + λu2 + φuu2 − 2F (u)
}

(x,∇ψn)dx

+ lim
n→∞

∫

B√
2n(0)\B2n(0)

(x,∇u)(∇ψn,∇u)dx

= 0
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showing the desired result, where the Fubini’s theorem is used in the first
equality. So, we accomplish the proof. �

Lemma A.2. Suppose that f satisfies (1.14) and (f1), or (1.13) and (f1). Let
un → u in H1(R2) and un → u a.e. in R

2, then

lim
n→∞

∫

R2
f(un)undx =

∫

R2
f(u)udx and lim

n→∞

∫

R2
F (un)dx =

∫

R2
F (u)dx.

Proof. Since ‖un − u‖2
H1(R2) → 0, adopting some very similar calculations in

the Step III in the proof of Theorem 1.2, we apply (2.7) and (2.6) to have
that

∫

R2
f(un)undx ≤ C

∫

R2
|un|χdx + C

(∫

R2
|un|qν′

dx

) 1
ν′

.

Now, one can conclude that f(un)un → f(u)u by using a variant of Vitali’s
Dominated Convergence theorem. The remaining part is trivial, we omit it
here. �

Lemma A.3. Suppose that f satisfies (f1) and (f3), then there holds

f ′(s)s2 − 5f(s)s + 8F (s) > 0, ∀s ∈ R\{0}.

Proof. Since f(s) ≡ 0 for all s ∈ (−∞, 0], then it suffices to consider s ∈
(0,+∞). According to (f1) and (f3), the function F̄ ∈ C1 and so F̄ ′(s) > 0
for all s ∈ (0,+∞). Obviously, there holds

d

ds
F̄ ′(s) =

f ′(s)s2 − 5f(s)s + 8F (s)
s5

> 0, ∀s ∈ (0,+∞),

which gives the desired result. �

Lemma A.4. For Ψ = E ◦ ζ, where ζ(u) = tuu(tu·) for all u ∈ S(a) and
tu > 0 comes from Lemma 2.5. Then, Ψ is of C1 class over S(a) and

Ψ′(u)[v] = E′(ζ(u))[vtu
]

for any u ∈ S(a) and v ∈ Tu.

Proof. Recalling the definition of A1 in (1.7), given some u, v ∈ H1(R2) and
t > 0, we have

A1[u + tv](x) = − 1
4π

∫

R2

x2 − y2

|x − y|2 (u + tv)2(y)dy

= −A1[u](x) − t

2π

∫

R2

x2 − y2

|x − y|2 u(y)v(y)dy − t2A1[v](x)

leading to

lim
t→0

A1[u + tv](x) − A1[u](x)
t

= − 1
2π

∫

R2

x2 − y2

|x − y|2 u(y)v(y)dy.

Arguing as a very similar way, by means of (1.8), there holds,

lim
t→0

A2[u + tv](x) − A2[u](x)
t

=
1
2π

∫

R2

x1 − y1

|x − y|2 u(y)v(y)dy.
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From which, we apply the Fubini’s theorem jointly with (1.6) to deduce that

lim
t→0

1

2t

∫

R2

2∑

j=1

(
A2

j [u + tv] − A2
j [u]

) |u|2dx

= lim
t→0

1

2t

∫

R2

2∑

j=1

(Aj [u + tv] + Aj [u])(Aj [u + tv] − Aj [u])) |u|2dx

=

∫

R2
A1[u]

(

− 1

2π

∫

R2

x2 − y2

|x − y|2 u(y)v(y)dy

)

u2dx

+

∫

R2
A2[u]

(
1

2π

∫

R2

x1 − y1

|x − y|2 u(y)v(y)dy

)

u2dx

=

∫

R2

(

− 1

2π

∫

R2

x2 − y2

|x − y|2 A1[u](x)u2(x)dx

)

u(y)v(y)dy

+

∫

R2

(
1

2π

∫

R2

(x1 − y1)

|x − y|2 A2[u](x)u2(x)dx

)

u(y)v(y)dy

=

∫

R2
A0[u](x)u(x)v(x)dx.

Due to E(utu
) = maxt>0 E(ut) for all u ∈ S(a) by Lemma 2.5, then

Ψ(u + tv) − Ψ(u) = E
(
(u + tv)tu+tv

) − E(utu) ≤ E
(
(u + tv)tu+tv

) − E(utu+tv )

=
t2u+tv

2

∫

R2

[|∇(u + tv)|2 + (A2
1[u + tv] + A2

2[u + tv])|u + tv|2]dx

− t2u+tv

2

∫

R2

[|∇u|2 + (A2
1[u] + A2

2[u])|u|2]dx

− t−2
u+tv

∫

R2
[F (tu+tvu + ttu+tvv) − F (tu+tvu)]dx

=
t2u+tv

2

∫

R2
[2t∇u∇v + t2|∇v|2

+ (A2
1[u + tv] + A2

2[u + tv])(2tuv + t2|v|2)]dx

+
t2u+tv

2

∫

R2
(A2

1[u + tv] + A2
2[u + tv] − A2

1[u] − A2
2[u])|u|2dx

− t−2
u+tv

∫

R2
f(tu+tvu + σtttu+tvv)ttu+tvvdx,

where σt ∈ (0, 1) is determined by the Intermediate Value theorem. Also, we
adopt E

(
(u + tv)tu+tv

)
= maxt>0 E

(
(u + tv)t

)
to get

Ψ(u + tv) − Ψ(u) = E
(
(u + tv)tu+tv

) − E(utu) ≥ E
(
(u + tv)tu

) − E(utu)

=
t2u
2

∫

R2

[|∇(u + tv)|2 + (A2
1[u + tv] + A2

2[u + tv])|u + tv|2]dx

− t2u
2

∫

R2

[|∇u|2 + (A2
1[u] + A2

2[u])|u|2]dx

− t−2
u

∫

R2
[F (tuu + ttuv) − F (tuu)]dx

=
t2u
2

∫

R2
[2t∇u∇v + t2|∇v|2
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+ (A2
1[u + tv] + A2

2[u + tv])(2tuv + t2|v|2)]dx

+
t2u
2

∫

R2
(A2

1[u + tv] + A2
2[u + tv] − A2

1[u] − A2
2[u])|u|2dx

− t−2
u

∫

R2
f(tuu + σ̄tttuv)ttuvdx,

where σ̄t ∈ (0, 1). Since the map u+ tv → tu+tv is continuous by Lemma 2.5,
one has

Ψ′(u)[v] = lim
t→0

Ψ(u + tv) − Ψ(u)
t

=
t2u
2

∫

R2
[2∇u∇v + (A2

1[u] + A2
2[u] + A0[u])2uv]dx

− t−2
u

∫

R2
f(tuu)tuvdx

=
∫

R2

[∇utu
∇vtu

+ (A2
1[utu

] + A2
2[utu

] + A0[utu
])utu

vtu

]
dx

−
∫

R2
f(utu

)vtu
dx

= E′(utu
)[vtu

] = E′(ζ(u))[vtu
]

which is the desired result. The proof is completed. �
Lemma A.5. Let u, v ∈ H1(R2) and suppose that supput ∩ suppv = ∅ for all
t > 0, then

lim
t→0+

(∫

R2
A2

j [ut + v]|ut + v|2dx −
∫

R2
A2

j [ut]|ut|2dx −
∫

R2
A2

j [v]|v|2dx

)

= 0.

Proof. According to (1.7) and (1.8), for all t > 0, there holds

Aj [ut + v] = Aj [ut] + Aj [v], j = 1, 2,

and
|ut + v|2 = |ut|2 + |v|2.

It follows from some simple calculations that
∣
∣
∣
∣

∫

R2
A2

j [ut + v]|ut + v|2dx −
∫

R2
A2

j [ut]|ut|2dx −
∫

R2
A2

j [v]|v|2dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

R2

(
A2

j [ut]v2 + A2
j [v]u2

t + 2Aj [ut]Aj [v]u2
t + 2Aj [ut]Aj [v]v2

)
dx

∣
∣
∣
∣

≤ |Aj [ut]|2r̂|v|22r̂
r̂−2

+ |Aj [v]|2r̂|ut|22r̂
r̂−2

+ 2|Aj [ut]|r̂|Aj [v]|r̂|ut|22r̂
r̂−2

+ |Aj [ut]|r̂|Aj [v]|r̂|v|22r̂
r̂−2

= t2|Aj [u]|2r̂|v|22r̂
r̂−2

+ t
4
r̂ |Aj [v]|2r̂|u|22r̂

r̂−2
+ 2t1+

4
r̂ |Aj [ut]|r̂|Aj [v]|r̂|ut|22r̂

r̂−2

+ t|Aj [ut]|r̂|Aj [v]|r̂|v|22r̂
r̂−2

→ 0

as t → 0+, where we exploited Lemma 2.2 with r̂ > 2. The proof is completed.
�
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