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Abstract

We investigate the existence and concentration of normalized solutions for a p-Laplacian problem with 
logarithmic nonlinearity of type

⎧⎪⎨
⎪⎩

−εp�pu+ V (x)|u|p−2u= λ|u|p−2u+ |u|p−2u log |u|p in RN,∫
RN

|u|pdx = apεN ,

where a, ε > 0, λ ∈ R is known as the Lagrange multiplier, �p · = div(|∇ · |p−2∇·) denotes the usual 
p-Laplacian operator with 2 ≤ p < N and V ∈ C0(RN) is the potential which satisfies some suitable as-
sumptions. We prove that the number of positive solutions depends on the profile of V and each solution 
concentrates around its corresponding global minimum point of V in the semiclassical limit when ε → 0+
using variational method. Moreover, we also get the existence of normalized solutions for some logarithmic 
p-Laplacian equations involving mass-supercritical nonlinearities.
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1. Introduction and main results

In this article, we aim to establish the existence and concentrating behavior of nontrivial so-
lutions for the following p-Laplacian equations with logarithmic nonlinearity of type

−εp�pu+ V (x)|u|p−2u= λ|u|p−2u+ |u|p−2u log |u|p in RN, (1.1)

under the constraint ∫
RN

|u|pdx = apεN, (1.2)

where a, ε > 0, λ ∈ R is known as the Lagrange multiplier, �p· = div(|∇ · |p−2∇·) denotes the 
usual p-Laplacian operator with 2 ≤ p <N and V ∈ C0(RN) is the potential which satisfies

(V1) V ∈ C0(RN) and −∞ <V0 � inf
x∈RN

V (x) < V∞ � lim|x|→+∞V (x) <+∞;

(V2) V −1({V0}) = {x1, x2, · · · , xl} with x1 = 0 and xi �= xj if i �= j for all i, j ∈ {1, 2, · · · , l}.

In the case p = 2, Eq. (1.1) also comes from the study of solitary waves for the following 
nonlinear Schrödinger equation

i
∂ψ

∂t
+�ψ − V (x)ψ + h(|ψ |2)ψ = 0 in (0,∞)×RN, (1.3)

where i is the imaginary unit, ψ : (0, ∞) × RN → C, V : RN → R is the potential, h(eiθ z) =
eiθh(z) for z ∈ C and θ ∈ R. It is not difficult to see that any solution ψ of Eq. (1.3) with the 
Cauchy initial function ψ(0, x) preserves the L2-mass, namely
2
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∫
RN

|ψ(t, x)|2dx =
∫
RN

|ψ(0, x)|2dx, ∀t ∈ (0,∞).

Actually, Eq. (1.3) is usually adopted in the study of nonlinear optics and Bose-Einstein con-
densates, where ψ describes the state of the condensate and the L2-mass is the total number of 
atoms, see e.g. [31,51,60]. One significant motivation associated with Eq. (1.3) is the search for 
its standing wave solutions. The standing wave is a solution of the form ψ(t, x) = e−iλtu(x), 
where λ ∈ R and u : RN → R is a time-independent function that satisfies the nonlinear elliptic 
equation

−�u+ V (x)u= λu+ g(u) in RN, (1.4)

with g(u) = h(|u|2)u.
Usually, there are two directions to the study of standing waves of the Schrödinger equation 

(1.4). On the one hand, one can choose the frequency λ to be fixed and consider the existence 
of nontrivial solutions for it by investigating critical points of the variational functional Jλ :
H 1(RN) → R defined by

Jλ(u)= 1

2

∫
RN

(
|∇u|2 + (V (x)− λ)|u|2

)
dx −

∫
RN

G(u)dx,

where G(t) = ∫ t
0 g(s)ds. When g(t) = t log t2, we refer to the article [62] and its references 

therein to acquaint the significant physical applications in quantum mechanics, quantum optics, 
nuclear physics, transport and diffusion phenomena, open quantum systems, effective quantum 
gravity, superfluidity theory and Bose-Einstein condensation for Eq. (1.4). Owing to the loga-
rithmic type nonlinearity, it presents some challenging mathematical problems. For instance, the 
associated variational functional is not C1-smooth since one can find a function below

u(x)=
{
(|x|N/2 log(|x|))−1, |x| ≥ 3,
0, |x| ≤ 2,

such that u ∈H 1(RN), however it holds that 
∫
RN u

2 logu2dx = −∞.
The initial work to deal with this difficulty is due to Cazenave in [16], where the author 

considered the following logarithmic Schrödinger equation

iut +�u+ u logu2 = 0, (t, x) ∈ R×RN,

in the space W � {u ∈ H 1(RN) : ∫RN |u2 logu2|dx < ∞} with a suitable Luxemburg norm. 
Speaking it more clearly, by introducing the N -function

A(s)=
{−s2 log s2, 0 ≤ s ≤ e−3,

3s2 + 4e−3s − e−6, s ≥ e−3,
(1.5)

‖u‖A = inf

⎧⎪⎨
⎪⎩γ > 0 :

∫
N

A

( |u|
γ

)
dx ≤ 1

⎫⎪⎬
⎪⎭ ,
R

3
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and (‖ · ‖H 1(RN) + ‖ · ‖A) as the Luxemburg norm, then the author obtained the existence of 
infinitely many critical points for the variational functional

J (u)= 1

2

∫
RN

|∇u|2dx −
∫
RN

u2 logu2dx, u ∈W,

on the set 	 � {u ∈W : ∫RN u
2dx = 1}. Very recently, Alves and his collaborators [3,4,8] have 

used the decomposition

F̂2(s)− F̂1(s)= 1

2
s2 log s2, s ∈R, (1.6)

where,

F̂1(s)=
⎧⎨
⎩

0, s ≤ 0,
− 1

2 s
2 log s2, 0 < s < δ,

− 1
2 s

2
[

log δ2 + 3
]+ 2δs − 1

2δ
2, s ≥ δ,

and

F̂2(s)=
{

0, |s| ≤ δ,
1
2 |s|2 log

(|s|2/δ2
)+ 2δ|s| − 3

2 |s|2 − 1
2δ

2, |s| ≥ δ,

for some sufficiently small δ > 0, and introduced the Orlicz space

LF̂1(RN)=

⎧⎪⎨
⎪⎩u ∈ L1

loc(R
N) :

∫
RN

F̂1

( |u|
γ

)
dx <+∞ for some γ > 0

⎫⎪⎬
⎪⎭ ,

then studied some different types of logarithmic Schrödinger equation in the space H 1(RN) ∩
LF̃1(RN). Of course, there are various techniques in the literature, see e.g. [5–7,18,19,30,34,43,
46,50,55] and the references therein even if these ones are far to be exhaustive, to find some other 
interesting works on logarithmic Schrödinger equations.

On the other hand, one can deal with the case λ ∈ R is unknown. In this situation, λ ∈ R
appears as a Lagrange multiplier and the L2-norm of solution is prescribed. From the physical 
point of view, the research holds particular significance as it accounts for the conservation of 
mass. Additionally, it provides valuable insights into the dynamic properties of standing waves 
in Eq. (1.4), such as stability or instability [15,17]. In [35], combining a minimax approach 
and compactness argument, Jenajean contemplated the existence of solutions for the following 
Schrödinger problem

⎧⎪⎨
⎪⎩

−�u+ λu= g(u) in RN,∫
N

|u|2dx = a2 > 0. (1.7)
R

4
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Later on, there are some complements and generalizations in [37]. In [48], for g(t) = μ|t |q−2t +
|t |p−2t with 2 < q ≤ 2 + 4

N
≤ p < 2∗, Soave considered the existence of solutions for problem 

(1.7), where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = ∞ if N = 2. For this type of combined nonlinearities, 

Soave [49] proved the existence of ground state and excited solutions when p = 2∗. For more 
interesting results for problem (1.7), we refer the reader to [13,36,38,40,56] and the references 
therein.

In reality, the p-Laplacian operator in Eq. (1.1) appears in many nonlinear problems, see 
[29,33,42] for example, in fluid dynamics, the shear stress 
τ combined with the velocity gradient 
∇u of the fluid corresponds to the manner that


τ = r|∇u|p−2∇u.

The fluid is dilatant, pseudoplastic or Newtonian when p > 2, p < 2 or p = 2, respectively. 
Therefore, the equation governing the motion of the fluid includes the p-Laplacian. Moreover, 
such an operator also appears in the study of flows through porous media (when p= 3/2), non-
linear elasticity (when p ≥ 2) and glaciology (when p ∈ (1, 4/3]).

In light of the physical background of p-Laplacian operator, motivated by the prescribed L2-
norm solution for Eq. (1.4), it is interesting to investigate the p-Laplacian equation under the 
Lp-mass constraint and regard the frequency λ ∈ R as a Lagrange multiplier. Up to the best 
knowledge of us, there exist very few articles on this topic. Wang et al. [53] established the 
existence of solutions for the problem

⎧⎪⎨
⎪⎩

−�pu+ |u|p−2u= λu+ |u|s−1u in RN,∫
RN

|u|2dx = a2 > 0.

when a > 0 is sufficiently small, where max
{

1, 2N
N+2

}
< p <N and s ∈ (

N+2
N

p,p∗) with p∗ =
Np
N−p . In [61], the authors studied the p-Laplacian equation with a Lp-norm constraint

⎧⎪⎨
⎪⎩

−�pu= λ|u|p−2u+μ|u|q−2u+ g(u) in RN,∫
RN

|u|pdx = ap,

where 1 < p < q ≤ p̄ � p + p2

N
and g ∈ C0(R, R) is odd and Lp-supercritical. For the suitable 

μ, they obtained several existence results including the existence of infinitely many solutions 
by Schwarz rearrangement technique, Ekeland variational principle and the Fountain theorem. 
There exist some other similar results for the p-Laplacian equation prescribed a Lp-norm, see 
e.g. [24,25,59].

Whereas, as far as we are concerned, there seems no related results for the p-Laplacian equa-
tion with a logarithmic nonlinearity under the Lp-mass constraint, and so one of the aims in the 
present article is to fulfill the blank. Motivated by [2,8,10], we shall derive the multiplicity and 
concentrating behavior of positive solutions for a logarithmic p-Laplacian equation (1.1) under 
the constraint (1.2).

Now, we can state the first main result as follows.
5
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Theorem 1.1. Let 2 ≤ p < N and (V1) − (V2). Then, there exists a ε∗ > 0 such that (1.1)-(1.2)
possesses at least l different couples of weak solutions (ujε , λ

j
ε ) ∈ W 1,p(RN) × R for all ε ∈

(0, ε∗) with ujε (x) > 0 for every x ∈ RN and λjε < 0, where j ∈ {1, 2, · · · , l}. Moreover, each uεj
has a maximum point zjε ∈ RN such that V (zjε ) → V (xj ) = V0 as ε → 0+. Besides, there exist 
two constants Cj

0 > 0 and cj0 > 0 satisfying

ujε ≤ C
j

0 exp

(
− c

j

0
|x − z

j
ε |

ε

)

for all ε ∈ (0, ε∗) and x ∈RN .

Remark 1.2. A recent work by Alves and Ji we would like to mention here is the paper [8], where 
the authors contemplated the following Schrödinger problem with logarithmic nonlinearity

⎧⎪⎨
⎪⎩

−ε2�u+ V (x)u= λu+ u log |u|2 in RN,∫
RN

|u|2dx = a2εN . (1.8)

Here the potential V satisfies the assumptions

(V̂1) V ∈ C0(RN) and −1 ≤ V0 = inf
x∈RN

V (x) < V∞ = lim|x|→+∞V (x) <+∞;

(V̂2) M = {x ∈RN : V (x) = V0} and M
δ̂
= {x ∈ RN : dist(x, M) ≤ δ̂} for some δ̂ > 0.

They derived that, given a δ̂ > 0, there exist â > 0 and ε̂ > 0 such that problem (1.8) possesses 
at lease catM

δ̂
(M) couples of solutions for all a > â and ε ∈ (0, ̂ε), where the concentration has 

also been studied but the property of exponential decay of solutions is absent. In contrast to it, 
there are three main contributions in the present paper which are exhibited below

(I) We just suppose that V0 >−∞ in (V1) instead of V0 ≥ −1 in (V̂1);
(II) There is no restriction on the mass a > 0 in Theorem 1.1, while the results in [8] hold true 

provided that the mass a > 0 is sufficiently large;
(III) The p-Laplacian operator appearing in Eq. (1.1) is non-homogeneous which reveals that 

the calculations would be more complicated and technical. For instance, as a counterpart of (1.6), 
it is nontrivial to construct some functions F1 and F2 such that

F2(s)− F1(s)= 1

p
|s|p log |s|p, ∀s ∈ R. (1.9)

Moreover, we shall make some efforts to investigate the property of exponential decay of ob-
tained solutions which should be regarded as a replenishment. As a consequence, we could never 
repeat the approaches adopted in [8] to conclude the proof of Theorem 1.1.

We note that the considerations of Eq. (1.1) can date back to the studies of semiclassical 
problems for Schrödinger equations, the reader could refer to [12,14] for some detailed survey 
on such topic which comes from the pioneering research work by Floer and Weinstein [32]. 
Soon afterwards, this topic on different types of Schrödinger equations has been investigated 
6
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extensively under several distinct hypotheses on the potential and the nonlinearity, see e.g. [11,
22,23,27,28,39,44,54] and the references therein. Hence, it permits us to follow the effective 
procedures in the literature to handle the p-Laplacian problems with 2 ≤ p <N and logarithmic 
nonlinearity in this paper.

Performing the scaling v(x) = u(εx), one could observe that, to consider (1.1)-(1.2), it is 
equivalent to study the problem

⎧⎪⎨
⎪⎩

−�pv + V (εx)|v|p−2v = λ|v|p−2v + |v|p−2v log |v|p in RN,∫
RN

|v|pdx = ap. (1.10)

In other words, if the couple (v, λ) is a (weak) solution of Problem (1.10), then (u, λ) is a solution 
of (1.1)-(1.2), where v(x) = u(εx) for all x ∈ RN . Let v = σw with some σ > 0, we shall 
observe that the couple (v, λ) is a weak solution to Problem (1.10) if and only if (w, λ) is a weak 
solution to problem below

⎧⎪⎨
⎪⎩

−�pw+ [V (εx)− logσp]|w|p−2w = λ|w|p−2w+ |w|p−2w log |w|p in RN,∫
RN

|w|pdx = apσ−p. (1.11)

At this stage, we deduce that if one wants to study problems (1.1)-(1.2), it would be enough to 
deal with Problem (1.11). Since σ > 0 is arbitrary, we are able to find a sufficiently small σ > 0
such that

V (εx)− logσp ≥ −1, ∀x ∈RN,

since V0 = inf
x∈RN

V (x) >−∞ by (V1) and apσ−p > ã, where ã > 0 is a fixed constant.

Owing to the above discussions, to reach Theorem 1.1, we just need to prove the following 
result.

Theorem 1.3. Let 2 ≤ p < N and (V̂1) − (V2). Then, there exist a∗ > 0 and ε∗ > 0 such that 
(1.1)-(1.2) has at least l different couples of weak solutions (ujε , λ

j
ε ) ∈ W 1,p(RN) × R for all 

a > a∗ and ε ∈ (0, ε∗) with ujε (x) > 0 for every x ∈ RN and λjε < 0, where j ∈ {1, 2, · · · , l}. 
Moreover, each ujε admits a maximum point zjε ∈RN such that V (zjε ) → V (xj ) = V0 as ε → 0+. 
Besides, there exist two constants Cj

0 > 0 and cj0 > 0 satisfying

ujε ≤ C
j

0 exp

(
− c

j

0
|x − z

j
ε |

ε

)

for all ε ∈ (0, ε∗) and x ∈RN .

Now, we shall turn to investigate the existence of normalized solutions for logarithmic p-
Laplacian equations with mass subcritical and supercritical nonlinearities. First of all, we recall 
the Gagliardo-Nirenberg inequality (see e.g. [1,57]), for every p < s < p∗, there exists an optimal 
constant CN,p,s > 0 depending only on N , p and s such that
7
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‖u‖Ls(RN) � CN,p,s‖∇u‖βsLp(RN)
‖u‖1−βs

Lp(RN)
, ∀u ∈W 1,p(RN), (1.12)

where

βs �N

(
1

p
− 1

s

)
= N(s − p)

ps
. (1.13)

Due to (1.12), one observes that

p̄ = p+ p2

N

is the Lp-critical exponent with respect to p-Laplacian equation. Indeed, we focus on estab-
lishing the existence and multiplicity of positive solutions for the following p-Laplacian type 
problems

⎧⎪⎨
⎪⎩

−�pu= λ|u|p−2u+ |u|p−2u log |u|p +μ|u|q−2u in RN,∫
RN

|u|pdx = ap, (1.14)

where a > 0, μ > 0 and q ∈ (p, p̄) ∪ (p̄, p∗).
In order to contemplate the Problem (1.14) involving a class of pure-power type mass sub-

critical and supercritical nonlinearities, we shall continue to establish the existence of global 
minimizer of a minimization problem, namely

m(a)= inf
u∈S(a) J (u),

where the variational functional J :X →R is given by

J (u)= 1

p

∫
RN

(|∇u|p + |u|p)dx − 1

p

∫
RN

|u|p log |u|pdx − μ

q

∫
RN

|u|qdx (1.15)

and the constrained set

S(a)=

⎧⎪⎨
⎪⎩u ∈X :

∫
RN

|u|pdx = ap

⎫⎪⎬
⎪⎭ .

Here a > 0 and the space X can be found in Section 2 below.
The main results for the Problem (1.14) involving mass-subcritical nonlinearities can be stated 

as follows.

Theorem 1.4. Suppose that 2 ≤ p <N , μ > 0 and p < q < p̄. Then, there is an a∗ > 0 such that, 
for all fixed a > a∗, m(a) admits a minimizer u ∈ S(a) which is positive and radially symmetric 
and decreasing in r = |x|. Moreover, there is a λ ∈ R such that (u, λ) ∈X × R solves Problem 
(1.14).
8
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Remark 1.5. It should be stressed here that Theorem 1.4 partially generalizes [47, Theorem 
1.1]. Nevertheless, one could never simply repeat the arguments explored in it to arrive at our 
result since it needs some efforts to construct a suitable N -function like (1.5) in the p-Laplacian 
setting. In order to avoid this obstacle, we continue to make use of the decomposition in (1.9)
which should be regarded as one of novelties in this article. Whereas, the biggest challenge in 
the proof of Theorem 1.4 is the lack of compactness. Explaining it more clearly, the imbedding 
Wr ↪→L2(RN) in [47] is compact, see e.g. [16, Proposition 3.1], but we indeed can not conclude 
the compact imbedding Xr ↪→ Lp(RN) in advance. To overcome this difficulty, we shall intro-
duce some new analytic tricks to recover the desired compactness, see Lemma 4.4 for instance. 
Moreover, the reader would observe that the case μ = 0 in Theorem 1.4 acts as a special one 
of Theorem 3.1 below. Alternatively, we successfully put forward a totally different argument to 
look for a minimizer of m(a).

Finally, we begin paying attention to the case p + p2

N
< q < p∗ which leads to the Problem 

(1.14) a mass-supercritical one and prove the following result.

Theorem 1.6. Suppose that 2 ≤ p <N and p+ p2

N
< q < p∗, there exist a∗ > 0 and μ∗ > 0 such 

that, for all a > a∗ and μ ∈ (0, μ∗), Problem (1.14) has a couple of weak solution (u∗, λ∗) ∈
X×R with u∗(x) > 0 for all x ∈ RN .

Given a u ∈ S(a), then ut (·) � t
N
p u(t ·) for all t > 0 and hence, it is elementary to arrive at the 

calculations

J (ut )= tp

p

∫
RN

|∇u|pdx + ap(1 −N log t)

p
− 1

p

∫
RN

|u|p log |u|pdx − μ

q
t
N
(
q
p

−1
) ∫
RN

|u|qdx

→ −∞

as t → +∞ which indicates that m(a) = −∞ for all a > 0. To get around this obstacle, in a 
similar spirit of [13], one may depend on the following Pohoz̆aev manifold

P(a)= {u ∈ S(a) : P(u)= 0},

where the variational functional P : S(a) → R is defined by

P(u)=
∫
RN

|∇u|pdx − N

p
ap −μN

(
1

p
− 1

q

) ∫
RN

|u|qdx.

According to the discussions in Section 2 below, we can conclude that P is a natural constraint 
since P(u) ≡ 0 provided that u ∈X is a nontrivial weak solution of the first equation in Problem 
(1.14). Unfortunately, we fail to argue as [47] to consider the following minimization problem

mp(a)= inf J (u)

u∈P(a)

9
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since it seems impossible to get the compactness of its corresponding minimizing sequence. 
Actually, we even cannot make sure that mp(a) ≤ 0. Thereby, it differs evidently from the coun-
terparts in [47]. Besides, we also try to study the following problem

mR
p (a)= inf

u∈S(a)∩{‖∇u‖
Lp(RN )

<R}
J (u)

combined with the Ekeland variational principle. Although one can deduce that mR
p (a) < 0 for 

some suitable R > 0, the absence of the monotone property with respect to mR
p (a) results in the 

lack of compactness and it is still hard to show that mR
p (a) can be attained.

In consideration of the explanations exhibited above, motivated by the ideas introduced in [9], 
we shall rely heavily on the so-called truncation argument. Let us introduce it step by step. For 

every R > 0 and p < q̄ < p+ p2

N
, we define the auxiliary function fR : R →R given by

fR(t)=
{ |t |q−2t, |t | ≤ R,

Rq−q̄ |t |q̄−2t, |t | ≥ R.

Using the function fR, we then contemplate the following auxiliary problem

⎧⎪⎨
⎪⎩

−�pu= λ|u|p−2u+ |u|p−2u log |u|p +μfR(u) in RN,∫
RN

|u|pdx = ap, (1.16)

whose energy functional JR :X → R is given by

JR(u)= 1

p

∫
RN

(|∇u|p + |u|p)dx − 1

p

∫
RN

|u|p log |u|pdx −μ

∫
RN

FR(u)dx,

where and in the sequel FR(t) =
∫ t

0 fR(s)ds. Due to the definition of fR, one has that

|fR(t)| ≤ Rq−q̄ |t |q̄−1, ∀t ∈R. (1.17)

When the constant R > 0 is fixed, it follows from (1.17) that fR has a Lp-subcritical growth 

because p < q̄ < p+ p2

N
. In other words, adopting Theorem 1.4, we immediately have the results 

below.

Corollary 1.7. Suppose that 2 ≤ p <N , μ > 0 and p < q̄ < p+ p2

N
. Then, for every fixed R > 0, 

there is an a∗ > 0 independent of R and μ such that, for all fixed a > a∗, Problem (1.16) admits 
a couple of weak solution (u∗

R, λ
∗
R) ∈X×R with u∗

R(x) > 0 for all x ∈ RN .

With Corollary 1.7 in hands, the reader is invited to see that if u∗
R ∈X is a solution of Problem 

(1.16) with |u∗
R|∞ ≤ R, then u∗

R is a solution for Problem (1.14). Have this in mind, our main 
goal is to deduce that given an R > 0, there are a∗ > 0 (independent of R and μ) and μ∗ =
μ∗(R) > 0 such that if a > a∗ and μ ∈ (0, μ∗), then |u∗ |∞ ≤R.
R

10
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We remark that, d’Avenia, Montefusco and Squassina [18] handled the existence of infinitely 
many solutions for a class of logarithmic Schrödinger equations. The authors pointed out their 
multiplicity results are also adapted, using [21], to the following logarithmic p-Laplacian equa-
tion

−�pu= λ|u|p−2u+ |u|p−2u log |u|p, u ∈W 1,p(RN), (1.18)

where λ ∈R is a fixed constant. On the other hand here we mainly focus on existence of families 
of solutions concentrating around local minima of V in the semiclassical limit ε → 0.

Again the results in Theorems 1.3, 1.4 and 1.6 are new under the p-Laplacian settings with the 
logarithmic nonlinearity. The striking novelty is the correct setting of functional space in which 
we can treat the problems variationally. Unfortunately, we cannot deal with the case 1 < p < 2
so far ant it remains open, see Lemma 2.2 below. In addition, there are some other technical 
calculations due to the p-Laplacian operator in the proofs of the main results.

The outline of the paper is organized as follows. In Section 2, we mainly exhibit some prelim-
inary results. Sections 3 and 4 are devoted to the non-autonomous and autonomous logarithmic 
p-Laplacian equations, respectively. Finally, there are some further comments in Section 5.

Notations. From now on in this paper, otherwise mentioned, we use the following notations:

• C, C1, C2, · · · denote any positive constant, whose value is not relevant.
• Let (Z, ‖ · ‖Z) be a Banach space with its dual space (Z∗, ‖ · ‖Z∗).
• | · |p denotes the usual norm of the Lebesgue measurable space in RN , for all p ∈ [1, +∞].
• on(1) denotes the real sequence with on(1) → 0 as n → +∞.
• “→” and “⇀” stand for the strong and weak convergence in the related function spaces, 

respectively.

2. Variational setting and preliminaries

In this section, we would like to recommend some preliminary results. First of all, let us 
introduce some fundamental concepts and properties concerning the Orlicz spaces. For the more 
details, please refer to [45] for example.

Definition 2.1. An N -function is a continuous function � : R → [0, +∞) that satisfies the fol-
lowing conditions:

(i) � is a convex and even function;
(ii) �(t) = 0 ⇐⇒ t = 0;

(iii) lim
t→0

�(t)
t

= 0 and lim
t→∞

�(t)
t

= +∞.

We say that an N -function � satisfies the �2-condition, denoted by � ∈ (�2), if

�(2t)≤ k�(t), ∀t ≥ t0,

for some constants k > 0 and t0 ≥ 0.
The conjugate function �̃ associated with � is obtained through the Legendre’s transforma-

tion, defined as
11
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�̃(s)= max
t≥0

{st −�(t)}, for s ≥ 0.

It can be shown that �̃ is also an N -function. The functions � and �̃ are mutually complemen-

tary that is, ˜̃
� =�.

For an open set � ⊂ RN , we define the Orlicz space associated with the N -function � as 
follows

L�(�)=
⎧⎨
⎩u ∈ L1

loc(�) :
∫
�

�

( |u|
γ

)
dx <+∞, for some γ > 0

⎫⎬
⎭ ,

which is a Banach space endowed with the Luxemburg norm given by

‖u‖� = inf

⎧⎨
⎩γ > 0 :

∫
�

�

( |u|
γ

)
dx ≤ 1

⎫⎬
⎭ .

Associated with the Orlicz Spaces, there also holds the Hölder and Young type inequalities, 
namely

st ≤�(t)+ �̃(s), ∀s, t ≥ 0

and ∣∣∣∣∣∣
∫
�

uvdx

∣∣∣∣∣∣≤ 2‖u‖�‖v‖�̃, for ∀u ∈ L�(�) and ∀v ∈ L�̄(�).

The space L�(�) is reflexive and separable provided that �, �̃ ∈ (�2). Moreover, the �2-
condition implies that

L�(�)=
⎧⎨
⎩u ∈ L1

loc(�) :
∫
�

�(|u|)dx <+∞
⎫⎬
⎭

and

un → u in L�(�)⇐⇒
∫
�

�(|un − u|) dx → 0.

We then recall an significant relation involving N -functions that will be adopted later. Let � be 
an N -function of C1 class and �̃ is its conjugate function. Suppose that

1 < l ≤ �′(t)t
�(t)

≤m, t �= 0, (2.1)

then �, �̃ ∈ (�2). Finally, we consider the functions
12
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ξ0(t)= min{t l , tm} and ξ1(t)= max{t l , tm}, t ≥ 0,

it is possible to verify that, using (2.1), the function � satisfies the inequality below

ξ0 (‖u‖�)≤
∫
RN

�(u)≤ ξ1 (‖u‖�) , ∀u ∈ L�(�). (2.2)

Inspired by [3,4,8], we define the functions F1 and F2 as follows

F1(s)=

⎧⎪⎨
⎪⎩
F1(−s), s ≤ 0,
− 1

p
sp log sp, 0 < s < (p− 1)δ,

− 1
p
sp
[

log
(
(p− 1)δ

)p + p+ 1
]+ pδsp−1 − 1

p(p−1)

(
(p− 1)δ

)p
, s ≥ (p− 1)δ,

and

F2(s)=
⎧⎨
⎩

0, |s| ≤ (p− 1)δ,
1
p
|s|p log

(|s|p/((p− 1)δ)p
)+ pδ|s|p−1 − p+1

p
|s|p − 1

p(p−1)

(
(p− 1)δ

)p
,

|s| ≥ (p− 1)δ,

where δ > 0 is sufficiently small but fixed, then we reach the decomposition (1.9). Moreover, F1
and F2 satisfy the following properties:

(P1) F1 is even with F ′
1(s)s ≥ 0 and F1(s) ≥ 0 for all s ∈ R. Furthermore, F1 ∈ C1(R, R) is 

convex if δ ≈ 0+;
(P2) F2 ∈ C1(R, R) ∩ C2((δ, +∞), R) and for each q̃ ∈ (p, p∗), there exists a Cq̃ > 0 such that

|F ′
2(s)| ≤ Cq̃ |s|q̃−1, ∀s ∈R;

(P3) s �→ F ′
2(s)

sp−1 is a nondecreasing function for s > 0 and a strictly increasing function for s > δ;

(P4) lim
s→∞

F ′
2(s)

sp−1 = ∞.

As a counterpart of the results explored in [3,4,8], we demonstrate the following result which 
is nontrivial in contrast to the cited papers.

Lemma 2.2. The function F1 is an N -function. Moreover, if 2 ≤ p < N , it holds that F1, F̃1 ∈
(�2).

Proof. Exploiting some elementary calculations, one could easily certify that F1 satisfies (I)-
(III) of Definition 2.1. To arrive at the proof, we shall verify that F1 satisfies a similar relation in 
(2.1) and so it reveals that F1, F̃1 ∈ (�2). Firstly, it is easy to see that

F ′
1(s)=

{−(1 + log sp)sp−1, 0 < s < (p− 1)δ,
−sp−1

[
log

(
(p− 1)δ

)p + p+ 1
]+ p(p− 1)δsp−2, s ≥ (p− 1)δ.

Next, we shall analyze the cases 0 < s < (p− 1)δ and s ≥ (p− 1)δ separately.
13
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Case 1. 0 < s < (p− 1)δ.

In this case, it is simple to calculate that

F ′
1(s)s

F1(s)
= p+ 1

log s
,

which indicates that there is an l1 > 1 such that

1 < l1 ≤ F ′
1(s)s

F1(s)
≤m1 � sup

0<s<δ

(
p+ 1

log s

)
≤ p,

for some sufficiently small δ > 0.

Case 2. s ≥ (p− 1)δ.

In this case, we continue to calculate that

F ′
1(s)s

F1(s)
= −sp[ log

(
(p− 1)δ

)p + p+ 1
]+ p(p− 1)δsp−1

− 1
p
sp
[

log
(
(p− 1)δ

)p + p+ 1
]+ pδsp−1 − 1

p(p−1)

(
(p− 1)δ

)p
From which, we derive that sup

s≥(p−1)δ

F ′
1(s)s

F1(s)
≤ p since for all s ≥ (p− 1)δ, there holds

F ′
1(s)s

F1(s)
≤ −sp[ log

(
(p− 1)δ

)p + p+ 1
]+ p(p− 1)δsp−1 + [

pδsp−1 − 1
p−1

(
(p− 1)δ

)p]
− 1

p
sp
[

log
(
(p− 1)δ

)p + p+ 1
]+ pδsp−1 − 1

p(p−1)

(
(p− 1)δ

)p .

Obviously, one can deduce that

lim
s→+∞

F ′
1(s)s

F1(s)
= p and

F ′
1(s)s

F1(s)
> p− 1, ∀s > 0,

and so we obtain

p− 1 < inf
s>0

F ′
1(s)s

F1(s)
.

The last inequality together with p > 2 guarantees the existence of an l ∈ (1, 2) such that

1 < l ≤ F ′
1(s)s

F1(s)
≤ p, ∀s > 0.

Since F1 is an even function, then the inequality holds true for any s �= 0. The proof is com-
pleted. �

Replacing � and � in the above discussions with F1 and RN , respectively, we conclude the 
Orlicz Space LF1(RN) and it is standard to prove the following result.
14
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Corollary 2.3. The functional � : LF1(RN) → R given by u �→ ∫
RN F1(u)dx is of class 

C1(LF1(RN)) with

�′(u)v =
∫
RN

F ′
1(u)vdx, ∀u,v ∈ LF1(RN),

where LF1(RN) denotes the Orlicz space associated with F1 endowed with the Laremburg norm 
‖ · ‖F1 .

In the sequel, in order to avoid the points u ∈ W 1,p(RN) that satisfy F1(u) �∈ L1(RN), we 
should consider the work space X =W 1,p(RN) ∩LF1(RN) throughout the paper equipped with 
the norm

‖ · ‖ � ‖ · ‖W 1,p(RN) + ‖ · ‖F1,

where ‖ · ‖W 1,p(RN) denotes the usual norm in W 1,p(RN). Moreover, we denote the radially 
symmetric subsequence of X by Xr , namely Xr = {u ∈X : u(x) = u(|x|)} with the norm ‖ · ‖.

With the space X and (1.9) in hands, we can obtain the following Brézis-Lieb type lemma in 
the logarithmic setting.

Lemma 2.4. Let {un} be a bounded sequence in X such that un → u a.e. in RN and 
{|un|p log |un|p} is a bounded sequence in L1(RN). Then, up to a subsequence if necessary,

lim
n→∞

∫
RN

(|un|p log |un|p − |un − u|p log |un − u|p)dx =
∫
RN

|u|p log |u|pdx.

Proof. Recalling (1.9), one has that

F2(un)− F1(un)= 1

p
|un|p log |un|p.

Since {un} is a bounded sequence in X, by property-(P2), it follows from [58, Lemma 1.32] that

lim
n→∞

∫
RN

[F2(un)− F2(un − u)]dx =
∫
RN

F2(u)dx.

Similarly, we easily conclude that

lim
n→∞

∫
RN

[F1(un)− F1(un − u)]dx =
∫
RN

F1(u)dx.

So, we can finish the proof of the lemma. �
Next, we shall introduce the Pohoz̆aev identity for a class of logarithmic p-Laplacian equa-

tions in RN as follows.
15
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Theorem 2.5. Let 2 ≤ p <N . Suppose u ∈X to be a nontrivial weak solution of

−�pu= λ|u|p−2u+ |u|p−2u log |u|p +μ|u|q−2u in RN, (2.3)

where λ, μ ∈R are constants and p < q ≤ p∗. Then

∫
RN

|∇u|pdx = N

p

∫
RN

|u|pdx +μN

(
1

p
− 1

q

) ∫
RN

|u|qdx. (2.4)

Moreover, if in addition u(x) ≥ 0 for all x ∈ RN , then u(x) > 0 for all x ∈ RN .

Proof. The proof is divided into the following three steps.

Step 1. u ∈ L∞(RN) ∩ C1,τ
loc (R

N) for some τ ∈ (0, 1).

We start by assuming that u ≥ 0. For all L > 1, define uL = min{u, L}. Taking ψ = u
kp+1
L ∈X

with k ≥ 0 as a test function in (2.3), we obtain

∫
RN

|∇u|p−2∇u∇(ukN+1
L )dx =

∫
RN

[F ′
2(u)− F ′

1(u)+ (λ− 1)|u|p−2u+μ|u|q−2u]ukp+1
L dx.

(2.5)
It is easy to observe that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
RN

|∇u|p−2∇u∇(ukp+1
L )dx = kp+ 1

(k + 1)p

∫
RN

|∇(uL)k+1|pdx,
∫
RN

|u|p−2uu
kp+1
L dx ≥

∫
RN

|(uL)k+1|pdx.
(2.6)

Adopting property-(P1) and property-(P2) with q̃ = q , there holds

F ′
2(u)u− F ′

1(u)u+ λ|u|p +μ|u|q ≤ (Cq + |λ| + |μ|)|u|q � Cq,λ,μ|u|q if |u| ≥ 1. (2.7)

Without loss of generality, we shall suppose that |u| ≥ 1. Combining (2.5), (2.6) and (2.7), we 
have

( ∫
RN

|uL|(k+1)p∗
) p

p∗
≤ Cp∗‖(uL)k+1‖p

W 1,p(RN)
≤ Cp∗Cq,λ,μ(k + 1)p

∫
RN

|u|qukpdx

≤ Cp∗Cq,λ,μ(k + 1)p

⎛
⎜⎝∫
RN

|u|qdx
⎞
⎟⎠

q−p
q
⎛
⎜⎝∫
RN

|u|(k+1)qdx

⎞
⎟⎠

p
q

(2.8)

Letting L → +∞ in (2.8), we arrive at
16
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( ∫
RN

|uL|(k+1)p∗
) p

p∗
≤ Cp∗Cq,λ,μ(k + 1)pT (u)

⎛
⎜⎝∫
RN

|u|(k+1)qdx

⎞
⎟⎠

p
q

which is equivalent to

( ∫
RN

|u|(k+1)p∗
) 1

(k+1)p∗
≤ C

1
k+1∗ (k + 1)

1
k+1

( ∫
RN

|u|(k+1)qdx

) 1
(k+1)q

, (2.9)

where the constant C∗ = C
p
p∗C

p
q,λ,μ[T (u)]p > 0 is independent of k. Let k = 0 in (2.9), it be-

comes

( ∫
RN

|u|q�
) 1

q� ≤ C∗
( ∫
RN

|u|qdx
) 1

q

,

where � = p∗
q

≥ 1. For k + 1 =�m with m ∈N+ in (2.9), it holds that

( ∫
RN

|u|�m+1σ dx

) 1
�m+1σ ≤ C

1
�m

∗ �
m
�m

( ∫
RN

|u|�mqdx

) 1
�mq

.

From it, proceeding this iteration procedure m times and multiplying these m + 1 formulas,

( ∫
RN

|u|�m+1σ dx

) 1
�m+1σ ≤ C

∑m
j=0

1
�j

∗ �

∑m
j=1

j

�j

( ∫
RN

|u|qdx
) 1

q

.

Since 
∑∞

j=0
1
�j = �

�−1 and 
∑∞

j=1
j

�j = �
(�−1)2

, then we could take the limit as m → +∞ to 

conclude that u ∈ L∞(RN). When u changes sign, then it is enough to argue as before by con-
templating once the positive part u+ � max{u, 0} and once the negative part u− � max{−u, 0}
in place of u in the definition of uL. As a result, we shall finish the verification of u ∈ L∞(RN)

for all nontrivial solution u. In addition, we could follow [26] to conclude that u ∈ C1,τ
loc (R

N) for 
some τ ∈ (0, 1).

Step 2. The nontrivial solution u ∈X satisfies (2.4).

We recall [20, Theorem 2] which is stated by Lemma A.1 in the Appendix and take 
L(x, s, ξ) = 1

p
|ξ |p which is strictly convex in the variable ξ ∈ RN . Let ϕ ∈ C1

c (R
N) be such 

that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for all |x| ≤ 1, and ϕ(x) = 0 for all |x| ≥ 2. Define

h(x)= ϕ

(
x

k

)
x ∈ C1(RN,RN), for all k ∈N+.

Note that if hj (x) = ϕ
(
x
)
xj for j = 1, 2, · · · , then
k

17
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⎧⎪⎪⎨
⎪⎪⎩
Dihj (x)=Diϕ

(
x

k

)
xj

k
+ ϕ

(
x

k

)
δij , for all x ∈RN, j = 1,2, · · · ,

divh(x)=Dϕ

(
x

k

)
x

k
+Nϕ

(
x

k

)
, for all x ∈RN,

where δij denotes the Kronecker delta symbol. One also observes that

∣∣∣∣Diϕ

(
x

k

)
xj

k

∣∣∣∣≤ C, for all x ∈ RN, i, j = 1,2, · · · . (2.10)

Denoting f (s) = λ|s|p−2s+ |u|p−2u log |s|p +μ|s|q−2s for all s ∈ R, by means of (A.1) below, 
it holds that

N∑
i,j=1

∫
RN

Diϕ

(
x

k

)
xj

k
DξiL(x,u,∇u)Djudx +

∫
RN

ϕ

(
x

k

)
DξL(x,u,∇u) · ∇udx

−
∫
RN

[
Dϕ

(
x

k

)
x

k
L(x,u,∇u)+Nϕ

(
x

k

)
L(x,u,∇u)

]
dx

=
∫
RN

[
ϕ

(
x

k

)
x · ∇u

]
f (u)dx.

Thanks to (2.10), ϕ
(
x
k

)→ 1 and ∇ϕ( x
k

) · x
k

→ 0 as k → +∞, we obtain

N∑
i,j=1

∫
RN

Diϕ

(
x

k

)
xj

k
DξiL(x,u,∇u)Djudx +

∫
RN

ϕ

(
x

k

)
DξL(x,u,∇u) · ∇udx

−
∫
RN

[
Dϕ

(
x

k

)
x

k
L(x,u,∇u)+Nϕ

(
x

k

)
L(x,u,∇u)

]
dx

→
∫
RN

|∇u|pdx −N

∫
RN

1

p
|∇u|pdx = −N − p

p

∫
RN

|∇u|pdx

as k → +∞. On the other hand, since F(u) ∈L1(RN) for all x ∈X by (1.9), we shall exploit an 
integration by parts and the Lebesgue’s Dominated Convergence theorem to reach

∫
RN

[
ϕ

(
x

k

)
x · ∇u

]
f (u)dx = −N

∫
RN

F (u)ϕ

(
x

k

)
dx −

∫
RN

[
∇ϕ

(
x

k

)
· x
k

]
F(u)dx

→ −N
∫
RN

F (u)dx

as k → +∞. So, we can conclude the equality
18
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N − p

p

∫
RN

|∇u|pdx =N

∫
RN

(
λ− 1

p
|u|p + 1

p
|u|p log |u|p + μ

q
|s|q

)
dx. (2.11)

Multiplying the nontrivial solution u ∈X on both sides of Eq. (2.3), one has that

∫
RN

|∇u|pdx =
∫
RN

(λ|u|p + |u|p log |u|p +μ|u|q)dx. (2.12)

By multiplying N
p

in (2.12) and then minus (2.11), we get the desired identity (2.4).

Step 3. If the nontrivial solution u(x) ≥ 0 for all x ∈RN , then u(x) > 0 for all x ∈ RN .

Choosing a sufficiently small ε > 0, we have

�pu= −λup−1 − up−1 logup −μuq−1 ≤ ξ(u) in {x ∈ RN : 0 < u(x) < ε},

where ξ(0) � lim
s→0+ ξ(s) = 0 and ξ : (0, +∞) → R is defined by

ξ(s)=
{−λsp−1 − sp−1 log sp, if μ> 0,

−(λ+μ)sp−1 + sp−1 log sp, if μ≤ 0.

Clearly, ξ is continuous and nondecreasing when s > 0 is small enough. It is simple to calculate 
that ξ( p

√
e−λ) = 0 if μ > 0, and ξ( p

√
e−(λ+μ)) = 0 if μ ≤ 0. Since u(x) ≥ 0 for all x ∈ RN , then 

we apply the Step 1 and [52, Theorem 5] to finish the proof. �
3. The semiclassical problem

In this section, we shall contemplate the existence and concentration behavior of positive 
normalized solutions for a class of p-Laplacian equations with logarithmic nonlinearities. Nev-
ertheless, first of all, let us consider the existence of positive solutions to the problem

⎧⎪⎨
⎪⎩

−�pu+μ|u|p−2u= λ|u|p−2u+ |u|p−2u log |u|p, in RN,∫
RN

|u|pdx = ap, (3.1)

where �pu = div(|∇u|p−2∇u) denotes the usual p-Laplacian operator with 2 ≤ p < N , μ ∈
[−1, +∞) is a fixed constant and λ ∈R is known as the Lagrange multiplier.

In general, to solve Problem (3.1), we look for critical points of the following variational 
functional

Iμ(u)= 1

p

∫
RN

[|∇u|p + (μ+ 1)|u|p]dx +
∫
RN

F1(u)vdx −
∫
RN

F2(u)dx

restricted to the sphere S(a) defined by
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S(a)=

⎧⎪⎨
⎪⎩u ∈X :

∫
RN

|u|pdx = ap

⎫⎪⎬
⎪⎭ .

Recalling Lemma 2.2, it follows that (X, ‖ · ‖) is a reflexive and separable Banach space. Ad-
ditionally, note that the imbedding X ↪→ W 1,p(RN) and X ↪→ LF1(RN) are continuous. As a 
consequence, we are derived from Section 2 that Iμ ∈ C1(X, R) with

I ′
μ(u)v =

∫
RN

[
|∇u|p−2∇u∇v + (μ+ 1)|u|p−2v

]
dx +

∫
RN

F ′
1(u)vdx −

∫
RN

F ′
2(u)vdx,∀v ∈X.

Next, we will prove the following result for Problem (3.1).

Theorem 3.1. Let 2 ≤ p < N . Then, there is a constant ã = ã(μ) > 0 such that Problem (3.1)
has a couple solution (u, λ) ∈X×R for all a > ã, where u(x) > 0 for all x ∈RN and λ < 0.

The proof of the above theorem will be divided into several lemmas.

Lemma 3.2. Let 2 ≤ p <N , the functional Iμ is coercive and bounded from below on S(a).

Proof. In view of the property-(P2) in Section 2, for every fixed q̃ ∈
(
p,

p2

N

)
, there exists a con-

stant Cq̃ > 0 such that

|F ′
2(s)| ≤ Cq̃ |s|q̃−1, ∀s ∈ R.

Moreover, by the Gagliardo-Nirenberg inequality (1.12),

Iμ(u)= 1

p

∫
RN

[|∇u|p + (μ+ 1)|u|p]dx − 1

p

∫
RN

|u|p log |u|pdx

≥ 1

p

∫
RN

|∇u|pdx +
∫
RN

F1(u)dx −CqCN,p,q̃a
q̃(1−βq̃ )

⎛
⎜⎝∫
RN

|∇u|pdx
⎞
⎟⎠

q̃βq̃
p

.

Since q̃ ∈
(
p, p

2

N

)
, then q̃βq̃ < p by (1.13). Moreover, adopting (2.2), we see that 

∫
RN F1(u)dx →

+∞ as ‖u‖F1 → ∞. These facts reveal the proof of this lemma. �
As a direct consequence of Lemma 3.2, the real number

Iμ,a = inf
u∈S(a) Iμ(u)

is well-defined. Then, we are going to establish some properties of Iμ,a with respect to the 
parameter μ ∈ [−1, +∞).
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Lemma 3.3. Let 2 ≤ p <N , then there exists a constant ã = ã(μ) > 0 such that Iμ,a < 0 for all 
a > ã and μ ∈ [−1, +∞).

Proof. Given some fixed ψ ∈X\{0} and t > 0, it follows from some simple calculations that

Iμ(tψ)= tp

p

∫
RN

[|∇ψ |p + (μ+ 1)|ψ |p]dx − tp

p

∫
RN

|ψ |p log |ψ |pdx − tp log t
∫
RN

|ψ |pdx

→ −∞

as t → +∞. Hence, there is a sufficiently large constant t̃ > 0 such that

Iμ(tψ)≤ −1 for all t > t̃.

Then, we can choose ã = t̃ |ψ |p to reach the statement. �
Lemma 3.4. Let 2 ≤ p < N . Fix μ ∈ [−1, +∞) and let 0 < a1 < a2 < +∞, then 

a
p
1
a
p
2
Iμ,a2 <

Iμ,a1 .

Proof. Since Iμ(u) = Iμ(|u|) for each u ∈X, without loss of generality, we suppose that {un} ⊂
S(a1) is a nonnegative minimizing sequence with respect to Iμ,a1 , that is,

Iμ (un)→ Iμ,a1 , as n→ +∞.

Choosing vn = ξun, then vn ∈ S(a2) for every n ∈ N , where ξ � a2
a1
> 1. It follows from some 

simple calculations that

Iμ,a2 ≤ Iμ (vn)= ξpIμ (un)− 1

p
ξp log ξp

∫
RN

|un|p dx = ξpIμ (un)− 1

p
a
p
1 ξ

p log ξp.

Letting n → +∞ and using the fact that ξ > 1, there holds

Iμ,a2 ≤ ξpIμ,a1 − 1

p
a
p

1 ξ
p log ξp < ξpIμ,a1 ,

that is,

a
p

1

a
p
2

Iμ,a2 < Iμ,a1 ,

finishing the proof of this lemma. �
Borrowing some ideas from [8, Theorem 3.2], we derive the compactness theorem on S(a)

which plays a pivotal role in the proof of Theorem 3.1.
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Theorem 3.5. (Compactness theorem on S(a)) Let 2 ≤ p < N . Suppose that a > ã and {un} ⊂
S(a) is a minimizing sequence with respect to Iμ,a , then, for some subsequence either
i) {un} is strongly convergent in X,
or
ii) There exists {yn} ⊂ RN such that the sequence vn(x) = un(x + yn) is strongly convergent to 
a function v ∈ S(a) in X with Iμ(v) = Iμ,a , where |yn| → +∞ along a subsequence.

Proof. Since Iμ is coercive on S(a) by Lemma 3.2, the sequence {un} is bounded, and then, 
un ⇀ u in X for some subsequence. If u �= 0 and |u|p = b �= a, we must have b ∈ (0, a). By the 
Brézis-Lieb Lemma (see e.g. [58]),

|un|pp = |un − u|pp + |u|pp + on(1).

Setting vn = un − u, dn = |vn|p and supposing that |vn|p → d , we get ap = bp + dp . From 
dn ∈ (0, a) for n large enough, we apply Lemma 2.4 to see that

Iμ,a + on(1)= Iμ(un)= Iμ(vn)+ Iμ(u)+ on(1)≥ Iμ,dn + Iμ,b + on(1).

Thereby, by Lemma 3.4,

Iμ,a + on(1)≥ d
p
n

ap
Iμ,a + Iμ,b + on(1).

Letting n → +∞, we find

Iμ,a ≥ dp

ap
Iμ,a + Iμ,b. (3.2)

Since b ∈ (0, a), using again Lemma 3.4 in (3.2), we get the following inequality

Iμ,a >
dp

ap
Iμ,a + bp

ap
Iμ,b =

(
dp

ap
+ bp

ap

)
Iμ,a = Iμ,a,

which is absurd. This asserts that |u|p = a, or equivalently, u ∈ S(a). As |un|p = |u|p = a, 
un ⇀ u in Lp(RN) and Lp(RN) is reflexive, it is well-known that

un → u in Lp(RN). (3.3)

This combined with interpolation theorem in the Lebesgue space and property-(P2) reveal

∫
RN

F2(un)dx →
∫
RN

F2(u)dx. (3.4)

These limits together with Iμ,a = lim
n→+∞ Iμ(un) and F1 ≥ 0 in property-(P1) indicate that

Iμ,a ≥ Iμ(u).
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As u ∈ S(a), therefore Iμ(u) = Iμ,a , then

lim
n→+∞ Iμ(un)= Iμ(u),

that combines with (3.3) and (3.4) to give

lim
n→∞

∫
RN

|∇un|pdx =
∫
RN

|∇u|pdx

and

lim
n→∞

∫
RN

F1(un)dx =
∫
RN

F1(u)dx.

Recalling F1 ∈ (�2) by Lemma 2.2, jointly with the above two limits as well as (3.3), it enables 
to see that un → u in X.

Now, assume that u = 0, that is, un ⇀ 0 in X. We claim that there exists C > 0 such that

∫
RN

F2(un)dx ≥ C, for n ∈ N large enough. (3.5)

Otherwise, there is a subsequence of {un}, still denoted by itself, such that

∫
RN

F2(un)dx → 0

as n → ∞. It follows from Lemma 3.3 and (3.5) that

0 > Iμ,a = lim
n→∞ Iμ(un)= lim

n→∞

⎛
⎜⎝ 1

p

∫
RN

[|∇un|p + (μ+ 1)|un|p]dx +
∫
RN

F1(un)dx

⎞
⎟⎠≥ 0

which is impossible.
So, there are R, C > 0 and {yn} ⊂ RN such that

∫
BR(yn)

|un|pdx ≥ C, for all n ∈ N. (3.6)

If it is not the case, then we derive un → 0 for all p < s < p∗ by the Vanishing lemma which 
yields that F2(un) → 0 in L1(RN) by property-(P2), a contradiction to (3.5). Recalling u = 0, 
we further have that {yn} is unbounded in RN . Define vn(x) = un(x + yn), then {vn} ⊂ S(a)

and it is also a minimizing sequence with respect to Iμ,a . Moreover, owing to (3.6), passing to a 
subsequence if necessary, there is a v ∈X\{0} such that
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vn ⇀ v in X and vn ⇀ v a.e. in RN.

Repeating the calculations in the first part of the proof, it must conclude that vn → v in X along 
a subsequence. The proof is completed. �
Proof of Theorem 3.1. By Lemma 3.2, there exists a bounded minimizing sequence {un} ⊂
S(a) with respect to Iμ,a , that is, Iμ(un) → Iμ,a . Thanks to Theorem 3.5, there exists a ua ∈
S(a) with Iμ(ua) = Iμ,a . Therefore, by the Lagrange multiplier theorem, there exists λa ∈ R
such that

I ′
μ(ua)= λa�

′(ua) in X∗, (3.7)

where � :X →R is given by

�(u)= 1

p

∫
BN

|u|pdx, u ∈X.

Thereby, according to (3.7), the couple (ua, λa) ∈ S(a) ×R satisfies the following equation

−�pu+μ|u|p−2u= λ|u|p−2u+ |u|p−2u log |u|p, in RN.

Let ua ∈ S(a) be a test function on the both sides for the above equation, it holds that

∫
RN

(|∇ua|p +μ|ua|p
)
dx = λaa

p +
∫
RN

|ua|p log |ua|pdx

which indicates that

Iμ,a = Iμ(ua)= 1

p

∫
RN

|ua|pdx + λa

p
ap ≥ λa

p
ap.

Due to Lemma 3.3, one sees that λa < 0. Since u ∈ S(a) implies that |u| ∈ S(a) and Iμ(u) =
Iμ(|u|) for all u ∈X which give that

|ua | ∈ S(a) and Iμ,a = Iμ(ua)≥ Iμ(|ua|)≥ Iμ,a.

So, we can replace ua with |ua| and then, without loss of generality, we shall suppose that ua ≥ 0. 
A very similar arguments in Step 3 in the proof of Theorem 2.5 show that ua is positive. The 
proof is completed. �

Thanks to Theorem 3.1, we immediately have the following result whose detailed proof is 
omitted.

Corollary 3.6. Let 2 ≤ p < N . If a > ã and −1 ≤ μ1 < μ2 < +∞ are fixed, then Iμ1,a <

Iμ ,a < 0.
2
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From now on, we begin investigating the existence and concentration behavior of positive 
solutions for (1.1)-(1.2). To the aims, we consider the variational functional Iε :X → R given by

Iε(u)= 1

p

∫
RN

[|∇u|p + (V (εx)+ 1)|u|p]dx +
∫
RN

F1(u)dx −
∫
RN

F2(u)dx (3.8)

restricted to the sphere S(a) and the minimization problem

Iε,a = inf
u∈S(a) Iε(u).

According to Theorem 3.5, it is significant to derive a similar compactness theorem for Iε on 
S(a). So, we shall focus on verifying it. Let us introduce the two functionals I0, I∞ : S(a) → R
defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I0(u)= 1

p

∫
RN

[|∇u|p + (V0 + 1)|u|p]dx +
∫
RN

F1(u)dx −
∫
RN

F2(u)dx,

I∞(u)= 1

p

∫
RN

[|∇u|p + (V∞ + 1)|u|p]dx +
∫
RN

F1(u)dx −
∫
RN

F2(u)dx.

The corresponding minimization problems are given by

I0,a = inf
u∈S(a) I0(u) and I∞,a = inf

u∈S(a) I∞(u).

Since −1 ≤ V0 <V∞ <+∞ by (V̂1), we are derived from Corollary 3.6 that

I0,a < I∞,a < 0 for all a > ã > 0. (3.9)

Lemma 3.7. Let 2 ≤ p <N and a > ã > 0, then lim sup
ε→0+

Iε,a ≤ I0,a . In particular, there exists a 

sufficiently small ε∗ > 0 such that Iε,a < I∞,a for all ε ∈ (0, ε∗).

Proof. Adopting Theorem 3.1, for all a > ã > 0, there is a u0 ∈ S(a) such that I0(u0) = I0,a . 
So,

Iε,a ≤ Iε(u0)= 1

p

∫
RN

[|∇u0|p + (V (εx)+ 1)|u0|p
]
dx +

∫
RN

F1(u0)dx −
∫
RN

F2(u0)dx.

Applying the Lebesgue’s theorem and taking the limit as ε→ 0+, there holds

lim sup
ε→0+

Iε,a ≤ lim sup
ε→0+

Iε(u0)= I0(u0)= I0,a

finishing the first part of the lemma. Due to (3.9), one could find such a constant ε∗ > 0 such that 
Iε,a < I∞,a for all ε ∈ (0, ε∗). The proof is completed. �
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Lemma 3.8. Let 2 ≤ p < N and a > ã > 0. If ε ∈ (0, ε∗) is fixed and suppose that {un} ⊂
S(a) such that Iε(un) → d̂ <

I0,a+I∞,a

2 , then there is a u �= 0 such that un ⇀ u in X along a 
subsequence.

Proof. Arguing as Lemma 3.2, one deduces that {un} is bounded in X. Passing to a subsequence 
if necessary, there is a u ∈X such that un ⇀ u in X and un → u a.e. in RN . To prove that u �= 0, 
let us suppose it by a contradiction and assume that u ≡ 0. Hence,

d̂ + on(1)= Iε(un)= I∞(un)+ 1

p

∫
RN

[V (εx)− V∞]|un|pdx.

Due to (V2), given an arbitrary ε > 0, there is an R > 0 such that

V (x)≥ V∞ − ε, for all |x| ≥R

which indicates that

d̂ + on(1)≥ I∞(un)+ 1

p

∫
BR/ε(0)

[V (εx)− V∞]|un|pdx − ε

p

∫
Bc
R/ε(0)

|un|pdx.

Since {un} is bounded in X and un → 0 in Lp(BR/ε(0)), one has that

d̂ + on(1)≥ I∞(un)−Cε ≥ I∞,a −Cε

for some C > 0 independent of ε. Let us tend ε → 0+, then d̂ ≥ I∞,a which is impossible due 
to the facts that d̂ < I0,a+I∞,a

2 and (3.9). So, the proof of this lemma concludes. �
Lemma 3.9. Let 2 ≤ p < N and a > ã > 0. Suppose ε ∈ (0, ε∗) to be fixed and let {un} ⊂X be 
a (PS)

d̂
sequence for Iε constrained to S(a) with d̂ < I0,a+I∞,a

2 , namely

Iε(un)→ d̂ and ‖I ′
ε|S(a)‖X∗ → 0 as n→ ∞,

then, up to a subsequence if necessary, there is a u ∈ X such that un ⇀ u in X. Moreover if 
un �→ u in X, then there exists a δ̂ > 0 independent of ε ∈ (0, ε∗) such that, by decreasing ε∗ if 
necessary, there holds

lim inf
n→∞

∫
RN

|vn|pdx ≥ δ̂.

Proof. We define the functional � :X →R by

�(u)= 1

p

∫
N

|u|pdx, u ∈X,
B
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it follows that S(a) =�−1({ap/p}). Hence, adopting [58, Proposition 5.12], there exists {λn} ⊂
R such that

‖I ′
ε(un)− λn�

′(un)‖X∗ → 0 as n→ ∞.

Since {un} is bounded in X, we easily get that {λn} is bounded in R. Passing to a subsequence if 
necessary, there is a λ ∈R that may depend on ε such that λn → λ and so

‖I ′
ε(un)− λ�′(un)‖X∗ → 0 as n→ ∞

which immediately shows us that

I ′
ε(u)− λ�′(u)= 0 in X∗.

Combining Lemma 2.4 and the Brézis-Lieb lemma, one has that

I ′
ε(vn)vn − λ�′(vn)vn = I ′

ε(un)un − I ′
ε(u)u− λ�′(un)un + λ�′(u)u+ on(1)

= I ′
ε(un)un − λn�

′(un)un − I ′
ε(u)u+ λ�′(u)u+ on(1)

= on(1)

jointly with F ′
1(s)s ≥ 0 for all s ∈R in property-(P1) and property-(P2) implies that

∫
RN

[|∇vn|p + (V (εx)+ 1 − λ)|vn|p]dx ≤ Cq̃

∫
RN

|vn|q̃ dx + on(1)

for some q̃ ∈ (p, p∗). We claim that there is a λ∗ < 0 independent of ε ∈ (0, ε∗) such that

λ≤ λ∗, ∀ε ∈ (0, ε∗).

Indeed, due to {un} ⊂ S(a), we find that

d̂ = lim
n→∞ Iε(un)= lim

n→∞

[
Iε(un)− 1

p

(
I ′
ε(un)un − λ�′(un)un

)]
≥ λ

p
ap

showing the claim. As a consequence, owing to V0 ≥ −1 by (V̂1), there holds∫
RN

(|∇vn|p − λ∗|vn|p
)
dx ≤ Cq̃

∫
RN

|vn|q̃ dx + on(1), ∀ε ∈ (0, ε∗).

It follows from the continuous imbedding W 1,p(RN) ↪→ Lq(RN) with q ∈ (p, p∗) that

‖vn‖pW 1,p(RN)
≤ C1|vn|q̃q̃ + on(1)≤ C2‖vn‖q̃W 1,p(RN)

, ∀ε ∈ (0, ε∗),

where C1, C2 > 0 are independent of ε ∈ (0, ε∗). Because vn �→ 0 in X and q̃ > p, without loss 
of generality, we can suppose that
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lim inf
n→∞ ‖vn‖W 1,p(RN) ≥ C3, ∀ε ∈ (0, ε∗), (3.10)

where C3 > 0 is independent of ε ∈ (0, ε∗). Otherwise, if vn → 0 in W 1,p(RN), then 
F ′

2(vn)vn → 0 in L1(RN) by property-(P2) which together with I ′
ε(vn)vn − λ�′(vn)vn = on(1)

and F ′
2(s)s ≥ 0 for all s ∈ R by property-(P1) yields that F1(vn) → 0 in L1(RN). Recalling 

Lemma 2.2, we can conclude that vn → 0 in LF1(RN) and so vn → 0 in X, a contradiction and 
(3.10) follows. Hence,

lim inf
n→∞ |vn|q̃q̃ ≥ C−1

2 C
p

3 , ∀ε ∈ (0, ε∗).

Adopting (1.12) and since |∇vn|pp is bounded, we can derive the proof of this lemma. �
Theorem 3.10. Let 2 ≤ p < N and a > ã > 0. If ε ∈ (0, ε∗) is fixed, then the functional Iε|S(a)
satisfies the (PS)

d̂
condition with d̂ < I0,a +ϒ, where 0 < ϒ ≤ min{ 1

2 , 
δ̂
ap

}(I∞,a − I0,a) and 
δ̂ > 0 is determined by Lemma 3.9.

Proof. Let {un} ⊂X be a (PS)d sequence for Iε|S(a) and define the functional � :X → R by

�(u)= 1

p

∫
BN

|u|pdx, u ∈X,

which reveals that S(a) = �−1({ap/p}). Thus, adopting [58, Proposition 5.12], there exists 
{λn} ⊂ R such that

‖I ′
ε(un)− λn�

′(un)‖X∗ → 0 as n→ ∞.

According to Lemma 3.3, {un} is bounded in X and then there is a u ∈X such that un ⇀ u in 
X and un → u a.e. in RN along a subsequence. Denoting vn � un − u, if vn �→ 0 in X, then 
Lemma 3.9 ensures that

lim inf
n→∞

∫
RN

|vn|pdx ≥ δ̂. (3.11)

Let dn = |vn|p and |u|p = b, so we can assume that |vn|p → d > 0 and b > 0 by (3.11) and 
Lemma 3.8, respectively. Moreover, it holds that ap = bp + dp by the Brézis-Lieb lemma. Via 
exploiting a similar argument explored in Lemma 3.8, by means of vn ⇀ 0 in X, one can show 
that Iε(vn) ≥ I∞,dn + on(1) which together with Lemma 2.4 and V (x) ≥ V0 for all x ∈ RN by 
(V̂1) gives that

d̂ + on(1)= Iε(un)= Iε(vn)+ Iε(u)+ on(1)≥ I∞,dn + I0,b + on(1).

Since dn ∈ (0, a) for n ∈ N large enough and b ∈ (0, a), we argue as Lemma 3.4 to derive

d̂ + on(1)≥ d
p
n I∞,a + bp I0,a

ap ap
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Letting n → ∞ and recalling ap = bp + dp , one has that

ϒ>
δ̂

ap
(I∞,a − I0,a)

violating to the definition of ϒ. So, we must conclude that vn → 0 in X, that is un → u in X. 
One further obtains that u ∈ S(a) and

−�pu+ V (εx)|v|p−2u= λ|u|p−2v + |u|p−2v log |v|p in RN,

where λ ≤ λ∗ < 0 comes from Lemma 3.9. The proof is completed. �
In what follows, according to (V2), we fix some sufficiently small ρ0, r0 > 0 to satisfy

• Bρ0(x
i)∩Bρ0(x

j )= ∅ for i �= j and i, j ∈ {1, · · · , l};
• ⋃

i=1
Bρ0(x

i) ⊂ Br0(0);

• Kρ0
2

=
ℓ⋃

i=1
Bρ0

2
(xi).

Define the function Qε :X\{0} →R by

Qε(u)=

∫
RN

χ(εx)|u|pdx
∫
RN

|u|pdx
,

where χ :RN → RN is given by

χ(x)=
{
x, if |x| ≤ r0,
r0x|x| , if |x|> r0.

With Theorem 3.10 in hands, we now focus on establishing the existence of (PS) sequences 
for the variational functional Iε constrained on S(a).

Lemma 3.11. Let 2 ≤ p < N and a > ã > 0. Suppose ε ∈ (0, ε∗) to be fixed, decreasing ε∗ > 0
if necessary, there is δ∗ > 0 such that if u ∈ S(a) and Iε(u) ≤ I0,a + δ∗, then

Qε(u) ∈Kρ0
2
, ∀ε ∈ (0, ε∗).

Proof. Suppose, by contradiction, that for all n ∈ N , there exist εn → 0 and {un} ⊂ S(a) such 
that

I0,a ≤ Iεn(un)≤ I0,a + 1
,

n
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and

Qεn(un) �∈Kρ0
2
.

Obviously, one has that

I0,a ≤ I0(un)≤ Iεn(un)≤ I0,a + 1

n

showing that {un} ⊂ S(a) is a minimizing sequence with respect to I0,a . Thanks to Theorem 3.5, 
passing to a subsequence if necessary, one of the following alternatives holds true

i) There is a function u ∈ S(a) such that un → u in X as n → ∞;
ii) There exists a sequence {yn} ⊂ RN with |yn| → +∞ such that vn = un(· + yn) → v in X

for some v ∈ S(a).
We claim that i) cannot occur. Otherwise, adopting the definition of χ , one has

lim
n→∞

∫
RN

χ(εnx)|un|pdx = lim
n→∞

∫
RN

χ(0)|u|pdx = 0.

From which, we conclude that Qεn(u) ∈ Kρ0
2

for some sufficiently large n ∈ N . It is impossi-
ble and so the claim follows. When ii) occurs, passing to a subsequence if necessary, we shall 
contemplate the following two cases:

ii)-(1). |εnyn| → +∞ as n→ ∞.

In this case, as a consequence of vn → v in X, there holds

Iεn(un)= 1

p

∫
RN

[|∇un|p + (V (εnx)+ 1)|un|p
]
dx +

∫
RN

F1(un)dx −
∫
RN

F2(un)dx

= 1

p

∫
RN

[|∇vn|p + (V (εnx + εnyn)+ 1)|vn|p
]
dx +

∫
RN

F1(vn)dx −
∫
RN

F2(vn)dx

→ I∞(v).

Since Iεn(un) ≤ I0,a + 1
n

, we arrive at the inequality below

I0,a ≥ I∞(v)≥ I∞,a

which contradicts with (3.9).
ii)-(2). εnyn → y for some y ∈RN as n→ ∞.

In this case, a similar argument using the above calculations indicates that

IV (y),a ≤ I0,a.

If V (y) > V0, we follow a very similar approach explored in the proof of Corollary 3.6 to deduce 
that IV (y),a > I0,a which is absurd. Thereby, V (y) = V0 and y = xi for some i ∈ {0, 1, · · · , l}. 
Then one derives that
30



L. Shen and M. Squassina Journal of Differential Equations 421 (2025) 1–49
lim
n→∞

∫
RN

χ(εnx)|un|pdx = lim
n→∞

∫
RN

χ(εnx + εnyn)|vn|pdx = xi
∫
RN

|v|pdx

which reveals that lim
n→∞Qεn(un) = xi ∈ Kρ0

2
. From which, we obtain that Qεn(un) ∈ Kρ0

2
for 

some sufficiently large n ∈N , a contradiction. The proof is completed. �
In the sequel, for j ∈ {1, · · · , l}, we need the following notations

• θjε = {u ∈ S(a) : |Qε(u)− xj |< ρ0},
• ∂θjε = {u ∈ S(a) : |Qε(u)− xj | = ρ0},
• βjε = inf

u∈θjε
Iε(u) and β̃jε = inf

u∈∂θjε
Iε(u).

Lemma 3.12. Let 2 ≤ p < N and a > ã > 0. Suppose ε ∈ (0, ε∗) to be fixed, decreasing ε∗ > 0
if necessary, for the constant ϒ> 0 in Theorem 3.10, there holds

βjε < I0,a +ϒ and βjε < β̃jε , ∀ε ∈ (0, ε∗).

Proof. According to Theorem 3.1, there is a function u ∈ S(a) such that

I0(u)= I0,a and I ′
0(u)= 0 in X∗.

For j ∈ {1, · · · , l}, we define the function ûjε :RN →R by

ûjε = u(x − xj/ε).

By a simple change of variable, one has that

Iε(û
j
ε )= 1

p

∫
RN

[
|∇u|p + (V (εx + xj )+ 1)|u|p

]
dx +

∫
RN

F1(u)dx −
∫
RN

F2(u)dx

which gives that

lim sup
ε→0+

Iε(û
j
ε )= I0(u)= I0,a. (3.12)

From which, decreasing ε∗ > 0 if necessary,

Iε(û
j
ε ) < I0,a + 1

4
δ∗, ∀ε ∈ (0, ε∗),

where δ∗ > 0 comes from Lemma 3.11. Moreover, we easily deduce that Qε(û
j
ε ) → xj as ε →

0+ and so ûjε ∈ θ
j
ε by decreasing ε∗ > 0 if necessary. So, decreasing δ∗ > 0 if necessary, we have 

that
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βjε < I0,a +ϒ, ∀ε ∈ (0, ε∗)

which is the first part of the lemma. To reach the remaining one, if u ∈ ∂θ
j
ε , then

u ∈ S(a) and |Qε(u)− xj | = ρ0 >
ρ

2

leading to Qε(u) �∈Kρ0
2

. Due to Lemma 3.11, we find that

Iε(u) > I0,a + δ∗

2
, for all u ∈ ∂θjε and ε ∈ (0, ε∗),

and so

β̃jε = inf
u∈∂θjε

Iε(u)≥ I0,a + 1

2
δ∗, ∀ε ∈ (0, ε∗),

from where it follows that

βjε < β̃jε , for all ε ∈ (0, ε∗)

finishing the proof of this lemma. �
Now, we are in a position to investigate the existence of multiple critical points for Iε con-

strained on S(a).

Proposition 3.13. Let 2 ≤ p < N and a > ã > 0. Suppose ε ∈ (0, ε∗) to be fixed, decreasing 
ε∗ > 0 if necessary, then Iε|S(a) has at least l different nontrivial critical points.

Proof. Given a j ∈ {1, · · · , l}, we could exploit the Ekeland’s variational principle to find a 
sequence {ujn} ⊂ S(a) satisfying

Iε(u
j
n)→ βjε

and

Iε(v)− Iε(u
j
n)≥ −1

n
‖v − u

j
n‖, ∀v ∈ θjε with v �= u

j
n.

It follows from Lemma 3.12 that

βjε < β̃jε , for all ε ∈ (0, ε∗),

and thereby u
j
n ∈ θ

j
ε \∂θjε for n large enough. For all v ∈ Tuin

S(a) = {w ∈ X :∫
RN |uin|p−2uinwdx = 0}, there exists a ζ > 0 such that the path γ : (−ζ, ζ ) → S(a) defined 

by
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γ (t)= a(u
j
n + tv)

|ujn + tv|p
which is of class C1((−ζ, ζ ), S(a)) and satisfies

γ (t) ∈ θjε \∂θjε , ∀t ∈ (−ζ, ζ ), γ (0)= u
j
n and γ ′(0)= v.

Hence,

Iε(γ (t))− Iε(u
j
n)≥ −1

n
‖γ (t)− u

j
n‖, ∀t ∈ (−ζ, ζ ),

and in particular,

Iε(γ (t))− Iε(γ (0)))

t
= Iε(γ (t))− Iε(u

j
n)

t
≥ −1

n

∥∥∥∥∥γ (t)− u
j
n

t

∥∥∥∥∥
= −1

n

∥∥∥∥γ (t)− γ (0)

t

∥∥∥∥ , ∀t ∈ (0, ζ ).

Since Iε ∈ C1(X, R), taking the limit of t → 0+, we get

I ′
ε(u

j
n)v ≥ −1

n
‖v‖.

Now, we replace v with −v to obtain

sup{|I ′
ε(u

j
n)v| : ‖v‖ ≤ 1} ≤ 1

n
,

leading to

Iε(un)→ βjε as n→ +∞ and ‖Iε|′S(a)(un)‖X∗ → 0 as n→ +∞,

that is, {ujn} is a (PS)
β
j
ε

for Iε restricted to S(a). Since βjε < I0,a + ϒ by Lemma 3.12, then 

Theorem 3.10 ensures that there is a uj such that ujn → uj in X. Thus,

uj ∈ θjε , Iε(u
j )= βjε and Iε|′S(a)(uj )= 0.

Owing to the following facts

Qε(u
i) ∈ Bρ0(x

i), Qε(u
j ) ∈ Bρ0(x

j )

and

Bρ (xi)∩Bρ (xj )= ∅ for i �= j,
0 0
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we conclude that ui �= uj for i �= j while 1 ≤ i, j ≤ l. Therefore, Iε has at least l nontrivial 
critical points (uj , λj ) with λj < 0 for all ε ∈ (0, ε∗). The proof is completed. �

In order to study the concentrating behavior of positive solutions for (1.1)-(1.2), we shall 
depend on the obtained solutions of Problem (1.10). According to Proposition 3.13, for all 2 ≤
p <N and a > ã > 0 and decreasing ε∗ > 0 if necessary, there are l couples of (vjε , λ

j
ε ) ∈X×R

such that

vjε ∈ θjε , Iε(v
j
ε )= βjε and I ′

ε(v
j
ε )− λjε�

′(vjε )= 0 in X∗,

where j ∈ {1, · · · , l}, vjε (x) > 0 for all x ∈RN and λj < 0.

Lemma 3.14. Let 2 ≤ p < N and a > ã > 0. Suppose ε ∈ (0, ε∗) to be fixed, decreasing ε∗ > 0
if necessary, there are yjε ∈ RN , Rj

0 > 0 and βj0 > 0 such that

∫
BR0 (y

j
ε )

|vjε |pdx ≥ β
j
0 ,

for j ∈ {1, · · · , l}. Moreover, the family {εyjε } is bounded and, passing to a subsequence if nec-
essary, εyjε → xj as ε → 0+.

Proof. If it is not the case, there is a sequence {εn} with εn → 0+ such that

lim
n→∞ sup

y∈RN

∫
Br(y)

|vjεn |pdx = 0

for all R > 0. By means of Lion’s Vanishing lemma, we would have that vjεn → 0 in Lq(RN) for 
each p < q < p∗ leading to F2(un) → 0 in L1(RN) by property-(P2). Owing to F1(s) ≥ 0 for 
all s ∈R by property-(P1), there holds lim

n→∞ Iεn(v
j
εn) ≥ 0 which contradicts with the fact that

lim
n→∞ Iεn(v

j
εn
)= lim

n→∞βiεn ≤ I0,a +ϒ< 0. (3.13)

So, we can define v̄jε (·) = v
j
ε (· + y

j
ε ) and {v̄jε } is bounded with respect to ε ∈ (0, ε∗). Therefore, 

there is a v̄ ∈X\{0} such that v̄jε ⇀ v̄j in X as ε → 0+ along a subsequence. Since {v̄jε } ⊂ S(a)

and

Iε(v
j
ε )≥ I0(v

j
ε )= I0(v̄

j
ε )≥ I0,a

jointly with (3.12) yields that lim
ε→0+ I0(v̄

j
ε ) = I0,a . Recalling Theorem 3.5, we know that v̄jε → v̄

in X as ε → 0+. Suppose that {εyjε } is unbounded with respect to ε ∈ (0, ε∗) and so we can 
assume that there exists a subsequence {εnyjεn} such that |εnyjεn | → +∞ as n → ∞. Exploiting 
v̄
j
εn → v̄ in X,
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Iεn(v
j
εn
)= 1

p

∫
RN

[
|∇vjεn |p + (V (εnx)+ 1)|vjεn |p

]
dx +

∫
RN

F1(v
j
εn
)dx −

∫
RN

F2(v
j
εn
)dx

= 1

p

∫
RN

[
|∇v̄jεn |p + (V (εnx + εnyn)+ 1)|v̄jεn |p

]
dx +

∫
RN

F1(v̄
j
εn
)dx −

∫
RN

F2(v̄
j
εn
)dx

→ I∞(v̄)

together with (3.13) reveals the following inequality

I0,a +ϒ≥ I∞(v̄)≥ I∞,a.

Due to (3.9), it is impossible by the definition of ϒ appearing in Theorem 3.10. Therefore, up to 
a subsequence if necessary, εyjε → x

j
0 in RN as ε → 0+ and then the remaining part is to verify 

that xj0 = xj . Actually, we could use a similar argument, or follow the method adopted in the 

case ii)-(2) in the proof of Lemma 3.11, to conclude that V (xj0 ) = V0. Recalling vjε ∈ θ
j
ε and it 

would be simple to see that lim
n→∞Qεn(v

j
ε ) = x

j

0 , one has that |xj − x
j

0 | ≤ ρ0. Hence, we must 

have that xj0 = xj . The proof is completed. �
Lemma 3.15. Let 2 ≤ p < N and a > ã > 0. Suppose ε ∈ (0, ε∗) to be fixed, decreasing ε∗ > 0
if necessary, then vjε possesses a maximum ηjε satisfying V (εηjε ) → V (xj ) as ε → 0+ for j ∈
{1, 2, · · · , l}. Moreover, there exist Cj

0 , c
j

0 > 0 such that

vjε (x)≤ C
j

0 exp(−cj0 |x − ηjε |)

for all ε ∈ (0, ε∗) and x ∈RN .

Proof. Firstly, we analyze some properties of v̄jε . Since v̄jε (·) = v
j
ε (· + y

j
ε ), the definition of vjε

reveals that (v̄jε , λ
j
ε ) is a couple of weak solution to the problem

⎧⎪⎨
⎪⎩

−�pv̄
j
ε + V (εx + εxjε )|v̄jε |p−2v̄jε = λjε |v̄jε |p−2v̄jε + |v̄jε |p−2v̄jε log |v̄jε |p in RN,∫

RN

|v̄jε |pdx = ap. (3.14)

Recalling the arguments explored in Proposition 3.13 and Lemma 3.14, we derive v̄jε → v̄j in X, 
λ
j
ε → λj in R and εxjε → xj in RN as ε → 0+. So, using (3.14), (v̄j , λj ) is a nontrivial solution 

to

−�pv + V0|v|p−2v = λ|v|p−2v + |v|p−2v log |v|p in RN.

Similar to Step 1 in the proof of Theorem 2.5, there holds v̄j ∈ L∞(RN). Hence, v̄jε ∈ L∞(RN)

and there is a constant C > 0 independent of ε such that |v̄jε |∞ ≤ C. Indeed, one can further 
deduce that v̄jε ∈ C

1,τ
loc (R

N) for some τ ∈ (0, 1). We postpone the detailed proofs in Lemma A.2
in the Appendix to give that
35



L. Shen and M. Squassina Journal of Differential Equations 421 (2025) 1–49
|v̄jε |∞ ≥ ρj and lim|x|→+∞ v̄jε (x)= 0 uniformly in ε ∈ (0, ε∗).

where ρj > 0 is independent of ε ∈ (0, ε∗).
Secondly, we verify that there exist C̄j

0 , c̄
j

0 > 0 such that v̄jε (x) ≤ C̄
j

0 exp(−c̄j0 |x|) for all 
ε ∈ (0, ε∗) and x ∈RN , see Lemma A.3 in the Appendix in detail.

Finally, let �jε be a maximum of v̄jε , we have that |v̄jε (�jε )|∞ ≥ ρj . Since lim|x|→∞ v̄
j
ε (x) = 0

uniformly in ε, there exists a Mj
0 > 0 independent of ε such that |�jε | ≤ M

j
0 . Recalling v̄jε (·) =

v
j
ε (· + y

j
ε ), then yjε + �

j
ε is a maximum of vjε . Define ηjε = y

j
ε + �

j
ε , according to Lemma 3.14

and |�jε | ≤ M
j
0 , we are derived that εηjε → xj as ε → 0+ and hence V (εηjε ) → V (xj ) by the 

continuity of V . Moreover, since v̄jε (x) ≤ C̄
j

0 exp(−c̄j0 |x|) for all x ∈ RN and |�jε | ≤ M
j

0 , there 
holds

vjε (x)= v̄jε (x−yjε )≤ C̄
j
0 exp(−c̄j0 |x−yjε |)= C̄

j
0 exp(−c̄j0 |x−ηjε +ρjε |)≤ C

j
0 exp(−cj0 |x−ηjε |)

finishing the proof of this lemma. �
Proof of Theorem 1.3. By Proposition 3.13 and Lemma 3.15, we see that Problem (1.10) admits 
at least l different couples of solutions (vjε , λ

j
ε ) ∈ X × R with vjε (x) > 0 for every x ∈ RN and 

λ
j
ε < 0, where j ∈ {1, 2, · · · , l}. Moreover, there exist Cj

0 , c
j
0 > 0 such that

vjε (x)≤ C
j

0 exp(−cj0 |x − ηjε |)

for all ε ∈ (0, ε∗) and x ∈ RN . Let ujε (·) = v
j
ε (·/ε) and zjε = εη

j
ε for j ∈ {1, 2, · · · , l}, then 

(u
j
ε , λ

j
ε ) is the desired solution for j ∈ {1, 2, · · · , l} and Theorem 1.3 is proved. �

4. The autonomous problem

In this section, we mainly deal with the existence of normalized solutions for a class of au-
tonomous p-Laplacian equations with logarithmic nonlinearities.

4.1. The Lp-subcritical case

In this subsection, to study the Problem (1.14), we need the following minimization problems

m(a)= inf
u∈S(a) J (u) and mr(a)= inf

u∈Sr (a)
J (u),

where Sr(a) = S(a) ∩Xr and the variational functional J is defined by (1.15).
In order to prove Theorem 1.4, we are going to introduce the following lemmas.

Lemma 4.1. Let 2 ≤ p <N , then the functional J is coercive and bounded from below on S(a)
for all a > 0 and there is an constant a∗ > 0 such that m(a) ≤ 0 for all a > a∗. Moreover, 
m(a) =mr(a) for all a > 0.
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Proof. Repeating the calculations in the proofs of Lemmas 3.2 and 3.3, we can conclude the first 
part of this lemma and the details are omitted.

Then, we verify that m(a) =mr(a). Since Sr(a) ⊂ S(a), one easily sees that m(a) ≤mr(a). 
Thus, we just need to prove that m(a) ≥ mr(a). Suppose that {un} ⊂ S(a) is a minimizing 
sequence with respect to m(a). Denoting u∗

n to be the Schwarz symmetric decreasing rear-
rangement of un, so the Pólya-Szegö’s inequality yields that |∇u∗

n|p ≤ |∇un|p . Noting that 
|u∗
n|r = |un|r for every r ∈ [p, p∗], we obtain that {u∗

n} ⊂ Sr(a). Since F1 and F2 are non-
decreasing in [0, +∞] by property-(P1) and property-(P2), then the properties of Schwarz 
rearrangement (see e.g. [41]) imply that

∫
RN

F1(u
∗
n)dx =

∫
RN

F1(un)dx,

∫
RN

F2(u
∗
n)dx =

∫
RN

F2(un)dx,

from which, by (1.9), there holds

∫
RN

|u∗
n|p log |u∗

n|pdx =
∫
RN

|un|p log |un|pdx.

As a consequence,

mr(a)= inf
u∈Sr (a)

J (u)≤ inf
u∈S(c) J (u)=m(a).

The proof is completed. �

Lemma 4.2. Let 2 ≤ p <N , then m( p

√
a
p
1 + a

p
2 ) ≤m(a1) +m(a2) for all a1, a2 > 0.

Proof. In light of the variational functional J is invariant under any translation in RN , then, 
adopting the definition of m(a) and the density of C∞

0 (RN) in X, we deduce that, for every 
ε > 0, there exist two functions ψ1, ψ2 ∈ C∞

0 (RN) with suppψ1 ∩ suppψ2 = ∅ and ψ1 ∈ S(a1), 
ψ2 ∈ S(a2) such that

J (ψ1)≤m(a1)+ 1

2
ε and J (ψ2)≤m(a2)+ 1

2
ε. (4.1)

Without loss of generality, we assume that

dist(suppψ1, suppψ2)≥ n for some n ∈N+. (4.2)

Now define ψ �ψ1 +ψ2, since ψ1 and ψ2 have disjoint supports, then ψ ∈ S( p

√
a
p + a

p
) and
1 2
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
RN

|∇ψ |pdx =
∫
RN

|∇ψ1|pdx +
∫
RN

|∇ψ2|pdx,
∫
RN

|ψ |sdx =
∫
RN

|ψ1|sdx +
∫
RN

|ψ2|sdx, ∀s ∈ [p,p∗],
∫
RN

|ψ |p log |ψ |pdx =
∫
RN

|ψ1|p log |ψ1|pdx +
∫
RN

|ψ2|p log |ψ2|pdx.

(4.3)

Hence, for n ∈N+ large enough, we are derived from (4.1), (4.2) and (4.3) that

m

(
p

√
a
p
1 + a

p
2

)
≤ J (ψ)= J (ψ1)+ J (ψ2)≤m(a1)+m(a2)+ ε,

and the proof is completed. �
Lemma 4.3. Let 2 ≤ p < N , then the mapping a �→ m(a) is continuous on (a∗, +∞), where 
a∗ > 0 comes from Lemma 4.1.

Proof. Given an a > a∗, without loss of generality, we let an > a∗ with an → a as n → ∞. 
For all n ∈ N , let {un} ⊂ S(an) such that J (un) ≤ m(an) + 1

n
. Thanks to Lemma 4.1, {un} is 

uniformly bounded in X and

m(a)≤ J

(
a

an
un

)
= J (un)+ on(1)≤m(an)+ on(1).

On the other hand, given a minimizing sequence {vn} ⊂ S(a) for m(a), it holds that

m(an)≤ J
(an
a
vn

)
= J (vn)+ on(1)=m(a)+ on(1).

The above two facts reveal the desired result and the proof is completed. �
Lemma 4.4. Let 2 ≤ p < N and a > a∗. Assume that {un} ⊂ Sr(a) is a minimizing sequence of 
mr(a) with un ⇀ u in Xr as n → ∞. If u �= 0, then un → u in Xr as n → ∞.

Proof. Obviously, one sees that un → u in Ls(RN) for all s ∈ (p, p∗) and |u|p ≤ a by Fatou’s 
lemma. Owing to property-(P2), we have that F2(un) → F2(un) in L1(RN). To exhibit the proof 
clearly, let us divide the proof into two cases.

Case 1. un → u in Lp(RN) along a subsequence as n → ∞.
In this case, it holds that u ∈ Sr(a), then we immediately have that
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mr(a)≤ J (u)= 1

p

∫
RN

(|∇u|p + |u|p)dx +
∫
RN

F1(u)dx −
∫
RN

F2(u)dx − μ

q

∫
RN

|u|qdx

≤ lim inf
n→∞

⎛
⎜⎝ 1

p

∫
RN

(|∇un|p + |un|p)dx +
∫
RN

F1(un)dx −
∫
RN

F2(un)dx − μ

q

∫
RN

|un|qdx
⎞
⎟⎠

= lim inf
n→∞ J (un)=mr(a)

which yields that

lim
n→∞

∫
RN

(|∇un|p + |un|p)dx =
∫
RN

(|∇u|p + |u|p)dx

and

lim
n→∞

∫
RN

F1(un)dx =
∫
RN

F1(u)dx.

According to F1 ∈ (�2) by Lemma 2.2, then the above two limits provide us that un → u in Xr

as n → ∞. The proof is done in this case.
Case 2. un �→ u in Lp(RN) as n → ∞.

In this case, denoting dn � |un − u|p , then, up to a subsequence if necessary,

lim
n→∞|un − u|pp = lim

n→∞d
p
n � dp > 0.

It follows from the Brézis-Lieb lemma that ap = lim
n→∞(d

p
n + |u|pp). Combining Lemmas 2.4 and 

4.2-4.3,

mr(a)=mr

(
lim
n→∞

p

√
d
p
n + |u|pp

)
= lim

n→∞mr

(
p

√
d
p
n + |u|pp

)

≤ lim
n→∞mr(dn)+mr(|u|p)≤ lim

n→∞J (un − u)+ J (u)

= lim
n→∞J (un)=mr(a).

Proceeding as the proof in Case 1, we see that un → u in Xr along a subsequence as n → ∞. 
The proof of this lemma is completed. �
Proof of Theorem 1.4. First of all, we know that m(a) ≤ 0 for all a > a∗. Then, we shall 
suppose that {un} ⊂ Sr(a) is a minimizing sequence for m(a) by Lemma 4.1. Exploiting 
Lemma 4.1 again, there exists a u ∈X such that un ⇀ u in Xr along a subsequence. According 
to Lemma 4.4, the proof is accomplished if we verify that u �= 0. Finally, we are ready to deduce 
that u �= 0. Arguing it indirectly, we can assume that u ≡ 0. For m(a) ≤ 0, since F2(un) → 0 in 
L1(RN) by property-(P2) and un → u in Ls(RN) for all s ∈ (p, p∗), then
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0 ≥ lim
n→∞J (un)= lim

n→∞

⎛
⎜⎝ 1

p

∫
RN

(|∇un|p + |un|p)dx +
∫
RN

F1(un)dx

⎞
⎟⎠≥ 1

p
ap > 0

which is impossible. Therefore, we arrive at the desired result u �= 0. The positivity of u is trivial, 
we omit it here. The proof is completed. �
4.2. The Lp-supercritical case

In this subsection, we are going to dispose of the Problem (1.14) with p + p2

N
< q < p∗ and 

μ > 0. As explained in Introduction, we need to study Problem (1.16) and so we define the 
minimization problem

mR(a)= inf
u∈S(a) JR(u).

The same arguments explored in the proof of Theorem 1.4 guarantee that there is a∗ > 0 inde-
pendent of R and μ such that mR(a) ≤ 0 for all a > a∗. We would like to point out that it is 
possible to find such an a∗ > 0 since JR(tψ) → −∞ as t → +∞ uniformly in R and μ.

The next result reveals an important estimate involving the norm in X of the solutions uR for 
the Problem (1.16).

Lemma 4.5. Let 2 ≤ p < N , p + p2

N
< q < p∗ and μ > 0. There exists μ∗ = μ∗(R) > 0 such 

that if μ ∈ (0, μ∗), then there is C > 0 independent of R such that the attained function uR
associated with mR(a) satisfies |∇uR|p ≤ C for all R > 0.

Proof. Arguing as in Lemma 3.2, we see that (1.12) combined with (1.17) and Property-(P2)

with q̃ = q̄ gives

JR(u)≥ 1

p

∫
RN

|∇u|pdx − (1 +μRq−q̄ )Cq̄CN,p,q̄a
q̄(1−βq̄ )

⎛
⎜⎝∫
RN

|∇u|pdx
⎞
⎟⎠

q̄βq̄
p

, ∀u ∈ S(a),

where q̄ ∈
(
p,p+ p2

N

)
. Fixing μ∗ = μ∗(R) = 1

Rp−q̄ , then for all μ ∈ (0, μ∗), one gets

JR(u)≥ 1

p

∫
RN

|∇u|pdx − 2Cq̄CN,p,q̄a
q̄(1−βq̄ )

⎛
⎜⎝∫
RN

|∇u|pdx
⎞
⎟⎠

q̄βq̄
p

, ∀u ∈ S(a).

Due to βq̄ q̄ < p, exploiting the Young’s inequality, there is a constant C1 > 0 independent of R
such that

⎛
⎜⎝∫

N

|∇u|pdx
⎞
⎟⎠

q̄βq̄
p

≤ C1 + 1

4pCq̄CN,p,q̄a
q̄(1−βq̄ )

∫
N

|∇u|pdx, ∀u ∈X.
R R
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Hence, there is a constant C2 > 0 independent of R such that

|∇u|pp ≤ 2pJR(u)+C2, ∀a > a∗, μ ∈ (0,μ∗), R> 0 and u ∈ S(a).

Since JR(uR) = mR(a) ≤ 0 for all a > a∗, we are able to derive the desired result and so the 
proof is completed. �
Proof of Theorem 1.6. By Corollary 1.7, there are a∗ > 0 (independent of R and μ) and μ∗
such that, for all fixed a > a∗ and μ ∈ (0, μ∗), the couple (u∗

R, λ
∗
R) ∈ Sr(a) ×R is a solution of 

the problem

{−�pu= λ|u|p−2u+ |u|p−2u log |u|p +μfR(u), in RN,

u(x) > 0 in RN.

Since μ ∈ (0, μ∗), the definition of fR together with (1.17) leads to

0 ≤ μfR(t)≤ t q̄−1, ∀t ≥ 0 and R> 0.

As a consequence, {uR} is bounded in Ls(RN) for all R > 0 and s ∈ (p, p∗) by Lemma 4.5 and 
{λR} is bounded for all R > 0. Proceeding as the Step 1 in the proof of Theorem 2.5, there is a 
constant M ∈ (0, +∞) that does not depend upon R > 0 satisfying

|uR|∞ ≤M, ∀R> 0.

Let us fix R > M , then we know that the couple (u∗
R, λ

∗
R) ∈ X × R is weak solution for the 

Problem (1.14) if a > a∗ and μ ∈ (0, μ∗). This finishes the proof of Theorem 1.6. �
5. Final comments

Although all of the main results in this article are derived, as far as we are concerned, there 
are some other interesting questions worth further exploration.

On the one hand, one may naturally wonder that whether the Problems (1.1)-(1.2) admit a 
ground state solution. To find the ground state, it suffices to study the existence of ground state 
solutions for Problem (1.10). We say that u0 ∈ X is a ground state solution for Problem (1.10)
provided that

I ′
ε(u0)|S(a) = 0 and Iε(u0)= inf{Iε(u) : I ′

ε(u)|S(a) = 0 and u ∈ S(a)},

where the variational functional Iε :X → R defined by (3.8). Although we cannot give an affir-
mative answer to the above question at present, it will be exhibited as a theorem below.

Theorem 5.1. Let 2 ≤ p < N and (V̂1) − (V2). Suppose additionally that the potential V has 
no other strict global minimum points than {x1, x2, · · · , xl}. Then, there exist â∗ > 0 and ε̂∗ > 0
such that we can derive at least one ground state solution for (1.1)-(1.2) among the solutions 
obtained by Theorem 1.3 for all a > â∗ and ε ∈ (0, ̂ε∗).
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Remark 5.2. If Theorem 5.1 could be proved successfully, one can observe that the ground 
state solution inherits the properties of concentrating behavior and exponential decay stated in 
Theorem 1.3. Moreover, the positive parameters â∗ is larger than a∗ and ε̂∗ is smaller than ε∗, 
respectively.

On the other hand, it would be interesting to handle the existence of solutions for Problem 
(1.14) perturbed by a mass-critical nonlinearity. More precisely, let us consider the problem 
below

⎧⎪⎨
⎪⎩

−�pu= λ|u|p−2u+ |u|p−2u log |u|p +μ|u|p̄−2u in RN,∫
RN

|u|pdx = ap. (5.1)

where μ > 0 is a parameter and p̄ = p + p2

N
. It seems difficult to construct a nontrivial so-

lution for Problem (5.1) in our p-Laplacian setting so far because we require the sufficiently 
small mass a to make sure that the variational functional is coercive and bounded from below 
on S(a). Whereas, we cannot prove that m(a) ≤ 0 in this situation and it is the essential dif-
ference from the classic p-Laplacian problems, namely the logarithmic nonlinearity vanishes in 
Problem (5.1). We conjecture that (5.1) could be solved if one chooses a suitable work space. 
Speaking it clearly, motivated by [16], there may exist a work space Z ⊂ W 1,p(RN) such that ∫
RN |u|p| log |u|p|dx <∞ for all u ∈ Z and the imbedding Z ↪→ Lp(RN) is compact. If it holds 

true, one would generalize all the main results in [47] to the p-Laplacian settings. What’s more, 
the remained case 1 <p < 2 for the results in this paper would be supplemented.
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Appendix A. Some technical stuff

Lemma A.1. Let � ⊂ RN be an open set, L : � × R × RN → R is a C1 function and f ∈
L∞

loc(�). If ξ �→ L(x, s, ξ) is strictly convex for each (x, s) ∈� ×R and u :� → R is a locally 
Lipschitz solution of

−div{∇ξL(x,u,∇u)} +DsL(x,u,∇u)= f in D′(�).

Then

N∑
i,j=1

∫
�

DihjDξiL(x,u,∇u)Djudx −
∫
RN

[
(divh)L(x,u,∇u)+ h · ∇xL(x,u,∇u)

]
dx

=
∫
N

(h · ∇u)f (u)dx, ∀h ∈ C1
c (�,R

N).

(A.1)
R
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Lemma A.2. Let (v̄jε , λ
j
ε ) ∈X×R be a couple of weak solution to the Problem (3.14), then

|v̄jε |∞ ≥ ρj and lim|x|→+∞ v̄jε (x)= 0 uniformly in ε ∈ (0, ε∗).

where ρj > 0 is independent of ε ∈ (0, ε∗).

Proof. If the first part is false, we suppose that |v̄jε |∞ → 0 as ε → 0+ in the sense of a sub-
sequence. Then, it is simple to verify that v̄jε → 0 in X which is absurd and thus we just 
show the second part in detail. For every R > 0 and 0 < r � R

2 , we choose a cutoff func-
tion η ∈ C∞

0 (RN, [0, 1]) such that η(x) = 1 if |x| � R, and η(x) = 0 if |x| � R − r as well 
as |∇η| � 2

r
. Given ε ∈ (0, ε∗) and L > 1, define

v̄
j
ε,L(x)=

{
v̄
j
ε (x), v̄

j
ε (x)� L,

L, v̄
j
ε (x)� L,

and

z̄
j
ε,L = ηp(v̄

j
ε,L)

p(ϑ−1)v̄jε and w̄j
ε,L = ηv̄jε (v̄

j
ε,L)

ϑ−1

with ϑ > 1 to be determined later. Taking z̄jε,L as a test function in (3.14), we obtain

∫
RN

ηp(v̄
j
ε,L)

p(ϑ−1)|∇v̄jε |pdx = −p(ϑ − 1)
∫
RN

(v̄
j
ε,L)

pϑ−p−1ηpv̄jε |∇v̄jε |p−2∇v̄jε∇v̄jε,Ldx

− p

∫
RN

ηp−1(v̄
j
ε,L)

p(ϑ−1)v̄jε |∇v̄jε |p−2∇v̄jε∇ηdx

+
∫
RN

f (v̄jε )η
p(v̄

j
ε,L)

p(ϑ−1)v̄jε dx

−
∫
RN

Vε(x)|v̄jε |pηp(v̄jε,L)p(ϑ−1)dx,

where Vε(x) = V (εx + εx
j
ε ) and

f (v̄jε )= λjε |v̄jε |p−2v̄jε + |v̄jε |p−2v̄jε log |v̄jε |p = (λjε − 1)|v̄jε |p−2v̄jε + F ′
2(v̄

j
ε )− F ′

1(v̄
j
ε ).

It follows from property-(P1) and property-(P2) with q̃ ∈ (p, p∗) that

f (v̄jε )v̄
j
ε ≤ (λjε − 1)|v̄jε |p + pCq̃ |v̄jε |q̃

which indicates that
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∫
RN

ηp(v̄
j
ε,L)

p(ϑ−1)|∇v̄jε |pdx ≤ p

∫
RN

ηp−1(v̄
j
ε,L)

p(ϑ−1)v̄jε |∇v̄jε |p−1|∇η|dx

+ pCq̃

∫
RN

ηp(v̄
j
ε,L)

p(ϑ−1)v̄jε |v̄jε |q̃ dx + (λjε − 1 − V0)

∫
RN

|v̄jε |pηp(v̄jε,L)p(ϑ−1)dx.

Using the Young’s inequality, it holds that

∫
RN

[
ηp(v̄

j
ε,L)

p(ϑ−1)|∇v̄jε |p − (λjε − 1 − V0)|v̄jε |pηp(v̄jε,L)p(ϑ−1)
]
dx

≤ Cp

∫
RN

(v̄
j
ε,L)

p(ϑ−1)|v̄jε |p|∇η|pdx + pCpCq̃

∫
RN

ηp(v̄
j
ε,L)

p(ϑ−1)|v̄jε |q̃ dx

In view of the proof of Theorem 3.10, we obtain that λjε ≤ (λ∗)j < 0 for all ε ∈ (0, ε∗). Exploiting 
(V̂1), there holds V0 + 1 ≥ 0. Moreover, some simple calculations show that

|∇w̄j
ε,L|p ≤ Cpϑ

p
(
ηp(v̄

j
ε,L)

p(ϑ−1)|∇v̄jε |p + |∇η|p(v̄jε,L)p(ϑ−1)|v̄jε |p
)
.

The above facts together with the Sobolev inequality imply that

⎛
⎜⎝∫
RN

|w̄j
ε,L|p∗

dx

⎞
⎟⎠

p

p∗

≤ C̃pϑ
p

⎛
⎜⎝∫
RN

(v̄
j
ε,L)

p(ϑ−1)|v̄jε |p|∇η|pdx +
∫
RN

ηp(v̄
j
ε,L)

p(ϑ−1)|v̄jε |q̃ dx
⎞
⎟⎠

≤ C̃p,rϑ
p

⎛
⎜⎝ ∫
R−r≤|x|≤R

|v̄jε |pϑdx +
∫

|x|≥R−r
(v̄jε )

p(ϑ−1)|v̄jε |q̃dx
⎞
⎟⎠ .

Hereafter, we shall fix t = √
r , p∗ > pt

t−1 and χ = p∗(t−1)
pt

> 1. As a consequence,

⎛
⎜⎝∫
RN

|w̄j
ε,L|p∗

dx

⎞
⎟⎠

p

p∗

≤ C̃pϑ
p

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ ∫
R−r≤|x|≤R

|v̄jε |
pϑt
t−1 dx

⎞
⎟⎠

t−1
t
⎛
⎜⎝ ∫
R−r≤|x|≤R

dx

⎞
⎟⎠

1
t

+
⎛
⎜⎝ ∫

|x|≥R−r
|v̄jε |

pϑt
t−1 dx

⎞
⎟⎠

t−1
t
⎛
⎜⎝ ∫

|x|≥R−r
|v̄jε |(q̃−p)t dx

⎞
⎟⎠

1
t

⎫⎪⎪⎬
⎪⎪⎭

Choosing q̃ = p(1+t) and applying the Sobolev inequality, we must have that

t
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⎛
⎜⎝∫
RN

|w̄j
ε,L|p∗

dx

⎞
⎟⎠

p

p∗

≤ C̃p,aϑ
p

⎛
⎜⎝ ∫

|x|≥R−r
|v̄jε |

pϑt
t−1 dx

⎞
⎟⎠

t−1
t

.

From which, since w̄j
ε,L = ηv̄

j
ε (v̄

j
ε,L)

ϑ−1, we can derive that

⎛
⎜⎝ ∫

|x|≥R
|v̄jε,L|p∗ϑdx

⎞
⎟⎠

p

p∗

≤
⎛
⎜⎝ ∫

|x|≥R
ηp

∗ |v̄jε |p
∗ |v̄jε,L|p∗(ϑ−1)dx

⎞
⎟⎠

p

p∗

≤
⎛
⎜⎝∫
RN

|w̄j
ε,L|p∗

dx

⎞
⎟⎠

p

p∗

≤ C̃p,aϑ
p

⎛
⎜⎝ ∫

|x|≥R−r
|v̄jε |

pϑt
t−1 dx

⎞
⎟⎠

t−1
t

.

Letting L → +∞ in the above inequality, there holds

⎛
⎜⎝ ∫

|x|≥R
|v̄jε |p

∗ϑdx

⎞
⎟⎠

p

p∗

≤ C̃p,aϑ
p

⎛
⎜⎝ ∫

|x|≥R−r
|v̄jε |

pϑt
t−1 dx

⎞
⎟⎠

t−1
t

.

Setting χ = p∗(t−1)
pt

and s = pt
t−1 , we are derived from the above inequality that

|v̄jε |χm+1s(|x|�R) � C̃

∑m
i=1 χ

−i
p,a χ

∑m
i=1 iχ

−i |v̄jε |p∗(|x|�R−r)

and so

|v̄jε |L∞(|x|�R) � C̃

∑m
i=1 χ

−i
p,a χ

∑m
i=1 iχ

−i |v̄jε |p∗(|x|�R−r).

Since v̄jε → v̄j in X, the last inequality completes the proof. �
Lemma A.3. Let (v̄jε , λ

j
ε ) ∈X×R be a couple of weak solution to the Problem (3.14), then there 

are Cj
0 , c

j
0 > 0 such that

v̄jε ≤ C
j

0 exp(−cj0 |x|)

for all ε ∈ (0, ε∗) and x ∈RN .

Proof. Since we have derived that λjε → λj as ε → 0+ and v̄jε > 0 for every x ∈ RN , we apply 
Lemma A.2 to deduce that

lim|x|→+∞
λ
j
ε |v̄jε |p−2v̄

j
ε + |v̄jε |p−2v̄

j
ε log |v̄jε |p

j p−1
= −∞ uniformly in ε ∈ (0, ε∗).
|v̄ε |
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So, there is an R > 0 which is independent of ε ∈ (0, ε∗) such that

λjε |v̄jε |p−2v̄jε + |v̄jε |p−2v̄jε log |v̄jε |p ≤ V0 − 2

2
|v̄jε |p−1, ∀ε ∈ (0, ε∗) and |x| ≥R.

Denoting the constant V̂0 = V0 + 2 ∈ [1, +∞), then for all |x| ≥R, there holds

−�pv̄
j
ε + V̂0

2
|v̄jε |p−2v̄jε = λjε |v̄jε |p−2v̄jε + |v̄jε |p−2v̄jε log |v̄jε |p

−
[
V (εx + εxjε )− V0 + 2

2

]
|v̄jε |p−2v̄jε

≤ λjε |v̄jε |p−2v̄jε + |v̄jε |p−2v̄jε log |v̄jε |p − V0 − 2

2
|v̄jε |p−2v̄jε

≤ 0.

Let ψj(x) = C
j

0 exp(−cj0 |x|) with Cj

0 , c
j

0 > 0 such that (cj0)
p(p − 1) < V̂

2 and v̄jε (x) ≤
C
j
0 exp(−cj0R) for all |x| =R. It follows from some simple calculations that

−�pψ
j + V̂

2
(ψj )p−1 = (ψj )p−1

(
V̂

2
− (c

j
0)
P (p− 1)+ N − 1

|x| (c
j
0)
p−1

)
> 0, for all |x| ≥R.

Define 	 = {|x| ≥ R} ∩ {v̄jε > ψj }, adopting the following inequality

(|x|s−2x − |y|s−2y) · (x − y)≥ 0 for all s > 1 and x, y ∈ RN

and choosing φ = max{v̄jε −ψj , 0} ∈W
1,p
0 (RN\BR) ∩X as a test function in

−�p(v̄
j
ε −ψj)+ V̂

2

[
(v̄jε )

p−1 − (ψj )p−1]≤ 0, for all |x| ≥R

to conclude that

0 ≥
∫
	

(|∇v̄jε |p−2∇v̄jε − |∇ψj |p−2ψ)∇φdx + V̂

2

∫
	

[
(v̄jε )

p−1 − (ψj )p−1)
]
φdx ≥ 0.

Therefore, the set 	 ≡ ∅. From which, we know that v̄jε ≤ψj(x) for all |x| ≥R and

v̄jε ≤ψj(x)= C
j

0 exp(−cj0 |x|) for all |x| ≥R.

Exploiting Lemma A.2 again, |v̄jε |∞ ≤ C and so the above inequality holds true for the whole 
space RN by increasing Cj to be large. The proof is completed. �
0
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