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planar Schrödinger–Poisson system with
steep potential well: critical exponential case
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Abstract. In this paper, we study the following class of planar Schrödinger–
Poisson problems

⎧
⎪⎪⎨

⎪⎪⎩

−Δu + λV (x)u + γ(ln | · | ∗ |u|2)u = μu + κf(u) in R
2,

u(x) > 0 in R
2,∫

R2
|u(x)|2dx = a2,

where a > 0, μ ∈ R is an unknown parameter appearing as a Lagrange
multiplier, λ, γ, κ > 0 are parameters, V ∈ C(R2,R+) admits a poten-

tial well Ω � int V −1(0) and f is a continuous function having critical
exponential growth at infinity in the Trudinger-Moser sense. Owing to
some technical tricks adopted in Alves and Shen (On existence of posi-
tive solutions to some classes of elliptic problems in the hyperbolic space,
Submitted for publication), Shen and Squassina (Existence and concen-
tration of normalized solutions for p-Laplacian equations with logarithmic
nonlinearity, http://arxiv.org/abs/2403.09366), we are able to obtain the
existence and concentrating behavior of positive normalized solutions for
sufficiently large λ using variational method.

Keywords. Positive normalized solutions, Planar Schrödinger–Poisson equa-
tion, L2-supercritical growth, Critical exponential growth, Steep potential
well, Variational methods.
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1. Introduction

1.1. Some literature overview

We are concerned with the existence of positive solutions to the following
planar Schrödinger-Poisson equation

− Δu + λV (x)u + γ(ln | · | ∗ |u|2)u = μu + κf(u) in R
2, (1.1)

under the constraint
∫

R2
|u|2dx = a2, (1.2)

where a > 0, μ ∈ R is an unknown parameter appearing as a Lagrange mul-
tiplier and λ, γ, κ > 0 are parameters. The potential V is supposed to satisfy
the following set of assumptions:
(V1) V ∈ C(R2, R) with V (x) ≥ 0 on R

2;
(V2) Ω � intV −1(0) is nonempty and bounded with smooth boundary, and

Ω = V −1(0);
(V3) there exists a b > 0 such that the set Ξ � {x ∈ R

2 : V (x) < b} is
nonempty and admits finite measure.
As we all know, Bartsch and his collaborators firstly proposed the as-

sumptions like (V1) − (V3) in [16,18]. Particularly, the harmonic trapping po-
tential

V (x) =
{

ω1|x1|2 + ω2|x2|2 − ω, if |(√ω1x1,
√

ω2x2)|2 ≥ ω,
0, if |(√ω1x1,

√
ω2x2)|2 ≤ ω,

with ω > 0 satisfies (V1)− (V3), where ωi > 0 is called by the anisotropy factor
of the trap in quantum physics and trapping frequency of the ith-direction in
mathematics, see e.g. [19,24,51]. Actually, the potential λV with the above
hypotheses is usually denoted by the steep potential well.

Inspired by the well-known Trudinger-Moser type inequality, we recall
that a function f has the critical exponential growth at infinity if there exists
a constant α0 > 0 such that

lim
|s|→+∞

|f(s)|
eαs2 =

{
0, ∀α > α0,
+∞, ∀α < α0.

(1.3)
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This definition was introduced by Adimurthi and Yadava [2], see also de
Figueiredo, Miyagaki and Ruf [36] for example.

Hereafter, we shall suppose that the nonlinearity f satisfies (1.3) and the
assumptions below
(f1) f ∈ C(R, R) and f(s) ≡ 0 for all s ∈ (−∞, 0];
(f2) There is a q ∈ (2, 4) such that f(s)/sq−1 is an increasing function of s on

(0,+∞),
(f3) There is a c0 > 0 such that f(s) ≥ c0s

q−1 for all s ∈ [0,+∞).
We would like to highlight here that many functions f satisfy the above

assumptions, with α0 = 4π and c0 = 1, for example,

f(s) =
{

0, s ≤ 0,

sq−1e4πs2
, 0 ≤ s < +∞,

where q ∈ (2, 4).
In recent years, considerable attention was paid to the standing, or soli-

tary, wave solutions of Schrödinger–Poisson systems of the type
{

i
∂ψ

∂t
= Δψ − W (x)ψ − mφψ + f̃(|ψ|)ψ, in R

+ × R
d,

Δφ = |ψ|2, in R
d,

(1.4)

where ψ : R
d ×R → C acts as the time-dependent wave function, W : R

d → R

stands for the real external potential, m ∈ R is a parameter, φ represents an
internal potential for a nonlocal self-interaction of wave function and nonlinear
term f(ψ) � f̃(|ψ|)ψ describes the interaction effect among particles. Inserting
the standing wave ansatz ψ(x, t) = exp(−iωt)u(x) with ω ∈ R and x ∈ R

d

into (1.4), then u : R
d → R satisfies the Schrödinger–Poisson system

{−Δu + V̄ (x)u + mφu = f(u), in R
d,

Δφ = u2, in R
d,

(1.5)

where and in the sequel V̄ (x) = W (x) + ω for all x ∈ R
d. In view of the paper

[34], the second equation in (1.5) determines φ : R
d → R only up to harmonic

functions. Conversely, it is natural to regard φ as the negative Newton potential
of u2, namely, the convolution of u2 with the fundamental solution Φd of the
Laplacian, which is denoted by Φd(x) = −1/(d(d − 2)ωd)|x|2−d if d ≥ 3, and
Φ2(x) = − 1

2π log(|x|) if d = 2, here we denote by ωd the volume of the unit
ball in R

d. With this inversion of the second equation in (1.5), one can receive
the integro-differential equation

− Δu + V̄ (x)u + m
(
Φd ∗ u2

)
u = f(u) in R

d. (1.6)

In light of its physical relevance in physics, there exist a rich literature
associated with (1.6) and the generalizations under the variant assumptions
on V̄ and f by using variational methods for d ≥ 3, see [1,13,27,39,52,58] and
their references therein. We prefer to mention that, when m �= 0, the Poisson
term (Φd ∗ u2)u causes that (1.6) is not a pointwise identity any longer such
that there are some mathematical difficulties which make the study of it more
interesting.
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For d = 2, the Schrödinger–Poisson equation (1.6) can be rewritten as
the form

− Δu + V̄ (x)u +
m

2π

[
ln(|x|) ∗ u2

]
u = f(u) in R

2. (1.7)

For clarity, we shall suppose that V̄ (x) ≡ −μ ∈ R for all x ∈ R
2 and m = 2π.

Generally speaking, there are two ways to the studies of Eq. (1.7). On
the one hand, one can choose frequency μ ∈ R to be fixed and then focus on
investigating the existence of nontrivial solutions by looking for critical points
of the variational functional

I(u) =
1
2

∫

R2

[|∇u|2 − μu2
]
dx +

1
4

∫

R2

∫

R2
ln(|x − y|)u2(x)u2(y)dxdy

−
∫

R2
F (u)dx,

where and in the sequel F (t) =
∫ t

0
f(s)ds for all t ∈ R. Due to the variational

method point of view, one usually requires I to be a class of C1-functional and
the classic Hilbert space H1(R2) is an ideal candidate that acts as the work
space. Nevertheless, Stubbe [63] pointed out clearly that the functional I is not
even well-defined in H1(R2). In order to get around this obstacle, the author
introduced a new Hilbert space

X =
{

u ∈ H1(R2) :
∫

R2
ln(1 + |x|)u2dx < +∞

}

,

endowed with the inner product and norm

(u, v)X =
∫

R2

[∇u∇v + uv + ln(1 + |x|)uv
]
dx and ‖u‖X =

√
(u, u)X .

With the work space X in hands, one can define the two variational functionals
V1, V2 : X → R by

⎧
⎪⎪⎨

⎪⎪⎩

V1(u) �
∫

R2

∫

R2
ln(1 + |x − y|)u2(x)u2(y)dxdy,

V2(u) �
∫

R2

∫

R2
ln

(

1 +
1

|x − y|
)

u2(x)u2(y)dxdy,
∀u ∈ X

and they belong to C1(X, R), see e.g. [63]. Now, because of the crucial identity

ln r = ln(1 + r) − ln
(

1 +
1
r

)

, ∀r > 0,

it enables to have the following decomposition

V0(u) �
∫

R2

∫

R2
ln(|x − y|)u2(x)u2(y)dxdy = V1(u) − V2(u), ∀u ∈ X (1.8)

indicating that I is of class C1(X, R). Afterwards, for μ = −1 and f(t) =
b|t|p−2t with b ≥ 0 and p ≥ 4, Cingolani and Weth [34] obtained the existence
and multiplicity of nontrivial solutions for Eq. (1.7), later the case p ∈ (2, 4)
was supplemented by Du and Weth in [38]. To acquaint the asymptotic and
non-degeneracy of the ground state solution when b = 0, we refer the reader to
[21]. Moreover, Chen, Shi and Tang [29] extended the main results to a general
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nonlinearity. It is significant to note that the above cited papers depended on
the fact that the potential is constant or Z

2-periodic. To avoid such restriction,
the authors in [31,32] constructed nontrivial solutions in an axially symmetric
space which is weaker than the radially symmetric one.

Very recently, by supposing (V1)− (V2), Shen and Squassina [61] contem-
plated the existence and concentration of nontrivial solutions for the equation

−Δu + λV (x)u + (ln | · | ∗ |u|2)u = f(u) in R
2,

where λ > 0 is sufficiently large and f admits the supercritical exponential
growth (see [8,9]). Concerning some other interesting works associated with
Eq. (1.7) and its variants, we suggest the reader to look at [14,37] and the
references therein even if these ones are far to be exhaustive.

On the other hand, one can contemplate the case μ ∈ R to be unknown.
In such a situation, μ ∈ R denotes a Lagrange multiplier and the L2-norm of
obtained solutions would be prescribed. From the physical point of view, this
spirit of research holds particular significance as it accounts for the conserva-
tion of mass. What’s more, it provides some valuable insights into the dynamic
properties of the standing waves of (1.5), for instance stability or instability
in [20,26]. In this paper, we shall focus primarily on this aspect.

In [43], due to a minimax approach and compactness argument, Jeanjean
contemplated the existence of solutions for the following Schrödinger problem

⎧
⎨

⎩

−Δu + λu = g(u) in R
N ,∫

RN

|u|2dx = a2 > 0.
(1.9)

Subsequently, there exist some further complements and generalizations in
[45]. In [64], letting g(t) = τ |t|q−2t + |t|p−2t with 2 < q ≤ 2 + 4

N ≤ p < 2∗,
Soave obtained the existence of solutions for problem (1.9), where 2∗ = 2N

N−2

if N ≥ 3 and 2∗ = ∞ if N = 2. For this type of combined nonlinearities,
Soave also [65] proved the existence of ground state and excited solutions
when p = 2∗. For more interesting results for problem (1.9), we will refer the
reader to [7,17,44,46,67] and the references therein.

Conversely, the appearance of the nonlocal convolution term
[
ln(|x|) ∗ u2

]
u

in (1.7) exhibits some delicate mathematical difficulties with a local nonlinear
term f . To address this trouble, Cingolani and Jeanjean used the combina-
tion of the fibration method of Pohozaev (relying on the decomposition of
L2-Pohoz̆aev manifold used in [33]) and the strong compactness condition de-
veloped by Cingolani-Weth [34], where some new estimates of energy on the
dilated function tu(t·) for all u ∈ L2 and t > 0 belonging to S(a) were given.
Moreover, the reader may realize that the spatial dimension of Eq. (1.7) is
two, the case therefore is very special because 2∗ = ∞ in this situation. In
spirit of [7], Alves, de S. Böer and Miyagaki [4] investigated the existence of
normalized solutions to (1.7), where the nonlinearity f satisfies (1.3) and

(F1) f(0) = 0 and there exists τ > 3 such that lim
t→0

|f(s)|
|s|τ = 0;

(F2) there exists θ > 6 such that f(s)s ≥ θF (s) > 0 for all s �= 0, where
F (s) =

∫ s

0
f(t)dt
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(F3) there exist p > 6 and a large enough ϑ > 0 such that F (s) ≥ ϑ|s|p for all
s ∈ R.

Note that ϑ > 0 in (F3) is sufficiently large such that the obtained mountain-
pass level can be chosen as arbitrarily small from which the compactness will
be restored in the usual way. Very recently, due to same intention, the authors
in [12,60,68] depended on the following condition, instead of (F3),

(F ′
3) lim inf

s→+∞
F (s)

eα0s2 > 0, where α0 > 0 comes from (1.3).

In [28], by choosing f(s) =
(
es2 − 1 − s2

)
s for all s ∈ R, Chen et al. in-

vestigated the existence of normalized solutions to (1.7) by virtue of the L2-
Pohoz̆aev manifold. For some more results on (1.7) for normalized solutions,
see e.g. [41,42] and their references therein.

1.2. Motivation for further advances

Motivated by all of the quoted papers above, particularly by [4,28,61], it seems
quite natural to ask some interesting questions. For example,

(I) From [33], it can be observed that the L2-Pohoz̆aev manifold method
seems unavoidable when the nonlinearity f satisfies the condition (F2)
with even θ > 4, or it satisfies the critical exponential growth (1.3).
Conversely, if the L2-Pohoz̆aev manifold method is invalid any longer
when (1.7) is a non-automatous one, such as V ∈ C instead of C1 in
(1.1), could we still conclude the existence of normalized solutions for the
planar Schrödinger–Poisson equations?

(II) One may infer from [4] that the condition (F3), or (F ′
3), is indispensable

to some extent. So, what happens if we weaken, even remove, them when
f still satisfies (1.3)?

(III) Due to [61], could we apply the steep potential to deal with the exis-
tence of normalized solutions for a class of planar Schrödinger–Poisson
equations with L2-supercritical growth?

1.3. Main results

In the present article, we shall try our best to put forward some new analytic
skills and then give the affirmative answers to three Questions above. First of
all, in order to exhibit the main results legibly, let us first introduce the work
space. Following as [61], given a fixed λ > 0, by (V1), we define the space

Eλ �
{

u ∈ L2
loc(R

2) : |∇u| ∈ L2(R2) and
∫

R2
λV (x)|u|2dx < +∞

}

which is indeed a Hilbert space equipped with the inner product and norm

(u, v)Eλ
=

∫

R2

[∇u∇v + λV (x)uv
]
dx and ‖u‖Eλ

=
√

(u, u)Eλ
, ∀u, v ∈ Eλ.

From here onwards, we shall denote E and ‖ · ‖E by Eλ and ‖ · ‖Eλ
for λ = 1,

respectively. It is simple to observe that ‖ · ‖E ≤ ‖ · ‖Eλ
for every λ ≥ 1.

Therefore, owing to [61, Lemma 2.4], Eλ could be continuously imbedded into
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H1(R2) and then into X for every λ ≥ 1. With these discussions, it permits
us to introduce the work space

Xλ �
{

u ∈ X :
∫

R2
λV (x)|u|2dx < +∞

}

(1.10)

and Xλ is also a Hilbert space equipped with the inner product and norm

(u, v)Xλ
=

∫

R2

[∇u · ∇v + (λV (x) + ln(1 + |x|))uv
]
dx and

‖u‖Xλ
=

√
(u, u)Xλ

, ∀u, v ∈ Xλ.

Obviously, ‖ · ‖Xλ
=

√
‖ · ‖2

Eλ
+ ‖ · ‖2∗, where ‖u‖∗ =

(∫

R2 ln(1 + |x|)|u|2dx
) 1

2

for all u ∈ X.
Now, we are in a position to state the first main result in this paper as

follows.

Theorem 1.1. Let V satisfy (V1) − (V3) and f require (1.3) with (f1) − (f3),
then there exist some constants γ∗ > 0, κ∗ > 0, a∗ > 0 and λ∗ > 1 such that,
for every γ ∈ (0, γ∗), κ ∈ (0, κ∗), a > a∗ and λ > λ∗, Problems (1.1)-(1.2)
possess a couple of weak solution (ū, μ̄) ∈ Xλ × R, where ū(x) > 0 for all
x ∈ R

2.

Remark 1. Because the nonlinearity f satisfies the critical exponential growth
(1.3) at infinity, one can regard the Problem (1.1) under the constraint (1.2)
as a L2-supercritical one. However, taking into account the mild assumptions
(V1) − (V3) imposed on the potential V , we are never able to follow the pro-
cedures in [15,35,53] to derive the desired result. Motivated by [11,62], we
shall cut off the nonlinearity and then the original problem reduces to a L2-
subcritical one that makes the solvability available. Nevertheless, considering
the negative interactions between the steep potential λV and the nonlocal
term [ln(| · |) ∗ u2]u together with the structure of the work space Xλ, there
exist several unpleasant barriers in the present paper, see Lemmas 3.3 and 3.8
as well as Claim 4.5 below for instance. Finally, it is worthy mentioning here
that the so-called cut-off technique of [11,62] and this paper is similar to that
of [8–10,61].

Remark 2. Even if V (x) ≡ 0 for all x ∈ R
2 in Eq. (1.1), up to the best

knowledge of us, there seems very few results on the existence of normalized
solution to the planar Schrödinger–Poisson equation with critical exponential
growth, where the nonlinearity satisfies the very mild assumptions (f1) − (f3)
in contrast to the previous articles [4,28]. As a matter of fact, we also stress
here that the argument adopted in the proof of Theorem 1.1 is adapted to the
existence of solutions with free mass for a class of planar Schrödinger–Poisson
equations with (super)critical exponential growth in [3,5,25,29,30,32,48–50,
59,61] and their references therein.

Let us sketch the main idea for the proof of Theorem 1.1, as explained
in Remark 1, we shall heavily depend on the so-called cut-off technique. De-
scribing it more precisely, for every fixed constant R > 0, we introduce the
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following continuous function fR : R → R defined by

fR(s) =

⎧
⎪⎨

⎪⎩

0, if s ≤ 0,
f(s), if 0 ≤ s ≤ R,
f(R)
Rq−1

sq−1, if R ≤ s < +∞,

(1.11)

where the constant q ∈ (2, 4) comes from (f2). From now on until the end of

the present article, we define FR(s) =
∫ s

0

fR(t)dt for each s ∈ R to be the

primitive function of fR. It follows from a direct computation that

qFR(s) ≤ fR(s)s, ∀s ∈ R. (1.12)

Moreover, we can exploit the monotone assumption in (f2) to see that

fR(s) ≤ f(R)
Rq−1

sq−1, ∀s ∈ R. (1.13)

With such a nonlinearity fR defied in (1.11), we turn to contemplate the
following auxiliary problem

⎧
⎪⎪⎨

⎪⎪⎩

−Δu + λV (x)u + γ(ln | · | ∗ |u|2)u = μu + κfR(u) in R
2,

u(x) > 0 in R
2,∫

R2
|u(x)|2dx = a2.

(1.14)

In view of (1.13), we know from [33] that Problem (1.14) above involves L2-
subcritical growth since q < 4. If the term (ln | · |∗|u|2)u vanishes, the existence
result can be seen as a supplement to the results explored by Alves and Ji in
[6]. Whereas, because of the appearance of this term, we can not borrow the
arguments in it to obtain the existence result for Problem (1.14) due to the
difficulties depicted in Remark 1. Anyway, it permits us to reach the existence
of solutions for Problem (1.14).

When there is couple of weak solution in Xλ × R to Problem (1.14),
saying it (uR, μR), the reader is invited to find that such pair is a solution to
the original Problems (1.1)-(1.2) as long as |uR|∞ ≤ R owing to the definition
of fR in (1.11). Having it in mind, we can receive the proof of Theorem 1.1
combining the solvability of Problem (1.14) and the L∞-estimate.

Next, we shall contemplate the asymptotical behavior of the normalized
solutions obtained in Theorem 1.1 as λ → +∞ when a > a∗ is fixed. Let
(u, μ) ∈ Xλ × R be a positive normalized solution for Eq. (1.1), there is no
doubt that it depends on the parameter λ > λ∗ > 1, thereby we will relabeled
the pair by (uλ, μλ) ∈ Xλ × R to emphasize this dependence, where λ∗ > 1 is
a constant appearing in the proof of Lemma 3.8 below. Finally, we prove the
following result.

Theorem 1.2. Under the assumptions in Theorem 1.1 and let a > a∗ be fixed,
then, passing to a subsequence if necessary, uλ → u0 in X and μλ → μ0

in R as λ → +∞, where (u0, μ0) is a couple of weak solution to the planar
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Schrödinger–Poisson problem below
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δu + γ

(∫

Ω

ln(|x − y|)u2(y)dy

)

u = μu + κf(u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,∫

Ω

|u|2dx = a2.

(1.15)

Remark 3. As far as we are concerned, there are currently no relevant results
for the Problem (1.15). Actually, it truly belongs to a class of L2-supercritical
problems in the bounded domains and we would like to refer the interested
reader to [55–57] and the references therein to acquaint this topic. In particu-
lar, the authors in [10,11,62] had investigated the existence of normalized solu-
tion for several kinds of local elliptic problems with mass-supercritical growth.
Alternatively, there exist some new difficulties that caused by the nonlocal
term

(∫

Ω
ln |x − y|u2(y)dy

)
u which prevents us repeating the approaches in

[10,11,62] simply.

We remark that the essential difference between [61] and this paper is
whether the obtained solution involves a prescribed mass, so some additional
efforts are needed to conclude the proofs of Theorems 1.1 and 1.2 in the paper.
Again these results are new for planar Schrödinger–Poisson equation up to now,
although the subtle tricks have already appeared in the literatures [10,11,62].

In our opinion, one of the most significant contributions is that we suc-
ceed in taking advantage of the steep potential λV to investigate the exis-
tence and concentration of positive normalized solutions to the type of planar
Schrödinger–Poisson equations with a wider class of nonlinearities that fulfill
the critical exponential growth in (1.3). It is believed that the studies in the
present paper would prompt some further explorations on related topics.

This paper is organized as follows. In Sect. 2, we will introduce some
preliminary results dealing with the functionals Vi : Xλ → R with i ∈ {0, 1, 2}.
Section 3 is devoted to the existence result for the auxiliary Problem (1.14)
above. Finally, the detailed proofs of Theorems 1.1 and 1.2 shall be exhibited
in Sect. 4.

Notations: From now on in this paper, otherwise mentioned, we use the fol-
lowing notations:

• Br(x) ⊂ R
2 is an open ball centered at x ∈ R

2 with radius r > 0 and
Br = Br(0).

• C,C1, C2, · · · denote any positive constant, whose value is not relevant.
• For all x ∈ R

2, we define

u+(x) � max{u(x), 0} ≥ 0 and u−(x) � min{u(x), 0} ≤ 0.

• | · |p denotes the usual norm of the Lebesgue space Lp(R2), for every
p ∈ [1,+∞]. ‖ · ‖Hi denotes the usual norm of the Hilbert space for
i ∈ {1, 2}.

• on(1) denotes a real sequence with on(1) → 0 as n → +∞.
• “ →′′ and “ ⇀′′ stand for the strong and weak convergence in the related

function spaces, respectively.
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• We recall the celebrated Gagliardo-Nirenberg inequality, given an l ∈
[2,+∞),

|u|ll ≤ CGN|u|(1−γl)l
2 |∇u|γll

2 in H1(R2), γl

= 2
(

1
2

− 1
l

)

, (1.16)

where the constant CGN > 0 is just dependent of l.

2. Preliminary stuff

In this section, we shall present some preliminary results which will be ex-
ploited frequently in this paper. The following lemma is due to [34, Lemma
2.2] and we introduce them without the detailed proofs.

Lemma 2.1. Let the space X and the functionals Vi : X → R with i ∈ {0, 1, 2}
be defined as in the Introduction, then we have the following conclusions:

(i) The space X is compactly embedded in Ls(R2), for all s ∈ [2,∞).
(ii) 0 ≤ V1(u) ≤ 2|u|22|u|2∗ ≤ 2‖u‖4

X and V1 is weakly semicontinuous in
H1(R2).

(iii) V ′
i (u)[u] = 4Vi(u) for all u ∈ X and i ∈ {0, 1, 2}.

(iv) There is a constant K0 > 0 such that

|V2(u)| ≤ K0|u|48
3
, ∀u ∈ L

8
3 (R2). (2.1)

(v) V2 is completely continuous in X, that is,

un ⇀ u in X =⇒ V2(un) → V2(u).

For any given Lebesgue measurable functions u, v : R
2 → R, we introduce

the following three auxiliary symmetric bilinear forms X × X → R

(u, v) �→ B1(u, v) =
∫

R2

∫

R2

ln(1 + |x − y|)u(x)v(y)dxdy,

(u, v) �→ B2(u, v) =
∫

R2

∫

R2

ln
(

1 +
1

|x − y|
)

u(x)v(y)dxdy,

(u, v) �→ B(u, v) = B1(u, v) − B2(u, v) =
∫

R2

∫

R2

ln(|x − y|)u(x)v(y)dxdy.

Obviously, V ′
i (u)[v] = 4Bi(u2, uv) for i ∈ {0, 1, 2}. By [34, Lemma 2.6], there

holds

Lemma 2.2. Let {un}, {vn} and {wn} be some bounded sequences in X such
that un ⇀ u in X. Then, for all z ∈ X, it holds that B1(vnwn, z(un −u)) → 0,
as n → +∞.

Taking into account the uniform L∞-estimate, the following lemma will
plays a crucial role.
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Lemma 2.3. Define gu(x) � ln(1+ | · |−1)∗ |u|2 for all u ∈ H1(R2) and x ∈ R
2,

then we have that gu ∈ L∞(R2). Moreover

|gu|∞ ≤ 4π
(
|u|22 + C

1
3 |u| 2

3
2 |∇u| 4

3
2

)
. (2.2)

Proof. We follow [61, Lemma 2.3] to conclude the proof. For all x ∈ R
2, there

holds

|gu(x)| =
∫

B1(x)

ln
(

1 +
1

|x − y|
)

|u(y)|2dy

+
∫

R2\B1(x)

ln
(

1 +
1

|x − y|
)

|u(y)|2dy

≤
∫

B1(x)

|u(y)|2
|x − y|dy + ln 2

∫

R2\B1(x)

|u(y)|2dy. (2.3)

It follows from the Hölder’s inequality that
∫

B1(x)

|uR(y)|2
|x − y| dy ≤

(∫

B1(x)

1
|x − y| 3

2
dy

) 2
3
(∫

R2
|u(y)|6dy

) 1
3

= (4π)
2
3

( ∫

R2
|u(y)|6dy

) 1
3

. (2.4)

Combining (2.3) and (2.4), we apply (1.16) with l = 6 to get the desired result
(2.2). The proof is completed. �

3. On the auxiliary problem

In this section, we are going to investigate the existence of solutions for the
auxiliary problem (1.14). More precisely, we shall contemplate the following
planar Schrödinger–Poisson equation

− Δu + λV (x)u + γ(ln | · | ∗ |u|2)u = μu + κfR(u) in R
2, (3.1)

under the constraint
∫

R2
|u|2dx = a2, (3.2)

where a > 0, μ ∈ R is an unknown parameter that appears as a Lagrange
multiplier, λ, γ, κ > 0 are parameters. The potential V : R

2 → R satisfies
(V1) − (V3) and the nonlinearity fR is defined by (1.11) meeting (1.3) and
(f1) − (f3).

We recall that a solution u to the Problems (3.1)-(3.2) corresponds to a
critical point of the variational functional Jλ,R : Xλ → R below

Jλ,R(u) =
1
2

∫

R2
[|∇u|2 + λV (x)|u|2]dx +

γ

4
V0(u) − κ

∫

R2
FR(u)dx (3.3)

restricted to the sphere

S(a) =
{

u ∈ H1(R2) :
∫

R2
|u|2dx = a2

}

. (3.4)
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Here the functional V0 and the work space Xλ could be reviewed in (1.8) and
(1.10), respectively. Recalling [61, Lemma 2.4] again, for all fixed λ ≥ 1 and
R > 0, we can infer from (f1) that the variational functional Jλ,R is well-
defined and belongs to C1(Xλ, R) with its derivative defined by

J ′
λ,R(u)[v]=

∫

R2
[∇u∇v+λV (x)uv]dx+

γ

4
V ′

0(u)[v]−κ

∫

R2
fR(u)v dx, ∀u, v∈Xλ.

The main result concerning Problems (3.1)-(3.2) is the following:

Theorem 3.1. Let V satisfy (V1)− (V3) and f meet (1.3) with (f1)− (f3), then
there exists an R∗ > 0 such that for all fixed R > R∗ and κ ∈ (0, 1), there are
some constants a∗ = a∗(R) > 0, γ′ = γ′(R) > 0 and λ∗ = λ∗(R) > 1 such
that the Problems (3.1)-(3.2) have a couple of weak solution (uR, μR) ∈ Xλ ×R

with uR(x) > 0 for all x ∈ R
2 if a > a∗, γ ∈ (0, γ′) and λ > λ∗.

The proof of the above theorem will be divided into several lemmas.
Before exhibiting them, we will always suppose that the potential V and the
nonlinearity fR do satisfy (V1)− (V3) and (1.3) with (f1)− (f3) in this section,
respectively.

Lemma 3.2. For all fixed R > 0, the variational functional Jλ,R is coercive
and bounded from below on S(a) for all a > 0, γ ∈ (0, 1), κ ∈ (0, 1) and λ ≥ 1,
where Jλ,R and S(a) are appearing in (3.3) and (3.4), respectively.

Proof. By (1.12)-(1.13) and (2.1), for all u ∈ S(a), we use (1.16) with l = 8
3

and l = q to reach

Jλ,R(u) ≥ 1
2

∫

R2
|∇u|2 dx − K0C

3
2
GNa3

(∫

R2
|∇u|2 dx

) 1
2

−CGNf(R)a(1−γq)q

Rq−1q

(∫

R2
|∇u|2 dx

) γqq

2

.

As q ∈ (2, 4) in (f2), clearly γqq < 2, then the statement concludes. �

As a direct consequence of Lemma 3.2, for each fixed R > 0, γ ∈ (0, 1),
κ ∈ (0, 1), a > 0 and λ ≥ 1, the real number

Υλ,R � min
u∈S(a)

Jλ,R(u) (3.5)

is well-defined and it will be exploited to look for nontrivial solutions for Prob-
lems (3.1)-(3.2). Alternatively, we need to conclude that Υλ,R is uniformly
bounded above with respect to λ > 1 and so there is the result below.

Lemma 3.3. There exists an R∗ > 0 such that for each fixed R > R∗ and
κ ∈ (0, 1), there are constants ΘR = Θ(R) < 0, γ′ = γ′(R) > 0 and a∗ =
a∗(R) > 0, which are independent of λ, such that Υλ,R ≤ ΘR for all γ ∈ (0, γ′),
a > a∗ and λ ≥ 1.

Proof. Without loss of generality, we are assuming that 0 ∈ intV −1(0). There-
fore, there exists a sufficiently small r > 0 such that Br(0) ⊂ intV −1(0).
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Choose ψ ∈ C∞
0 (Br(0)) to be a function satisfying

∫

Br(0)
|ψ|2dx = 1 and so

ψ ∈ S(1). Due to the definition of Ω, there holds
∫

R2
V (x)|ψ|2dx =

∫

Ω

V (x)|ψ|2dx +
∫

Ωc

V (x)|ψ|2dx = 0. (3.6)

Adopting (1.3), then lim
R→+∞

f(R)
Rq−1

= +∞ and so there is an R∗ > 0 such that

f(R)
Rq−1

≥ c0 for all R > R∗. Owing to (f3) and the definition of fR in (1.11), it
holds that

fR(s) ≥ c0s
q−1, ∀s ≥ 0 and R > R∗,

from where it follows that
∫

R2
FR(tψ) dx ≥ c0t

q

q

∫

R2
|ψ|q dx, ∀t > 0 and R > R∗. (3.7)

Combining (3.6) and (3.7), for all R > R∗, one sees Iλ,R(tψ) → −∞ as
t → +∞, where

Iλ,R(u) � 1
2

∫

R2

[|∇u|2 + λV (x)|u|2] dx − κ

∫

R2
FR(u)dx, ∀u ∈ Eλ.

Consequently, we can determine some t∗ = t∗(R) > 0 and At∗ < 0 to satisfy
Iλ,R(tψ) ≤ At∗ < 0 for all t > t∗. Letting a∗ = t∗, for all a > a∗ and u0 = aψ,
then u0 ∈ S(a) and so

Iλ,R(u0) = Iλ,R(aψ) ≤ At∗ , ∀R > R∗ and a > a∗. (3.8)

On the other hand, using Lemma 2.1-(ii) and V0(u0) = V1(u0)−V2(u0) ≤
V1(u0), we have

V1(u0) ≤ 2|u0|22
∫

R2
ln(1 + |x|)|u0|2dx ≤ 2a4 ln(1 + r). (3.9)

As a consequence of (3.8) and (3.9), we reach

Υλ,R ≤ Iλ,R(u0) +
γ

4
V1(u0) ≤ At∗ +

γ

2
a4 ln(1 + r).

Thereby, define γ′ = min
{

− At∗

a4 ln(1 + r)
, 1

}

> 0 for all R > R∗ and a > a∗.

So, it permits us to choose ΘR = Θ(R) � 1
2At∗ < 0 for all R > R∗, κ ∈ (0, 1),

γ ∈ (0, γ′), a > a∗ and λ ≥ 1. The proof is completed. �

With Lemmas 3.2 and 3.3 in hands, we can just deduce that every mini-
mizing sequence {un} of Υλ,R is uniformly bounded in H1(R2). To derive such
a desired result in the work space Xλ, we have to take some delicate analysis.
First of all, let us introduce the following two lemmas due to Lions [47].

Lemma 3.4. Let {ρn} ⊂ L1(R2) be a bounded sequence and ρn ≥ 0, then there
is a subsequence, still denoted by ρn, such that one of the following two possi-
bilities occurs:

(i) (Vanishing) lim
n→∞ sup

y∈R2

∫

B�(y)

ρndx = 0 for all � > 0;
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(ii) (Non-Vanishing) there are β > 0 and � < +∞ such that

lim
n→∞ sup

y∈R2

∫

B�(y)

ρndx = β.

Lemma 3.5. Assume {|∇un|} is bounded in L2(R2) and {un} is bounded in
Lq0(R2) for some q0 > 2 as well as

lim
n→∞ sup

y∈R2

∫

B�(y)

|un|q0dx = 0.

Then un → 0 in Ls(R2) for s ∈ (2,+∞) if in addition {un} ⊂ S(a).

We now begin with the verification that {un} is uniformly bounded in
Xλ.

Lemma 3.6. Let R > R∗, a > a∗, κ ∈ (0, 1), γ ∈ (0, γ′) and λ ≥ 1 be fixed.
Suppose {un} ⊂ S(a) is a minimizing sequence of Υλ,R, then {‖un‖Eλ

} is
uniformly bounded in n ∈ N. Moreover, for all � > 0,

lim
n→∞ sup

y∈R2

∫

B�(y)

|un|q0dx = 0 (3.10)

could never occur, where q0 > 2.

Proof. Using Lemma 3.2, we know that {|∇un|2} is uniformly bounded in
n ∈ N and so {|un|r} is uniformly bounded in n ∈ N for all r ∈ [2,+∞) by
(1.16). Because Jλ,R(un) = Υλ,R + on(1), combining Lemma 3.3, (1.13) and
(2.1), we have that

∫

R2
λV (x)|un|2dx ≤ 2Υλ,R +

1
2
V2(un) + 2κ

∫

R2
FR(un) + on(1)

≤ 2ΘR +
1
2
K0|un|48

3
+

2κF (R)
qRq−1

∫

R2
|un|qdx + on(1)

showing the first part of this lemma. To reach the remainder, arguing it indi-
rectly, we suppose that (3.10) holds true. As a consequence, un → 0 in Ls(R2)
for all s ∈ (2,+∞) by Lemma 3.5. Adopting (1.13) and (2.1) again, we have
that

∫

R2
FR(un) = on(1) and V2(un) = on(1),

from where it follows that

Υλ,R =
1
2

∫

R2
[|∇un|2 + λV (x)|un|2]dx +

1
4
V1(un) + on(1) ≥ on(1).

It is impossible because of Lemma 3.3. The proof is completed. �

Thanks to Lemma 3.4, with the help of Lemma 3.6, we are able to prove
the following result which is crucial to prove that the sequence {un} ⊂ Xλ is
uniformly bounded in Xλ.
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Lemma 3.7. Under the assumptions in Lemma 3.6, for any q0 ∈ (2,+∞), there
is a constant β0 > 0, independent of λ ≥ 1, such that

lim
n→∞ sup

y∈R2

∫

B�(y)

|un|q0dx = β0.

Proof. Let ρn = |un|q0 ∈ L1(R2), we immediately see that only the Non-
Vanishing in Lemma 3.4 occurs due to Lemma 3.6. Then, we divide the proof
into intermediate steps.

Step 1: There exists a constant βλ = β(λ) > 0 such that

lim
n→∞ sup

y∈R2

∫

B�(y)

|un|q0dx = βλ.

Suppose, by contradiction, that un → 0 in Ls(R2) for s ∈ (2,+∞). It is
very similar to the proof of Lemma 3.6, we can arrive at a contradiction.

Step 2: Conclusion.
Suppose by contradiction that the uniform control from below of Lq0(R2)-

norm is false. So, for any k ∈ N, k �= 0, there exist λk > 1 and a minimizing
sequence {uk,n} of Υλk,R such that

|uk,n|q0 <
1
k

, definitely.

Then, by a diagonalization argument, for any k ≥ 1, it permits us to find an
increasing sequence {nk} in N and unk

∈ Xλnk
such that

{unk
} ⊂ S(a), Jλnk

,R(unk
) = Υλnk

,R + ok(1) and |unk
|q0 = ok(1).

where ok(1) → 0 as k → +∞. In this situation, we can repeat the proof of
Lemma 3.6 to reach a contradiction, again. The proof of this lemma is finished.

�

At this stage, we are available to verify that the minimizing sequence
{un} ⊂ Xλ in Lemma 3.6 is uniformly bounded in Xλ for some sufficiently
large λ > 1.

Lemma 3.8. Let R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′) and λ ≥ 1 be fixed. Suppose
{un} ⊂ S(a) is a minimizing sequence of Υλ,R for all a > a∗, then there exists
a λ∗ = λ∗(R) > 1 such that the sequence {‖un‖Xλ

} is uniformly bounded in
n ∈ N provided λ > λ∗.

Proof. Although the proof originates from [61, Lemma 3.10], we exhibit the
detailed proofs for the sake of reader. Combining Lemmas 3.6 and 3.7, there
is a constant β0 > 0, independent of λ ≥ 1, such that

lim
n→∞ sup

y∈R2

∫

B1(y)

|un|2dx = β0,

where we have just supposed that � = 1 in Lemma 3.7 for simplicity. Exacting
a subsequence if necessary, there exists a sequence {yn} ⊂ R

2 such that
∫

B1(yn)

|un|2dx =
1
2
β0. (3.11)
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Claim 3.9. The sequence {yn} above is uniformly bounded in n ∈ N.

Otherwise, we could suppose that |yn| → ∞ in the sense of a subsequence.
Define

Ξ1
n � {x ∈ B1(yn) : V (x) < b} and Ξ2

n � {x ∈ B1(yn) : V (x) ≥ b}.

Since the set Ξ � {x ∈ R
2 : V (x) < b} is nonempty and has finite measure,

one concludes that

meas(Ξ1
n) ≤ meas({x ∈ R

2 : |x| ≥ |yn| − 2, V (x) < b}) → 0 as n → ∞.

(3.12)

In view of Lemma 3.6, |un|r with r > 2 is uniformly bounded in n ∈ N, using
(3.12) to get

∫

Ξ1
n

|un|2dx ≤ [meas(Ξ1
n)]

r−2
r |un|2r = on(1)

leading to
∫

Ξ2
n

|un|2dx =
∫

B1(yn)

|un|2dx −
∫

Ξ1
n

|un|2dx =
1
2
β0 + on(1).

Thanks to V (x) ≥ 0 for all x ∈ R
2 by (V1), using the definition of Ξ2

n,
∫

R2
V (x)|un|2dx ≥

∫

Ξ2
n

V (x)|un|2dx ≥ b

∫

Ξ2
n

|un|2dx =
1
2
bβ0 + on(1).

(3.13)

Recalling the proof of Lemma 3.6 again, we have that

{V2(un)} and
{∫

R2
FR(un)dx

}

are uniformly bounded in n ∈ N and λ ≥ 1.

(3.14)

So, as a consequence of (3.13) and (3.14), it holds that

Υλ,R ≥ 1
2

∫

R2
λV (x)|un|2dx − 1

4
V2(un) −

∫

R2
FR(un)dx + on(1)

≥ λbβ0

4
− C + on(1) (3.15)

where the positive constants b, β0 and C are independent of λ ≥ 1. According
to Lemma 3.3, there exists a sufficiently large λ∗ = λ∗(R) > 1 such that (3.15)
is false provided λ > λ∗. Hence, the sequence {yn} ⊂ R

2 appearing in (3.11)
is uniformly bounded in n ∈ N.

Consequently, passing to a subsequence if necessary, we suppose that
yn → y0 in R

2. Taking (3.11) into account, there holds
∫

B2(y0)

|un|2dx ≥ 1
4
β0 > 0. (3.16)

Since {‖un‖Eλ
} is uniformly bounded in n ∈ N by Lemma 3.6, the proof of

this lemma would be done by the following claim
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Claim 3.10. The sequence ‖un‖∗ =
(∫

R2 ln(1 + |x|)u2
ndx

) 1
2 is uniformly bounded

in n ∈ N.

Indeed, we choose a constant δ > 0 large enough to satisfy δ > |y0| + 2.
Moreover, one has

1 + |x − y| ≥ 1 +
|y|
2

≥
√

1 + |y|, ∀x ∈ Bδ(0), ∀y ∈ R
2\B2δ(0).

Due to this choice for δ implying that B2(y0) ⊂ Bδ(0), by means of (3.16),

V1(un) =
∫

R2

(∫

R2
ln(1 + |x − y|)u2

n(x)dx

)

u2
n(y)dy

≥
∫

R2\B2δ(0)

(∫

Bδ(0)

ln(1 + |x − y|)u2
n(x)dx

)

u2
n(y)dy

≥
(∫

Bδ(0)

u2
n(x)dx

)[ ∫

R2\B2δ(0)

ln
(

1 +
|y|
2

)

u2
n(y)dy

]

≥ β0

8

∫

R2\B2δ(0)

ln(1 + |y|)u2
n(y)dy

=
β0

8

(

‖un‖2
∗ −

∫

B2δ(0)

ln(1 + |y|)u2
n(y)dy

)

≥ β0

8
(‖un‖2

∗ − ln(1 + 2δ)a2). (3.17)

On the other hand, adopting (3.14) and Lemma 3.2 again,

0 ≤ γV1(un) ≤ 4ΘR + γV2(un) + 4κ
∫

R2
FR(un)dx + on(1) (3.18)

which together with (3.17) concludes the claim. The proof is completed. �
We now can show the proof of Theorem 3.1 in detail.

Proof of Theorem 3.1. First of all, by Lemma 3.2, we know that the minimum
Υλ,R defined in (3.5) is well-defined for all fixed R > 0, γ ∈ (0, 1), κ ∈ (0, 1),
a > 0 and λ ≥ 1. Secondly, there exists a sequence {un} ⊂ S(a) such that
Jλ,R(un) = Υλ,R +on(1). According to Lemma 3.8, there exist R∗ > 0, γ′ > 0,
a∗ > 0 and λ∗ > 1 such that, for all fixed R > R∗, γ ∈ (0, γ′), a > a∗ and
λ > λ∗, the sequence {‖un‖}Xλ

is uniformly bounded in n ∈ N for every
κ ∈ (0, 1). Let us take Lemma 2.1-(i) into account, passing to a subsequence if
necessary, there is a uR ∈ Xλ such that un ⇀ uR in Xλ, un → uR in Ls(R2)
for each s ∈ [2,+∞) and un → uR a.e. in R

2. So, one immediately concludes
that uR ∈ S(a). Then, as a consequence of Lemma 2.1-(v) and (1.13), it holds
that

lim
n→∞ V2(un) = V2(uR)

and

lim
n→∞

∫

R2
FR(un)dx =

∫

R2
FR(uR)dx.
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Combining the above two facts and the Fatou’s lemma, we have that

Υλ,R ≤ 1
2

∫

R2
[|∇uR|2 + λV (x)|uR|2]dx +

γ

4
V0(uR) − κ

∫

R2
FR(uR)dx

≤ lim inf
n→∞

{
1
2

∫

R2
[|∇un|2 + λV (x)|un|2]dx +

γ

4
V0(un) − κ

∫

R2
FR(un)dx

}

= lim inf
n→∞ Jλ,R(un) = Υλ,R

which indicates that uR is a minimizer of Υλ,R for every R > R∗, κ ∈ (0, 1),
γ ∈ (0, γ′), a > a∗ and λ > λ∗. Thereby, thanks to the Lagrange multiplier
theorem, there is a μR ∈ R such that (uR, μR) is a couple of weak solution to
Problems (3.1)-(3.2).

Finally, to conclude the proof we are going to certify that uR is in fact
positive in the whole R

2. To see why, we recall that (uR, μR) is a couple of weak
solution to Problems (3.1)-(3.2). Owing to (f1), one sees that uR is nonnegative
in R

2. Moreover, (uR, μR) satisfies the equality below

−ΔuR + V̂λ,R(x)uR = γ

[

ln
(

1 +
1
|x|

)

∗ |uR|2
]

uR

+(μR + |μR|)uR + κfR(uR) in R
2,

where

V̂λ,R(x) � λV (x) + γ
[
ln(1 + |x|) ∗ |uR|2] (x) + |μR|, ∀x ∈ R

2.

The following elementary inequality

ln(1 + |x − y|) ≤ ln(1 + |x|) + ln(1 + |y|), ∀x, y ∈ R
2,

implies that

V̂1(x) �
[
ln(1 + | · |) ∗ |uR|2] (x) =

∫

R2
ln(1 + |x − y|)|uR(y)|2 dy

≤ ln(1 + |x|)
∫

R2
|uR(y)|2 dy +

∫

R2
ln(1 + |y|)|uR(y)|2 dy.

By means of the fact that uR ∈ Xλ and |uR|2 = a, there is C > 0 such that

0 ≤ V̂1(x) ≤ a2 ln(1 + |x|) + C, ∀x ∈ R
2,

and so, V̂λ,R ∈ L∞
loc(R

2) for all fixed R > R∗, κ ∈ (0, 1), γ ∈ (0, γ∗), a > a∗

and λ > λ∗. Using the elliptic regularity theory, we know that uR ∈ W 2,s(R2)
for all s ∈ [2,+∞) and

−ΔuR + V̂λ,R(x)uR ≥ 0 in D′(R2).

Since V̂λ,R(x) ≥ 0 for all x ∈ R
2 and uR � 0, we apply the strong maximum

principle developed by Gilbarg and Trundiger [40, Theorem 8.19] to conclude
that uR(x) > 0 for all x ∈ R

2, proving the desired result. Then proof is
completed.
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4. Proofs of the main results

In this section, we address the existence and concentration of positive solutions
to the planar Schrödinger–Poisson equation (1.1) under the mass-constraint
(1.2).

4.1. Preliminary lemmas

First of all, there are some growth conditions for the nonlinearity f and fR

which play crucial roles in this section. It follows from (f1) − (f2) that

lim
s→0+

fR(s)
s

= 0 and lim
s→0+

f(s)
s

= 0. (4.1)

In fact, we are derived from (f1) and (f2) with q > 2 that

0 ≤ lim
s→0+

fR(s)
s

= lim
s→0+

f(s)
s

= lim
s→0+

f(s)
sq−1

sq−2 ≤ f(1) lim
s→0+

sq−2 = 0.

Combining (1.3) and (4.1), given a fixed ε > 0, for every p̄ > 2 and ν > 1,
we are able to search for two constants such that b̃1 = b̃1(p̄, α, ε) > 0 and
b̃2 = b̃2(p̄, α, ε) > 0 satisfying

|f(s)| ≤ ε|s| + b̃|s|p̄−1(e4πνs2 − 1), ∀s ∈ R, (4.2)

and

|F (s)| ≤ ε|s|2 + b̃|s|p̄(e4πνs2 − 1), ∀s ∈ R. (4.3)

Because the nonlinearity f admits the critical exponential growth at in-
finity, we introduce the famous Trudinger-Moser inequality found in [23,54,66].

Lemma 4.1. If α > 0 and u ∈ H1(R2), then
∫

R2
(eα|u|2 − 1)dx < +∞.

Moreover, if |∇u|22 ≤ 1, |u|22 ≤ M < +∞ and α < 4π, then there exists
Kα,M = K(M,α) such that

∫

R2
(eα|u|2 − 1)dx ≤ Kα,M . (4.4)

Next, we recall from Theorem 3.1 that the minimization constant Υλ,R

defined in (3.5) can be achieved by some nontrivial function in Xλ for every
fixed R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ > λ∗. In other words, there
is a function uR ∈ Xλ such that

uR ∈ S(a) and Jλ,R(uR) = Υλ,R,

∀R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ > λ∗. (4.5)

Moreover, there is a μR ∈ R such that the couple (uR, μR) is a solution of
Problems (3.1)-(3.2) for all R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ > λ∗,
where uR(x) > 0 for all x ∈ R

2.
According to the discussions in the Introduction, the reader could observe

that if uR in (4.5) satisfies |uR|∞ ≤ R, then uR is in fact a solution of the
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original Eq. (1.1) with μ = μR, thereby it is available to arrive at the proof of
Theorem 1.1. As a consequence, the foremost objection for us is to take the
L∞-estimate on uR.

For the purpose above, we firstly have the uniform estimate on |∇uR|22
below.

Lemma 4.2. Suppose that V satisfies (V1)− (V3) and f meets (1.3) with (f1)−
(f2). Let uR be given by (4.5) for all R > R∗, a > a∗ and λ > λ∗, then there
exist some κ∗ = κ∗(R) > 0 and γ∗ = γ∗(R) > 0 such that if κ ∈ (0, κ∗) and
γ ∈ (0, γ∗), it holds that |∇uR|22 < 1

2ν2 for all λ > λ∗, where the constant ν > 1
is appearing in (4.2) and (4.3).

Proof. We continue to argue as in Lemma 3.2 to get

Jλ,R(u) ≥ 1
2

∫

R2
|∇u|2 dx − γK0 C

3
2
GNa3

(∫

R2
|∇u|2 dx

) 1
2

−κCGNf(R)a(1−γq)q

Rq−1q

(∫

R2
|∇u|2 dx

) γqq

2

for all u ∈ S(a). Since γqq < 2, taking Young’s inequality into account, there
are two constants c1, c2 > 0, independent of R > R∗ and λ > λ∗, such that

κCGNf(R)a(1−γq)q

Rq−1q

(∫

R2
|∇u|2 dx

) γqq

2

≤ c1

[
κCGNf(R)a(1−γq)q

Rq−1q

] 2
2−γqq

+
1
8

∫

R2
|∇u|2 dx

and

γK0C
3
2
GNa3

(∫

R2
|∇u|2 dx

) 1
2

≤ c2(γK0C
3
2
GNa3)2 +

1
8

∫

R2
|∇u|2 dx.

Therefore, for the minimizer uR of Υλ,R = min
u∈S(a)

Jλ,R(u) in (3.5), we obtain

|∇uR|22 ≤ 4Jλ,R(uR) + 4c1

[
κCGNf(R)a(1−γq)q

Rq−1q

] 2
2−γqq

+ 4c2(γK0C
3
2
GNa3)2,

for all R > R∗ and λ > λ∗. Assuming that

c1

[
κCGNf(R)a(1−γq)q

Rq−1q

] 2
2−γqq

≤ 1
16ν2

and c2(γK0C
3
2
GNa3)2 ≤ 1

16ν2
, (4.6)

and taking advantage of Lemma 3.3 to get

|∇uR|22 ≤ 1
2ν2

, ∀R > R∗ and λ > λ∗.
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Now, we can fix the constant κ∗ = κ∗(R) and γ∗ = γ∗(R) by

κ∗ = min

⎧
⎨

⎩

Rq−1q

CGNf(R)a(1−γq)q

(
1

16ν2c1

) 2−γqq

2

, 1

⎫
⎬

⎭
and

γ∗ = min

{
1

4ν
√

c2K0C
3
2
GNa3

, γ′, 1

}

(4.7)

to meet the requirement. So, the proof is done by the choices of κ∗ and γ∗

above. �

Taking the study made above into account, we are ready to conclude this
section by showing our main estimate for |uR|∞.

Lemma 4.3. Suppose that V satisfies (V1)− (V3) and f meets (1.3) with (f1)−
(f3). Let uR be given by (4.5) for all R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗

and λ > λ∗, then for every fixed κ ∈ (0, κ∗) and γ ∈ (0, γ∗), there exists a
M > 0 independent of R > R∗ and λ > λ∗ such that |uR|∞ ≤ M .

Proof. In order to show the proof clearly, we are going to divide the proof into
several different parts. First of all, we have the following two claims.

Claim 4.4. There is a K1 > 0 independent of R > R∗ and λ > λ∗ such that

|f(uR)|2 ≤ K1, ∀R > R∗, κ ∈ (0, κ∗), γ ∈ (0, γ∗), a > a∗ and λ > λ∗.

Actually, according to |uR|22 = a2 and (4.2), to arrive at the proof of this
claim, it suffices to look for a constant C > 0 independent of R > R∗ and
λ > λ∗ such that |up̄−1

R e4πνu2
R |2 ≤ C for all fixed κ ∈ (0, κ∗), γ ∈ (0, γ∗) and

a > a∗, where p̄ > 2. It then concludes from the Hölder’s inequality together
with (1.16) with l = p̄′ that

∫

R2
|uR|2(p̄−1)e4πνu2

Rdx ≤
(∫

R2
|uR|4(p̄−1)dx

) 1
2

(∫

R2
e8πνu2

Rdx

) 1
2

≤
√

CGN|uR|
(1−γ

p̄′ )p̄′
2

2 |∇uR|
γ

p̄′ p̄′
2

2

(∫

R2
e4πν−1ū2

Rdx

) 1
2

,

where

p̄′ = 4(p̄ − 1) and ūR =
√

2νuR.

Since |ūR|22 = 2ν2a2 is uniformly bounded by (4.6) and |∇ūR|22 = 2ν2|∇uR|22 ≤
1 for all R > R∗ and λ > λ∗ by Lemma 4.2. the claim is done by (4.4).

Claim 4.5. For any fixed R > R∗ and for all a > a∗, γ ∈ (0, γ∗) and κ ∈ (0, κ∗),
then the Lagrange multiplier μR is uniformly bounded with respect to R and
λ. In other words, there exists a constant Γ > 0 independent of R and λ such
that |μR| ≤ Γ for all γ ∈ (0, γ∗), κ ∈ (0, κ∗) and a > a∗.
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Indeed, recalling J ′
λ,R(uR) − μRuR = 0 in X−1

λ , we can combine Lemma
3.3, Lemma 2.1-(iii) and (1.12) with 2 < q < 4 to have that

0 > Υλ,R = Jλ,R(uR)

= Jλ,R(uR) − 1
q

{∫

R2
[|∇uR|2 + λV (x)|uR|2]dx + γV0(uR)

−κ

∫

R2
fR(uR)uR dx − μRa2

}

≥ q − 4
4q

γ[V1(uR) − V2(uR)] +
μR

q
a2 ≥ q − 4

4q
γV1(uR) +

1
4
μRa2,

from where it follows that

μR ≤ 4 − q

qa2
γV1(uR).

According to the definition of uR in Sect. 3, it is the weak limiting, actually
strong limiting, of the minimizing sequence {un} ⊂ S(a) of Υλ,R, then it
follows from the Fatou’s lemma, (1.12) and (3.18) that

μR ≤ 4 − q

qa2
lim inf
n→∞ γV1(un) ≤ 4 − q

qa2

{

γV2(uR) + 4κ
∫

R2
fR(uR)uR dx

}

≤ 4 − q

qa2

{
K0|uR|48

3
+ 4|fR(uR)|2|uR|2

}

≤ 4 − q

qa2

{
K0C

3
2
GN|uR|32|∇uR|2 + 4|fR(uR)|2|uR|2

}
,

where we have applied (2.1) and (1.16) with l = 8
3 to the last inequality. Taking

into account J ′
λ,R(uR) − μRuR = 0 in X−1

λ again, we easily conclude that

μR =
1
a2

{∫

R2
[|∇uR|2 + λV (x)|uR|2]dx + γV0(uR) − κ

∫

R2
fR(uR)uR dx

}

≥ − 1
a2

{

V2(uR) +
∫

R2
fR(uR)uR dx

}

≥ − 1
a2

{
K0|uR|48

3
+ |fR(uR)|2|uR|2

}

≥ − 1
a2

{
K0C

3
2
GN|uR|32|∇uR|2 + |fR(uR)|2|uR|2

}
.

The above two facts together with Lemma 4.2 and Claim 4.4 reveal this claim
immediately.

Secondly, because V (x) ≥ 0 for every x ∈ R
2, we make full use of Lemmas

2.3 and 4.2 jointly with Claim 4.5 to determine a constant Π > 0, independent
of R > R∗ and λ > λ∗, such that the function uR(x) > 0 for all x ∈ R

2 must
satisfy

{−ΔuR + uR ≤ ΠuR + f(uR), in R
2,

uR > 0, in R
2,

(4.8)

Taking advantage of the Lax-Milgram theorem combined with Claim 4.4, there
exists a function wR ∈ H2(R2) ∩ H1(R2) such that it is a solution of the
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problem
{−ΔwR + wR ≤ ΠuR + f(uR), in R

2,
wR > 0, in R

2,
(4.9)

for each R > R∗ and λ > λ∗. With problems (4.8) and (4.9) in hands, we then
take the claim:

Claim 4.6. For all R > R∗ and λ > λ∗, it holds that

0 < uR(x) ≤ wR(x), ∀x ∈ R
2.

In fact, let us fix the test function

φ(x) = (uR − wR)+(x) ∈ H1(R2).

Muitiplying this function φ on both sides of −Δ(uR − wR) + (uR − wR) ≤ 0
in R

2, we shall get the following inequality
∫

R2
[∇(uR − wR)∇φ + (uR − wR)φ]dx ≤ 0.

An elementary computation gives us that
∫

R2
[|∇(uR − wR)+|2 + |(uR − wR)+|2]dx = 0

yielding the claim.
Finally, we are ready to conclude the proof of this lemma. Thanks to

the powerful theorem, c.f. [22, Theorem 9.25], there is K2 > 0 independent of
R > R∗ and λ > λ∗ such that

‖wR‖H2 ≤ K2|fR(uR)|2, ∀R > R∗ and λ > λ∗.

which leads to

‖wR‖H2 ≤ K3, ∀R > R∗ and λ > λ∗,

for some K3 > 0 independent of R > R∗ and λ > λ∗. According to the
continuous embedding H2(R2) ↪→ L∞(R2), there is K4 > 0 independent of
R > R∗ and λ > λ∗ such that

|wR|∞ ≤ K4, ∀R > R∗ and λ > λ∗.

From which, we are derived from Claim 4.6 that

|uR|∞ ≤ M, ∀R > R∗ and λ > λ∗.

Thereby, we finish the proof of this lemma. �

4.2. Proof of Theorem 1.1

According to the above discussions, we derive the proof of Theorem 1.1 by
fixing R > {R∗,M}, because in this case the function uR ∈ S(a) is a positive
solution of Eq. (1.1) with μ = μR for all κ ∈ (0, κ∗), γ ∈ (0, γ∗), a > a∗ and
λ > λ∗. Thereby, the proof is completed.

At this stage, we are going to contemplate the asymptotical behavior of
normalized solutions of Eq. (1.1) obtained in Theorem 1.1 as λ → +∞.
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Before showing the proof of Theorem 1.2, using the same constant R > 0
determined in the proof of Theorem 3.1, we need the variational functionals
below

⎧
⎪⎨

⎪⎩

JΩ(u) =
1
2

∫

Ω

|∇u|2dx +
γ

4
V0|Ω(u) − κ

∫

Ω

F (u)dx,

JΩ,R(u) =
1
2

∫

Ω

|∇u|2dx +
γ

4
V0|Ω(u) − κ

∫

Ω

FR(u)dx,
∀u ∈ H1

0 (Ω),

where the functional V0|Ω : H1
0 (Ω) → R which is defined by V0|Ω = V1|Ω −V2|Ω

with
⎧
⎪⎪⎨

⎪⎪⎩

V1|Ω(u) �
∫

Ω

∫

Ω

ln(1 + |x − y|)u2(x)u2(y)dxdy,

V2|Ω(u) �
∫

Ω

∫

Ω

ln
(

1 +
1

|x − y|
)

u2(x)u2(y)dxdy,
∀u ∈ H1

0 (Ω).

Since meas(Ω) < +∞, there is a constant � > 0 such that Ω ⊂ B�(0) and so

0 ≤ ln(1 + |x − y|) ≤ ln(1 + 2�), ∀x, y ∈ Ω

indicating that V1|Ω is well-defined and of class of C1(H1
0 (Ω), R) endowed with

its usual norm.
Moreover, we define the minimization problems associated with (1.15)

by

ΥΩ,R � inf
u∈SΩ(a)

JΩ,R(u) and ΥΩ � inf
u∈SΩ(a)

JΩ(u)

where

SΩ(a) =
{

u ∈ H1
0 (Ω) :

∫

Ω

u2dx = a2

}

.

Now, we are in a position to present the proof of Theorem 1.2.

4.3. Proof of Theorem 1.2

Let (uλ, μλ) ∈ Xλ × R be a couple of weak solution to Problems (1.1)-(1.2),
choosing a subsequence λn → +∞ as n → ∞, we denote {(uλn

, μλn
)} by a

subsequence of {(uλ, μλ)}. In view of the proofs of Lemmas 4.2 and 4.3, we
know that

sup
n∈N

|∇uλn
|22 ≤ 1

2ν2
and sup

n∈N

|uλn
|∞ ≤ M. (4.10)

Moreover, due to the proof of Lemma 3.8, we conclude that ‖uλn
‖Xλn

is uni-
formly bounded in n ∈ N since we have showed the constant ΘR < 0 in Lemma
3.3 is independent of λ. Going to a subsequence if necessary, there is a u0 ∈ X
such that uλn

⇀ u0 in X, uλn
→ u0 in Ls(R2) for all 2 ≤ s < ∞ by Lemma

2.1-(i) and uλn
→ u0 a.e. in R

2 as n → ∞. Obviously, we have u0 ∈ S(a) since
{uλn

} ⊂ S(a). Recalling Claim 4.5, it permits to suppose that μλn
→ μ0 along

a subsequence. As a consequence, we shall conclude that (u0, μ0) is a couple
of weak solution to Problem (1.15).

Claim 4.7. u0 ≡ 0 in Ωc � R
2\Ω and so u0 ∈ SΩ(a).
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Otherwise, there exists a compact subset Ω̂u0 ⊂ Ωc with dist(Ω̂u0 , ∂Ωc) >

0 such that u0 �= 0 on Ω̂u0 and by Fatou’s lemma

a2 = lim inf
n→∞

∫

R2
u2

λn
dx ≥

∫

Θ̂u0

u0
2dx > 0. (4.11)

Moreover, there exists ε0 > 0 such that V (x) ≥ ε0 for every x ∈ Ω̂u0 by the
assumptions (V1) and (V2). Combining Lemma 3.3, (1.12), (3.18), Claim 4.5
and (4.11), we derive

0 ≥ lim inf
n→∞ Υλn,R = lim inf

n→∞ Jλn,R(uλn
)

= lim inf
n→∞

{

Jλn,R(uλn
) − 1

q

{ ∫

R2
[|∇uλn

|2 + λnV (x)|uλn
|2]dx + γV0(uλn

)

− κ

∫

R2
fR(uλn

)uλn
dx − μλn

a2

}}

≥ q − 2
2q

ε0

( ∫

Θ̂u0

u2
0dx

)

lim inf
n→∞ λn + lim inf

n→∞

[
q − 4
4q

V1(uλn
) +

1
q
μλn

a2

]

= +∞
which is impossible. Consequently, u0 ∈ H1

0 (Ω) by the fact that ∂Ω is smooth.

Claim 4.8. JΩ(u0) = ΥΩ.

Indeed, since (4.10) gives us that FR = F and then JΩ,R = JΩ. Obviously,
SΩ(a) ⊂ S(a) and so uλn

→ u0 in Ls(R2) for each 2 ≤ s < ∞ and the Fatou’s
lemma provide us that

ΥΩ ≥ lim inf
n→∞ Jλn,R(uλn

)

≥ lim inf
n→∞

{
1
2

∫

R2
|∇uλn

|2dx +
γ

4
V0(uλn

) − κ

∫

R2
FR(uλn

)dx

}

≥ JΩ,R(u0) = JΩ(u0) ≥ ΥΩ

indicating that uλn
→ u0 in X and JΩ(u0) = ΥΩ.

Finally, we shall prove that J ′
Ω(u0) − μ0u0 = 0 in (H1

0 (Ω))−1. To see it,
for every ψ ∈ C∞

0 (Ω), it follows from Lemma 2.1-(iii) as well as Lemma 2.2
that

V ′
1(uλn

)[ψ] − V ′
1(u0)[ψ] = 4B1(u2

λn
, unψ) − 4B1(u2

0, u0ψ)

= 4B1(u2
λn

, (un − u0)ψ) + 4B1(u2
λn

− u2
0, u0ψ)

= on(1).

Using Lemma 2.1-(i) and (iv),

|V ′
2(uλn

)[ψ] − V ′
2(u0)[ψ]| ≤ 4

∣
∣B2(u2

λn
, (un − u0)ψ)

∣
∣ + 4

∣
∣B2(u2

λn
− u2

0, u0ψ)
∣
∣

≤ 4K0|uλn
|28
3
|(un − u0)ψ|28

3
+ 4K0|u2

λn
− u2

0|28
3
|u0| 8

3
|ψ| 8

3

= on(1).
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As a direct byproduct of the above two facts and

lim
n→∞

{

J ′
λn,R(uλn

)[ψ] − μλn

∫

R2
uλn

ψdx

}

= 0, ∀ψ ∈ C∞
0 (Ω),

we can arrive at the desired result. The proof is completed.
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