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Abstract. We investigate the existence of nonnegative solutions for a nonlinear problem
involving the fractional p-Laplacian operator. The problem is set on a unbounded domain,
and compactness issues have to be handled.

1. Introduction

The interest for the fractional Laplacian operator (−∆)s and more generally pseudodif-
ferential operators, has constantly increased over the last few years, although such operators
have been a classical topic of functional analysis since long ago. Nonlocal operators such
as (−∆)s naturally arise in continuum mechanics, phase transition phenomena, population
dynamics and game theory, as they are the typical outcome of stochastical stabilization of
Lévy processes, see e.g. [8, 19, 21]. We refer the reader to [13] and to the references included
for a selfcontained overview of the basic properties of fractional Sobolev spaces. If Ω is a
smooth bounded domain, for semi-linear problems like{

(−∆)su = f(x, u), in Ω,
u = 0 in RN \ Ω,

existence, nonexistence, regularity and maximum principles have been intensively investi-
gated, see e.g. [6, 7, 9, 22–27]. When Ω = RN , we refer the reader to [10, 14] where weak
solutions in Hs(RN ) are studied. More recently, for p > 1, s ∈ (0, 1) and N > sp, motivated
by some situations arising in game theory, a nonlinear generalization of this operator has
been introduced, see [2, 8]. Precisely, for smooth functions u define

(−∆)sp u(x) := 2 lim
ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN .

This nonlinear operator is consistent, up to some normalization constant depending upon
n and s, with the linear fractional Laplacian (−∆)s in the case p = 2. A broad range of
existence and multiplicity results for the problem{

(−∆)spu = f(x, u), in Ω,
u = 0 in RN \ Ω,
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has been recently obtained in [17] via tools of Morse theory under different growth assump-
tions for f(x, u). We refer to [15, 16, 20] for the case f(x, u) = λ|u|p−2u and the study of
properties of (variational) nonlinear eigenvalues, including their asymptotic behaviour.
In this paper, we are concerned with existence of solutions of

(1.1)

{
(−∆)spu = ϕ(x)f(u), in RN ,

u > 0, u 6= 0,

under suitable growth and sign assumptions on the functions ϕ and f . In the local case,
that is formally s = 1, necessary and sufficient conditions for the solvability of the problem
−∆u = ϕ(x)uq in RN with 0 < q < 1 were investigated in [5], see also [4]. Under some sign
condition on ϕ the problem with s = 1 and p > 1, which thus involves the p-Laplace operator
∆p = div(|∇u|p−2∇u) was investigated in [1], see also [11]. If we put

(1.2) F (u) =

∫ u

0
f(τ)dτ,

the (formal) Pohožaev identity for solutions u ∈W s,p(RN ) of problem (1.1) is

(1.3)
∫
RN

(
(N − sp)ϕ(x)f(u)u− pNϕ(x)F (u)− px · ∇ϕ(x)F (u)

)
= 0.

A rigorous justification of (1.3) for p 6= 2 is still unavailable due to the lack of suitable
regularity results, while in the case p = 2, (1.3) has been recently proved in [24], see also
[10, 25]. For the case f(u) = uq, the identity yields nonexistence of solutions u ∈ W s,p(RN )
provided that

x 7→ (N − sp)ϕ(x)− pN

q + 1
ϕ(x)− p

q + 1
x · ∇ϕ(x) has fixed sign in RN .

Then, in particular case when ϕ is constant u = 0 as soon as q 6= p∗s − 1, where we set

p∗s :=
Np

N − sp
.

Hence, in general, it is rather natural to impose conditions on ϕ in order to get the existence
of nontrivial solutions to (1.1).
We will assume that p > 1, ϕ ∈ L∞loc(RN ) and f ∈ C(R+) satisfies the following conditions:

(f1) f(τ) > 0, for all τ > 0;
(f2) µτ q 6 f(τ) 6 cτ q , for all τ > 0, some p− 1 < q < p∗s − 1 and c, µ > 0;
(f3) if F denotes the function in (1.2), there exists m < p such that

0 6 (q + 1)F (τ)− f(τ)τ 6 Cτm, for all τ > 0 and some C > 0;

0 6 f(τ)τ − pF (τ) 6 Cτ q+1, for all τ > 0.

(W) sup
RN\Ω

ϕ 6 0 < inf
ω
ϕ for some bounded domains ω,Ω ⊂ RN with ω ⊂ Ω.

In addition to f(τ) := τ q for τ > 0, another example of nonlinearity satisfying (f1)-(f3) is

f(s) :=

{
2τ q, 0 6 τ 6 1,

τ q + τm−1, τ > 1,
m < p < q + 1.

The main result of the paper is the following:
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Theorem 1.1. Assume that (W ) and (f1)-(f3) hold. Then problem (1.1) has a distributional
solution, namely there exists a function u ∈ LNp/(N−sp)(RN ) \ {0} with u > 0,∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
<∞,

and ∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ψ(x)− ψ(y))

|x− y|N+sp
=

∫
RN

ϕ(x)f(u)ψ,

for all ψ ∈ C∞c (RN ). The same holds if (W ) and (f1) hold and (f2) holds with 0 6 q < p−1.

We point out that the result is new also for the semi-linear case p = 2, 1 < q < 2∗s − 1 and
N > 2, establishing existence of a nonnegative distributional solution u ∈ Ds,2(RN ) (see the
beginning of Section 2 for its definition) for

(−∆)su = ϕ(x)f(u) in RN .
In general, it is not guaranteed that the distributional solution u of Theorem 1.1 belongs to
the fractional space W s,p(RN ), that is u 6∈ Lp(RN ) might occur. Moreover, if the solution
u > 0 of Theorem 1.1 was a weak supersolution to (−∆)spu = 0, by the results of [12] (see
also [3, Theorem A.1]), actually u > 0. On the other hand, assumption (W ) prevents u from
being a weak supersolution to (−∆)spu = 0, since f(u) > 0 and ϕ(x) 6 0 for x 6∈ Ω. That
u > 0 is expected of course. In fact, if u > 0 was a solution in classical sense and if there
exists a point x0 ∈ RN with u(x0) = 0, then u(y) > u(x0) for every y ∈ RN , yielding

0 > −2

∫
RN

(u(y)− u(x0))p−1

|x0 − y|N+sp
dy = ϕ(x0)f(u(x0)) = 0,

namely a contradiction. The proof of Theorem 1.1 follows the pattern of [1], namely nontrivial
nonnegative solutions un are constructed for the problem defined on a sequence of balls
B(0, Rn) ⊂ RN with un = 0 on RN \ B(0, Rn), with Rn ↗ ∞ as n → ∞. Then, relying on
uniform estimates, the sequence is shown to converge weakly to a nontrivial distributional
solution to (1.1). Both in getting uniform estimates and in proving the nontriviality of the
weak limit, the fact that ϕ(x) 6 0 outside a bounded domain of RN plays a crucial role.

2. Preliminary results

The space Ds,p(RN ) is defined by

Ds,p(RN ) :=
{
u ∈ L

Np
N−sp (RN ) : ‖u‖Ds,p <∞

}
, ‖u‖Ds,p :=

(∫
R2N

|u(x)− u(y)|p

|x− y|N+sp

)1/p
.

Endowed with the norm ‖ · ‖Ds,p the space Ds,p(RN ) is a uniformly convex Banach space.
From [13, Theorem 6.5], we know that there exists a positive constant C such that

(2.1) ‖u‖Lp∗s (RN ) 6 C‖u‖Ds,p , for every u ∈ Ds,p(RN ),

and Ds,p(RN ) is embedded into Lqloc(R
N ), for every 1 6 q 6 p∗s. We observe that, in general,

the integral ϕF (u) may not belong to L1(RN ) for ϕ ∈ L∞loc(RN ). Hence, we shall consider a
sequence of diverging radii Rn > 0 and the spaces

Xn :=
{
u ∈W s,p(RN ) : u = 0 on RN \B(0, Rn)

}
endowed with the norm

(2.2) ‖u‖Xn := ‖u‖Ds,p , u ∈ Xn,
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and the functionals Jn : Xn → R given by

Jn(u) :=
1

p

∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
−
∫
B(0,Rn)

ϕ(x)F (u+), u ∈ Xn.

We stress that, by means of (2.1) and Hölder inequality, the norm defined in (2.2) is equivalent
(with constants depending on the value of n) to the standard norm in W s,p(RN ), namely
‖u‖W s,p = (‖u‖pp + ‖u‖pDs,p)1/p. We can check that Jn ∈ C1(Xn,R) and, for u, v ∈ Xn,

J ′n(u)(v) =

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
−
∫
B(0,Rn)

ϕ(x)f(u+)v.

The truncation with u+ := max{u, 0} in the nonlinearity will allow critical points of Jn be
automatically nonnegative, see Lemma 2.2.
Without loss of generality, we may assume that all the balls B(0, Rn) contain the domain Ω
for each n > 1 large enough.

Lemma 2.1. For every n > 1 the functional Jn is weakly lower semi-continuous on Xn.

Proof. If (uj) ⊂ Xn converges weakly to some u in Xn as j →∞, we have∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
6 lim inf

j→∞

∫
R2N

|uj(x)− uj(y)|p

|x− y|N+sp
.

Since (uj) is bounded in Lp(B(0, Rn)) via inequality (2.1), the compact embedding theorem
for fractional Sobolev spaces [13, Corollary 7.2] implies that, up to a subsequence, the se-
quence (uj) converges strongly to u in Lr(B(0, Rn)), for every 1 6 r < p∗s and uj(x)→ u(x)
for a.e. x ∈ RN . In turn, since by condition (f2) there exists a positive constant Cn > 0 with

|ϕ(x)F (u+
j )|χB(0,Rn) 6 Cn|uj |q+1, (q + 1 < p∗s),

we get by the Dominated Convergence theorem that

lim
j→∞

∫
B(0,Rn)

ϕ(x)F (u+
j ) =

∫
B(0,Rn)

ϕ(x)F (u+).

This concludes the proof. �

Set u± = max{±u, 0}. We have the following

Lemma 2.2. If J ′n(u) = 0, for u ∈ Xn. Then u > 0.

Proof. Observe first that if u ∈ Xn, then u± ∈ Xn. We have

(2.3)
∫
B(0,Rn)

ϕ(x)f(u+)u− = 0.

We recall the elementary inequality

|ξ− − η−|p 6 |ξ − η|p−2(ξ − η)(η− − ξ−), for every ξ, η ∈ R.
Then, recalling (2.3), by testing J ′n with −u− ∈ Xn yields

0 = J ′n(u)(−u−) =

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(u−(y)− u−(x))

|x− y|N+sp

>
∫
R2N

|u−(x)− u−(y)|p

|x− y|N+sp
.

This implies that u− is constant in RN and since u− vanishes outside B(0, Rn), it follows
that u− = 0. Hence, u > 0 a.e., concluding the proof. �
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In the next two lemmas, we consider the case where (f2) is satisfied with q small.

Lemma 2.3. Assume (W ), (f1) and (f2) with q + 1 < p. Then, for each n > 1, there exists
a nonnegative critical point un ∈ Xn \ {0} of Jn such that

Jn(un) = inf
Xn

Jn < 0.

Proof. By virtue of condition (f2), we have the following inequality∫
B(0,Rn)

ϕ(x)F (u+) 6 c
∫
B(0,Rn)

ϕ(x)|u+|q+1.

By applying Hölder inequality with ϑ := p∗s
p∗s−(q+1) and α := p∗s

q+1 , we obtain∫
B(0,Rn)

ϕ(x)|u+|q+1 6 ‖ϕ‖Lϑ(B(0,Rn))‖u‖
q+1

Lp∗s (B(0,Rn))

= ‖ϕ‖Lϑ(B(0,Rn))‖u‖
q+1

Lp∗s (RN )
6 Cn‖u‖q+1

Ds,p ,

for some Cn > 0. Then, by using this estimate on Jn, we obtain

Jn(u) >
1

p
‖u‖pDs,p − Cn‖u‖q+1

Ds,p .

Since q + 1 < p, and recalling the definition of ‖ · ‖Xn , we conclude that Jn(u)→ +∞ when
‖u‖Xn → ∞, since p > q + 1, namely Jn is coercive on Xn. Whence, taking into account
Lemma 2.1, by a standard argument of the Calculus of Variations, there exists un ∈ Xn such
that Jn(un) = infXn Jn, which is a critical point of Jn. By Lemma 2.2, we have un > 0 a.e.
Now, we take ζ ∈ C∞c (RN ) \ {0} with supp(ζ) ⊂ ω. Then using (f2) again, we obtain

Jn(tζ) 6
tp‖ζ‖pDs,p

p
− µtq+1

∫
B(0,Rn)

ϕ(x)|ζ|q+1 =
tp‖ζ‖pDs,p

p
− µtq+1

∫
ω
ϕ(x)|ζ|q+1.

Since infω ϕ > 0 we have
∫
ω ϕ(x)|ζ|q+1 > 0 and we can conclude that there exists tn > 0

small enough that Jn(tnζ) < 0. Since tnζ ∈ Xn, we conclude the proof. �

Lemma 2.4. Assume (W ), (f1) and (f2) with q+ 1 < p. Let, for each n ∈ N, un ∈ Xn \ {0}
be the nonnegative critical point of Jn obtained in Lemma 2.3. Then there exist two constants
c < 0 and M > 0, independent of n, such that:

(i) sup
n>1

Jn(un) 6 c.

(ii) sup
n>1
‖un‖Xn 6M .

Proof. Taking into account that un > 0, that ω ⊂ Ω ⊂ B(0, Rn) and by assumption (W ),∫
B(0,Rn)

ϕ(x)F (un) =

∫
Ω
ϕ(x)F (un) +

∫
B(0,Rn)\Ω

ϕ(x)F (un) 6
∫

Ω
ϕ(x)F (un).

Hence, in turn, we get

(2.4) Jn(un) >
1

p
‖un‖pDs,p −

∫
Ω
ϕ(x)F (un) >

1

p
‖un‖pDs,p − C‖un‖q+1

Ds,p ,

where Hölder inequality was used as in the proof of Lemma 2.3 but here the positive constant
C := δ‖ϕ‖Lϑ(Ω), for some δ = δ(Ω) > 0, is independent of n > 1. We also have, by arguing
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as in the proof of Lemma 2.3, that for a ζ ∈ C∞c (RN ) \ {0} with supp(ζ) ⊂ ω,

Jn(τζ) 6 c, c :=
τp‖ζ‖pDs,p

p
− µτ q+1

∫
ω
ϕ(x)|ζ|q+1 < 0.

for some τ > 0 small enough and independent of n > 1. Thus, we get

sup
n>1

Jn(un) = sup
n>1

inf
Xn

Jn 6 sup
n>1

Jn(τζ) 6 c < 0.

This proves (i). By means of inequality (2.4), inequality (ii) immediately follows otherwise a
contradiction follows by the condition q + 1 < p. �

We now turn to the case p < q + 1, where ϕ and f satisfy (W ) and (fi) respectively.

Lemma 2.5. Assume that (W ) and (f1)-(f3) hold. Then there exist ρ, r > 0 and a function
ψ ∈ Xn \ {0}, independent of n > 1, with ‖ψ‖Xn > ρ such that

(i) Jn(u) > r, for every u ∈ Xn with ‖u‖Xn = ρ and all n > 1;
(ii) Jn(ψ) 6 0, for all n > 1.

Proof. We have, arguing as in Lemma 2.4, that for all u ∈ Xn

Jn(u) >
1

p
‖u‖pDs,p − C‖u‖q+1

Ds,p ,

with C independent of n > 1. Take ρ > 0 such that ρq−p+1 < 1/2pC. Then, if ‖u‖Ds,p = ρ,
we obtain Jn(u) > r, with r := ρp/2p > 0. On the other hand, as in the proof of Lemma
2.4, there exists some t0 > 0 (this time large enough) independent of n > 1 such that
Jn(t0ζ) 6 0 and taking ψ := t0ζ we have Jn(ψ) 6 0. Up to reducing ρ, we also get
‖ψ‖Ds,p = t0‖ζ‖Ds,p > ρ. �

By Lemma 2.5, we can define, for each n > 1, the min-max level for Jn:

cn := inf
γ∈Γn

max
06t61

Jn(γ(t)), Γn := {γ ∈ C([0, 1], Xn); γ(0) = 0, γ(1) = ψ} .

Using the fact that Xn ⊂ Xn+1 we actually have

c1 > c2 > · · · > cn > · · · > r > 0,

so that in particular cn → c, for some c > r > 0.

Lemma 2.6. Assume that (W ) and (f1)-(f3) hold. Then the functional Jn satisfies the
(PS)c-condition, for every c ∈ R and for all n > 1.

Proof. Suppose now that Jn(uj)→ c and J ′n(uj)→ 0 as j →∞. Then we can write

c+ oj(1) =
‖uj‖pDs,p

p
−
∫
B(0,Rn)

ϕ(x)F (u+
j ),(2.5)

oj(1)‖uj‖Ds,p = ‖uj‖pDs,p −
∫
B(0,Rn)

ϕ(x)f(u+
j )uj .(2.6)

By combining these identities, we obtain(1

p
− 1

q + 1

)
‖uj‖pDs,p −

∫
B(0,Rn)

ϕ(x)
(
F (u+

j )−
f(u+

j )uj

q + 1

)
= c+ oj(1) + oj(1)‖uj‖Ds,p .
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In turn, on account of condition (f3), we have∫
B(0,Rn)

ϕ(x)
(
F (u+

j )−
f(u+

j )uj

q + 1

)
6 ‖ϕ‖L∞(B(0,Rn))

∫
B(0,Rn)

∣∣∣F (u+
j )−

f(u+
j )uj

q + 1

∣∣∣
6 Cn

∫
B(0,Rn)

|uj |m 6 Cn‖uj‖mLp∗s 6 Cn‖uj‖
m
Ds,p .

Therefore, we get

c+ oj(1) + oj(1)‖uj‖Ds,p >
(1

p
− 1

q + 1

)
‖uj‖pDs,p − Cn‖uj‖mDs,p .

Since p > m and q + 1 > p, this implies that there exists C(s, n, p, q, c) > 0 such that

sup
j>1
‖uj‖Ds,p 6 C(s, n, p, q, c),

namely the sequence (uj) is bounded in Ds,p(RN ). In turn, there exists a subsequence,
still denoted by (uj), such that uj ⇀ u in Xn as j → ∞. We also have that uj → u in
Lr(B(0, Rn)), for any 1 6 r < p∗s by the compact embedding theorem [13, Corollary 7.2] and
uj(x)→ u(x) for a.e. x ∈ RN . For any ψ ∈ Xn, we have∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(ψ(x)− ψ(y))

|x− y|N+sp
=

∫
B(0,Rn)

ϕ(x)f(u+
j )ψ + 〈J ′n(uj), ψ〉.

For each ψ ∈ Xn fixed, we have by dominated convergence

lim
j→∞

∫
B(0,Rn)

ϕ(x)f(u+
j )ψ =

∫
B(0,Rn)

ϕ(x)f(u+)ψ,

since there exists η ∈ Lq+1(RN ) such that |uj | 6 η a.e. and, for some Cn > 0,

|ϕ(x)f(u+
j )ψχB(0,Rn)| 6 Cn|u+

j |
q|ψ| 6 Cn|η|q|ψ| ∈ L1(RN ), for all j > 1.

Now, if p′ is the conjugate exponent to p, we have

the sequence
(
|uj(x)− uj(y)|p−2(uj(x)− uj(y))

|x− y|(N+sp)/p′

)
is bounded in Lp

′
(R2n)

as well as
|uj(x)− uj(y)|p−2(uj(x)− uj(y))

|x− y|(N+sp)/p′
→ |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|(N+sp)/p′
a.e. in R2n.

Also, since (ψ(x)− ψ(y))/|x− y|(N+sp)/p ∈ Lp(R2n) we have (cf. [18, Lemma 4.8]) that∫
R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(ψ(x)− ψ(y))

|x− y|N+sp

converges to ∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ψ(x)− ψ(y))

|x− y|N+sp
.

This shows that u ∈ Xn is a weak solution in B(0, Rn), namely
(2.7)∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ψ(x)− ψ(y))

|x− y|N+sp
=

∫
B(0,Rn)

ϕ(x)f(u+)ψ, ∀ψ ∈ Xn.
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Choosing ψ = u in (2.7) and ψ = uj in the above equation for J ′n(uj) and since for Cn > 0,

|ϕ(x)f(u+
j )ujχB(0,Rn)| 6 Cn|uj |q+1 6 Cn|η|q+1 ∈ L1(RN ), for all j > 1,

we obtain

‖u‖pDs,p =

∫
B(0,Rn)

ϕ(x)f(u+)u = lim
j→∞

∫
B(0,Rn)

ϕ(x)f(u+
j )uj

= lim
j→∞

∫
R2N

|uj(x)− uj(y)|p

|x− y|N+sp
= lim

j→∞
‖uj‖pDs,p

Since also uj ⇀ u, we can conclude that uj → u in Xn, concluding the proof. �

We can finally state the following

Lemma 2.7. Assume that (W ) and (f1)-(f3) hold. Then, for each n > 1, the problem

(2.8)

{
(−∆)spu = ϕ(x)f(u), in B(0, Rn),

u = 0, in RN \B(0, Rn),

admits a nontrivial nonnegative solution un ∈ Xn.

Proof. By Lemmas 2.2, 2.5 and 2.6, the assertion follows by the Mountain Pass Theorem. �

3. Proof of Theorem 1.1

Consider first the case where (W ) and (f1)-(f3) hold. By virtue of Lemma 2.7, there exists
a sequence (un) ⊂ Xn ⊂ Ds,p(RN ) of nontrivial nonnegative weak solutions to problem (2.8)
on the exhausting balls B(0, Rn), namely

(3.1)
∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ψ(x)− ψ(y))

|x− y|N+sp
=

∫
B(0,Rn)

ϕ(x)f(un)ψ,

for any ψ ∈ Ds,p(RN ), with ψ ≡ 0 on RN \ B(0, Rn). We claim that this sequence remains
bounded in Ds,p(RN ). In fact, for every n > 1, we can write

‖un‖pDs,p

p
−
∫
B(0,Rn)

ϕ(x)F (un) = cn, ‖un‖pDs,p −
∫
B(0,Rn)

ϕ(x)f(un)un = 0.

By combining these identities, we obtain(1

p
− 1

q + 1

)
‖un‖pDs,p −

∫
B(0,Rn)

ϕ(x)
(
F (un)− f(un)un

q + 1

)
= cn.

In turn, on account of conditions (f3) and (W ), we have∫
B(0,Rn)

ϕ(x)
(
F (un)− f(un)un

q + 1

)
=

∫
Ω
ϕ(x)

(
F (un)− f(un)un

q + 1

)
+

∫
B(0,Rn)\Ω

ϕ(x)
(
F (un)− f(un)un

q + 1

)
6
∫

Ω
ϕ(x)

(
F (un)− f(un)un

q + 1

)
6 ‖ϕ‖L∞(Ω)

∫
Ω

∣∣∣F (un)− f(un)un
q + 1

∣∣∣ 6 C ∫
Ω
|un|m 6 C‖un‖mLp∗s 6 C‖un‖

m
Ds,p .

where C = C(Ω) is independent of n > 1, Therefore, we can conclude that

c1 > cn >
(1

p
− 1

q + 1

)
‖un‖pDs,p − C‖un‖mDs,p .
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Since p > m and q + 1 > p, the claim is proved. Then, there exists a subsequence, still
denoted by (un), such that un ⇀ u in Ds,p(RN ) as n → ∞. We also have un → u in
Lr(K) for any bounded subset K ⊂ RN and all 1 6 r < p∗s by the compact embedding
theorem [13, Corollary 7.2] and un(x)→ u(x) for a.e. Arguing as in the proof of Lemma 2.6,
it follows that u is a distributional weak solution to problem (1.1). In fact, let ψ ∈ C∞c (RN )
and set K := supt(ψ). Then ψ ∈ Ds,p(RN ) and ψ ≡ 0 on RN \ B(0, Rn), for n > 1 large
enough. The left-hand side of (3.1) converges as in the proof of Lemma 2.6, by means of
duality arguments. As far as the right-hand side is concerned, by dominated convergence, we
get

lim
n→∞

∫
B(0,Rn)

ϕ(x)f(un)ψ = lim
n→∞

∫
K
ϕ(x)f(un)ψ

=

∫
K
ϕ(x)f(u)ψ =

∫
RN

ϕ(x)f(u)ψ,

since there exists η ∈ Lq(K) such that un 6 η a.e. in K for all n > 1 and

|ϕ(x)f(un)ψ|χK(x) 6 CuqnχK(x) 6 CηqχK(x) ∈ L1(K).

We will now show that u 6= 0. Taking (W ) and (f3) into account, we deduce that

cn =
1

p
‖un‖pDs,p −

∫
B(0,Rn)

ϕ(x)F (un) =

∫
B(0,Rn)

ϕ(x)
(f(un)un

p
− F (un)

)
=

∫
Ω
ϕ(x)

(f(un)un
p

− F (un)
)

+

∫
B(0,Rn)\Ω

ϕ(x)
(f(un)un

p
− F (un)

)
6
∫

Ω
ϕ(x)

(f(un)un
p

− F (un)
)
.

Since (cn) is monotone and bounded from below by r > 0, we have cn → c > 0 as n → ∞.
Whence, assuming by contradiction that u ≡ 0, since Ω is bounded and, for all n > 1,

0 6 (f(un)un − pF (un))χΩ 6 Cu
q+1
n χΩ 6 Cη

q+1χΩ,

for some η ∈ Lq+1(Ω), we would obtain by dominated convergence

lim
n→∞

∫
Ω
ϕ(x)

(1

p
f(un)un − F (un)

)
=

∫
Ω
ϕ(x)

(1

p
f(u)u− F (u)

)
= 0,

which is a contradiction. Therefore u 6= 0 and the proof is complete under the first assump-
tion. If instead condition (f2) holds for 0 6 q < p − 1, then the proof follows in a similar
way, in light of Lemma 2.3 and Lemma 2.4. �
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