ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT

RAQUEL LEHRER, LILIANE A. MAIA, AND MARCO SQUASSINA

ABSTRACT. We investigate the existence of nonnegative solutions for a nonlinear problem
involving the fractional p-Laplacian operator. The problem is set on a unbounded domain,
and compactness issues have to be handled.

1. INTRODUCTION

The interest for the fractional Laplacian operator (—A)® and more generally pseudodif-
ferential operators, has constantly increased over the last few years, although such operators
have been a classical topic of functional analysis since long ago. Nonlocal operators such
as (—A)® naturally arise in continuum mechanics, phase transition phenomena, population
dynamics and game theory, as they are the typical outcome of stochastical stabilization of
Lévy processes, see e.g. [8,19,21]. We refer the reader to [13] and to the references included
for a selfcontained overview of the basic properties of fractional Sobolev spaces. If  is a
smooth bounded domain, for semi-linear problems like

—A)Yu = f(x,u), inQ,
u="0 in RV \ Q,

existence, nonexistence, regularity and maximum principles have been intensively investi-
gated, see e.g. [6,7,9,22-27]. When Q = R™, we refer the reader to [10, 14] where weak
solutions in H*(R™) are studied. More recently, for p > 1, s € (0,1) and N > sp, motivated
by some situations arising in game theory, a nonlinear generalization of this operator has
been introduced, see |2,8|. Precisely, for smooth functions u define

. [u(@) = u()["~? () — u(y)) N
—A)u(z) =21 RN,
(ZA)pulr) =21y BN\ B, (z) |z — y|NFor wowe

This nonlinear operator is consistent, up to some normalization constant depending upon
n and s, with the linear fractional Laplacian (—A)® in the case p = 2. A broad range of
existence and multiplicity results for the problem

(_A>Su = f(xau)a in Q7
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has been recently obtained in [17] via tools of Morse theory under different growth assump-
tions for f(x,u). We refer to [15,16,20] for the case f(x,u) = A|u[P"2u and the study of
properties of (variational) nonlinear eigenvalues, including their asymptotic behaviour.

In this paper, we are concerned with existence of solutions of

{(—mzu = ¢(z)f(u), inRY,

(1.1)
uw>=0, u#0,

under suitable growth and sign assumptions on the functions ¢ and f. In the local case,
that is formally s = 1, necessary and sufficient conditions for the solvability of the problem
—Au = p(z)u? in RV with 0 < ¢ < 1 were investigated in [5], see also [4]. Under some sign
condition on ¢ the problem with s = 1 and p > 1, which thus involves the p-Laplace operator
A, = div(|Vul[P~2Vu) was investigated in [1], see also [11]. If we put

1.2 F(u) = ' T)dT
(12 W= [ ey,
the (formal) Pohozaev identity for solutions u € W*P?(R™) of problem (1.1) is
(1.3) /RN (N = sp)o(@) f(u)u — pNo() F(u) — pr - Vip(z)F(u)) = 0.

A rigorous justification of (1.3) for p # 2 is still unavailable due to the lack of suitable
regularity results, while in the case p = 2, (1.3) has been recently proved in [24], see also
[10,25]. For the case f(u) = u?, the identity yields nonexistence of solutions u € W*P(RY)
provided that

z— (N —sp)p(x) — (ﬁ’_]\flgo(a:) — qi i Vo(x) has fixed sign in RY,
Then, in particular case when ¢ is constant © = 0 as soon as g # p; — 1, where we set
¥ Np
bs = N — Sp‘

Hence, in general, it is rather natural to impose conditions on ¢ in order to get the existence

of nontrivial solutions to (1.1).
We will assume that p > 1, o € L2 (RY) and f € C(R™") satisfies the following conditions:

loc

(f1) f(r) =0, forall T>0;
(f2) pri < f(r) <er?, forall7>0,somep—1<qg<pi—1andc,pu>0;
(fs3) if F' denotes the function in (1.2), there exists m < p such that

0< (¢g+V)F(r)— f(r)r < Ct™, for all 7 > 0 and some C > 0;
0< f(r)r —pF(r) < CT9%Y, forall 7 > 0.

(W) sup ¢ <0 < inf ¢ for some bounded domains w,Q C RV with w C Q.
RN\Q w

In addition to f(7) := 79 for 7 > 0, another example of nonlinearity satisfying (f1)-(f3) is

£(s) 274, 0< 7«1, cp<casl
s) = m )
447 >, b=1

The main result of the paper is the following:
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Theorem 1.1. Assume that (W) and (f1)-(fs3) hold. Then problem (1.1) has a distributional
solution, namely there exists a function u € LNP/(N=sP)(RN)\ {0} with u > 0,

_ p
JRLCE
ren |z — y|NFep

u(z) — u(y)[P~*(u(z) — u(y) (V@) —d(y) _
/sz |z — y|NTep = /RN p() f(u),

for allp € C®(RN). The same holds if (W) and (f1) hold and (fa) holds with 0 < ¢ < p—1.

and

We point out that the result is new also for the semi-linear case p =2, 1 < ¢ < 2% — 1 and
N > 2, establishing existence of a nonnegative distributional solution u € D*2(R") (see the
beginning of Section 2 for its definition) for

(~A)u = p(@)f(u) nRY.

In general, it is not guaranteed that the distributional solution u of Theorem 1.1 belongs to
the fractional space W*P(R™), that is u ¢ LP(RY) might occur. Moreover, if the solution
u > 0 of Theorem 1.1 was a weak supersolution to (—A)ju = 0, by the results of [12] (see
also 3, Theorem A.1]), actually u > 0. On the other hand, assumption (W) prevents u from
being a weak supersolution to (—A)ju = 0, since f(u) > 0 and ¢(z) < 0 for z ¢ Q. That
u > 0 is expected of course. In fact, if v > 0 was a solution in classical sense and if there

exists a point zg € RY with u(xg) = 0, then u(y) = u(xo) for every y € RY yielding

u(y) — u(zg))P~!
0> -2 [ (= ULOIdy — o) f(ute)) =0,

namely a contradiction. The proof of Theorem 1.1 follows the pattern of [1], namely nontrivial
nonnegative solutions w, are constructed for the problem defined on a sequence of balls
B(0, R,) C RY with u,, = 0 on RV \ B(0, R,,), with R,, /* 00 as n — oo. Then, relying on
uniform estimates, the sequence is shown to converge weakly to a nontrivial distributional
solution to (1.1). Both in getting uniform estimates and in proving the nontriviality of the
weak limit, the fact that ¢(x) < 0 outside a bounded domain of R plays a crucial role.

2. PRELIMINARY RESULTS
The space D*P(R™) is defined by

_Np_ lu(z) —u(y)|P\1/»
DSP(RN ;:{ e L (RM) : op < }, op 1= (/ —) -
(R™) u P (R™) : Jlul[ps» < 00 |w]| ps. on [z — |V o

Endowed with the norm || - | ps.r the space D*P(RY) is a uniformly convex Banach space.
From [13, Theorem 6.5], we know that there exists a positive constant C' such that

(2.1) [ull ot mvy < Cllullpsr,  for every u € D*P(RYN),
and D*P(R") is embedded into L{ (R™M), for every 1 < ¢ < p}. We observe that, in general,

the integral ¢ F(u) may not belong to LY(RY) for ¢ € L (RY). Hence, we shall consider a
sequence of diverging radii R, > 0 and the spaces

Xp={ue WRY) :u=0o0nRY\ B(0,R,)}
endowed with the norm

(2.2) [ullx, = llullpsw,  ue X,
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and the functionals J, : X,, — R given by

1 lu(x) —u(y)P /
Jnu::/ —_— e — mFu+, u € Xp.
(u) p Jrenv |z —y|Ntep B(o,Rn)w() ")

We stress that, by means of (2.1) and Holder inequality, the norm defined in (2.2) is equivalent
(with constants depending on the value of n) to the standard norm in W*P(R™), namely
lulwse = (Jullh + [[ulfep)'/P. We can check that J, € C'(X,,R) and, for u,v € X,

e [ @) u)P () — u(p)(v) o) .
T = [ Lo, P

|z — y|Ntsp

The truncation with ™ := max{u,0} in the nonlinearity will allow critical points of .J,, be
automatically nonnegative, see Lemma 2.2.

Without loss of generality, we may assume that all the balls B(0, R,,) contain the domain 2
for each n > 1 large enough.

Lemma 2.1. For every n > 1 the functional J, is weakly lower semi-continuous on X,.

Proof. If (uj) C X, converges weakly to some u in X, as j — oo, we have

(@) =l _ @) =)l
/RzN <l f/RzN ’

|x_y|N+sp j—00 |x_y|N+sP

Since (u;) is bounded in LP(B(0, R,)) via inequality (2.1), the compact embedding theorem
for fractional Sobolev spaces [13, Corollary 7.2] implies that, up to a subsequence, the se-
quence (u;) converges strongly to u in L"(B(0, Ry)), for every 1 < r < p} and u;(x) — u(z)
for a.e. z € RY. In turn, since by condition (f2) there exists a positive constant C,, > 0 with

lo(@)F (ul) X0, < Culu| "™, (q+1<p}),
we get by the Dominated Convergence theorem that

lim @ P = [ P,

7700 JB(0,Rn) B(0,Ry)
This concludes the proof. ]
Set u* = max{+u,0}. We have the following
Lemma 2.2. If J/(u) =0, for u € X,,. Then u > 0.

Proof. Observe first that if u € X,,, then uT € X,,. We have
2. [ el <o,

We recall the elementary inequality
€7 =0 P <IE—nPTHE—n)(n” — &), for every £, €R.
Then, recalling (2.3), by testing J/, with —u~ € X, yields
0= J (u)(—u~) = / Ju(z) — u(y) P~ (u(z) — u(y))(u(y) —u (z))

R2N |z — y|N+sp

s [ lvor

|z —y| NP

This implies that u~ is constant in R and since u~ vanishes outside B(0, R,), it follows
that =~ = 0. Hence, u > 0 a.e., concluding the proof. O
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In the next two lemmas, we consider the case where (f3) is satisfied with ¢ small.

Lemma 2.3. Assume (W), (f1) and (f3) with g+ 1 < p. Then, for each n > 1, there exists
a nonnegative critical point u, € X, \ {0} of J,, such that

JIn(upn) = inf J, < 0.
Xn

Proof. By virtue of condition (f2), we have the following inequality

/ o) F(u*) < / ()t |,
B(0,Ry) B(0,Rn)

Py

By applying Holder inequality with ¢ := P (gF D) and o := we obtain

+1g+1 q+1
Loy PN < eloso 415 i

+1 +1
= llellros om))lluH‘zps @) S Cnllullpe,

for some C), > 0. Then, by using this estimate on J,, we obtain
+1
In(u) > ];IIUIIDSP CnllullBep-

Since g + 1 < p, and recalling the definition of || - || x,, we conclude that J,,(u) — +o0co when
|lul|x, — oo, since p > ¢ + 1, namely J, is coercive on X,,. Whence, taking into account
Lemma 2.1, by a standard argument of the Calculus of Variations, there exists u,, € X, such
that Jy,(uy) = infx, J,, which is a critical point of J,. By Lemma 2.2, we have u,, > 0 a.e.
Now, we take ¢ € C°(RY) \ {0} with supp(¢) C w. Then using (f2) again, we obtain

J (tC) tP”CHDSP o tq+1 g+l _ tpHCHDSP tq+1 q+1
n 1 son )s@(w)ICI — p ww(a?)\d :

Since inf, ¢ > 0 we have [ ¢ 7)|¢]9"! > 0 and we can conclude that there exists t,, > 0
small enough that J,(¢,¢) < 0. Slnce t,¢ € X,,, we conclude the proof. O

Lemma 2.4. Assume (W), (f1) and (f2) with ¢+1 < p. Let, for eachn € N, u,, € X,, \ {0}
be the nonnegative critical point of Jy, obtained in Lemma 2.3. Then there exist two constants
c <0 and M > 0, independent of n, such that:

(i) sup In(un) < ec.

(i) Supllunllxn <M.

/

Proof. Taking into account that u, > 0, that w C Q C B(0, R,,) and by assumption (W),

/B(Oﬂn) () F(uy) :/QSO(ZE)F(UM)+/}B(0,Rn)\9¢(x)F(un) g/Qgp(:[;)F(un).

Hence, in turn, we get

1 1 )
(2.4) In(un) 2 EHunH’i)s,p - /QSO(JJ)F(un) > ];HunH’Zas,p — Cllunllbes

where Holder inequality was used as in the proof of Lemma 2.3 but here the positive constant
C = 6|l¢llpr ), for some 6 = 6(£2) > 0, is independent of n > 1. We also have, by arguing
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as in the proof of Lemma 2.3, that for a ¢ € C2°(R™)\ {0} with supp(¢) C w,

. TpHCHDéP _ q+1 q+1
Jn(7C) <¢, = ) pur p(2)[]T < 0.

for some 7 > 0 small enough and independent of n > 1. Thus, we get

sup Jp, (uy,) = sup 1an supJ (7¢) < e <.
>1

n>1 n>1 X
This proves (i). By means of inequality (2.4), inequality (ii) immediately follows otherwise a
contradiction follows by the condition g + 1 < p. O

We now turn to the case p < ¢ + 1, where ¢ and f satisfy (W) and (f;) respectively.

Lemma 2.5. Assume that (W) and (f1)-(f3) hold. Then there exist p,r > 0 and a function
¥ € X, \ {0}, independent of n > 1, with ||¥||x, > p such that

(i) Jn(u) = r, for every u € X,, with ||ul|x, = p and alln > 1;
(ii) Jn () <0, for alln > 1.

Proof. We have, arguing as in Lemma 2.4, that for all u € X,
+1
In(u) 2 Z;llullep = Cllullpes,

with C independent of n > 1. Take p > 0 such that p?P*! < 1/2pC. Then, if |Ju||ps» = p,
we obtain J,(u) > r, with r := pP/2p > 0. On the other hand, as in the proof of Lemma
2.4, there exists some ty > 0 (this time large enough) independent of n > 1 such that
Jn(to¢) < 0 and taking ¢ := to¢ we have J,(¢) < 0. Up to reducing p, we also get
[¥llps» = tollCllpsw > p- O

By Lemma 2.5, we can define, for each n > 1, the min-max level for J,:

¢ = inf max Jp(y(t)), I ={yeC(0,1], Xn);7(0) = 0,7(1) = ¥}.

~€eT,, 0<t<1
Using the fact that X,, C X, 11 we actually have
cpzepz 2oz 2r >0,
so that in particular ¢, — ¢, for some ¢ > r > 0.

Lemma 2.6. Assume that (W) and (f1)-(f3) hold. Then the functional J, satisfies the
(PS).-condition, for every ¢ € R and for alln > 1.

Proof. Suppose now that J,(u;) — ¢ and J},(u;) — 0 as j — oco. Then we can write

U5 p s,
(25) croy =1l [ ),
p (0,Rn)
(2.6) 0; (V)| e = [l — / (@) Fu Yy,
B(O,Rn)

By combining these identities, we obtain

1 )y
(= )l = oy PO () = ZHT) = e 0, + 0, e
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In turn, on account of condition (f3), we have

UG Fu) )ug
x Fu+ -1 < oo / Fu+ _ 97
L #@ (PO = 255 < olmaony [ [P0 - 2

<C, / ™ < Cllsg ™ < Colt [
B(O,Rn)

Therefore, we get

1 1
e+ 0i(1) + o;(Wlugllpew > (5 = o )luslipes = CalluslBen

Since p > m and g + 1 > p, this implies that there exists C(s,n,p, q,c) > 0 such that

sup ”U’J ”Ds’p < C(S, n,p,q, C),

i>1
namely the sequence (u;) is bounded in D*P(RY). In turn, there exists a subsequence,
still denoted by (u;), such that v; — u in X, as j — oo. We also have that u; — u in
L"(B(0,Ry,)), for any 1 < r < p¥ by the compact embedding theorem [13, Corollary 7.2| and
uj(x) — u(z) for a.e. x € RN, For any ¢ € X,,, we have

Juj (@) = uy(y) P2 (u)(2) = u;i(y) (P(=) —¥(y) A (at '
/RQN |J;—y|N+5P _/;(O,Rn) 90( )f( ])¢+<Jn( ])7¢>‘

For each ¢ € X,, fixed, we have by dominated convergence

lim cp(az)f(u;r)%b = /B(O . )go(x)f(u+)¢,

770 JB(0,Rn)
since there exists 7 € L4t (RY) such that |u;| < 7 a.e. and, for some C,, > 0,
(@) f(u] )X B0, R | < Culuf 110] < Calnl?ly| € LHRY),  forall j > 1.
Now, if p’ is the conjugate exponent to p, we have

: — i (P2 (1. — Wi ,
‘u.j (ZU) ,l”LJ (y)’ |(Niu;)(2? u] (y))> iS bounded in Lp (RQn)
rT—y 8

the sequence <

as well as

luj () — u;(y) P2 (s (x) — ui(y))  |ul@) — u(y)P~2(u(z) — u(y)) o
|z — y|(N+sp)/p’ — 7 — y|(N+sp)/p’ ae. in R2".

Also, since (1(x) — ¥(y))/|x — y|(N*+sP)/P € LP(R?*") we have (cf. [18, Lemma 4.8]) that
/ Juj(2) — wj(y) P2 (u;(2) — ui () (Y (2) — P(y))
R2N

|z — y[NEop

converges to

/ [u(z) — u(y)P~*(u(z) — u(y) (Y (=) — b))
R2N |z —y|N+ep '
This shows that u € X, is a weak solution in B(0, R,), namely

(2.7)

u(z) — u(@)[P* (w(z) — u(y) () —¥(y) _ ) Flut
/RQN |$ — y|N+sp - /B(O,Rn) 90( )f( )¢a Vi € Xp.
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Choosing ¢ = u in (2.7) and ¢ = u; in the above equation for J;,(u;) and since for C,, > 0,
(@) f (uf Jujx B0, < Calugl ™™ < Caln|®™ € LYRY),  forall j > 1,

we obtain
o= [ plarfutyu = lim o) (0
B(0,R,) J720 J B(0,Ry)
: uj(@) — ()P
e 1 e 1 - p s
B fa o — g i sl
Since also u; — u, we can conclude that u; — u in X,,, concluding the proof. ]

We can finally state the following

Lemma 2.7. Assume that (W) and (f1)-(f3) hold. Then, for each n > 1, the problem

28) {(—A);‘;u = ¢()f(u), in B(0,Ry),
u=0, in RV \ B(0, R,,),

admits a nontrivial nonnegative solution u, € X,.

Proof. By Lemmas 2.2, 2.5 and 2.6, the assertion follows by the Mountain Pass Theorem. [

3. PROOF OF THEOREM 1.1

Consider first the case where (W) and (f1)-(f3) hold. By virtue of Lemma 2.7, there exists
a sequence (u,) C X, C D*P(R™) of nontrivial nonnegative weak solutions to problem (2.8)
on the exhausting balls B(0, R,,), namely

() = ()~ () — () () — () _ o
s [ —he = [ o P

for any v € D*P(RY), with 1 = 0 on RY \ B(0, R,). We claim that this sequence remains
bounded in D*P(R™M). In fact, for every n > 1, we can write

u’nps,
Junllper [ P =l = [ o)) =0,
p B(0,Rn) B(0,Ry)

By combining these identities, we obtain

G )l = [ ot () - L) =,

In turn, on account of conditions (f3) and (W), we have

[ (Pl = 20 o) (- L)
+ [ g (Pl - Hiahin) < [ o(o(Fun) - Li2kin)

<Nl [ [Flun) - Hialts

q—+
where C' = C() is independent of n > 1, Therefore, we can conclude that

1 1
a2 en > (5= =7 ) lunlles = Cllunll B

<C / ™ < Cllun ™5 < Cllttnl| B
Q
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Since p > m and ¢ + 1 > p, the claim is proved. Then, there exists a subsequence, still
denoted by (uy,), such that u, — u in D*P(RY) as n — co. We also have u,, — u in
L"(K) for any bounded subset K C RY and all 1 < r < p¥ by the compact embedding
theorem [13, Corollary 7.2] and wu,(z) — u(x) for a.e. Arguing as in the proof of Lemma 2.6,
it follows that u is a distributional weak solution to problem (1.1). In fact, let 1) € C2°(RY)
and set K := supt(z)). Then ¢» € D*P(RY) and v = 0 on RN \ B(0, R,,), for n > 1 large
enough. The left-hand side of (3.1) converges as in the proof of Lemma 2.6, by means of
duality arguments. As far as the right-hand side is concerned, by dominated convergence, we
get

lim (@) f(un)yp = lim [ () f(un)¥

n—=o0 JB(0,Ry) n—oo [
— / o(x) f(u) = / p(x) f(u),
K RN

since there exists n € L9(K) such that u, < n a.e. in K for all n > 1 and

(@) f (un)Plx () < Cufxx(z) < Onxi(x) € L'(K).
We will now show that u # 0. Taking (W) and (f3) into account, we deduce that

1 p _ f(un)un_
n= plmllpes = [ ptePm) = [ ot (H )

= [ (T r) [ ot ()

< [ et (1~ pa,)).

Since (¢p,) is monotone and bounded from below by r > 0, we have ¢, — ¢ > 0 as n — oo.
Whence, assuming by contradiction that u = 0, since € is bounded and, for all n > 1,

0 < (f (un)un — pF(un))xa < Cul™xo < O xq,

for some n € LI9T()), we would obtain by dominated convergence

. 1 1
T [ o) (s = Fw) = [ o) (5 flau—Fw) =0,
which is a contradiction. Therefore u # 0 and the proof is complete under the first assump-
tion. If instead condition (f3) holds for 0 < ¢ < p — 1, then the proof follows in a similar

way, in light of Lemma 2.3 and Lemma 2.4. U
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