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ABSTRACT. We investigate the existence and concentration of normalized solutions for a p-Laplacian
problem with logarithmic nonlinearity of type

{ —eP Apu+ V(@) |ulP%u = MulP"u + |ul”*ulog |u|” in RY,

lulPdz = aPe™

where a,e > 0, A € R is known as the Lagrange multiplier, A,- = div(]V - [P72V-) denotes the usual
p-Laplacian operator with 2 < p < N and V € C°(R") is the potential which satisfies some suitable
assumptions. We prove that the number of positive solutions depends on the profile of V' and each
solution concentrates around its corresponding global minimum point of V' in the semiclassical limit
when € — 0" using variational method. Moreover, we also get the existence of normalized solutions
for some logarithmic p-Laplacian equations involving mass-supercritical nonlinearities.

CONTENTS
1. Introduction and main results 1
2. Variational setting and preliminaries 8
3. The semiclassical problem 14
4. The autonomous problem 26
4.1. The LP-subcritical case 26
4.2. The LP-supercritical case 28
5. Final comments 29
Appendix A. Some technical stuff 30
References 33

1. INTRODUCTION AND MAIN RESULTS

In this article, we aim to establish the existence and concentrating behavior of nontrivial solutions
for the following p-Laplacian equations with logarithmic nonlinearity of type

(1.1) —ePApu 4 V() |[uP~?u = MulP~2u + |[u[P~2ulog [ulP in RY,

under the constraint
(1.2) / lulPdz = aPe”,
RN

where a,e > 0, A € R is known as the Lagrange multiplier, A,- = div(|V - |P72V:) denotes the usual

p-Laplacian operator with 2 < p < N and V € C°(R") is the potential which satisfies
(V1) VeC'RN) and —oo < Vo= inf V(z) < Voo = lim V(z) < +oo;
z€RN |z|—+o0

(V) V7H{Vo)) = {a!, 22, ... 2!} with 2' = 0 and 2% # 27 if i # j for all 4,5 € {1,2,---,1}.
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In the case p = 2, Eq. (1.1) also comes from the study of solitary waves for the following nonlinear
Schrédinger equation

2

ot
where i is the imaginary unit, ¥ : (0,00) x RN — C, V : RN — R is the potential, h(e!?2) = e%h(z)
for z € C and 6 € R. It is not difficult to see that any solution ¢ of Eq. (1.3) with the Cauchy initial
function (0, z) preserves the L?-mass, namely

/ |¢(t,x)]2dx:/ ]1/1(0,w)|2d:1;, vt € (0, 00).
RN N

R
Actually, Eq. (1.3) is usually adopted in the study of nonlinear optics and Bose-Einstein condensates,
where 1 describes the state of the condensate and the L?-mass is the total number of atoms, see
e.g. [31,51,60]. One significant motivation associated with Eq. (1.3) is the search for its standing
wave solutions. The standing wave is a solution of the form (¢, z) = e *u(z), where A € R and
u: RN = R is a time-independent function that satisfies the nonlinear elliptic equation

(1.4) —Au+V(z)u = u+ g(u) in RY,
with g(u) = h(|ul?)u.

Usually, there are two directions to the study of standing waves of the Schrédinger equation (1.4).
On the one hand, one can choose the frequency A to be fixed and look for the existence of nontrivial

solutions for it by investigating critical points of the variational functional Jy : H'(RY) — R defined
by

(1.3) + AY — V(z)h + h(J1[?)h = 0 in (0,00) x RY,

T(u) = ;/}RN (1Vul’ + (V(2) - Vuf?) dx—/ G(u)da,

RN
where G(t) = fg g(s)ds. When g(t) = tlogt?, we refer to the article [62] and its references therein to
acquaint the significant physical applications in quantum mechanics, quantum optics, nuclear physics,
transport and diffusion phenomena, open quantum systems, effective quantum gravity, superfluidity
theory and Bose-Einstein condensation for Eq. (1.4). Owing to the logarithmic type nonlinearity, it
presents some challenging mathematical problems. For instance, the associated variational functional
is not C'-smooth since one can find a function below

(2N log(|z]) 7t |2 >3,
u(z) = { 0, z] <2,

such that u € H'(RY), however it holds that [y u*logu?dz = —oc.
The initial work to deal with this difficulty is due to Cazenave in [16], where the author considered
the following logarithmic Schrédinger equation

iu; + Au+ulogu® =0, (t,z) € R x RY,

in the space W £ {u € H'(R") : [ [u*logu?|dz < oo} with a suitable Luxemburg norm. Speaking
it more clearly, by introducing the N-function

—s2log s?, 0<s<e 3,
(1.5) Als) = { 352 +4e3s—e 6, s>e73,

||u||A:inf{)\>O:/ A<M>d$§1},
v U

and (|| [| g1 @~y + | - [ 4a) as the Luxemburg norm, then the author obtained the existence of infinitely
many critical points for the variational functional

1
J(u) = 2/RN |Vu\2d:1; — /]RN u?loguldz, uwe W,
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on the set ¥ £ {u € W : [pn u?dz = 1}. Very recently, Alves and his collaborators [3,4,8] have used
the decomposition

- - 1
(1.6) Fy(s) — Fi(s) = 552 logs?, s € R,
where,
R 0, s <0,
Fi(s) = - 2]og 2, 0<s<9,
—582[log52+3] +2(5$—%52, s>,
and
2 0 |s|] < ¢
F S) = ’ = Uy
24s) { 3ls1*log (|s|?/6°) + 28| — s> — 382, |s| =4,

for some sufficiently small 4 > 0, and introduced the Orlicz space

LE(RN) — {u e LL (RY): / o <|1)f’) dr < +o0o for some \ > O} ,
RN

then studied some different types of logarithmic Schrédinger equation in the space H'(RM)N L1 (RY).
Of course, there are various techniques in the literature, see e.g. [5-7, 18,19, 30, 34,43, 46,50,55] and
the references therein even if these ones are far to be exhaustive, to find some other interesting
works on logarithmic Schrodinger equations.

On the other hand, one can deal with the case A € R is unknown. In this situation, A € R appears
as a Lagrange multiplier and the L?-norm of solution is prescribed. From the physical point of view,
the research holds particular significance as it accounts for the conservation of mass. Additionally,
it provides valuable insights into the dynamic properties of standing waves in Eq. (1.4), such as
stability or instability [15,17]. In [35], combining a minimax approach and compactness argument,
Jenajean contemplated the existence of solutions for the following Schrodinger problem

—Au+ M = g(u) in RY,
(1.7) / lu?dz = a* > 0.
RN

Later on, there are some complements and generalizations in [37]. In [48], for g(t) = pu[t|92t + [¢t[P~%¢
with 2 < ¢ <2+ % < p < 2%, Soave considered the existence of solutions for problem (1.7), where
2% = % if N > 3 and 2* = oo if N = 2. For this type of combined nonlinearities, Soave [49] proved
the existence of ground state and excited solutions when p = 2*. For more interesting results for
problem (1.7), we refer the reader to [13,36,38,40,56] and the references therein.

In reality, the p-Laplacian operator in Eq. (1.1) appears in many nonlinear problems, see [29,33,42]
for example, in fluid dynamics, the shear stress 7 combined with the velocity gradient Vu of the
fluid are corresponding to the manner that

7 = r|Vu|P 2 Vu.

The fluid is dilatant, pseudoplastic or Newtonian when p > 2, p < 2 or p = 2, respectively. Therefore,
the equation governing the motion of the fluid includes the p-Laplacian. Moreover, such an operator
also appears in the study of flows through porous media (when p = 3/2), nonlinear elasticity (when
p > 2) and glaciology (when p € (1,4/3]).

In light of the physical background of p-Laplacian operator, motivated by the prescribed L?-norm
solution for Eq. (1.4), it is interesting to investigate the p-Laplacian equation under the LP-mass
constraint and regard the frequency A € R as a Lagrange multiplier. Up to the best knowledge of us,
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there exist very few articles on this topic. Wang et al. [53] established the existence of solutions for
the problem

—Apu+ [ulP2u = Mu + [u)* "t in RY,
lul?dx = a® > 0.
RN

N+2

when a > 0 is sufficiently small, where max {1, N+2} <p< N and s e ( NP p*) with p* = Np_

N—-p*
In [61], the authors studied the p-Laplacian equation with a LP-norm constraint

—Apu = MuP~2u + plu|?2u + g(u) in RY,

|ulPdz = aP,
RN

where 1 <p<qg<p=p+ % and g € C°(R,R) is odd and LP-supercritical. For the suitable j, they
obtained several existence results including the existence of infinitely many solutions by Schwarz
rearrangement technique, Ekeland variational principle and the Fountain theorem. There exist some
other similar results for the p-Laplacian equation prescribed a LP-norm, see e.g. [24,25,59].

Whereas, as far as we are concerned, there seems no related results for the p-Laplacian equation
with a logarithmic nonlinearity under the LP-mass constraint, and so one of the aims in the present
article is to fulfill the blank. Motivated by [2,8,10], we shall derive the multiplicity and concentrating
behavior of positive solutions for a logarithmic p-Laplacian equation (1.1) under the constraint (1.2).

Now, we can state the first main result as follows.

Theorem 1.1. Let 2 < p < N and (V1) — (Va). Then, there ezists a £* > 0 such that (1.1)-(1.2)
possesses at least | different couples of weak solutions (ué, )\‘é) € WIP(RN) x R for all £ € (0,&*) with
ué(:z:) > 0 for every z € RY and X < 0, where j € {1,2,---,1}. Moreover, each u; has a mazimum
point 22 € RN such that V(z1) — V(29) = Vi as e — 0F. Besides, there exist two constants Cg >0
and c(j) > 0 satisfying

ug §C’gexp(—céx_z |>

£
for all e € (0,e*) and x € RV,

Remark 1.2. A recent work by Alves and Ji we would like to mention here is the paper [8], where
the authors contemplated the following Schrodinger problem with logarithmic nonlinearity

—&2Au+ V(z)u = Mu + ulog |ul? in RY,
(1.8) u?dz = a®e™.
RN
Here the potential V' satisfies the assumptions
(V1) VeC'RY)and -1 <Vp = inf V(z) < Voo = lim V(z) < +o0;
TERN |z| =00

(Vo) M ={z e RN : V(z) =V} and Ms = {2z € RN : dist(z, M) < §} for some § > 0.

They derived that, given a 6 > 0, there exist @ > 0 and £ > 0 such that problem (1.8) possesses at
lease catar, (M) couples of solutions for all a > a and ¢ € (0,€), where the concentration has also
been studied but the property of exponential decay of solutions is absent. In contrast to it, there are
three main contributions in the present paper which are exhibited below

(I) We just suppose that Vo > —oo in (V;) instead of Vo > —1 in (V});

(IT) There is no restriction on the mass @ > 0 in Theorem 1.1, while the results in [8] hold true
provided that the mass a > 0 is sufficiently large;
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(IIT) The p-Laplacian operator appearing in Eq. (1.1) is non-homogenous which reveals that the
calculations would be more complicated and technical. For instance, as a counterpart of (1.6), it is
nontrivial to construct some functions F} and Fy such that

1
(1.9) Fy(s) — Fi(s) = I;]s]p log |s|P, Vs € R.

Moreover, we shall make some efforts to investigate the property of exponential decay of obtained
solutions which should be regarded as a replenishment. As a consequence, we could never repeat the
approaches adopted in [8] to conclude the proof of Theorem 1.1.

We note that the considerations of Eq. (1.1) can date back to the studies of semiclassical problems
for Schrodinger equations, the reader could refer to [12,14] for some detailed survey on such topic
which comes from the pioneering research work by Floer and Weinstein [32]. Soon afterwards, this
topic on different types of Schrodinger equations has been investigated extensively under several
distinct hypotheses on the potential and the nonlinearity, see e.g. [11,22,23,27,28,39,44,54] and the
references therein. Hence, it permits us to follow the effective procedures in the literature to handle
the p-Laplacian problems with 2 < p < N and logarithmic nonlinearity in this paper.

Performing the scaling v(x) = u(ex), one could observe that, to consider (1.1)-(1.2), it is equivalent
to study the problem

— A+ V(ex) P2 = AMoP~2v 4 [vP2vlog [u[P in RY,

lv[Pdx = aP.
RN

(1.10)

In other words, if the couple (v, \) is a (weak) solution of Problem (1.10), then (u, A) is a solution
of (1.1)-(1.2), where v(x) = u(ez) for all x € RY. Let v = ow with some o > 0, we shall observe
that the couple (v, \) is a weak solution to Problem (1.10) if and only if (w, \) is a weak solution to
problem below

—Ayw + [V(ex) —log o?]|wP~?w = Aw[P~2w + |w|P~%wlog |w|P in RY,
(L.11) |lwlPdx = aPo™P.
RN
At this stage, we know that if one wants to study problems (1.1)-(1.2), it would be enough to deal
with Problem (1.11). Since o > 0 is arbitrary, we are able to find a sufficiently small o > 0 such that

V(exz) —logo? > —1, Yz € RY,
since Vp = ian V(z) > —oo by (V1) and aPo™P > a, where a > 0 is a fixed constant.
zeR
Owing to the above discussions, to deduce Theorem 1.1, we just need to prove the following result.

Theorem 1.3. Let 2 < p < N and (Vi) — (Vo). Then, there exist a* > 0 and e* > 0 such that
(1.1)-(1.2) has at least | different couples of weak solutions (ul, X) € WEP(RN) x R for all a > a*
and ¢ € (0,£%) with ul(z) > 0 for every x € RN and M < 0, where j € {1,2,--- ,1}. Moreover, each
ul admits a mazimum point z2 € RN such that V(z1) — V(27) = Vg as e — 0F. Besides, there erist
two constants Cg >0 and cé > 0 satisfying

|z — 2|

ugSC’gexp(—cg) 5 >

for all e € (0,e*) and x € RN,

Now, we shall turn to investigate the existence of normalized solutions for logarithmic p-Laplacian
equations with mass subcritical and supercritical nonlinearities. First of all, we recall the Gagliardo-
Nirenberg inequality (see e.g. [1,57]), for every p < s < p*, there exists an optimal constant Cp s > 0



6 L.J. SHEN AND M. SQUASSINA

depending only on N, p and s such that

s 1_ S

(1.12) Jallzeey < Covpsl IVl gl 5 e, Y € WIP(RY),
where

1 1 N(s—
(1.13) B AN ( _ ) _Ns-p)

p s bs
Due to (1.12), one observes that

2
5—npt
p=p+ N

is the LP-critical exponent with respect to p-Laplacian equation. Indeed, we focus on establishing
the existence and multiplicity of positive solutions for the following p-Laplacian type problems

—Apu = AMulP2u 4 |[uP?ulog [ul? + plu|f?u in RY,
|u|Pdz = aP,
RN
where a > 0, > 0 and ¢ € (p,p) U (p, p*).
In order to contemplate the Problem (1.14) involving a class of pure-power type mass subcritical

and supercritical nonlinearities, we shall continue to establish the existence of global minimizer of a
minimization problem, namely

(1.14)

m(a) = inf J(u),

ueS(a)
where the variational functional J : X — R is given by
1 1
(1.15) () = / (Vul? + [uf?) dz — / (ufP log |ulPdz — “/ ufdz
P JrN P JrN q JRN

and the constrained set

S(a) = {ueX:/RN |uypdx—ap}.

Here a > 0 and the space X can be found in Section 2 below.
The main results for the Problem (1.14) involving mass-subcritical nonlinearities can be stated as
follows.

Theorem 1.4. Suppose that 2 <p < N, u>0 and p < g < p. Then, there is an a, > 0 such that,
for all fizred a > ax, m(a) admits a minimizer u € S(a) which is positive and radially symmetric and
decreasing in r = |x|. Moreover, there is a A € R such that (u,\) € X x R solves Problem (1.14).

Remark 1.5. It should be stressed here that Theorem 1.4 partially generalizes [47, Theorem 1.1].
Nevertheless, one could never simply repeat the arguments explored in it to arrive at our result since
it needs some efforts to construct a suitable N-function like (1.5) in the p-Laplacian setting. In order
to avoid this obstacle, we continue to make use of the decomposition in (1.9) which should be regard
as one of novelties in this article. Whereas, the biggest challenge in the proof of Theorem 1.4 is the
lack of compactness. Explaining it more clearly, the imbedding W, — L? (]RN ) in [47] is compact,
see e.g. [16, Proposition 3.1], but we indeed can not conclude the compact imbedding X, < LP(RY)
in advance. To overcome this difficulty, we shall introduce some new analytic tricks to recover the
desired compactness, see Lemma 4.4 for instance. Moreover, the reader would observe that the case
i =0 in Theorem 1.4 acts as a special one of Theorem 3.1 below. Alternatively, we successfully put
forward a totally different argument to look for a minimizer of m(a).

Finally, we begin paying attention to the case p + % < q < p* which leads to the Problem (1.14)
a mass-supercritical one and prove the following result.
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Theorem 1.6. Suppose that 2 <p < N and p + %2 < q < p*, there exist a* > 0 and p* > 0 such
that, for all a > a* and p € (0, u*), Problem (1.14) has a couple of weak solution (u*,\*) € X xR
with w*(x) > 0 for all v € RN,
N
Given a u € S(a), then u,(-) £ t»
calculations

u(t-) for all t > 0 and hence, it is elementary to arrive at the

P P(1-N1 1 a_
J(ug) = t/ |VulPdz + a1~ Nlogt) _ / |ul? log |u|Pdx — BtN(Z 1> / lu|fdx — —oc0
D JrN p D JrN q RN

as t — +o0o which indicates that m(a) = —oo for all a > 0. To get around this obstacle, in a similar
spirit of [13], one may depend on the following Pohozaev manifold

P(a) ={u € S(a) : P(u) =0},
where the variational functional P : S(a) — R is defined by

N 1 1
P(u) = / |VulPde — —aP — uN < - ) / |u|?dx.
RN p P q) JrN

According to the discussions in Section 2 below, we can conclude that P is a natural constraint since
P(u) = 0 provided that v € X is a nontrivial weak solution of the first equation in Problem (1.14).
Unfortunately, we fail to argue as [47] to consider the following minimization problem

myp(a) = inf J(u

pla) = inf J(w)

since it seems impossible to get the compactness of its corresponding minimizing sequence. Actually,
we even cannot make sure that mp(a) < 0. Thereby, it differs evidently from the counterparts in [47].
Besides, we also try to study the following problem

mE(a) = J(u)

inf
ueS(a)m{HVu||Lp(RN)<R}
combined with the Ekeland variational principle. Although one can deduce that mz,z(a) < 0 for some
suitable R > 0, the absence of the monotone property with respect to mp(a) results in the lack of
compactness and it is still hard to show that mz,z(a) can be attained.
In consideration of the explanations exhibited above, motivated by the ideas introduced in [9], we

shall rely heavily on the so-called truncation argument. Let us introduce it step by step. For every
2
R >0and p < g <p+ %, we define the auxiliary function fr : R — R given by

D 1 <R,
Jr() = { RITA2E, [t > R.

Using the function fr, we then contemplate the following auxiliary problem

—Apu = Mul 2w+ |ufulog [u? + pfr(u) in RY,
(1.16)

|ulPdx = aP,
RN

whose energy functional Jgr : X — R is given by

1 1

Jr(u) = / (IVul? + |ul?) dx — / |ul? log |u|Pdx — ,u/ Fr(u)dz,

D JRrN D JrN RN
where and in the sequel Fr(t) = f(f fr(s)ds. Due to the definition of fr, one has that
(1.17) |fr(t)] < RITUHT1 Vvt € R.

When the constant R > 0 is fixed, it follows from (1.17) that fr has a LP-subcritical growth because
p<qg<p+ %. In other words, adopting Theorem 1.4, we immediately have the results below.
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Corollary 1.7. Suppose that2 <p < N, u>0andp<qg<p+ %. Then, for every fired R > 0,
there is an a* > 0 independent of R and p such that, for all fived a > a*, Problem (1.16) admits a
couple of weak solution (uh,\5) € X X R with u(z) > 0 for all x € RY.

With Corollary 1.7 in hands, the reader is invited to see that if uz € X is a solution of Problem
(1.16) with |u}|eo < R, then u} is a solution for Problem (1.14). Have this in mind, our main goal
is to deduce that given an R > 0, there are ¢* > 0 (independent of R and p) and p* = p*(R) > 0
such that if @ > ¢* and p € (0, ), then |uh]ec < R.

We remark that, d’Avenia, Montefusco and Squassina [18] handled the existence of infinitely many
solutions for a class of logarithmic Schrédinger equations. The authors pointed out their multiplicity
results are also adapted, using [21], to the following logarithmic p-Laplacian equation

(1.18) —Apu = MulP2u + [u|P2ulog [ulP, u € WIP(R™),

where A € R is a fixed constant. On the other hand here we mainly focus on existence of families of
solutions concentrating around local minima of V in the semiclassical limit ¢ — 0.

Again the results in Theorems 1.3, 1.4 and 1.6 are new under the p-Laplacian settings with the
logarithmic nonlinearity. The striking novelty is the correct setting of functional space in which we
can treat the problems variationally. Unfortunately, we cannot deal with the case 1 < p < 2 so far
ant it remains open, see Lemma 2.2 below. In addition, there are some other technical calculations
due to the p-Laplacian operator in the proofs of the main results.

The outline of the paper is organized as follows. In Section 2, we mainly exhibit some preliminary
results. Sections 3 and 4 are devoted to the non-autonomous and autonomous logarithmic p-Laplacian
equations, respectively. Finally, there are some further comments in Section 5.

Notations. From now on in this paper, otherwise mentioned, we use the following notations:

C,(C4,(Cs, ... denote any positive constant, whose value is not relevant.

Let (Z,| - ||z) be a Banach space with its dual space (Z*,] - || z+).

| - |p denotes the usual norm of the Lebesgue measurable space in RY, for all p € [1, +oc].
on(1) denotes the real sequence with 0,(1) — 0 as n — +oc.

“— 7 and “ — 7 stand for the strong and weak convergence in the related function spaces,
respectively.

2. VARIATIONAL SETTING AND PRELIMINARIES

In this section, we would like to recommend some preliminary results. First of all, let us introduce
some fundamental concepts and properties concerning the Orlicz spaces. For the more details, please
refer to [45] for example.

Definition 2.1. An N-function is a continuous function ® : R — [0, +00) that satisfies the following
conditions:

(i) ® is a convex and even function;
(ii) ®(t) =0<=t=0;
(iii) lim 22 = 0 and lim 2 = 4o0.
t—0 t—o0

We say that an N-function ® satisfies the Ag-condition, denoted by ® € (Ay), if
D(2t) < kD(t), Vt > to,

for some constants £ > 0 and ty > 0.
The conjugate function ® associated with @ is obtained through the Legendre’s transformation,
defined as
P(s) = r{1>aox{st — ®(t)}, fors > 0.
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It can be shown that that ® is also an N-function. The functions ® and ® are mutually complementary

that is, ® = ®.
For an open set Q C RV, we define the Orlicz space associated with the N-function ® as follows

|ul

L?(Q) = {u €L (Q): / ) (}\) dr < 400, for some \ > O} )
Q
which is a Banach space endowed with the Luxemburg norm given by

HuH@—inf{)\>0:/@(M)dxgl}.
Q A

Associated with the Orlicz Spaces, there also holds the Holder and Young type inequalities, namely
st < d(t) + B(s), Vs,t>0
/ uvdx
Q

The space L*(0) is reflexive and separable provided that ®, e (Ag). Moreover, the Ag-condition
implies that

and
< 2||ulls|[v]| g, for Yu € L*(Q) and Yo € L*(Q).

L%(Q) = {u eIl () /Qfl>(|u\)dx < +oo}
and
ty — 1 in L®(Q) (:>/<I>(|un—u\)d:n—>0.
Q

We then recall an significant relation involving N-functions that will be adopted later. Let ® be an
N-function of C! class and @ is its conjugate function. Suppose that

@' (t)t
(2.1) L<l< 55

then @, ® € (Ay). Finally, we consider the functions
£o(t) = min{t', t™} and &, (t) = max{t',t™}, t > 0,
it is possible to verify that, using (2.1), the function ® satisfies the inequality below

<m, t#0,

(2.2) o ([[ulle) < /RN O(u) <& (lulls), Vu € LP(Q).
Inspired by [3,4,8], we define the functions F} and F» as follows
Fl(_8)7 s < 07
Fi(s) = —%85" log sP, 0<s<(p—1)f,
—%sp[log ((p — 1)5)p +p+ 1] + posP~1 — ﬁ((p — 1)5)p, s> (p—1)6,
and

F<s>—{°’ 1 5| < (p - 1)5,
290 = Lsfplog (|spP/((p — 1DOY) +pols ™ — Y slp — —Ls((p— 187, |s| = (0 — 1)5,

where § > 0 is sufficiently small but fixed, then we reach the decomposition (1.9). Moreover, F; and
Fy satisfy the following properties:
(P1) Fy is even with F{(s)s > 0 and Fj(s) > 0 for all s € R. Furthermore, F; € C*(R,R) is convex
if 6 =~ 0T;
(P2) Fy € CHR,R) NC?((4,+00),R) and for each ¢ € (p,p*), there exists a C; > 0 such that

|F5(s)| < Cqls|T™!, VseR;
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(P3) s— I;%ESR is a nondecreasing function for s > 0 and a strictly increasing function for s > d;
o Fy(s)
(P4) sll{go 53_1 -

As a counterpart of the results explored in [3,4,8], we conclude the following result which is
nontrivial in contrast to the cited papers.

Lemma 2.2. The function Fy is an N-function. Moreover, if 2 < p < N, it holds that F1, Fl € (Ag).

Proof. Exploiting some elementary calculations, one could easily certify that Fy satisfies (I)-(III) of
Definition 2.1. To arrive at the proof, we shall verify that F satisfies a similar relation in (2.1) and
so it reveals that Fy, F} € (Ag). Firstly, we see that

Fi(s) = —(1+ log sP)sP~ 1, 0<s<(p—1)d,
7= —gp-1 [log ((p — 1)5)p +p+ 1] +p(p — 1)dsP~2, s> (p—1)0.
Next, we shall analyze the cases 0 < s < (p —1)0 and s > (p — 1)d separately.
Case 1. 0 < s < (p—1)d.

In this case, it is simple to calculate that
F|(s)s 1
Fi(s) -P log s’
which indicates that there is an {1 > 1 such that

F! 1
1<11§71(S)S§mlé sup (P+ )Sp,
Fl(S) 0<s<d log s

for some sufficiently small § > 0.
Case 2. s > (p — 1)6.
In this case, we continue to calculate that

Fl(s)s —sP[log ((p—1)8)" + p+ 1] + p(p — 1)dsP~1

Fi(s) _%Sp[log (= 1)5);; +p+1] +pdspt - p(pl—l) ((h— 1)5)1?

From which, we derive that sup 1;{1((53))8 < p since for all s > (p — 1), there holds
5>(p—1)d

F(s)s _ —sP[log ((p — 1)6)" +p+ 1] +p(p— 1)ds* L + [posP~L — -1 ((p — 1)0)"]

Fi(s) — —%sl’[log ((p - 1)5)p +p+ 1] + pdsp—1 — p(pl_l) ((p — 1)(5)p

Obviously, one can deduce that

. Fl(s)s F|(s)s
1 "~ = pand =L
S—Hi-noo Fi(s) bt Fi(s)

>p—1, Vs >0,

and so we obtain

F|(s)s
—1 < inf =22727,
b =0 i (s)
The last inequality together with p > 2 guarantees the existence of an [ € (1,2) such that

F|(s)s
1<l< =
T Fi(s)

Since F} is an even function, then the inequality holds true for any s # 0. The proof is completed. [J

<p, Vs > 0.
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Replacing ® and ©Q in the above discussions with F; and RY, respectively, we conclude the Orlicz
Space L1 (RY) and it is standard to prove the following result.

Corollary 2.3. The functional © : L*1(RY) — R given by u — [pn Fi(u)dz is of class C* (L™ (RY))
with

O (u)v = / F{(u)vdz, Yu,v € L'(RY),
RN
where L1 (RN) denotes the Orlicz space associated with Iy endowed with the Laremburg norm || - || .

In the sequel, in order to avoid the points u € WHP(RN) that satisfy Fy(u) ¢ L'(R"Y), we should
consider the work space X = W1P(RY) N L1 (RY) throughout the paper equipped with the norm

=0 ey + 1 a2

where || -[[y1.»(rvy denotes the usual norm in WHP(RY). Moreover, we denote the radially symmetric
subsequence of X by X,, namely X, = {u € X : u(z) = u(|z|)} with the norm || - ||.

With the space X and (1.9) in hands, we can obtain the following Brézis-Lieb type lemma in the
logarithmic setting.

Lemma 2.4. Let {u,} be a bounded sequence in X such that u, — u a.e. in RY and {|u,|P log |u,|P}
is a bounded sequence in Ll(]RN). Then, up to a subsequence if necessary,

lim (|un|?log |un P — |uy — ulP log |u, — ulP) dx = / |ulP log |ulPdz.
n—o0 RN RN

Proof. Recalling (1.9), one has that
1
F2(un) - Fl(un) = §|un|p log |un|p
Since {u,} is a bounded sequence in X, by property-(P2), it follows from [58, Lemma 1.32] that

lim [Fa(un) — Fo(un, — u)]de = Fy(u)dz.

Similarly, we easily conclude that

lim [F1(upn) — F1(up — u)]de = Fy(u)dz.

n—oo RN RN

So, we can finish the proof of the lemma. O

Next, we shall introduce the Pohozaev identity for a class of logarithmic p-Laplacian equations in
R as follows.

Theorem 2.5. Let 2 <p < N. Suppose u € X to be a nontrivial weak solution of
(2.3) —Apu = AMulP2u 4 [uP?ulog [ul? + plu|?*u in RY,

where A\, u € R are constants and p < q < p*. Then

N 1 1
(2.4) / |VulPdr = / |ulPdz + pN < - ) / |u|?dx.
RN D JrN p q/) JrN

Moreover, if in addition u(z) > 0 for all z € RN, then u(x) > 0 for all z € RY.

Proof. The proof is divided into the following three steps.

Step 1. u € L®(RN) N CLT(RY) for some 7 € (0,1).

loc
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We start by assuming that v > 0. For all L > 1, define u;, = min{u, L}. Taking ¢) = u’ZpH eX
with k£ > 0 as a test function in (2.3), we obtain

(2.5) / IVulP2VuV (ubN T de = /]RN [F5(u) — Fi(u) + (A — D]’ 2u + plu|?2u]uf? da.
It is easy to observe that
kp+1
p—2 kp+1 _p k+1)p
/R R R /RN IV (ur)FH P,

(2.6)
]u\p2uulzp+1dx2/ |(up)* Tt Pde.
RN

RN
Adopting property-(P;) and property-(P2) with ¢ = ¢, there holds
(2.7) Fy(u)u — Fi(w)u + Aul” + plul? < (Cq + [N + ) |ul? £ Corp
Without loss of generality, we shall suppose that |u| > 1. Combining (2.5), (2.6) and (2.7), we have

P
E3

P
(a0 ) < o) v, < o Canll+ 1P [ Juft?aa

RN

ul? if |ul > 1.

9P

(2.8) < CpCyrplk+1)P < / |uchzx> ’ ( / |u|(k+1)qdaz>q
RN RN

Letting L — 400 in (2.8), we arrive at

L P
%

(/ ‘UL| (k+1) p*> P < Cp*Cq7/\,u(k + l)p’]r(u) </ ’u‘(k-‘rl)qu) q
RN RN

which is equivalent to

1 L
(2.9) (/ Iul(’““)”*) T Ot 1)41(/ |u(k+1)qu> e
RN RN

where the constant C\ = C}.Cy \  [T(u)]P > 0 is independent of k. Let k = 0 in (2.9), it becomes

1 1

qw q

</ yu\W) gc;(/ yu\qu> ,
RN RN

where @ = p*/q > 1. For k + 1 = @™ with m € NT in (2.9), it holds that

1

1
m+1 wmtls 1 m_ m wMq
</ [ul® "dﬂf) < OF" wh u[*"da )
RN RN

From it, proceeding this iteration procedure m times and multiplying these m + 1 formulas,

1 1

m41 = tlo i moj a

=" dw < 0T T ul%da ) .
RN RN

Since > 2%, w] = Zrand 3 7%, w],] = ﬁ, then we could take the limit as m — 400 to conclude

that v € L>(RY). When u changes sign, then it is enough to argue as before by contemplating once

the positive part u* 2 max{u,0} and once the negative part v~ = max{—u, 0} in place of v in the
definition of uz. As a result, we shall finish the verification of v € L>(R™) for all nontrivial solution
u. In addition, we could follow [26] to conclude that u € Cllo’Z(RN ) for some 7 € (0,1).

Step 2. The nontrivial solution u € X satisfies (2.4).
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We recall [20, Theorem 2] which is presented Lemma A.1 in the Appendix and take L(x, s,§) = %|§ P

which is strictly convex in the variable ¢ € RY. Let ¢ € C(RY) be such that 0 < ¢ <1, p(z) =1
for all |x| <1, and ¢(z) = 0 for all |z| > 2. Define

h(z) = 90<ak:>$ € Cl(RN,RN), for all k € NT.

Note that if h;(z) = ¢(§)x; for j =1,2,---, then

Dzh](m‘) = DZSO(}?)? + (,0(; 0i5, for all z € RN, j=12--
divh(z) = Dy z f—l—ng z , for all z € RV,
k/)k k
where ¢;; denotes the Kronecker delta symbol. One also observes that
T\ Ty N . .
(2.10) D;p )7 <C, forallz e R, i,5=1,2,---

Denoting f(s) = A|s[P~2s+ |u|P~2ulog |s|P + u|s|972s for all s € R, by means of (A.1) below, it holds
that
Z / z<P< >1'j D¢, L(x,u, Vu)Djudx +/ (p(i) D¢L(x,u, Vu) - Vudx
RN N

=
() et w2t

_ /RN [gp@)x - Vu}f(u)d:r.

Thanks to (2.10), ¢(§) — 1 and Ve (§) - § — 0 as k — 4o0. Thus, we obtain
Z / lnp( ) D&C(az, u, Vu)Djudz + / tp(aj> DeL(x,u, Vu) - Vudx
RN RN k

i
téN[D@(i)iﬁ@ﬂ@Vu)+N¢(i>£@ﬂ%VUﬂdx

1 N -
— NWM—N/‘]WMM:— p/wmm
RN RN P p RN

as k — +o0o. On the other hand, since F(u) € L'(RY) for all z € X by (1.9), we shall exploit an
integration by parts and the Lebesgue’s Dominated Convergence theorem to reach

[ [ wofwnne = oo [ mte(F)as [ [we(5) 7]

— —N F(u)dx
RN

as k — +o0o0. So, we can conclude the equality

N — —1
(2.11) p/ IVl dz N/ ( luf? + L Jul? log [ul? + “|s|q> da.
b p q

Multiplying the nontrivial solution v € X on both sides of Eq. (2.3), one has that

(2.12) / \Vu|pda::/ Aul? + [ulP log [uf? + plul?)dz
RN RN
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By multiplying % in (2.12) and then minus (2.11), we get the desired identity (2.4).

Step 3. If the nontrivial solution u(z) > 0 for all 2 € RV, then u(x) > 0 for all z € RV,

Choosing a sufficiently small ¢ > 0, we have
Apu = =P~ — P M oguP — put™t < €(u) in {r € RY : 0 < u(x) < e},

where £(0) £ lim+ &(s) =0 and & : (0,+00) — R is defined by
s—0

—AsP~t — 5P~ ]og 5P, if >0,
E(S) = _ p—1 p—1 D :
AN+ p)sP~ + sP~tlogsP, if u <O0.
Clearly, ¢ is continuous and nondecreasing when s > 0 is small enough. It is simple to calculate that
(Ve ) =0if u> 0, and £(Ve A +u)) =0 if u < 0. Since u(x) > 0 for all x € RY, then we apply
the Step 1 and [52, Theorem 5] to finish the proof. O

3. THE SEMICLASSICAL PROBLEM

In this section, we shall contemplate the existence and concentration behavior of positive normalized
solutions for a class of p-Laplacian equations with logarithmic nonlinearities. Nevertheless, first of
all, let us consider the existence of positive solutions to the problem

—Apu+ plulP2u = AuP"?u + |uP2ulog [ul?, in RY,

1

(3.1) |ulPdx = aP,
RN

where Apu = div(|Vu[P~2Vu) denotes the usual p-Laplacian operator with 2 < p < N, u € [—1, +0o0)
is a fixed constant and A € R is known as the Lagrange multiplier.
In general, to solve Problem (3.1), we look for critical points of the following variational functional
1

I(u) = p /]RN [[VulP + (p+ 1)|ulP] dz + /]RN Fi(u)vdx — /RN Fy(u)dz

restricted to the sphere S(a) defined by

Sa) = {ueX:/RN \uypdx:ap}.

Recalling Lemma 2.2, it follows that (X, || -||) is a reflexive and separable Banach space. Additionally,
note that the imbedding X < W1P(RV) and X < Lf1(RY) are continuous. As a consequence, we
are derived from Section 2 that I, € C'(X,R) with

I (u)v = / [[VulP2VuVo + (p+ 1)|ulP~2v] dz —I—/ F{ (u)vdx — / Fi(u)vdz, Vv € X.
RN RN RN

Next, we will prove the following result for Problem (3.1).

Theorem 3.1. Let 2 < p < N. Then, there is a constant a = a(p) > 0 such that Problem (3.1) has
a couple solution (u,\) € X x R for all a > a, where u(z) > 0 for all z € RY and A\ < 0.

The proof of the above theorem will be divided into several lemmas.
Lemma 3.2. Let 2 < p < N, the functional 1, is coercive and bounded from below on S(a).
Proof. In view of the property-(P3) in Section 2, for every fixed ¢ € (p, %), there exists a constant

C3 > 0 such that
|F5(s)| < Cgls|?™", Vs €R.
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Moreover, by the Gagliardo-Nirenberg inequality (1.12),
1 1
B = [ 9P+ et ) de = [ juPlog upda
D JrwN b JrN

3By

P

1 _
>0 [ uPdet [ Fi(uids - CyCupga </ rwpd“f)
P JrN RN RN

Since ¢ € (p, %), then ¢85 < p by (1.13). Moreover, adopting (2.2), we see that [ Fi(u)dz — +o0
as ||u||p, — oco. These facts reveal the proof of this lemma. O
As a direct consequence of Lemma, 3.2, the real number

Zyo= inf [
we = 2500 ()

is well-defined. Then, we are going to establish some properties of Z,, , with respect to the parameter
p € [—1,4+00).

Lemma 3.3. Let 2 < p < N, then there exists a constant a = a(u) > 0 such that I, , <0 for all
a>a and p € [—1,400).

Proof. Given some fixed ¢ € X\{0} and ¢ > 0, it follows from some simple calculations that

P D
Iut0) = = [ 190+ G Dl de = S [ uPlogluPde —#logt [ upds - —oc

as t — +o0o. Hence, there is a sufficiently large constant £ > 0 such that
I,(ty) < —1for all t > 1.
Then, we can choose @ = £|¢)|,, to reach the statement. O
P
Lemma 3.4. Let 2 <p < N. Fiz pp € [-1,400) and let 0 < a1 < ag < 400, then %Imaz <Zya-
2

Proof. Since I,,(u) = I,(|u]) for each u € X, without loss of generality, we suppose that {u,} C S(a1)
is a nonnegative minimizing sequence with respect to Z,, 4,, that is,

I, (up) = Iy q,, as n— +o0.

Choosing v, = &uy, then v, € S(az) for every n € N, where ¢ £ Z—f > 1. It follows from some simple
calculations that

1 1
Tun < T (00) = €0, () = ~€7108€" [ | ual?do = €21, () = ~heP log .
Letting n — 400 and using the fact that £ > 1, there holds
1
Tyyas < EZLpay — Z;aszp log §¥ < &Py, 0y,
that is,
p
a
%Iﬂ»aQ < Iu7al’
g
finishing the proof of this lemma. O

Borrowing the ideas from [8, Theorem 3.2], we derive a compactness theorem on S(a) which plays
pivotal role in the proof of Theorem 3.1.
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Theorem 3.5. (Compactness theorem on S(a)) Let 2 < p < N. Suppose that a > a and {u,} C S(a)
is a minimizing sequence with respect to L, q, then, for some subsequence either

i) {un} is strongly convergent in X,

or

ii) There exists {y,} C RN such that the sequence v, (x) = u,(z + y,) is strongly convergent to a
function v € S(a) in X with I,(v) =14, where |y,| — +00 along a subsequence.

Proof. Since I, is coercive on S(a) by Lemma 3.2, the sequence {u,} is bounded, and then, u, — u
in X for some subsequence. If v # 0 and |u|, = b # a, we must have b € (0,a). By the Brézis-Lieb
Lemma (see e.g. [58]),
[unlp = lun — ul}) + |ufp + on(1).
Setting v, = u, — u, d,, = |vp|p, and supposing that |vy|, — d, we get a? = b’ + dP. From d,, € (0,a)
for n large enough, we apply Lemma 2.4 to see that
Ty + on(1) = Lu(un) = Iu(vn) 4 Iu(u) + 0n(1) = Lya, + Ly + on(1).

Thereby, by Lemma 3.4,

dp

Ty + 0n(1) > G—ZIM + b+ on(1).

Letting n — +o00, we find

dP

(32) Tua > Tt Tus

Since b € (0,a), using again Lemma 3.4 in (3.2), we get the following inequality

dar bP a P

I:LL7H’ > JIILL#]’ + JI b = <ap + ap) Ilu7a‘ = I/J'aC“
which is absurd. This asserts that |u|, = a, or equivalently, u € S(a). As |uy|p, = |ulp, = a, u, = u
in LP(RY) and LP(RY) is reflexive, it is well-known that
(3.3) Uy, — u in LP(RY).
This combined with interpolation theorem in the Lebesgue space and property-(Ps) gives
(3.4) Fy(uy)dr — Fy(u)dz.
RN RN
These limits together with 7, , = lirf I,,(uy) and Fy > 0 in property-(P1) indicate that
n—-+00
As u € S(a), therefore I,(u) =7, 4, then
lim 1, (un) = I,(u),

n—-+oo

that combines with (3.3) and (3.4) to give

n—oo

lim |Vun\pd:13:/ |Vu|Pdz
RN RN

and
lim Fl(un)dm:/ Fy(u)dz.

n—oo RN RN
Recalling F € (A2) by Lemma 2.2, jointly with the above two limits as well as (3.3), it enables to
see that u, — v in X.
Now, assume that u = 0, that is, u, — 0 in X. We claim that there exists C' > 0 such that

(3.5) / Fs(up)dz > C, for n € N large enough.
RN



NORMALIZED SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH LOG NONLINEARITY 17

Otherwise, there is a subsequence of {u,}, still denoted by itself, such that

/ Fy(up)dz — 0
RN

as n — oo. It follows from Lemma 3.3 and (3.5) that
. . 1
0> Ty = lim Ly(u) = lim (p /RN[\vun\p + (1 + D) fun|P)de + /RN Fl(un)dx> >0

which is impossible.
So, there are R, C' > 0 and {y,} C R" such that

(3.6) / |up|[Pdz > C, for all n € N.
Br(yn)

If it it is not the case, then we derive u,, — 0 for all p < s < p* by the Vanishing lemma which yields
that Fh(u,) — 0 in L'(RY) by property-(P3), a contradiction to (3.5). Recalling v = 0, we further
have that {y,} is unbounded in RY. Define v, (x) = u,(z + y»), then {v,} C S(a) and it is also
a minimizing sequence with respect to Z,, .. Moreover, owing to (3.6), passing to a subsequence if
necessary, there is a v € X\{0} such that
v, —vin X and v, — v a.e. in RY.

Repeating the calculations in the first part of the proof, it must conclude that v, — v in X along a
subsequence. The proof is completed. O

Proof of Theorem 3.1. By Lemma 3.2, there exists a bounded minimizing sequence {u,} C S(a)
with respect to Z,, 4, that is, I, (un) = Z, 4. Thanks to Theorem 3.5, there exists a u, € S(a) with
I,(uq) = Z,, 4. Therefore, by the Lagrange multiplier theorem, there exists A\, € R such that

(3.7) I (ua) = Xa¥'(ug) in X7,
where ¥ : X — R is given by

1
U(u) = / |ulPdx, ue X.
D JmN

Thereby, according to (3.7), the couple (uq, Aq) € S(a) x R satisfies the following equation
—Apu+ plulP2u = AulP7?u + |uP2ulog [ul?, in RY.

Let ug € S(a) be a test function on the both sides for the above equation, it holds that

/ (IVua|” + pluql”) da :)‘a“”/ |ual” log [uq|Pdx
RN RN

which indicates that

1 A A
I,u,a = Iy(ua) = / |Ua|pd$ + P > _—
D JrN p
Due to Lemma 3.3, one sees that A, < 0. Since u € S(a) implies that |u| € S(a) and I,,(u) = I,(|u|)

for all v € X which give that
[uq| € S(a) and Z,,4 = 1, (ua) > Iu(|ta]) > Zya-

So, we can replace u, with |u,| and then, without loss of generality, we shall suppose that u, > 0. A
very similar arguments in Step 3 in the proof of Theorem 2.5 shows that u, is positive. The proof is
completed. O

Thanks to Theorem 3.1, we immediately have the following result whose detailed proof is omitted.

Corollary 3.6. Let2<p < N. Ifa>a and —1 < p1 < p2 < 400 are fived, then 1, o < I, o < 0.
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From now on, we begin investigating the existence and concentration behavior of positive solutions

for (1.1)-(1.2). To the aims, we consider the variational functional I, : X — R given by
1
(3.9) L(u) = / (VulP + (V(ez) + 1)[uf?] da +/ Fy(u)da — / Fy(u)da
N RN

P Jr RN
restricted to the sphere S(a) and the minimization problem

Zeo = iInf I .
© uelg(a) E(U)

According to Theorem 3.5, it is significant to derive a similar compactness theorem for I, on S(a).
So, we shall focus on verifying it. Let us introduce the two functionals Iy, I : S(a) — R defined by

1
To(u) = / (1Vul? + (Vo + DluPlde + [ B (u)ds — / Fy(u)dz,
pl RN RN, RN,
Lo(u) = / (VP + (Vio + D)[uf?] dz +/ Fi(u)dz —/ Fy(u)dz.
RN RN RN
The corresponding minimization problems are given by

Toq = inf I dZee= inf I(u).
0 ueuél’(a) O(U) an ’ uElIél’(a) (U)

Since —1 < Vj < Vi < +00 by (V1), we are derived from Corollary 3.6 that
(3.9) To,a < Zoo,a <0 foralla>a>0.

Lemma 3.7. Let 2 <p < N and a > a > 0, then limsupZ. , < Zo,. In particular, there exists a
e—0t

sufficiently small €* > 0 such that Z. , < I o for all € € (0,€*).
Proof. Adopting Theorem 3.1, for all @ > a > 0, there is a ug € S(a) such that Ip(ug) = Zy4. So,

1
Teo < I(up) = / [[VuolP + (V(ex) + 1)|up|?] dx —l—/ Fi(up)dx —/ Fy(ugp)dz.
P JrN RN RN

Adopting the Lebesgue’s theorem and taking the limit as € — 0", there holds
limsupZ. , < limsup I.(ug) = Io(uo) = Zo,q
e—07t e—07t

finishing the first part of the lemma. Due to (3.9), one could find such a constant ¢ > 0 such that
Teq < Zoo,q for all € € (0,e*). The proof is completed. O

Lemma 3.8. Let 2<p < N anda >a > 0. Ife € (0,%) is fixzed and suppose that {u,} C S(a)

such that I (un) — d< %, then there is a u # 0 such that u, — u in X along a subsequence.

Proof. Arguing as Lemma 3.2, one deduces that {u,} is bounded in X. Passing to a subsequence if
necessary, there is a u € X such that u, — u in X and u, — u a.e. in RY. To prove that u # 0, let
us suppose it by a contradiction and assume that v = 0. Hence,

. 1
4+ 0n(1) = L(un) = Ielua) + o [ V() = Vaclfuo P
P JRrN
Due to (V3), given an arbitrary € > 0, there is an R > 0 such that
V(z) > Vo —¢, forall |z| > R

which indicates that
€

R 1
d+ op(1) > Loo(un) + = / V(ex) — Vio]|un|Pdz — & / (Pl
P JBpg,(0) P J B, (0)
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Since {uy} is bounded in X and u, — 0 in LP(Bg/.(0)), one has that
d+on(1) > Ino(uy) — Ce > Ty o — Ce

for some C' > 0 independent of €. Let us tend € — 07, then d > 7, Which is impossible due to the

facts that d < % and (3.9). The proof is completed. O
Lemma 3.9. Let 2 <p < N and a > a > 0. Suppose € € (0,e*) to be fized and let {u,} C X be a
(PS); sequence for I constrained to S(a) with d < M, namely

I (up) — d and ||Ié|5’(a)“X* — 0 as n — oo,

then, up to a subsequence if necessary, there is a u € X such that u, — w in X. Moreover if u, /4 u

i X, then there exists a §>0 independent of ¢ € (0,&*) such that, by decreasing * if necessary,
there holds

liminf/ |un |Pda > .
RN

n—o0

Proof. We define the functional ¥ : X — R by

1
U(u) = / |ulPdz, v e X,
b~

it follows that S(a) = ¥~1({a?/p}). Hence, adopting [58, Proposition 5.12], there exists {\,} C R
such that

112 () — MW (un)]| x+ — 0 as n — .

Since {u,} is bounded in X, we easily get that {\,} is bounded in R. Passing to a subsequence if
necessary, there is a A € R that may depend on € such that A, — X\ and so

I 1L (wn) — A9 (uy)|| x+ — 0 as n — oo
which immediately shows us that
I'(u) — A0/ (u) =0 in X*.
Combining Lemma 2.4 and the Brézis-Lieb lemma, one has that
I (v — AV (v vy = I (up )t — IL(w)u — AU (up )uy + AV (w)u + 0, (1)

= Il (up)un — AW (un)upy — IL(u)u + A0 (u)u + o, (1)
= on(1)

jointly with F{(s)s > 0 for all s € R in property-(P;) and property-(P2) implies that

/ [[Von [P + (V(ex) + 1 = A)|vp[f]dx < Cq/ |vn|%d + 0n (1)
RN RN

for some ¢ € (p,p*). We claim that there is a A* < 0 independent of ¢ € (0,e*) such that
A<\, Ve € (0,e%).
Indeed, due to {u,} C S(a), we find that

d= lim I(u,) = lim [Is(un) _ ;(Ié(un)un - )\\Il'(un)un>] > Agp

n—oo n—oo p

showing the claim. As a consequence, owing to V5 > —1 by (Vl), there holds

/ (IVonl? — X*on|P)dz < C’q/ lon |7 + 0n(1), Ve € (0, ).
RN RN
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It follows from the continuous imbedding WP (RN) < LI(RN) with ¢ € (p, p*) that
”UTLH%/LP(RN) < Cl‘vn‘g + On(l) < CQHUTL”([]/VI,p(RN)v Ve € (075*)>

where Cp,Cy > 0 are independent of ¢ € (0,£*). Because v, /4 0 in X and ¢ > p, without loss of
generality, we can suppose that

(3.10) lirginf [vnllw1r@myy > Cs3, Ve € (0,€"),

where C3 > 0 is independent of € (0,¢*). Otherwise, if v, — 0 in WIP(RY), then Fj(v,)v, — 0 in
LY(RY) by property-(P2) which together with I’ (v, )v, — AV (v,)v, = 0,(1) and Fj(s)s > 0 for all
s € R by property-(P1) yields that F(v,) — 0 in L'(RY). Recalling Lemma 2.2, we can conclude
that v, — 0 in LF1(RY) and so v, — 0 in X, a contradiction and (3.10) follows. Hence,

P q -1 *
hnrgloréf lunlg > C5 7 C3, Ve € (0,€7).
Adopting (1.12) and |Vu,|5 is bounded, we can derive the proof of this lemma. O

Theorem 3.10. Let 2<p < N anda > a > 0. Ife € (0,&%) is fized, then the functional I:|g(q)

satisfies the (PS); condition with d<Toa+ Y, where 0 < T < min{3, a%}(zm,a —To) and 6 >0
is determined by Lemma 3.9.

Proof. Let {u,} C X be a (PS)4 sequence for I.|g() and define the functional ¥ : X — R by

1
U(u) = / lulPdz, ue X,
D N

which reveals that S(a) = ¥=1({a?/p}). Thus, adopting [58, Proposition 5.12], there exists {\,} C R
such that

1L (wn) — An ¥/ (un)|| x+ — 0 as n — oo.
According to Lemma 3.3, {uy} is bounded in X and then there is a u € X such that u, — w in X
and u, — v a.e. in RY along a subsequence. Denoting v,, £ u,, — u, if v, % 0 in X, then Lemma
3.9 ensures that

(3.11) liminf/ |un |Pda > .
RN

n—00

Let dy, = |v|p and |u|, = b, so we can assume that |v,|, — d > 0 and b > 0 by (3.11) and Lemma 3.8,
respectively. Moreover, it holds that a” = b” + dP by the Brézis-Lieb lemma. Via exploiting a similar
argument explored in Lemma 3.8, by means of v, — 0 in X, one can show that I.(v,) > Zoo g, +0n(1)

which together with Lemma 2.4 and V() > Vj for all 2 € RN by (V1) gives that
d+ 0n(1) = I(un) = I(vy) + I (u) + 0n(1) > Too a,, + Loy + 0n(1).
Since d,, € (0,a) for n € N large enough and b € (0,a), we argue as Lemma 3.4 to derive

. & bP
d+ On(l) > ;ZIOO,G/ + ﬁIO,a

Letting n — oo and recalling a? = bP 4 dP, one has that

)
T > J(Ioo,a - IO,CL)

violating to the definition of Y. So, we must conclude that v, — 0 in X, that is u, — u in X. One
further obtains that u € S(a) and

—Apu+ Viex)|vP~2u = Mu[P~%v + [ulP v log [v|P in RY,

where A < \* < 0 comes from Lemma 3.9. The proof is completed. O
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In what follows, according to (V2), we fix some sufficiently small pg, 9 > 0 to satisfy
® By, (2") N Byy(27) =0 for i # j and 4,5 € {1,...,£};
o U By (z) C B,y (0);
i=1

1=

Define the function Q. : X\{0} — R by

/ x(ex)|ulPdx
RN

9
/ |u|Pdx
RN

( ) xz, if |l’| < To,
€Tr) =
X —7%, if |x| > rp.

Qe(u) =

where y : RV — R¥ is given by

With Theorem 3.10 in hands, we now focus on establishing the existence of (P.S) sequences for
the variational functional I, constrained on S(a).

Lemma 3.11. Let 2 <p < N and a > a > 0. Suppose € € (0,e*) to be fized, decreasing * > 0 if
necessary, there is §* > 0 such that if u € S(a) and I.(u) < Zyq + 6%, then
Qe (u) € K, Ve e (0,e).

Proof. Suppose, by contradiction, that for all n € N, there exist ¢, — 0 and {u,} C S(a) such that

1
IO,a < Ian (Un) < IO,a + ﬁ’

and
Qan (Un) ¢ K %0 .
Obviously, one has that

1
IO,a < IO(Un) < Ien (Un) < IO,a + E

showing that {u,} C S(a) is a minimizing sequence with respect to Zy ,. Thanks to Theorem 3.5,
passing to a subsequence if necessary, one of the following alternatives holds true

i) There is a function v € S(a) such that u, — v in X as n — oc;

ii) There exists a sequence {y,} C RY with |y,| — 400 such that v, = u,(- + yn) — v in X for
some v € S(a).

We claim that i) cannot occur. Otherwise, adopting the definition of y, one has

lim X(en®)|up|Pdx = lim x(0)|ulPdx = 0.

From which, we conclude that Q., (u) € K 0 for some sufficiently large n € N. It is impossible and

so the claim follows. When ii) occurs, passing to a subsequence if necessary, we shall contemplate
the following two cases:

ii)-(1). |epyn| — +o00 as n — oo.
In this case, as a consequence of v,, — v in X, there holds

1

I, (up) = / [[Vun P+ (V(enz) + 1)|u,|P] dz —|—/ F1(up)dx — Fy(uy)dx
b JrN RN RN
1

= / [[Vun? + (V(enx + enyn) + 1)|vp|P] dx + / Fi(vy)dx — Fy(vy)dx
P JrN RN RN
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— I (v).
Since I, (un) < Zoq + %, we arrive at the inequality below
Toa = Ioo(v) 2 Zosa

which contradicts with (3.9).
ii)-(2). e4yn — vy for some y € RY as n — .
In this case, a similar argument using the above calculations indicates that

IV(y),a < IO,a-

If V(y) > Vb, we follow a very similar approach explored in the proof of Corollary 3.6 to deduce
that Zy () o > Zo,a which is absurd. Thereby, V(y) = V and y = 2" for some 7 € {0,1,---,l}. Then
one derives that

lim X(enz)|up|Pdx = lim X(en + enyn)|vn|Pda = a:l/ |v[Pdz
RN

n—oo RN n—oo RN
which reveals that li_}m Q. (up) =2 € K 2. From which, we obtain that Q. (uy,) € K 2 for some
n oo

sufficiently large n € N, a contradiction. The proof is completed. O

In the sequel, for j € {1,---,1}, we need the following notations
000 = {u € 5(a) : [Q=(w) — 7] < po},
0 007 = {u € S(a) : |Q-(u) — 2| = po}
o) = inf I.(u) and B/ = inf I.(u).

u€h?’ uedol

Lemma 3.12. Let 2 <p < N and a > a > 0. Suppose € € (0,e*) to be fized, decreasing * > 0 if
necessary, for the constant T > 0 in Theorem 3.10, there holds

Bl < Ty + 7T and B < Bg, Ve € (0,e").
Proof. According to Theorem 3.1, there is a function u € S(a) such that
Io(u) = Ty, and Ij(u) =0 in X*.
For j € {0,1,--- ,1}, we define the function @ : RN — R by
il = u(x — 27 /¢).

By a simple change of variable, one has that

R | .

I.(u)) = / [[VulP + (V(ex + 27) + 1) |ul?] dx +/ Fi(u)dz —/ Fy(u)dx
P Jry RN RN

which gives that
(3.12) limsup I (a) = Iy(u) = Zoq.

e—0t

From which, decreasing * > 0 if necessary,
; 1
I.(4l) < Iy, + 15*, Ve € (0,e%),

where 6" > 0 comes from Lemma 3.11. Moreover, we easily deduce that Qg(ﬂg) — 27 as e — 01 and
so @l € 62 by decreasing €* > 0 if necessary. So, decreasing * > 0 if necessary, we have that

Bg <Zpa+ 7T, Ve € (0,&)
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which is the first part of the lemma. To reach the remaining one, if u € 895, then
u € S(a) and |Q.(u) — 27| = po > g

leading to Q:(u) & K%o. Due to Lemma 3.11, we find that

S .
I.(u) > Iy, + 5 for all u € 96 and € € (0,¢"),

and so

- 1
Bl = inf I.(u) >Zy,+ =0, Ve € (0,&"),
ucohl 2
from where it follows that S
Bl < pl, forall e € (0,e)

finishing the proof of this lemma. O

Now, we are in a position to investigate the existence of multiple critical points for I. constrained

on S(a).

Proposition 3.13. Let 2 <p < N and a > a > 0. Suppose € € (0,£*) to be fized, decreasing £* > 0
if necessary, then Ic|g(,) has at least | different nontrivial critical points.

Pmof. Given a j € {1,---,l}, we could exploit the Ekeland’s variational principle to find a sequence
{u},} C S(a) satisfying ' '
I (u},) — B
and )
L(v) = L(ul) > —|lv —ul|, Vv € 62 with v # .
n
It follows from Lemma 3.12 that
Bl < Bg, for all € € (0,&"),
and thereby ul, € 82\6 for n large enough. For all v € T, S(a) ={w € X : [pu |uf,[P~2uj,wdx = 0},
there exists a ¢ > 0 such that the path v : (—(,() — S(a) defined by
a u% + tv
(1) = Alm L)
lun, + tu|p
which is of class C*((—(, (), S(a)) and satisfies
v(t) € 02\062, YVt € (—¢,¢), 7(0) = u, and +/(0) = v.
Hence,
: 1 .
L(v(t) = Le(un) = = llv(t) —unl, Yt € (=C. Q)
and in particular,

L(y(t) = L(1(0)) _ L(y() = L(uh) _ 1
t t - n

v(t) —~(0)
t

', vt € (0,¢).
Since I. € C1(X,R), taking the limit of t — 07, we get

. 1
Lo 2 = o].
Now, we replace v with —v to obtain
1

sup{[IZ e ol : ol < 1} < -,
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leading to '
I.(up) — B as n — +o0 and HIa|/s(a)(un)HX* — 0 as n = 400,
that is, {uﬁb} is a (PS)Bg for I. restricted to S(a). Since B < Ty, + Y by Lemma 3.12, then Theorem
3.10 ensures that there is a u/ such that u}, — «/ in X. Thus,
w €61, I.(v) = B! and L_;|f9(a)(uj) = 0.
Owing to the following facts

Q=(u') € Bpy(a7), Q:=(u’) € By, (27)

and

By, (xz) N By, ('rj) = ( fori # j,
we conclude that u’ # u? for i # j while 1 < i, < [. Therefore, I, has at least [ nontrivial critical
points (u?, M) with A < 0 for all € € (0,&*). The proof is completed. O
In order to study the concentrating behavior of positive solutions for (1.1)-(1.2), we shall depend
on the obtained solutions of Problem (1.10). According to Proposition 3.13, for all 2 < p < N and
a > a > 0 and decreasing €* > 0 if necessary, there are [ couples of (vg, )\é) € X x R such that

vl €0, I.(v]) = B¢ and I (v]) — MW (v!) = 0 in X*,
where j € {1,2,--- 1}, vl(z) > 0 for all z € RN and X < 0.

Lemma 3.14. Let 2 <p < N and a > a > 0. Suppose € € (0,£") to be fived, decreasing * > 0 if
necessary, there are y2 € RN, R} >0 and B} > 0 such that

[ ipds =
BRO (yg)

forj € {1,2,---,1}. Moreover, the family {eyg} is bounded and, passing to a subsequence if necessary,
eyl = a9 ase — 0F.

Proof. 1f it is not the case, there is a sequence {e, } with €, — 0" such that

lim sup / v |Pdx =0
T yeRrN J Br(y)
for all R > 0. By means of Lion’s Vanishing lemma, we would have that vgn — 0 in L4(RY) for each
p < q < p* leading to Fy(u,) — 0 in LI(RN) by property-(P3). Owing to Fj(s) > 0 for all s € R by
property-(P1), there holds li_>m I, (vl,) > 0 which contradicts with the fact that
n—oo
(3.13) lim I, (v )= lim 8! <Zy,+ Y <0.
n—o0

n—oo

So, we can define o (-) = vZ(- + y) and {2} is bounded with respect to e € (0,&*). Therefore, there

is a o € X\{0} such that o/ — &/ in X as ¢ — 0" along a subsequence. Since {#Z} C S(a) and
L(v]) 2 Io(vl) = Io(9) = To.a

jointly with (3.12) yields that lim Io(0) = Zyq. Recalling Theorem 3.5, we know that o — @ in X
e—0
as ¢ — 0F. Suppose that {eyl} is unbounded with respect to ¢ € (0,¢*) and so we can assume that

there exists a subsequence {e,3Z,} such that |€ny§n\ — +00 as n — oco. Exploiting ﬁgn —vin X,

. 1 4 . . .
L )=" / [IV0d. [P+ (Vi(ena) + 1[0t [P] da + / Fy(of ) — / Fy(o? )da
D JrN RN RN
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1 4 . . .
_ / (VL P+ (V(ent + engn) + ]2, 7] d:c—i—/ P (3 )da:—/ Py Vda
P JrN " " RN " RN "
— I (0)

together with (3.13) reveals the following inequality
IO,a +7 > Ioo(fD) > Ioo,a-

Due to (3.9), it is impossible by the definition of T appearing in Theorem 3.10. Therefore, up to a
subsequence if necessary, eyg — a:{) in RY as ¢ — 0 and then the remaining part is to verify that
zh = 27, Actually, we could use a similar argument, or follow the method adopted in the case ii)-(2)
in the proof of Lemma 3.11, to conclude that V(mo) Vo. Recalling v € 67 and it would be simple
to see that nh_}ngo Q., (v]) = :1:%, one has that |2/ — x0| < po. Hence, we must have that ) = 27. The

proof is completed. 0

Lemma 3.15. Let 2 <p < N and a > a > 0. Suppose € € (0,€") to be fived, decreasing * > 0 if
necessary, then v’ possesses a mazimum ne satisfying V(Eng) — V(29) ase — 0% forj € {1,2,--- 1}
Moreover, there exist C’O, c(]) > 0 such that

vl(z) < Cfexp(—cple —nll)
for alle € (0,e*) and x € RV,
Proof. Firstly, we analyze some properties of 2. Since @ﬁ() = vg( + yg), the definition of v! reveals
that (92, \]) is a couple of weak solution to the problem
— A+ V(ex 4 eaxd) o2 P7261 = M|o2|P 201 4 |o2[P~%5 log [92]P in RY,

v Pdr = aP.
€
RN

(3.14)

Recalling the arguments explored in Proposition 3.13 and Lemma 3.14, we derive Wl in X ,
M — M in R and ex! — 27 in RY as ¢ — 0. So, using (3.14), (27, M) is a nontrivial solution to

—Apv + Volu[P~20 = Au|P~2v 4 [vP%vlog [ufP in RY.

Similar to Step 1 in the proof of Theorem 2.5, there holds o/ € L>®(RY). Hence, ! € L°(RN) and
there is a constant C' > 0 independent of € such that ]@g|oo < C. Indeed, one can further deduce that
W e C’llc)Z(RN ) for some 7 € (0,1). We postpone the detailed proofs in Lemma A.2 in the Appendix
to give that
#/|oo > p and  lim ©!(z) = 0 uniformly in e € (0,£").
|z| =400

where p/ > 0 is independent of € € (0,*).

Secondly, we verify that there exist C’d, (?’7 > 0 such that o (z) < C’g exp(—éé]x\) for all € € (0,e*)
and x € RV, see Lemma A.3 in the Appendlx in detail.

J

Finally, let ¢! be a maximum of o, we have that |2Z(¢l)|oe > p/. Since | 1‘1m Uz () = 0 uniformly
—00

in e, there exists a Mg > 0 independent of & such that |of| < Mg. Recalling #2(-) = v(- + ), then
yg + QZ is a a maximum of of vg. Define ng = yg + gg, according to Lemma 3.14 and \g5| < Mj, we
are derived that en! — 27 as ¢ — 07 and hence V (enl) — V/(27) by the continuity of V. Moreover,
since vl (z) < C] exp( Eé\x!) for all z € RY and |of| < Moj, there holds

vl(2) = vl(w - yl) < Cexp(=¢jle — i) = Cexp(—cple =l + pll) < CGexp(~ple — )
finishing the proof of this lemma. U
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Proof of Theorem 1.3. By Proposition 3.13 and Lemma 3.15, we see that Problem (1.10) admits
at least [ different couples of solutions (v, A1) € X x R with vZ(z) > 0 for every z € RN and M < 0,
where j € {1,2,---,l}. Moreover, there exist CJ, ) > 0 such that

vl (z) < Cfexp(—c|z — i)
for all € € (0,e*) and 2 € RN. Let ul(-) = v (-/¢) and zI = en for j € {1,2,--- 1}, then (ul, M) is
the desired solution for j € {1,2,--- 1} and Theorem 1.3 is proved. O

4. THE AUTONOMOUS PROBLEM

In this section, we mainly deal with the existence of normalized solutions for a class of autonomous
p-Laplacian equations with logarithmic nonlinearities.

4.1. The LP-subcritical case.
In this subsection, to study the Problem (1.14), we need the following minimization problems

f J(u),

in
u€Sr(a)
where Sy (a) = S(a) N X, and the variational functional J is defined by (1.15).

In order to prove Theorem 1.4, we are going to introduce the following lemmas.

m(a) = inf J(u) and m,(a) =
ueS(a)

Lemma 4.1. Let 2 < p < N, then the functional J is coercive and bounded from below on S(a) for
all a > 0 and there is an constant a, > 0 such that m(a) <0 for all a > a.. Moreover, m(a) = m,(a)
for all a > 0.

Proof. Repeating the calculations in the proofs of Lemmas 3.2 and 3.3, we can conclude the first
part of this lemma and the details are omitted.

Then, we verify that m(a) = m,(a). Since Sy(a) C S(a), one easily sees that m(a) < m,(a). Thus,
we just need to prove that m(a) > m,(a). Suppose that {u,} C S(a) is a minimizing sequence with
respect to m(a). Denoting u} to be the Schwarz symmetric decreasing rearrangement of w,,, so the
Pélya-Szegd’s inequality yields that |[Vu)|, < [Vu,|p,. Noting that |uw)|,. = |u,|. for every r € [p, p*],
we obtain that {u)} C S.(a). Since F; and F» are nondecreasing in [0, 4+o00] by property-(P;) and
property-(P3), then the properties of Schwarz rearrangement (see e.g. [41]) implies that

/ Fy(uy)dx = / Fi(up)dx, / Fy(uy)dx = / Fs(uy)dz,
RN RN RN RN
From which, by (1.9), there holds

[ g lupds = [ junl?tog un P

As a consequence,
my(a) = inf J(u) < inf J(u)=ma).

u€Sr(a) ueS(c)
The proof is completed. O
Lemma 4.2. Let 2 < p < N, then m({/a} + ab) < m(a1) + m(az) for all ay,as > 0.

Proof. In light of the variational functional J is invariant under any translation in RV, then, adopting

the definition of m(a) and the density of C§°(RY) in X, we deduce that, for every e > 0, there exist

two functions 11,12 € CS°(RY) with suppv; Nsuppye = 0 and ¥; € S(a1), o € S(az) such that
1 1

(4.1) J(¥1) < m(ar) + ge and J(v2) < m(az) + e

Without loss of generality, we assume that

(4.2) dist(supp ¢, supp ¢2) > n for some n € NT.
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Now define 1) £ 11 + 19, since 91 and 15 have disjoint supports, then ¢ € S({/a} + ab) and

/ \Vw\pd:r—/ le\pdx—i—/ |Vipa|Pdz,

N RN RN

(4.3) || dx = / |th1)°dx + |tho|®dx, Vs € [p,pT],
N RN RN

/z JoPlogtude = [ o log iapde -+ [ fval?log valPde.

Hence, for n € NT large enough, we are derived from (4.1), (4.2) and (4.3) that

m({/ay + ay) < J(¥) = J (1) + J(¥2) < m(ar) +m(az) + ¢,
and the proof is completed. O

Lemma 4.3. Let 2 < p < N, then the mapping a — m(a) is continuous on (0,400), where a, > 0
comes from Lemma 4.1.

Proof. Given an a > a,, without loss of generality, we let a,, > a, with a, — a as n — oco. For all
n €N, let {u,} C S(a,) such that J(u,) < m(an) + +. Thanks to Lemma 4.1, {u,} is uniformly

bounded in X and
m(a) < J <aun) = J(up) + on(1) < m(an) + on(1).

an

On the other hand, given a minimizing sequence {v,} C S(a) for m(a), it holds that
m(ay) < J (%”vn) = J(vn) + 0n(1) = m(a) + on(1).
The above two facts reveal the desired result and the proof is completed. O

Lemma 4.4. Let 2 <p < N and a > a,. Assume that {u,} C Sy(a) is a minimizing sequence of
my(a) with u, = w in X, asn — oco. If u# 0, then u, — u in X, as n — oo.

Proof. Obviously, one sees that u,, — u in L¥(RY) for all s € (p,p*) and |u|, < a by Fatou’s lemma.
Owing to property-(P2), we have that Fy(u,) — Fa(u,) in L' (RY). To exhibit the proof clearly, let
us divide the proof into two cases.

Case 1. u, — u in LP(R") along a subsequence as n — oo.
In this case, it holds that u € S, (a), then we immediately have that

m(a) < J(u) = 1/RN(’V“VD +ufP)dz + /RN Fi(u)da —/ Fy(u)dz — © /RN u|da

p RN q
1
< lim inf </ (\Vun\p+\un]p)dx—|—/ Fl(un)dx—/ Fg(un)daz—’“‘/ |un|qu>
n—o0 \ P JRN RN RN q JrN
= hnrggf J(up) =my(a)
which yields that
lim (\Vun\p—i—\unp)da::/ (Yl + [uff)dz
n—oo RN RN

and
lim Fl(un)d:v:/ Fi(u)dz.
n—oo RN RN

According to Fy € (Ag) by Lemma 2.2, then the above two limits provide us that w,, — u in X, as
n — oo. The proof is done in this case.
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Case 2. u, 4 u in LP(RV) as n — oo.
In this case, denoting d,, = |u,, — ulp, then, up to a subsequence if necessary,
lim |u, —uff = lim db £ d? > 0.
n—oo n—o0

It follows from the Brézis-Lieb lemma that a? = lim (d}, + |ul}). Combining Lemmas 2.4 and 4.2-4.3,
n—oo

my(a) = m, <1}Ln;o {/dﬁ + |u]§> = lim m, ({/dﬁ + |u]£)
< le my(dpn) + me(Julp) < ILm J(up, —u) + J(u)

= lim J(u,) = m,(a).

n—oo
Proceeding as the proof in Case 1, we see that u,, — u in X, along a subsequence as n — co. The
proof of this lemma is completed. O

Proof of Theorem 1.4. First of all, we know that m(a) < 0 for all @ > a,. Then, we shall suppose
that {u,} C S,(a) is a minimizing sequence for m(a) by Lemma 4.1. Exploiting Lemma 4.1 again,
there exists a © € X such that u, — v in X, along a subsequence. According to Lemma 4.4, the
proof is accomplished if we verify that u # 0. Finally, we are ready to deduce that u # 0. Arguing it
indirectly, we can assume that u = 0. For m(a) < 0, since Fy(u,) — 0 in L'(R"Y) by property-(Ps2)
and u, — u in L¥(RY) for all s € (p,p*), then

1 1
0> lim J(u,)= lim </ (IVupl? + |up|?)dx —|—/ Fl(un)dx> >—aP >0
n—oo n—oo p RN RN p
which is impossible. Therefore, we arrive at the desired result u # 0. The positivity of u is trivial,
we omit it here. The proof is completed. O

4.2. The LP-supercritical case.
2
In this subsection, we are going to dispose of the Problem (1.14) with p 4+ pﬁ < qg<p*and p>0.
As explained in Introduction, we need to study Problem (1.16) and so we define the minimization
problem

mr(a) = eig{a) IR (u).

The same arguments explored in the proof of Theorem 1.4 guarantee that there is ¢* > 0 independent
of R and p such that mg(a) < 0 for all a > a*. We would like to point out that it is possible to find
such an a* > 0 since Jg(ty)) — —oo as t — +oo uniformly in R and p.

The next result reveals an important estimate involving the norm in X of the solutions ugp for
the Problem (1.16).

Lemma 4.5. Let2<p < N, p+ % < q<p* and > 0. There exists p* = p*(R) > 0 such that if
p € (0, "), then there is C' > 0 independent of R such that the attained function ugr associated with
mr(a) satisfies |Vug|, < C for all R > 0.

Proof. Arguing as in Lemma 3.2, we see that (1.12) combined with (1.17) and Property-(P2) with
q = q gives
aBq

1 i i
Jr(u) >~ / \VulPdz — (1 4 pRI~9)CyCy p qa? P2 ( / \vu|de> , Yu € S(a),
P JrN RN

where q € (p,p + %) Fixing p* = p*(R) = %, then for all 1 € (0, 4*), one gets
a8

|

Jr(u) > 1/ |Vul|Pdz — 2C;Cy p gaT1—P7) (/ \Vu|pda:> , Yu € S(a).
D JRN RN
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Due to 83q < p, exploiting the Young’s inequality, there is a constant C; > 0 independent of R such
that

aBg

i 1
Pq <C — Pdx, ¥ X.
</RN [Vl x> =0T ApCqCh pqat=Fa) Jpn [Vuldr, Yu €

Hence, there is a constant Cy > 0 independent of R such that
[Vulf < 2pJr(u) + Cay, Va>a", pe(0,p"), R>0and u € S(a).

Since Jr(ur) = mpr(a) <0 for all a > a*, we are able to derive the desired result and so the proof
is completed. O

Proof of Theorem 1.6. By Corollary 1.7, there are a* > 0 (independent of R and p) and p* such
that, for all fixed a > a* and p € (0, u*), the couple (uj, A\;) € Sr(a) xR is a solution of the problem
— Apu = AMulP~2u + [uP?ulog [uf 4 pufr(u), in RY,
{u(x) > 0in RY.
Since p € (0, u*), the definition of fr together with (1.17) leads to
0<pufr(t) <ti! vt >0and R > 0.

As a consequence, {ug} is bounded in L*(R¥) for all R > 0 and s € (p,p*) by Lemma 4.5 and {\r}
is bounded for all R > 0. Proceeding as the Step 1 in the proof of Theorem 2.5, there is a constant
M € (0,+00) that does not depend upon R > 0 satisfying

|’LL73|Oo <M, VR > 0.

Let us fix R > M, then we know that the couple (uj, \5) € X x R is weak solution for the Problem
(1.14) if @ > a* and p € (0, u*). This finishes the proof of Theorem 1.6. O

5. FINAL COMMENTS

Although all of the main results in this article are derived, as far as we are concerned, there are
some other interesting questions worth further exploration.

On the one hand, one may naturally wonder that whether the Problems (1.1)-(1.2) admit a ground
state solution. To find the ground state, it suffices to study the existence of ground state solutions
for Problem (1.10). We say that up € X is a ground state solution for Problem (1.10) provided that

Ié(UQ)|S(a) =0 and I&(uo) = inf{Ia(u) : Ié(u)‘s(a) =0and u € S(a)},
where the variational functional I, : X — R defined by (3.8). Although we cannot give an affirmative

answer to the above question at present, it will be exhibited as a theorem below.

Theorem 5.1. Let 2 <p < N and (‘71) — (V). Suppose additionally that the potential V' has no
other strict global minimum points than {x', 2% ---  x'}. Then, there exist a* > 0 and é* > 0 such
that we can derive at least one ground state solution for (1.1)-(1.2) among the solutions obtained by
Theorem 1.3 for all a > a* and € € (0,%).

Remark 5.2. If Theorem 5.1 could be proved successfully, one can observe that the ground state
solution inherits the properties of concentrating behavior and exponential decay stated in Theorem
1.3. Moreover, the positive parameters a* is larger than a* and £* is smaller than €*, respectively.

On the other hand, it would be interesting to handle the existence of solutions for Problem (1.14)
perturbed by a mass-critical nonlinearity. More precisely, let us consider the problem below

—Apu = MulP2u + [ulP%ulog [ul? + plulP~2u in RY,

|u|Pdz = aP.
RN

(5.1)
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where p > 0 is a parameter and p = p + %. It seems difficult to construct a nontrivial solution for
Problem (5.1) in our p-Laplacian setting so far because we require the sufficiently small mass a to
make sure that the variational functional is coercive and bounded from below on S(a). Whereas,
we cannot prove that m(a) < 0 in this situation and it is the essential difference from the classic
p-Laplacian problems, namely the logarithmic nonlinearity vanishes in Problem (5.1). We conjecture
that (5.1) could be solved if one chooses a suitable work space. Speaking it clearly, motivated by [16],
there may exist a work space Z C WHP(RY) such that [px |ufP|log |ufP|dz < oo for all u € Z and
the imbedding Z < LP(RY) is compact. If it holds true, one would generalize all the main results
in [47] to the p-Laplacian settings. What’s more, the remained case 1 < p < 2 for the results in this
paper would be supplemented.

APPENDIX A. SOME TECHNICAL STUFF

Lemma A.1. Let Q € RV be an open set, £: Q@ x R xRN — R is a C! function and f € L (Q). If

loc

& L(x,s,€) is strictly convex for each (z,s) € @ x R and u : Q — R is a locally Lipschitz solution
of

—div{VeL(x,u, Vu)} + DsL(x,u, Vu) = f in D'(Q).
Then

N
Z / D;hjD¢, L(x,u, Vu)Djudr — / [(divh)L(z,u, Vu) + h - VoL(z,u, Vu)|dz
(A1) ig=17? R

:/ (h-Vu)f(u)dz, Vh € CL(Q,RY).
RN

Lemma A.2. Let (22, X)) € X x R be a couple of weak solution to the Problem (3.14), then

oo > p and lim @(z) = 0 uniformly in € € (0,*).
€ €
|z| =400

where p? > 0 is independent of & € (0,&*).

Proof. 1f the first part is false, we suppose that \@g|oo — 0 as e — 07 in the sense of a subsequence.
Then, it is simple to verify that #2 — 0 in X which is absurd and thus we just show the second part
in detail. For every R > 0 and 0 < r < %, we choose a cutoff function n € C§°(RY, [0, 1]) such that
n(z) = 1if |z| > R, and n(z) = 0if |2| < R —r as well as |Vp| < 2. Given ¢ € (0,*) and L > 1,
define

{ vl(z), vl(z) <L,

L, vl(z) = L,

and

¥—1) -1

p Py p » I
Zi,L = np(”g,L)p( vl and wg,L = mg(vg,L)

with ¥ > 1 to be determined later. Taking Zg ;. as a test function in (3.14), we obtain

/R N (0! )PV |\ Vol Pz = —p(v — 1) /R N (@ )PP el |Vl PR Vel Vel | da

—p/RN npfl(f)g’L)pw*l)@g|V@g\p72Vz7gV77d:C
+ | F@nP @l PO Vol de — / Ve(@)|od PP (o] )PV da,
RN ’ RN ’

where V.(z) = V(ex 4 exl) and

f(od) = M2~ + [0 P20l log [0 = (M — 1)[ed[P~20] + Fy(v]) — Fi(20).
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It follows from property-(P1) and property-(P2) with ¢ € (p, p*) that
F@)el < (M = Dol + pCyll|?

which indicates that

/"n%@ﬁ ﬂwvwmm<p/ﬁnp%@ﬂﬂﬂngwgwlwmm
N RN ’

7 )

40Cy [ @ PVl a1 =Ve) [ (el el )P0V,
Using the Young’s inequality, it holds that
[ [P e — 0l = 1 = oyl @ 0 do
<G /RN (@ PVl P VnfPda + pCyCy /RN (@ )P o e

In view of the proof of Theorem 3.10, we obtain that A < (A*)7 < 0 for all ¢ € (0,¢*). Exploiting
(V1), there holds Vy + 1 > 0. Moreover, some simple calculations show that

(V! [P < Cyi® (P (@ )=V [VLlP + (O (o PO el

The above facts together with the Sobolev inequality imply that

. . D - o _ . o _ i
([ ataran)” <o ([ @l Dpipenpae s [ el 20 Vi)

g@wp/' |@Wm+/ (2P~ D|5d |9dz | .
R—r<|z|<R |z|>R—7r

Hereafter, we shall fix t = /7, p* > % and y = 2 (; D>1 Asa consequence,

t—1 1
p 1
%

Tt t
(/ \ngV’*dx)p gépﬁp{ (/ |ug'|f—6§da:> (/ dm)
RN ’ R—r<|z|<R R—r<|z|<R

t—1 1
t

+ / \T)Q%da: / |02 | @) gy
|z|>R—r |z|>R—r

and applying the Sobolev inequality, we must have that
t—1
p

. o gp )
|w < Cpa¥ |ol|t=Tdx .
RN |z|>R—r

From which, since @’ ; = nv(v! ;)?~1, we can derive that

}

Choosing § = p(1+ )

P p_
E3 *

P P
_q *19 * 4 * a4 * 19_1
</|>R el dz) : </|>R77p ot |vg’L’p( )d:E)
x|=> T|Z

P

. « p* ~ . pot ot
<( [ lpas)” <G| [ @)
RN |z|>R—r
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Letting L — 400 in the above inequality, there holds

*

— pL ~ . pdt Tt
/ WP e | < Gy / Nil=r A
|z|>R |z|>R—r

Setting y = 2 - (;;1) and s = %, we are derived from the above inequality that
o ~Z:’; X*i Wi o —i
|02 [ymt15(aisry < Coa= " X=X (02| e 1015 Ror)
and so _
02| Lo (o) < G X T p*(|z|>R—r)-
Since o2 — o7 in X, the last inequality completes the proof. O

Lemma A.3. Let (£, M) € X x R be a couple of weak solution to the Problem (3.14), then there
are C’O, c’ > 0 such that
vl < Cjexp(—cqlz|)
for all £ € (0,&*) and z € RV,
Proof. Since we have derived that M o M ase— 0t and o > 0 for every & € RV, we apply Lemma
A.2 to deduce that
/\j‘va’p 25! et ’%‘p °0 10g ’Us‘p

|z| =400 |Ug’P 1

—oo uniformly in € € (0,&").

So, there is an R > 0 which is independent of € € (0,e*) such that

2

o , , . , Vo—2 .
M[o2[P=25! + |52~ 20L log [p1[P < —>——=[wl[P~!, Ve € (0,) and |z| > R.

Denoting the constant Vo = Vj + 2 € [1,400), then for all |z| > R, there holds

N ) S . . ) ) . Vo + 2
~ 0,7 + 1P = NP0l + 2o log [ — |V (ea + o) — o

|02 [P~ 2]
Vo—2

< NolP*0l + ol P ol log [B2)P — ——[vl|P~*0!

<0.
Let 9/ (2) = CJ exp(—c)|z|) with CI, ¢} > 0 such that (c)P(p — 1) < ¥ and o (z) < CJ exp(—c)R)

for all |x| = R. It follows from some simple calculations that

a0+ Lyt iy (Z — ()0 = 1)+ ) ) >0, for all [1] > R

Define ¥ = {|z| > R} N {ﬂg > 97}, adopting the following inequality
(lz|* 2z — |y[*?y) - (x —y) >0 for all s > 1 and z,y € RY
and choosing ¢ = max{tl — 17,0} € Wol’p(RN\BR) N X as a test function in

( — ) + 4 [('U]) — ()P 1] <0, forall || > R

to conclude that

0= [ (Ve 29el - Vw20 Vods + 3 [ (@)t = (P ] oo > o
> 2 s
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Therefore, the set ¥ = (). From which, we know that o < ¢ (x) for all |z| > R and

vl < (x) = C’g exp(—cé|x]) for all |z| > R.

Exploiting Lemma A.2 again, |1‘)§ loo < C and so the above inequality holds true for the whole space

RY by increasing CJ to be large. The proof is completed. O
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