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By exploiting a variational technique based upon projecting over the Pohožaev
manifold, we prove existence of positive solutions for a class of nonlinear frac-
tional Schrödinger equations having a nonhomogenous nonautonomous asymp-
totically linear nonlinearity.

Keywords: fractional Laplacian; ground states; Pohožaev identity; critical point
theory

AMS Subject Classifications: 34A08; 35Q40; 58E05

1. Introduction and main results

In the last few years, the study of fractional equations applied to physically relevant
situations as well as to many other areas of mathematics has steadily grown. In [1,2],
the authors investigate the description of anomalous diffusion via fractional dynamics
and many fractional partial differential equations are derived from Lévy random walk
models, extending Brownian walk models in a natural way. In particular, in [3] a fractional
Schrödinger equation was obtained, which extends to a Lévy framework a classical result:
path integrals over Brownian trajectories lead to the standard Schrödinger equation. More
precisely, let s ∈ (0, 1], n > 2s and i be the imaginary unit. Then the Schrödinger equation
involving the fractional Laplacian (−�)s is

i∂t u = (−�)su − f (x, u), in (0,∞)× Rn , (1.1)

where the fractional Laplace operator is defined,[4] for a suitable constant C(n, s), as

(−�)su(x) = C(n, s) lim
ε↘0

∫
Rn\Bε(x)

u(x)− u(y)

|x − y|n+2s
dy.

Though fractional Sobolev spaces are well known since the beginning of the last century,
especially among harmonic analists, they have become very popular in the last few years,
under the impulse of the work of Caffarelli and Silvestre [5], see again [4] and the references

∗Corresponding author. Email: marco.squassina@univr.it

© 2014 Taylor & Francis
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530 R. Lehrer et al.

within. Looking for standing wave solutions u(t, x) = eiλt u(x) of (1.1) and assuming that
the nonlinearity is of the form f (x, s) = a(x) f (s), we are led to study the following
fractional equation

(−�)su + λu = a(x) f (u) in Rn, (1.2)

for λ > 0, whose variational formulation (weak solution) is∫
(−�)s/2u(−�)s/2ϕ + λ

∫
uϕ =

∫
a(x) f (u)ϕ, for all ϕ ∈ Hs(Rn). (1.3)

We shall assume that f satisfies the following conditions:

(f1) f ∈ C1(R,R+), f (s) = 0 for ≤ 0 lims→0+
f (s)

s
= 0;

(f2) lims→+∞
f (s)

s
= 1;

(f3) if F(s) := ∫ s
0 f (t)dt and Q(s) := 1

2
f (s)s−F(s), then there exists D ≥ 1 such that

Q(s) ≤ DQ(t), for all s ∈ [0, t], t > 0, lims→+∞Q(s) = +∞.

On the function a : Rn → R, we will assume the following conditions:

(A1) a ∈ C2(Rn,R+), inf Rn a > 0;
(A2) lim|x |→+∞a(x) = a∞ > λ;
(A3) ∇a(x) · x ≥ 0, for all x ∈ Rn , with strict inequality on a set of positive measure;

(A4) a(x)+ ∇a(x) · x

n
< a∞, for all x ∈ Rn ;

(A5) ∇a(x) · x + x · Ha(x) · x

n
≥ 0, for all x ∈ Rn , being Ha the Hessian matrix of a.

Now we can state our main results. Consider the energy functional I : H s(Rn) → R,

I (u) := 1

2

∫
|(−�)s/2u|2 + λ

2

∫
u2 −

∫
a(x)F(u),

naturally associated with equation (1.2). Then, we have the following nonexistence result

Theorem 1.1 Assume that (A1)–(A5) and (f1)–(f3) hold and consider

P : =
{

u ∈ Hs(Rn) \ {0} : n − 2s

2

∫
|(−�)s/2u|2

= n
∫ ((

a(x)+ ∇a(x) · x

n

)
F(u)− λ

2
u2
)}

.

Then, the infimum
p̂ = inf

u∈P
I (u), (1.4)

is not a critical level of I and the infimum is not achieved.

We stress that the non-existence of constrained minimizers is related to the problem of
finding nontrivial solutions to the equation (1.2). In fact, P is a natural constraint for this
problem, see Lemma 4.12 and its proof for details.
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Complex Variables and Elliptic Equations 531

Consider now also the limiting problem

(−�)su + λu = a∞ f (u) in Rn . (1.5)

We shall denote by I∞ : Hs(Rn) → R,

I∞(u) := 1

2

∫
|(−�)s/2u|2 + λ

2

∫
u2 −

∫
a∞F(u),

its associated energy functional. In Section 2 we shall discuss some properties of least
energy critical values of this functional, namely In passing, we observe that by combining
the results of [6] (see e.g. Theorem 4.1 therein) with an adaptation of [7, (i) of Lemma 1] to the
fractional framework, it is possible to prove that any least energy solution u ∈ H s(Rn)\{0}
to (1.5), namely

I∞(u) = inf
{

I∞(v) : v ∈ Hs(Rn) \ {0} is a critical point of I∞
}
,

is radially symmetric, nonnegative and nonincreasing.
We have the following existence result

Theorem 1.2 Assume that (A1)–(A5), (f1)–(f3) hold and that the following facts hold

(1) f ∈ C1(R) ∩ Lip(R,R+) and there exists τ > 0 such that lims→0+ f ′(s)
sτ = 0;

(2) ‖a∞ − a‖L∞ is sufficiently small;
(3) the least energy level c∞ of (1.5) is an isolated radial critical level for I∞ or,

equivalently, Equation (1.5) admits a unique positive solution which is radially
symmetric about some point.

Then the nonautonomous problem

(−�)su + λu = a(x) f (u) in Rn,

admits a nontrivial nonnegative solution u ∈ H s(Rn).

These results extend the corresponding results in [8] to the fractional case. The frame-
work employed and ideas of the proofs of our main results follow closely those found in [8].
However, the nonlocal character of the fractional Laplacian requires to overcome several
additional difficulties.

Theorem 1.2 follows under uniqueness of positive radial solutions of (1.5) or isolated-
ness assumption on the least energy level of I∞. To our knowledge, in the case s ∈ (0, 1), the
isolatedness or uniqueness assumption of Theorem 1.2 is unknown in the current literature.
In the case s = 1, it follows, for instance, by the uniqueness result by Serrin and Tang [9],
under suitable assumptions of f (s) for large values of s, which are compatible with the
model nonlinearity

f (s) = s3

1 + s2
, for s ≥ 0, f (s) = 0, for s ≤ 0. (1.6)

In fact, assumptions (H1)–(H2) in [9, Theorem 1] are fulfilled with b = (λ/(a∞ −
λ))1/2 > 0, where a∞ > λ. For the case of superquadratic nonlinearities f (s) = s p,
nondegeneracy and uniqueness properties of ground-state solutions of (1.5) were recently
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532 R. Lehrer et al.

proved in [10,11], so assumption (3) of Theorem 1.2 is expected to be fulfilled. Semi-linear
Schrödinger equations associated with the asymptotically linear model nonlinearity (1.6)
are one of the main motivations for developing the technique in this paper. For the physical
background in the local case s = 1, see [12,13].

In [14], the author considers asymptotically linear fractional NLS equations with an
external potential V which provides compactness directly via coercivity. We also refer the
reader to the contributions [15,16] where the case of a superquadratic nonlinearity is covered
for the fractional Laplacian obtaining existence, regularity and qualitative properties of
solutions. In the superquadratic case, as known, one can also exploit the Nehari manifold
associated with the problem. On the other hand, when the nonlinear term is nonhomogeneous
and asymptotically linear, as it was pointed out by Costa and Tehrani in [17], in general, not
every nonzero function can be projected onto the Nehari manifold or it may happen that the
projection is not uniquely determined. In turn, as exploitied in other contributions,[8,18,19]
we shall look at projections onto the Pohožaev manifold in place of the Nehari constraint
in order to prove Theorems 1.1 and 1.2.

A few additional remarks: Conditions (A2), (A3) and (A4) imply

∇a(x) · x → 0, if |x | → +∞, (1.7)

while (f1) and (f2) imply that, given ε > 0 and 2 ≤ p ≤ 2n/(n − 2s), there exists
Cε = Cε(p) > 0 with

|F(s)| ≤ ε

2
|s|2 + Cε|s|p, for all s ∈ R. (1.8)

In what follows we will denote

‖u‖Hs =
(∫

|(−�)s/2u|2 +
∫
λu2

)1/2

, (1.9)

as the norm in Hs(Rn), which is equivalent to the standard norm of H s(Rn). We will also
denote by ‖u‖p the usual norm of L p(Rn). We define I : Hs(Rn) → R as the functional
associated with (1.2)

I (u) := 1

2

∫
|(−�)s/2u|2 −

∫
G(x, u), G(x, u) := a(x)F(u)− λ

2
u2.

Since f (s) = 0 on R−, it follows that any weak solution u ∈ H s(Rn) for (1.2) is
nonnegative. In fact, by choosing ϕ = u− ∈ Hs(Rn) in the variational formulation (1.3)
yields ∫

(−�)s/2u(−�)s/2u− =
∫

a(x) f (u)u− − λ

∫
uu− = λ

∫
(u−)2.

Hence, if C(n, s) is the normalization constant in the definition of (−�)s , we obtain∫
(−�)s/2u(−�)s/2u− =

∫
u−(−�)su+ − ‖(−�)s/2u−‖2

2

= C(n, s)

2

∫∫
(u+(x)− u+(y))(u−(x)− u−(y))

|x − y|n+2s
dxdy − ‖(−�)s/2u−‖2

2

= −C(n, s)
∫∫

u+(x)u−(y)
|x − y|n+2s

dxdy − ‖(−�)s/2u−‖2
2 ≤ −‖(−�)s/2u−‖2

2. (1.10)
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Complex Variables and Elliptic Equations 533

In turn we get ‖u−‖2
Hs = ‖(−�)s/2u−‖2

2 + λ‖u−‖2
2 ≤ 0, namely u− = 0, hence the

assertion.

2. Energy levels of the limiting problem

In this section we study the following equation for s ∈ (0, 1) and n > 2s,

(−�)su + λu = a∞ f (u), in Rn, (2.1)

where λ > 0 and a∞ > λ. We shall assume that F satisfies the growth estimate (1.8). Our
aim is to provide a Mountain Pass characterization for least energy solutions which is the
counterpart of the main result of [19]. Let the Hilbert space Hs(Rn) be endowed with the
norm (1.9) and let I∞ : Hs(Rn) → R be the functional corresponding to (2.1), namely

I∞(u) = 1

2

∫
|(−�)s/2u|2 −

∫
G∞(u),

where we have set

G∞(u) =
∫ u

0
g∞(t)dt =

∫ u

0
(a∞ f (t)− λt)dt = a∞F(u)− λ

2
u2.

We recall that a solution u of (2.1) is a least energy solution to (2.1) if

I∞(u) = m, m := inf
{

I∞(u) : u ∈ Hs(Rn) \ {0} is a solution of (2.1)
}
.

As stated in [15, Proposition 4.1], the Pohožaev identity associated with (2.1) is given by

(n − 2s)
∫

ug∞(u) = 2n
∫

G∞(u),

where g∞ and G∞ are defined as before. Also, if u and v belong to H s(Rn), then∫
v(−�)su =

∫
(−�)s/2u(−�)s/2v,

which yields in turn ∫
ug∞(u) =

∫
|(−�)s/2u|2 = C(n, s)

2
[u]2

Hs ,

[u]Hs :=
(∫∫ |u(x)− u(y)|2

|x − y|n+2s
dxdy

)1/2

.

Therefore, the Pohožaev identity may be written, equivalently, as

(n − 2s)
∫

|(−�)s/2u|2 = 2n
∫

G∞(u). (2.2)

For the following, it is convenient to introduce the set

P∞ := {
u ∈ Hs(Rn) \ {0} : u satisfies identity (2.2)

}
.

We also consider the set of paths

�∞ := {
γ ∈ C([0, 1], Hs(Rn)) : γ (0) = 0, I∞(γ (1)) < 0

}
,

D
ow

nl
oa

de
d 

by
 [

B
Y

U
 B

ri
gh

am
 Y

ou
ng

 U
ni

ve
rs

ity
] 

at
 1

2:
57

 0
1 

Ju
ne

 2
01

5 



534 R. Lehrer et al.

and define the min-max Mountain Pass level (see [20])

c∞ := min
γ∈�∞

max
t∈[0,1] I∞(γ (t)). (2.3)

The main result of the section is the following

Theorem 2.1 c∞ = m.

In order to prove the result we need the following Lemmas.

Lemma 2.2 Letw ∈ Hs(Rn) be a least energy solution to (2.1). Then there exists γ ∈ �∞
such that

w ∈ γ ([0, 1]), max
t∈[0,1] I∞(γ (t)) = I∞(w) = m.

Proof Consider a least energy solution w of (2.1), which exists e.g. by [15, Theorem 1.1].
Then we can define the continuous path α : [0,∞) → H s(Rn) by setting α(t)(x) :=
w(x/t), if t > 0, and α(0) := 0. Then, by construction, we have I∞(α(0)) = 0 and

I∞(α(t)) = 1

2

∫
|(−�)s/2w(x/t)|2 −

∫
G∞(w(x/t))

= tn−2s

2

∫
|(−�)s/2w(x)|2 − tn

∫
G∞(w), t > 0.

Then, taking the derivative, we obtain

d

dt
I∞(α(t)) = (n − 2s)

2
tn−2s−1

∫
|(−�)s/2w|2 − ntn−1

∫
G∞(w)

= tn−2s−1

2

{
(n − 2s)

∫
|(−�)s/2w|2 − 2nt2s

∫
G∞(w)

}
Since w is a solution of (2.1), it satisfies the Pohožaev identity (2.2), therefore

d

dt
I∞(α(t)) = tn−2s−1

2
(n − 2s)(1 − t2s)

∫
|(−�)s/2w|2.

Then, since n > 2s, the map {t 
→ I∞(α(t))} achieves the maximum value at t = 1. By
choosing L > 0 sufficiently large and recalling (2.2) again to guarantee

∫
G∞(w) > 0, we

have

max
0≤t≤L

I∞(α(t)) = I∞(α(1)) = I∞(w) = m, I∞(α(L)) < 0.

Taking γ (t) := α(t L), we have that γ ∈ �∞ and the result follows. �

Lemma 2.3 γ ([0, 1]) ∩ P∞ �= ∅, for all γ ∈ �∞.

Proof Consider the function associated with the Pohožaev identity (2.2),

J∞(u) := n − 2s

2

∫
|(−�)s/2u|2 − n

∫
G∞(u), u ∈ Hs(Rn). (2.4)
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Complex Variables and Elliptic Equations 535

We will first prove that there exists ρ > 0 such that if 0 < ‖u‖Hs ≤ ρ, then J (u) > 0. We
have

J∞(u) = n − 2s

2

∫
|(−�)s/2u|2 − na∞

∫
F(u)+ nλ

2

∫
u2

≥ n − 2s

2
‖u‖2

Hs − na∞
∫

F(u).

Then, by virtue of (1.8) (with p > 2) and the fractional Sobolev inequality [4, Theorem
6.7], we get

J∞(u) ≥ n − 2s

2
‖u‖2

Hs − nεa∞
2λ

∫
λu2 − na∞Cε

∫
|u|p

≥ 1

2

(
n − 2s − nεa∞

λ

)
‖u‖2

Hs − na∞Cε‖u‖p
Hs ,

where Cε has changed in the second line in order to include the constant of the fractional
Sobolev embedding. Take now ε > 0 so small that n − 2s − nεa∞/λ > 0 and then choose
ρ > 0 small enough so that J∞(u) > 0 if 0 < ‖u‖Hs ≤ ρ, which is possible, since p > 2.
Observe now that

J∞(u) = nI∞(u)− s
∫

|(−�)s/2u|2.
If γ ∈ �∞, we have J∞(γ (0)) = 0 and J∞(γ (1)) ≤ nI∞(γ (1)) < 0. Then, by continuity,
there exists σ ∈ (0, 1) such that ‖γ (σ )‖Hs ≥ ρ and J∞(γ (σ )) = 0. This means γ (σ ) ∈
P∞, concluding the proof. �

Lemma 2.4 We have
m = inf

u∈P∞
I∞(u).

Proof If we set

S∞ =
{

u ∈ Hs(Rn) :
∫

G∞(u) = 1

}
,

it follows that 
 : S∞ → P∞ defined by


(u)(x) := u

(
x

tu

)
, tu :=

(
n − 2s

2n

)1/2s

‖(−�)s/2u‖1/s
2

establishes a bijective correspondence and

I∞(
(u)) = s

n

(
n − 2s

2n

)(n−2s)/2s

‖(−�)s/2u‖n/s
2 , u ∈ S∞,

yielding in turn

inf
u∈P∞

I∞(u) = inf
u∈S∞

I∞(
(u)) = inf
u∈S∞

s

n

(
n − 2s

2n

)(n−2s)/2s

‖(−�)s/2u‖n/s
2 = m,

since the last infimum is achieved and the corresponding value equals the least energy level
m. This can be proved by performing calculations similar to those of [7, proof of (i) of
Lemma 1]. �
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536 R. Lehrer et al.

Proof of Theorem 2.1 concluded. By combining Lemma 2.3 with 2.4 we immediately
obtain m ≤ c∞. Considering the path γ ∈ �∞ provided by Lemma 2.2, we have

max
0≤t≤1

I∞(γ (t)) = I∞(w) = m.

By taking the infimum over �∞ yields

inf
γ∈�∞

max
t∈[0,1] I∞(γ (t)) ≤ m,

so that c∞ ≤ m, which concludes the proof. �

3. Pohožaev manifold

By [15, Proposition 4.1], if u ∈ Hs(Rn) is a weak solution of (1.2), then u satisfies the
Pohožaev identity

n − 2s

2

∫
|(−�)s/2u|2 = n

∫ ((
a(x)+ ∇a(x) · x

n

)
F(u)− λ

2
u2
)
. (3.1)

Furthermore, we define the Pohožaev set associated with (1.2) by

P := {
u ∈ Hs(Rn) \ {0} : u satisfies identity (3.1)

}
.

We first have the following

Lemma 3.1 Let the functional J : Hs(Rn) → R be defined by

J (u) := n − 2s

2

∫
|(−�)s/2u|2 − n

∫ ((
a(x)+ ∇a(x) · x

n

)
F(u)− λu2

2

)
.

Then, it holds that

(a) {u ≡ 0} is an isolated point of J−1({0});
(b) P := {u ∈ Hs(Rn) \ {0} : J (u) = 0} is a closed set.
(c) P is a C1 manifold.
(d) There exists σ > 0 such that ‖u‖Hs > σ , for all u ∈ P .

Proof

(a) Using condition (A4), we get

J (u) = n − 2s

2

∫
|(−�)s/2u|2 − n

∫ ((
a(x)+ ∇a(x) · x

n

)
F(u)− λu2

2

)
>

n − 2s

2

∫
|(−�)s/2u|2 − n

∫ (
a∞F(u)− λ

u2

2

)
≥ n − 2s

2
‖u‖2

Hs − na∞
∫

F(u).
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Complex Variables and Elliptic Equations 537

By virtue of the fractional Sobolev embedding [4, Theorem 6.7] and (1.8), we obtain

J (u) ≥ n − 2s

2
‖u‖2

Hs − nεa∞
2λ

∫
λu2 − na∞Cε

∫
|u|p

≥ 1

2

(
n − 2s − nεa∞

λ

)
‖u‖2

Hs − na∞Cε‖u‖p
Hs ,

where Cε has changed in the second line in order to include the constant of the
fractional Sobolev embedding. Take ε > 0 with n − 2s − nεa∞/λ > 0. For ρ > 0
small, J (u) > 0 if 0 < ‖u‖Hs < ρ.

(b) J is a C1 functional, thus P ∪{0} = J−1({0}) is a closed subset. Moreover, {u ≡ 0}
is an isolated point in J−1({0}) and the assertion follows.

(c) Considering the derivative of J at u and applied at u yields

J ′(u)(u) = (n − 2s)
∫

|(−�)s/2u|2 − n
∫ (

a(x) f (u)u − λu2
)

−
∫

∇a(x) · x f (u)u. (3.2)

Since u ∈ P , it follows that u satisfies (3.1) and, using formula (3.1) into (3.2), we
obtain

J ′(u)(u) = 2n
∫

a(x)F(u)− nλ
∫

u2 + 2
∫

∇a(x) · x F(u)

− n
∫

a(x) f (u)u + nλ
∫

u2 −
∫

∇a(x) · x f (u)u

= 2n
∫ (

a(x)+ ∇a(x) · x

n

)
F(u)

− n
∫ (

a(x)+ ∇a(x) · x

n

)
f (u)u

= 2n
∫ (

a(x)+ ∇a(x) · x

n

)(
F(u)− 1

2
f (u)u

)
< 0,

in light of (A1), (A3) and (f3). If u ∈ P , then J ′(u)(u) < 0. This shows, by the
local inversion theorem, that P is a C1 manifold, see [21].

(d) Since 0 is isolated in J−1({0}), there is a ball ‖u‖Hs ≤ σ which does not intersect
P . �

4. Nonexistence results

In this section we get relations between the Pohožaev manifold P associated with (1.2) and
the Pohožaev manifold P∞ for the limiting problem (2.1). Recall that

P∞ = {
u ∈ Hs(Rn) \ {0} : J∞(u) = 0

}
,

where J∞ is defined as in (2.4). Notice that (A3)–(A4) imply that I∞(u) < I (u) for every
u in Hs(Rn) \ {0}.

In this section we will show that the min-max mountain pass level c∞ is equal to the
infimum p̂ defined in (1.4) and that this level is not critical for I and, in turn, that it is not
achieved.
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538 R. Lehrer et al.

Lemma 4.1 If
∫

G∞(u) > 0, there exist unique ϑ1, ϑ2 > 0 with u(·/ϑ1) ∈ P∞ and
u(·/ϑ2) ∈ P .

Proof First, we consider the case of P∞. Consider the function ϕ : (0,∞) → R defined
by

ϕ(ϑ) := I∞(u(x/ϑ)) = ϑn−2s

2

∫
|(−�)s/2u|2 − ϑn

∫
G∞(u).

Taking the derivative of ϕ, we obtain

ϕ′(ϑ) = ϑn−2s−1

2

(
(n − 2s)

∫
|(−�)s/2u|2 − 2nϑ2s

∫
G∞(u)

)
= 1

ϑ

(
n − 2s

2

∫
|(−�)s/2u(x/ϑ)|2 − n

∫
G∞(u(x/ϑ))

)
= J∞(u(·/ϑ))

ϑ
.

Then, ϕ′(ϑ) = 0 if and only if

ϑ = ϑ1 =
(

n − 2s

2n

∫ |(−�)s/2u|2∫
G∞(u)

)1/2s

> 0.

Since by the formula for ϕ′ we have u(·/ϑ) ∈ P∞ if and only if ϕ′(ϑ) = 0 for some
ϑ > 0, we have the result. In passing, we observe that ϕ is positive for ϑ > 0 small
while it is negative for ϑ > 0 large, so that the unique critical point of ϕ corresponds to a
global maximum point for ϕ. Now we turn to the case of P . First, we define the function
� : (0,∞) → R by

�(ϑ) := I (u(x/ϑ)) = ϑn−2s

2

∫
|(−�)s/2u|2 −

∫
G(x, u(x/ϑ))

= ϑn−2s

2

∫
|(−�)s/2u|2 −

∫ (
a(x)F(u(x/ϑ))− λ

u2(x/ϑ)

2

)
= ϑn−2s

2

∫
|(−�)s/2u|2 − ϑn

∫ (
a(ϑx)F(u)− λ

u2

2

)
. (4.1)

Taking the derivative of � and recalling that n > 2s, we obtain:

� ′(ϑ) = n − 2s

2
ϑn−2s−1

∫
|(−�)s/2u|2 − nϑn−1

∫ (
a(ϑx)F(u)− λ

u2

2

)
− ϑn

∫
∇a(ϑx) · x F(u)

= ϑn−2s−1
{

n − 2s

2

∫
|(−�)s/2u|2 − nϑ2s

∫ (
a(ϑx)F(u)− λ

u2

2

)
− ϑ2s

∫
∇a(ϑx) · (ϑx)F(u)

}
= 1

ϑ

{
n − 2s

2

∫
|(−�)s/2u(x/ϑ)|2 − n

∫ (
a(x)F(u(x/ϑ))− λ

u2(x/ϑ)

2

)
−
∫

∇a(x) · x F(u(x/ϑ))

}
= J (u(·/ϑ))

ϑ
. (4.2)
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Complex Variables and Elliptic Equations 539

Hence, u(·/ϑ) ∈ P if and only if � ′(ϑ) = 0, for some ϑ > 0. Notice that, in view of (A2)
and (1.7) and the Lebesgue Dominated Convergence Theorem, we get

lim
ϑ→∞

∫ (
a(ϑx)F(u)− λ

u2

2

)
=
∫

G∞(u),

lim
ϑ→∞

∫
∇a(ϑx) · (ϑx)F(u) = 0.

Therefore, if ϑ > 0 is sufficiently large, then

� ′(ϑ) = ϑn−2s−1
{

n − 2s

2

∫
|(−�)s/2u|2 − nϑ2s

(∫
G∞(u)+ oϑ(1)

)}
.

Since
∫

G∞(u) > 0, it follows that � ′(ϑ) < 0, for ϑ > 0 sufficiently large. On the other
hand, if ϑ > 0 is sufficiently small we have that condition (A4), together with (A1)–(A3)
yield

0 < a(x)+ ∇a(x) · x

n
< a∞,

−λ
2

∫
u2 ≤

∫ ((
a(ϑx)+ ∇a(ϑx) · (ϑx)

n

)
F(u)− λ

u2

2

)
<

∫
G∞(u) ≤ a∞C

2

∫
u2,

where C is a positive constant independent of ϑ . Thus, taking ϑ > 0 sufficiently small in
� ′(ϑ), we obtain � ′(ϑ) > 0. Since � ′ is continuous, there exists ϑ2 = ϑ2(u) > 0 such
that � ′(ϑ2) = 0, which means that u(·/ϑ2) ∈ P . To show the uniqueness of ϑ2, note that
� ′(ϑ) = 0 implies

n − 2s

2

∫
|(−�)s/2u|2 = nϑ2sh(ϑ),

h(ϑ) :=
∫ ((

a(ϑx)+ ∇a(ϑx) · (ϑx)

n

)
F(u)− λu2

2

)
, (4.3)

with ϑ > 0. Taking the derivative of h we end up with

h′(ϑ) = 1

ϑ

∫ (
∇a(ϑx) · (ϑx)+ (ϑx) · Ha(ϑx) · (ϑx)

n
+ ∇a(ϑx) · (ϑx)

n

)
F(u).

Hypotheses (A3) and (A5) imply that h′(ϑ) > 0. Therefore, h is an increasing function
of ϑ and hence there exists a unique ϑ > 0 such that the identity in (4.3) holds. As for
the functional ϕ, the above arguments show that � is positive for ϑ > 0 small while it is
negative for ϑ > 0 large, and hence the unique critical point of � corresponds to a global
maximum point for �. �

Consider the open subset of H s(Rn)

O =
{

u ∈ Hs(Rn) \ {0} :
∫

G∞(u) > 0

}
.

Then we have the following

Lemma 4.2 The map defined by O � u 
→ θ2(u) ∈ (0,∞), such that u(·/θ2(u)) ∈ P , is
continuous.
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540 R. Lehrer et al.

Proof Let u ∈ O and consider (u j ) ⊂ O such that u j → u in Hs(Rn) as j → ∞. First
note that ϑ2(u j ) is bounded. Indeed, consider the expression (4.3) of � ′ = 0 in the proof
of Lemma 4.1 for u j and ϑ2(u j )

n − 2s

2

∫
|(−�)s/2u j |2

= nϑ2s
2 (u j )

∫ ((
a(ϑ2(u j )x)+ ∇a(ϑ2(u j )x) · (ϑ2(u j )x)

n

)
F(u j )− λu2

j

2

)
.

Suppose by contradiction that ϑ2(u j ) → ∞ as j → ∞, along a suitable subsequence.
Then, in light of the assumptions on a and F and by Lebesgue Dominated Convergence
Theorem, the right-hand side of the above equation goes to infinity while the left hand
converges to (n − 2s)/2‖(−�)s/2u‖2

2, which is a contradiction. Hence, ϑ2(u j ) admits a
convergent subsequence, say ϑ2(u j ) → ϑ̄ as j → ∞. In turn, by Lebesgue Dominated
Convergence Theorem, as j → ∞, we have∫

a(ϑ2(u j )x)F(u j ) →
∫

a(ϑ̄x)F(u),∫
∇a(ϑ2(u j )x) · (ϑ2(u j )x)F(u j ) →

∫
∇a(ϑ̄x) · (ϑ̄x)F(u).

Then, since u j → u in Hs(Rn) as j → ∞, we obtain

n − 2s

2

∫
|(−�)s/2u|2 = nϑ̄2s

∫ ((
a(ϑ̄x)+ ∇a(ϑ̄x) · (ϑ̄x)

n

)
F(u)− λu2

2

)
.

Hence u(·/ϑ̄) ∈ P and, by uniqueness of the projection in P , ϑ̄ = ϑ2(u). �

Lemma 4.3 If u ∈ P∞, then
∫

G∞(u) > 0.

Proof Let u ∈ P∞. Of course
∫

G∞(u) ≥ 0. Assume by contradiction that
∫

G∞(u) = 0.
Then

0 = ‖(−�)s/2u‖2
2 = C(n, s)

2

∫∫
(u(x)− u(y))2

|x − y|n+2s
dxdy,

so that u is constant and hence, as u ∈ L2(Rn), u = 0, contradicting u ∈ P∞. �

Lemma 4.4 If u ∈ P∞, then there exists a unique ϑ > 0 such that u(·/ϑ) ∈ P and
ϑ > 1.

Proof Let u ∈ P∞. Then, by Lemma 4.3,
∫

G∞(u) > 0. In turn, by Lemma 4.1, there
exists a unique ϑ > 0 such that u(·/ϑ) ∈ P . Now, we are left with the proof that ϑ > 1.
By the arguments in the previous lemmas, it follows that ϑ satisfies

n − 2s

2

∫
|(−�)s/2u|2 = nϑ2s

∫ ((
a(ϑx)+ ∇a(ϑx) · (ϑx)

n

)
F(u)− λ

u2

2

)
.

By condition (A4), we get

n − 2s

2n

∫
|(−�)s/2u|2 < ϑ2s

∫ (
a∞F(u)− λ

u2

2

)
= ϑ2s

∫
G∞(u).
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Complex Variables and Elliptic Equations 541

Since u ∈ P∞, the inequality above yields θ > 1. �

Lemma 4.5 If u ∈ P , then
∫

G∞(u) > 0.

Proof Let u ∈ P . Then, by condition (A4), u satisfies

n − 2s

2

∫
|(−�)s/2u|2 = n

∫ ((
a(x)+ ∇a(x) · x

n

)
F(u)− λ

u2

2

)
< n

∫
G∞(u).

Since
∫ |(−�)s/2u|2 > 0 otherwise u would be constant and hence the zero function as

u ∈ L2(Rn), the assertion follows. �

Lemma 4.6 If u ∈ P , then there exists a unique ϑ > 0 such that u(·/ϑ) ∈ P∞ and
ϑ < 1.

Proof Let u ∈ P , then
∫

G∞(u) > 0 by Lemma 4.5. By Lemma 4.1, there exists a unique
ϑ > 0 such that u(·/ϑ) ∈ P∞. We are left with the proof that ϑ < 1. Notice that

n − 2s

2n

∫
|(−�)s/2u|2 <

∫
G∞(u).

Since u(·/ϑ) ∈ P∞, then the assertion follows since ϑ > 0 satisfies

ϑ2s = n − 2s

2n

∫
|(−�)s/2u|2∫

G∞(u)
< 1.

This concludes the proof. �

Notice that, as a consequence of the previous results, a given function u ∈ H s(Rn)\{0}
can be projected onto the manifolds P and P∞ if and only if

∫
G∞(u) > 0. We will also

need the following

Lemma 4.7 If u ∈ P∞, then u(· − y) ∈ P∞, for all y ∈ Rn. Moreover, there exists
ϑy > 1 with

u

( · − y

ϑy

)
∈ P, lim|y|→∞ϑy = 1.

Proof If u ∈ P∞, then from translation invariance, u(· − y) ∈ P∞, for all y ∈ Rn .
Furthermore, from Lemma 4.4, there exists ϑy > 1 such that u((· − y)/ϑy) ∈ P . Suppose
by contradiction that there exists a sequence (y j ) ⊂ Rn with |y j | → +∞ andϑy j converges
either to A > 1 or +∞. Let us define

K (ϑy j x + y j ) := a(ϑy j x + y j )+ ∇a(ϑy j x + y j ) · (ϑy j x + y j )

n
.

From (f1)–(f2) we have 0 ≤ K (ϑy j x + y j )F(u(x)) ≤ a∞F(u(x)) ≤ Cu2(x) for a.e.
x in Rn and for some positive constant C. Hence, by Lebesgue Dominated Convergence
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542 R. Lehrer et al.

Theorem, we get

lim
j→∞

∫ (
K (ϑy j x + y j )F(u)− λ

u2

2

)
=
∫

G∞(u). (4.4)

But for each y j it follows that u(
·−y j
ϑy j

) ∈ P with ϑy j > 1, which means

n − 2s

2

∫
|(−�)s/2u|2 = nϑ2s

y j

∫ (
K (ϑy j x + y j )F(u)− λ

u2

2

)
. (4.5)

The right-hand side of (4.5) goes to +∞ or to n A2s
∫

G∞(u), while the left-hand side is
constant. In the first case we immediately get a contradiction. In the second case, as u ∈ P∞
and A > 1, we get a contradiction too. �

Under the assumption of Lemma 4.7, we have the following

Lemma 4.8 1 < supy∈Rnϑy < +∞.

Proof From Lemma 4.7 there is R > 0 such that |ϑy | ≤ 2 if |y| > R. There exists
M > 0 such that sup{ϑy : |y| ≤ R} ≤ M . In fact, suppose that there exists a sequence (y j )

with |y j | ≤ R such that ϑy j → +∞ as j → ∞. As in the previous lemma, (4.4) holds.
Therefore, from (4.5), it follows

n − 2s

2

∫
|(−�)s/2u|2 = nϑ2s

y j

(∫
G∞(u)+ oy j (1)

)
.

Since ϑy j → +∞ and the left-hand side is constant we get a contradiction. �

Lemma 4.9 There exists a real number σ̂ > 0 such that inf u∈P
∫ |(−�)s/2u|2 ≥ σ̂ .

Proof Let u ∈ P , then u satisfies (3.1) and by condition (A4), we have

0 <
n − 2s

2

∫
|(−�)s/2u|2 < n

∫ (
a∞F(u)− λ

u2

2

)
.

On the other hand, from condition (1.8) with p = 2n/(n − 2s), given 0 < ε < λ
a∞ , we get

0 <
n − 2s

2n

∫
|(−�)s/2u|2 < a∞C‖u‖2n/(n−2s)

2n/(n−2s).

for some C > 0. Using the fractional Sobolev inequality (cf. [4, Theorem 6.5]), we find
Ĉ > 0 with

0 <
n − 2s

2na∞CĈ
<

(∫
|(−�)s/2u|2

)2s/(n−2s)

,

which yields the assertion with σ̂ := ((n − 2s)/(2na∞CĈ))(n−2s)/2s > 0. �

Lemma 4.10 p̂ > 0.
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Complex Variables and Elliptic Equations 543

Proof Let u ∈ P , then I (u) satisfies

I (u) = s

n

∫
|(−�)s/2u|2 +

∫ ∇a(x) · x

n
F(u) ≥ s

n

∫
|(−�)s/2u|2 ≥ sσ̂

n
> 0, (4.6)

by Lemma 4.9 and condition (A3). This concludes the proof. �

If u ∈ Hs(Rn) with
∫

G∞(u) > 0 and ϑ > 0 is such that u(·/ϑ) ∈ P∞, then

I∞(u(x/ϑ)) = s

n
ϑn−2s

∫
|(−�)s/2u|2. (4.7)

Let c∞ be defined as in (2.3). Then, we have the following

Lemma 4.11 p̂ = c∞.

Proof Let w ∈ Hs(Rn) be a ground-state solution to (2.1). Then w ∈ P∞ and I∞(w) =
c∞, by virtue of Theorem 2.1. Set wy := w(x − y), for any y ∈ Rn . Of course wy ∈ P∞
and I∞(wy) = c∞, by translation invariance. From Lemma 4.4 we find a unique ϑy > 1
with w̃y = wy(·/ϑy) ∈ P . Therefore, we have

|I (w̃y)− c∞| = |I (w̃y)− I∞(wy)|
=
∣∣∣∣12
∫

|(−�)s/2w̃y |2 −
∫

G(x, w̃y)− 1

2

∫
|(−�)s/2wy |2 +

∫
G∞(wy)

∣∣∣∣
=
∣∣∣∣∣12 (ϑn−2s

y − 1)
∫

|(−�)s/2wy |2 −
∫ (

a(x)F(w̃y)− λw̃2
y

2

)

+
∫ (

a∞F(wy)− λw2
y

2

)∣∣∣∣∣
=
∣∣∣∣12 (ϑn−2s

y − 1)
∫

|(−�)s/2w|2 − ϑn
y

∫ (
a(xϑy + y)F(w)− λw2

2

)
+
∫ (

a∞F(w)− λw2

2

)∣∣∣∣
=
∣∣∣∣12 (ϑn−2s

y − 1)
∫

|(−�)s/2w|2 + (ϑn
y − 1)

∫
λw2

2

−ϑn
y

∫
a(xϑy + y)F(w)+

∫
a∞F(w)

∣∣∣∣
≤ |ϑn−2s

y − 1|
2

∫
|(−�)s/2w|2 + |ϑn

y − 1|
∫
λw2

2
+
∫

|F(w)||a∞ − ϑn
y a(xϑy + y)|.

Since ϑy → 1 if |y| → +∞, we obtain

|F(w)||a∞ − ϑn
y a(xϑy + y)| → 0 as |y| → ∞, a.e. in Rn,

|F(w)||a∞ − ϑn
y a(xϑy + y)| ≤ C |w|2,
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544 R. Lehrer et al.

for some positive constant C independent of y. By Lebesgue Dominated Convergence
Theorem, ∫

|F(w)||a∞ − ϑn
y a(xϑy + y)| = oy(1), as |y| → ∞.

In turn, we conclude that |I (w̃y)− c∞| ≤ oy(1), as |y| → ∞. Then, p̂ = inf u∈P I (u) ≤
c∞. On the other hand, consider u ∈ P and let 0 < ϑ < 1 by Lemma 4.6 be such that
u(·/ϑ) ∈ P∞. Since u ∈ P , then

I (u) = s

n

∫
|(−�)s/2u|2 + 1

n

∫
∇a(x) · x F(u) >

s

n

∫
|(−�)s/2u|2

≥ s

n
ϑn−2s

∫
|(−�)s/2u|2 = I∞(u(x/ϑ)) ≥ inf

u∈P∞
I∞(u) = m = c∞,

in light of (4.7), (A3) and Lemma 2.4. Hence p̂ ≥ c∞, which concludes the proof. �

Lemma 4.12 P is a natural constraint for the functional I.

Proof If u ∈ P is a critical point of I |P , there exists μ ∈ R with I ′(u) + μJ ′(u) = 0.
The proof is complete as soon as we show that μ = 0. Computing I ′(u)(ϕ) + μJ ′(u)(ϕ)
for any ϕ ∈ Hs(Rn) yields

0 =
∫
(−�)s/2u(−�)s/2ϕ + λ

∫
uϕ −

∫
a(x) f (u)ϕ

+ μ

[
(n − 2s)

∫
(−�)s/2u(−�)s/2ϕ − n

∫ ((
a(x)+ ∇a(x) · x

n

)
f (u)ϕ − λuϕ

)]
.

so that u satisfies the equation

(1 + μ(n − 2s))(−�)su + λ(1 + μn)u = [(1 + μn)a(x)+ μ∇a(x) · x] f (u).

The solutions of this equation satisfy a Pohožaev identity Q(u) = 0, where

Q(u) = (1 + μ(n − 2s))(n − 2s)

2

∫
|(−�)s/2u|2 − n

∫
Ĝ(x, u)−

∫
x · Ĝx (x, u),

where we have

Ĝ(x, u) = ((1 + μn)a(x)+ μ∇a(x) · x) F(u)− λ
(1 + μn)

2
u2,

x · Ĝx (x, u) = ((1 + μ+ μn)∇a(x) · x + μx · Ha(x) · x) F(u).

Therefore, Q rewrites as follows

Q(u) = (1 + μ(n − 2s))(n − 2s)

2

∫
|(−�)s/2u)|2

− n
∫ (

((1 + μn)a(x)+ μ∇a(x) · x) F(u)− λ
(1 + μn)

2
u2
)

−
∫
((1 + μ+ μn)∇a(x) · x + μx · Ha(x) · x) F(u)
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Complex Variables and Elliptic Equations 545

= (1 + μ(n − 2s))(n − 2s)

2

∫
|(−�)s/2u|2

− n(1 + μn)
∫ ((

a(x)+ ∇a(x) · x

n

)
F(u)− λ

u2

2

)
− (n + 1)μ

∫ (
∇a(x) · x + x · Ha(x) · x

n + 1

)
F(u).

Recalling that u ∈ P and substituting (3.1) in the equation above, it follows that

Q(u) = (1 + μ(n − 2s))(n − 2s)

2

∫
|(−�)s/2u|2 − (1 + μn)

(n − 2s)

2

∫
|(−�)s/2u|2

− (n + 1)μ
∫ (

∇a(x) · x + x · Ha(x) · x

n + 1

)
F(u)

= −μs(n − 2s)
∫

|(−�)s/2u|2 − (n + 1)μ
∫ (

∇a(x) · x + x · Ha(x) · x

n + 1

)
F(u).

On the other hand, since u satisfies Q(u) = 0, we end up with

−μs(n − 2s)
∫

|(−�)s/2u|2 = (n + 1)μ
∫ (

∇a(x) · x + x · Ha(x) · x

n + 1

)
F(u).

From (A5) we have that, if μ > 0, the right-hand side of the equation is nonnegative as

∇a(x) · x + x · Ha(x) · x

n + 1
≥ n

n + 1

(
∇a(x) · x + x · Ha(x) · x

n

)
≥ 0,

while the left-hand side is negative. If μ < 0 one gets the same contradiction. Whence
μ = 0. �

Proof of Theorem 1.1 concluded. Assume by contradiction that there exists a critical point
z ∈ Hs(Rn) of I at level p̂. In particular, z ∈ P and I (z) = p̂. Let ϑ ∈ (0, 1) be such that
z(·/ϑ) ∈ P∞. Then, we get

p̂ = I (z) = s

n

∫
|(−�)s/2z|2 + 1

n

∫
∇a(x) · x F(z)

>
s

n

∫
|(−�)s/2z|2 > s

n
ϑn−2s

∫
|(−�)s/2z|2

= I∞(z(·/ϑ)) ≥ inf
u∈P∞

I∞(u) = m = c∞ ,

using (A3) and (4.7), Lemma 2.4 andTheorem 2.1.Then p̂ > c∞, contradicting Lemma 4.11.
In particular, p̂ is not achieved, otherwise, if I (v) = p̂ and I ′|P (v) = 0 for some
v ∈ Hs(Rn), in light of Lemma 4.12, we would have I ′(v) = 0, contradicting the first
part of Theorem 1.1. �

5. Existence results

In this section we show the existence of a solution of problem (1.2). To this aim, we shall
assume that the hypotheses of Theorem 1.2 are satisfied. As we have seen in the previous
sections, we should look for solutions which have energy levels above c∞. In order to
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546 R. Lehrer et al.

find such a solution we follow some ideas of [22] based upon linking and the barycenter
function on the Nehari manifold. In our case, since the nonlinear terms of the equation are
not homogeneous, we are led to the Pohožaev manifold P and obtain the desired solution
by a linking argument. We also make use of a barycenter function, similar to that of [22]
and used by Spradlin [23,24] as well.

Lemma 5.1 I satisfies the geometrical properties of the Mountain Pass theorem.

Proof Concerning the local minimum condition at the origin, by (1.8) one can argue
exactly as in the proof of Lemma 2.3. Furthermore, if w ∈ H s(Rn) is a least energy
solution to (2.1), by Lemma 2.2 there exists γ ∈ �∞ such that γ (t) = w(x/t L) for
t > 0 and L > 0 large enough. In turn, if γy(t) := w((· − y)/t L), by (A2) and Lebesgue
Dominated Convergence Theorem,

I (γy(1)) = I∞(γy(1))+
∫
(a∞ − a(x + y))F(γ (1))

= I∞(γ (1))+ oy(1) < 0, for |y| large,

since I∞(γ (1)) < 0, concluding the proof. �

Let c be the min-max mountain pass level for I

c = min
γ∈� max

t∈[0,1] I (γ (t)), � := {
γ ∈ C([0, 1], Hs(Rn)) : γ (0) = 0, I (γ (1)) < 0

}
.

(5.1)
We start by proving that the min-max levels of the Mountain Pass Theorem for I and I∞
agree.

Lemma 5.2 c∞ = c.

Proof If γ ∈ �, then I (γ (1)) < 0 and since I∞ ≤ I , we have I∞(γ (1)) < 0. Then,
� ⊂ �∞ yielding

c∞ = inf
γ∈�∞

max
t∈[0,1] I∞(γ (t)) ≤ inf

γ∈� max
t∈[0,1] I∞(γ (t)) ≤ inf

γ∈� max
t∈[0,1] I (γ (t)) = c.

Let now ε > 0 be arbitrary and let γ ∈ �∞ such that I∞(γ (t)) ≤ c∞ + ε, for all t ∈ [0, 1].
Choose y ∈ Rn and translating τy(γ (t))(x) := γ (t)(x − y) with |y| large enough, we get
τy ◦ γ ∈ � (see Lemma 5.1). If ty ∈ [0, 1] is such that I (τy(γ (ty))) is the maximum value
on [0, 1] of t 
→ I (τy ◦ γ (t)), then

c∞ + ε ≥ I∞(γ (ty)) = I∞(τy ◦ γ (ty)) = max[0,1] I (τy ◦ γ ) ≥ inf
γ∈� max

t∈[0,1] I (γ (t)) = c.

This gives c∞ ≥ c by the arbitrariness of ε and the assertion follows. �

Lemma 5.3 p̂ = c.

Proof The assertion follows by combining Lemmas 4.11 and 5.2. �
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Complex Variables and Elliptic Equations 547

Now we observe the following property of P with respect to the paths in the Mountain
Pass Theorem.

Lemma 5.4 For every γ ∈ � there exists s ∈ (0, 1) such that γ (s) ∈ P .

Proof By the proof of Lemma 3.1 (a), we learn that there exists ρ > 0 such that J (u) > 0
if 0 < ‖u‖Hs < ρ. Furthermore, we have

J (u) = n − 2s

2

∫
|(−�)s/2u|2 − n

∫
G(x, u)−

∫
∇a(x) · x F(u)

= nI (u)− s
∫

|(−�)s/2u|2 −
∫

∇a(x) · x F(u).

From (A3) it follows that J (u) < nI (u), for every u ∈ H s(Rn) \ {0}. If γ ∈ �, we have
J (γ (0)) = 0 and J (γ (1)) < nI (γ (1)) < 0. Then there exists t ∈ (0, 1)with ‖γ (t)‖Hs > ρ

and J (γ (t)) = 0. �

We recall that a sequence (u j ) is said to be a Cerami sequence for I at level d in R,
denoted by (Ce)d , if I (un) → d and ‖I ′(u j )‖H−s (1+‖u j‖Hs ) → 0. We have the following

Lemma 5.5 If (u j ) is a (Ce)d sequence with d > 0, then it has a bounded subsequence.

Proof By contradiction, let ‖u j‖Hs → +∞. If û j := u j‖u j‖−1
Hs , then ‖û j‖Hs = 1 and

û j ⇀ û, up to a subsequence. Therefore, one of the two cases occur:

Case 1 : lim sup
j→∞

sup
y∈Rn

∫
B1(y)

|û j |2 = δ > 0,

Case 2 : lim sup
j→∞

sup
y∈Rn

∫
B1(y)

|û j |2 = 0.

Suppose Case 2 hold. Fixing L > 2
√

d D, with D as in assumption (f3), gives

I (Lu j‖u j‖−1
Hs ) = L2

2
−
∫

a(x)F(Lu j‖u j‖−1
Hs ).

Given ε > 0, by inequality (1.8) there exists Cε > 0 (here 2 < p < 2n/(n − 2s)) with∫
a(x)F(Lu j‖u j‖−1

Hs ) <
a∞εL2

2

‖u j‖2
2

λ‖u j‖2
2 + ‖(−�)s/2u j‖2

2

+ CεL p‖û j‖p
p

≤ a∞εL2

2λ
+ o j (1),

where ‖û j‖p → 0 by a variant of Lions’ Lemma [25, Lemma I.1]. For ε = λ/(2a∞), we
have

I (Lu j‖u j‖−1
Hs ) ≥ L2

4
− o j (1).
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548 R. Lehrer et al.

We have L‖u j‖−1
Hs ∈ (0, 1) for j large and if we consider t j ∈ (0, 1) with I (t j u j ) =

maxt∈[0,1] I (tu j ),

I (t j u j ) = max
t∈[0,1] I (tu j ) ≥ I (Lu j‖u j‖−1

Hs ) ≥ L2

4
− o j (1). (5.2)

On the other hand, using ( f 3) we obtain

I (t j u j ) = I (t j u j )− 1

2
I ′(t j u j )(t j u j ) =

∫
a(x)

(
1

2
f (t j u j )(t j u j )− F(t j u j )

)
≤ D

∫
a(x)

(
1

2
f (u j )u j − F(u j )

)
= D(I (u j )− 1

2
I ′(u j )(u j )) = Dd + o j (1).

(5.3)

Then, on account of the choice of L , combining (5.2) and (5.3), we get a contradiction. In
Case 1, let (y j ) be a sequence such that |y j | → +∞ and∫

B1(y j )

|û j |2 > δ/2. (5.4)

Recalling that û j (· + y j ) ⇀ ū in Hs(Rn) as j → ∞, we obtain
∫

B1(0)
|ū(x)|2 > δ/2,

namely ū �= 0. Thus, there exists � ⊂ B1(0), with |�| > 0 such that

0 �= ū(x) = lim
j→∞ û j (x + y j ) = lim

j→∞
u j (x + y j )

‖u j‖Hs
, a.e. x ∈ �, (5.5)

yielding u j (x + y j ) → ∞ for a.e. x ∈ �. We claim that, actually u j (x + y j ) → +∞ for
x ∈ �. Setting ζ j (x) := û j (x + y j ), for a μ j → 0 in H−s(Rn) as j → ∞, we have

(−�)s/2ζ j + λζ j = a(x + y j )

‖u j‖Hs
f (‖u j‖Hs ζ j )+ μ j

‖u j‖Hs
.

Testing this equation by ζ−
j and taking into account that

∫
a(x + y j )

‖u j‖Hs
f (‖u j‖Hs ζ j )ζ

−
j = 0,

〈μ j , ζ
−
j 〉

‖u j‖Hs
= 〈μ j , u−

j (· + y j )〉
‖u j‖2

Hs

= o j (1),

by arguing as around formula (1.10), we conclude that ‖ζ−
j ‖Hs = o j (1) as j → ∞,

hence, in particular, by the fractional Sobolev embedding ‖ζ−
j ‖L p = o j (1) as j → ∞

for any 2 ≤ p ≤ 2n/(n − 2s). Since ζ j = û j (· + y j ) → ū in L p(�), we also have
ζ−

j = û−
j (· + y j ) → ū− in L p(�). But then ū− = 0 on � which means ū > 0 on

�. In turn, from (5.5), we have the claim. Thus, by (f3), Fatou Lemma and (A1), with
σ := inf Rn a,
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Complex Variables and Elliptic Equations 549

lim inf
j→∞

∫
a(x)

(
1

2
f (u j )u j − F(u j )

)
= lim inf

j→∞

∫
a(x + y j )

(
1

2
f (u j (x + y j ))u j (x + y j )− F(u j (x + y j )

)
≥ lim inf

j→∞

∫
�

σ

(
1

2
f (u j (x + y j ))u j (x + y j )− F(u j (x + y j )

)
≥
∫
�

lim inf
j→∞ σ

(
1

2
f (u j (x + y j ))u j (x + y j )− F(u j (x + y j )

)
= +∞.

On the other hand, |I ′(u j )(u j )| ≤ ‖I ′(u j )‖H−s ‖u j‖Hs → 0, as j → ∞. Then,∫
a(x)

(
1

2
f (u j )u j − F(u j )

)
= I (u j )− 1

2
I ′(u j )(u j ) = d + o j (1),

which gives a contradiction. If, instead, (y j ) in (5.4) is bounded, say |y j | ≤ R for some R,
we obtain

δ

2
≤
∫

B1(y j )

|û j |2 ≤
∫

B2R(0)
|û j |2,

and since û j → û in L2(B2R(0)), it follows that

δ/2 ≤
∫

B2R(0)
|û|2.

Similarly to the previous case, there exists� ⊂ B2R(0) of positive measure such that (5.5)
holds. The argument follows as above for the case where (y j ) is unbounded and we get a
contradiction. �

The next step is to show the existence of a Cerami sequence for the functional I at
level c.

Lemma 5.6 Let c be as in (5.1), then there exists a (Ce)c sequence (un) ⊂ Hs(Rn).

Proof We apply the Ghoussoub–Preiss theorem [26, Theorem 6] with X = Hs(Rn), see
also [27]. Consider z0 = 0 and z1 in Hs(Rn) with I (z1) < 0 (cf. Lemma 5.1). Then
the Pohožaev manifold P separates z0 and z1. Indeed, observe that z0 = 0 /∈ P and
z1 /∈ P , since J (z1) < nI (z1) < 0 (cf. proof of (a) of Lemma 5.4). Moreover, there exists
ρ > 0 such that, if 0 < ‖u‖Hs < ρ, then J (u) > 0 (cf. proof of Lemma 3.1). We have
Hs(Rn) \ P = {0} ∪ {J > 0} ∪ {J < 0}. The ball Bρ(z0) is in a connected component C1
of {0} ∪ {J > 0}. On the other hand, z1 is in a connected component of {J < 0}. In this
setting, we get a sequence (u j ) ⊂ Hs(Rn) such that

δ(u j ,P) → 0, I (u j ) → c, ‖I ′(u j )‖H−s (1 + ‖u j‖Hs ) → 0,

where δ denotes the geodesic metric on H s(Rn), defined by

δ(u, v) := inf

{∫ 1

0

‖γ ′(σ )‖Hs

1 + ‖γ (σ )‖Hs
dσ : γ ∈ C1([0, 1], Hs(Rn)), γ (0) = u, γ (1) = v

}
.

This completes the proof. �
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550 R. Lehrer et al.

We will also need the following result.

Lemma 5.7 Let (u j ) ∈ Hs(Rn) be a bounded sequence such that

I (u j ) → d > 0 and ‖I ′(u j )‖H−s → 0 .

Replacing (u j ) by a subsequence, if necessary, there exists a solution ū of (1.2), a number
k ∈ N ∪ {0}, k functions u1, u2, . . . , uk and k sequences of points y1

j , y2
j , . . . , yk

j ∈ Rn,
satisfying:

(a) u j → ū in Hs(Rn) or
(b) ui ∈ Hs(Rn) are positive solutions to (2.1) radially symmetric about some point;
(c) |yi

n| → +∞ and |yi
n − ym

n | → +∞, i �= m;

(d) u j −
∑k

i=1
ui (x − yi

j ) → ū;

(e) I (u j ) → I (ū)+
∑k

i=1
I∞(ui ).

Proof One can also mimick the proof of [28, Theorem 8.4] dealing with the local case
s = 1. That the solutions ui ∈ Hs(Rn) to (2.1) are positive and radially symmetric about
some point follows from [16, Theorem 1.3], namely a Gidas–Ni–Niremberg type result in
the fractional case (ui �= 0, ui ≥ 0 and hence ui > 0, see [16]). �

Corollary 5.8 If I (u j ) → c∞ and ‖I ′(u j )‖H−s (1 +‖u j‖Hs ) → 0, then either (u j ) is
relatively compact in Hs(Rn) or Lemma 5.7 holds with k = 1 and ū = 0.

Let us set

c� := inf
{
c > c∞ : c is a radial critical value of I∞

}
.

Then we have the following

Lemma 5.9 Assume that

c∞ is an isolated radial critical level for I∞, (5.6)

Then c� > c∞ and I satisfies condition (Ce) at level d ∈ (c∞,min{c�, 2c∞}). Assume now
that

the limiting problem (2.1) admits a unique positive radial solution. (5.7)

Then I satisfies condition (Ce) at level d ∈ (c∞, 2c∞).

Proof Take a sequence (u j ) ∈ Hs(Rn) such that I (u j ) → d and ‖I ′(u j )‖H−s (1 +
‖u j‖Hs ) → 0 as j → ∞. By Lemma 5.5, (u j ) has a bounded subsequence. Applying
Lemma 5.7, up to subsequences, we have

u j −
k∑

i=1

ui (x − yi
j ) → ū in Hs(Rn), I (u j ) → I (ū)+

k∑
i=1

I∞(ui ),

where ui is a solution to (2.1), |yi
j | → +∞ and ū is a (possibly zero) solution of (1.2).

Since d < 2c∞, then k < 2. If k = 1, we have two cases to distinguish.
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Complex Variables and Elliptic Equations 551

Let us first assume that (5.6) holds. Then c� > c∞, otherwise there exists a sequence
c j of radially symmetric (about some point) critical values of I∞ such that c j > c∞ and
c j → c∞ as j → ∞. Consider the alternative:

• ū �= 0, which implies I (ū) ≥ p̂ = c∞ and hence I (u j ) ≥ 2c∞.
• ū = 0, which yields I (u j ) → I∞(u1). If I∞(u1) = c∞, we have a contradiction. If

I∞(u1) = c̃ > c∞, then I∞(u1) ≥ c� ≥ min{c�, 2c∞}, against d < min{c�, 2c∞}.
Then k = 0 and u j → ū.

Let us now assume that (5.7) holds.
Consider the alternative:

• ū �= 0, which implies I (ū) ≥ p̂ = c∞ and hence I (u j ) ≥ 2c∞.
• ū = 0, which yields I (u j ) → I∞(u1) = c∞. The fact that I∞(u1) = c∞ follows

by using uniqueness assumption (5.7). These conclusions go against the assumption
c∞ < d < 2c∞. �

Lemma 5.10 Let I (u j ) → d > 0 and {u j } ⊂ P . Then {u j } is bounded in Hs(Rn).

Proof If u j ∈ P , then using (A3) and the first equality of (4.6), we get

d + 1 ≥ I (u j ) ≥ s

n

∫
|(−�)s/2u j |2.

In turn, by the fractional Sobolev inequality, the sequence ‖u j‖2n/(n−2s) is also bounded.
By (1.8) with ε < λ/‖a‖∞, we have∫

a(x)F(u j ) ≤ 1

2
ε‖a‖∞‖u j‖2

2 + Cε‖u j‖2n/(n−2s)
2n/(n−2s).

Replacing this in the expression of I

d + 1 ≥ I (u j ) ≥ 1

2

∫
|(−�)s/2u j |2 + 1

2
(λ− ε‖a‖∞)‖u j‖2

2 − Cε‖u j‖2n/(n−2s)
2n/(n−2s),

so ‖u j‖2 is bounded as well, and the assertion follows. �

Next, we introduce the barycenter function.

Definition 5.11 Define the barycenter function of a u ∈ H s(Rn) \ {0} by setting

μ(u)(x) := 1

|B1|
∫

B1(x)
|u(y)|dy.

It follows that μ(u) ∈ L∞(Rn) ∩ C(Rn). Subsequently, take

û(x) :=
[
μ(u)(x)− 1

2
maxμ(u)

]+
.

It follows that û ∈ C0(R
n). Now define the barycenter of u by

β(u) = 1

‖û‖L1

∫
xû(x)dx ∈ Rn .
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552 R. Lehrer et al.

Since û has compact support, by definition,β(u) is well defined.β satisfies the following
properties:

(a) β is a continuous function in H s(Rn) \ {0}.
(b) If u is radially symmetric, then β(u) = 0.
(c) Given y ∈ Rn and setting uy(x) := u(x − y), then β(uy) = β(u)+ y.

We shall also need the following

Lemma 5.12 Assume that u j , v j ⊂ Hs(Rn) are such that ‖u j − v j‖Hs → 0 and
I ′(v j ) → 0 as j → ∞. Then, I ′(u j ) → 0 as j → ∞

Proof By assumption (1) of Theorem 1.2, we have f ∈ Lip(R,R+). Observe first that,
for every w, ϕ,ψ ∈ Hs(Rn), we have

I ′′(w)(ϕ,ψ) =
∫
(−�)s/2ϕ(−�)s/2ψ + λ

∫
ϕψ −

∫
a(x) f ′(w)ϕψ. (5.8)

Also, by the Mean Value Theorem, for any u, v ∈ H s(Rn) and ϕ ∈ Hs(Rn), there exists
ξ ∈ (0, 1) with

I ′(v)(ϕ)− I ′(u)(ϕ) = I ′′(u + ξ(v − u))(ϕ, v − u).

Therefore, by taking into account that | f ′(u j + ξ j (v j − u j ))| ≤ C a.e. and for every j ≥ 1
by assumption (f1), for all j ≥ 1 we find ξ j ∈ (0, 1) such that from formula (5.8) we obtain

I ′(v j )(ϕ)− I ′(u j )(ϕ)

= I ′′(u j + ξ j (v j − u j ))(ϕ, v j − u j )

=
∫
(−�)s/2ϕ(−�)s/2(v j − u j )+ λ

∫
ϕ(v j − u j )

−
∫

a(x) f ′(u j + ξ j (v j − u j ))ϕ(v j − u j )

≤ C‖ϕ‖Hs ‖v j − u j‖Hs + Ca∞
∫

|ϕ||v j − u j | ≤ C‖ϕ‖Hs ‖v j − u j‖Hs .

In turn, taking the supremum over the ϕ ∈ H s(Rn) with ‖ϕ‖Hs ≤ 1, we get as j → ∞
‖I ′(v j )− I ′(u j )‖H−s ≤ C‖v j − u j‖Hs = o j (1),

which concludes the proof. �

Now we define
b := inf {I (u) : u ∈ P and β(u) = 0} . (5.9)

It is clear that b ≥ c∞. Moreover, we have the following

Lemma 5.13 b > c∞.

Proof Suppose b = c∞. By definition, there exists a sequence {u j } with u j ∈ P and
β(u j ) = 0 such that I (u j ) → b. By Lemma 5.10, {u j } is bounded. Since b = p̂ by Lemmas
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Complex Variables and Elliptic Equations 553

5.2 and 5.3, then {u j } is also a minimizing sequence of I on P . By Ekeland Variational
Principle, there exists another sequence {ũ j } ⊂ P such that I (ũ j ) → p̂, I ′|P (ũ j ) → 0
and ‖ũ j − u j‖Hs → 0 as j → ∞. Let us now prove that I ′(ũ j ) → 0, as j → ∞. Suppose
by contradiction that this is not the case. Then, there exists σ > 0 and a subsequence {ũ jk }
with

‖I ′(ũ jk )‖ > σ, for all k ≥ 1 large.

Arguing as in the proof of Lemma 5.12, there exists a positive constant C such that

|I ′(ũ jk )(ϕ)− I ′(v)(ϕ)| ≤ C‖ũ jk − v‖Hs ‖ϕ‖Hs , for all k ≥ 1 and any v, ϕ ∈ Hs(Rn).

Taking the supremum over ‖ϕ‖Hs ≤ 1 yields ‖I ′(ũ jk ) − I ′(v)‖H−s ≤ C‖ũ jk − v‖Hs

for all k ≥ 1 and any v ∈ Hs(Rn). Therefore, if ‖ũ jk − v‖Hs < δ̃/C := 2δ, then
we have ‖I ′(ũ jk ) − I ′(v)‖H−s < δ̃. for all v ∈ Hs(Rn) and k ≥ 1. This yields, σ − δ̃ <

‖I ′(ũ jk )‖H−s − δ̃ < ‖I ′(v)‖H−s , for all k ≥ 1 large. For δ̃ ∈ (0, σ ), we have λ := σ− δ̃ > 0
and

∀v ∈ Hs(Rn) : v ∈ B2δ(ũ jk ) =⇒ ‖I ′(v)‖H−s > λ.

Let us now set ε := min{p/2, λδ/8} and S := {ũ jk }. Then, by virtue of [28, Lemma 2.3],
there is a deformation η : [0, 1] × H s(Rn) → Hs(Rn) at the level p, such that

η(1, I p+ε ∩ S) ⊂ I p−ε, I (η(1, u)) ≤ I (u), for all u ∈ H s(Rn).

For k large enough, since ũ jk is minimizing for p, we have

max
t>0

I (ũ jk (·/t)) = I (ũ jk ) < p̂ + ε. (5.10)

Observe that, for each k ≥ 1, by (A4), we have∫
G∞(ũ jk ) ≥

∫ ((
a(x)+ ∇a(x) · x

n

)
F(ũ jk )− λ

ũ2
jk

2

)
= n − 2s

2n

∫
|(−�)s/2ũ jk |2 > 0,

so that the arguments of Lemma 4.1 work for ũ jk . Since ũ jk ∈ P , the first equality in (5.10)
is justified by means of formula (4.2) of Lemma 4.1 on � ′, by the uniqueness of positive
zeros of � ′ and since �(ϑ) > 0 for ϑ small and �(ϑ) < 0 for ϑ large. Then, we can infer
that

max
t>0

I (η(1, ũ jk (·/t)) < p̂ − ε.

On the other hand, for k and L fixed large, γ (t) := η(1, ũ jk (·/Lt)) is a path in � since by
(4.1)

I (γ (1)) = I (η(1, ũ jk (·/L))) ≤ I (ũ jk (·/L))

= Ln−2s

2

∫
|(−�)s/2ũ jk |2 − Ln

∫ (
a(Lx)F(ũ jk )− λ

ũ2
jk

2

)

= Ln−2s

2

∫
|(−�)s/2ũ jk |2 − Ln

(∫
G∞(ũ jk )+ oL(1)

)
< 0, for L → ∞.
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554 R. Lehrer et al.

Hence, we deduce that

c ≤ max
t∈[0,1] I (η(1, ũ jk (·/Lt)) = max

t>0
I (η(1, ũ jk (·/t)) < p̂ − ε < p̂,

contradicting that fact that p̂ = c, provided by Lemma 5.3. By Lemma 5.12, being ‖ũ j −
u j‖Hs → 0, we get I ′(u j ) → 0 as j → ∞. Therefore, {u j } satisfies the assumptions
of Corollary 5.8 and since p̂ = c∞ is not attained by Theorem 1.1, then the splitting
lemma holds with k = 1, see Corollary 5.8. This yields u j (x) = u1(x − y j ) + o j (1) as
j → ∞ where y j ∈ Rn , |y j | → +∞ and u1 is a solution of the problem at infinity. By
making a translation, u j (x + y j ) = u1(x) + o j (1). Applying the barycenter map yields
β(u j (x + y j )) = β(u j ) − y j = −y j and β(u1(x) + o j (1)) = β(u1(x)) + o j (1) by
continuity. Then, we reach a contradiction, yielding b > c∞. �

Let us consider a positive, radially symmetric, ground-state solution w ∈ H s(Rn) to
the autonomous problem at infinity. We define the operator � : Rn → P by

�[y](x) := w

(
x − y

ϑy

)
,

where ϑy projects w(· − y) onto P . � is continuous as ϑy is unique and ϑy(w(· − y)) is a
continuous function of w(· − y).

Lemma 5.14 β(�[y]) = y for every y ∈ Rn.

Proof Let v(x) = w((x − y)/ϑy), then

μ(v)(x) = 1

|B1|
∫

B1(x−y)

∣∣∣∣w( ξ

ϑy

)∣∣∣∣ dξ = μ

(
w

( ·
ϑy

))
(x − y),

and further, that v̂(x) = ŵ(·/ϑy)(x − y). Using the fact that ‖v̂‖L1 = ‖ŵ(·/ϑy)‖L1 , we get

β(v) = 1

‖v̂‖L1

∫
xŵ(·/ϑy)(x − y)dx

= 1

‖v̂‖L1

∫
(z + y)ŵ(·/ϑy)(z)dz

= 1

‖v̂‖L1

∫
zŵ(·/ϑy)(z)dz + 1

‖v̂‖L1

∫
yŵ(·/ϑy)(z)dz

= β(w(·/ϑy))+ y

‖v̂‖L1

∫
v̂(y + z)dz = y,

since w is radially symmetric. �

Lemma 5.15 I (�[y]) ↘ c∞, if |y| → +∞.

Proof Since �[y] ∈ P , as observed in (4.6), the functional I can be written as

I (�[y]) = s

n

∫ ∣∣∣∣(−�)s/2w( x − y

ϑy

)∣∣∣∣2 + 1

n

∫
∇a(x) · x F

(
w

(
x − y

ϑy

))
.
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Complex Variables and Elliptic Equations 555

Moreover, since w ∈ P∞, by (4.7) we have I∞(w) = s
n

∫ |(−�)s/2w|2 and we obtain

I (�[y]) = sϑn−2s
y

n

∫
|(−�)s/2w|2

+ ϑn
y

n

∫
∇a(ϑy x + y) · (ϑy x + y)F(w)

= ϑn−2s
y I∞(w)+ ϑn

y

n

∫
∇a(ϑy x + y) · (ϑy x + y)F(w) (> c∞).

By Lebesgue Dominated Convergence Theorem, (1.7) and ϑy → 1 if |y| → +∞, we get

lim|y|→∞

∫
∇a(ϑy x + y) · (ϑy x + y)F(w) = 0.

Therefore, I (�[y]) ↘ c∞ if |y| → +∞ and the proof is complete. �

Lemma 5.16 Let C be a positive constant such that |F(s)| ≤ Cs2. Assume

(A6) ‖a∞ − a‖L∞ <
min{c�, 2c∞} − c∞

ϑ̂n‖w‖2
2C

, ϑ̂ = sup
y∈Rn

ϑy .

Then I (�[y]) < min{c�, 2c∞} for every y ∈ Rn.

Proof The maximum of t 
→ I∞ (w(·/t)) is attained at t = 1. Since ϑy > 1, using (A6),
we obtain

I (�[y]) = I∞(�[y])+ I (�[y])− I∞(�[y]) ≤ I∞(w)+
∫
(a∞ − a(x))F(�[y])

< c∞ + min{c�, 2c∞} − c∞
ϑ̂n‖w‖2

2C

∫
Cw2

(
x − y

ϑy

)
= c∞ + (min{c�, 2c∞} − c∞)ϑn

y

ϑ̂n‖w‖2
2

‖w‖2
2 = min{c�, 2c∞},

which concludes the proof. �

Remark 5.17 Replacing (A6) with‖a∞−a‖L∞ < c∞ϑ̂−n‖w‖−2
2 C−1, one gets I (�[y])<

2c∞.

We will need a version of the Linking Theorem with Cerami condition by [29, Theorem 2.3].

Definition 5.18 Let S be a closed subset of a Banach space X and Q a sub manifold of X
with relative boundary ∂Q. We say that S and ∂Q link if the following facts hold

(1) S ∩ ∂Q = ∅;
(2) for any h ∈ C0(X, X) with h|∂Q = id, then h(Q) ∩ S �= ∅.

Moreover, if S and Q are as above and B is a subset of C0(X, X), then S and ∂Q link with
respect to B if (1) and (2) hold for any h ∈ B.
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556 R. Lehrer et al.

Theorem 5.19 Suppose that I ∈ C1(X,R) is a functional satisfying (Ce) condition.
Consider a closed subset S ⊂ X and a submanifold Q ⊂ X with relative boundary ∂Q
such that

(a) S and ∂Q link;
(b) α = inf u∈S I (u) > supu∈∂Q I (u) = α0.
(c) supu∈Q I (u) < +∞.

If B = {h ∈ C0(X, X) : h|∂Q = id}, then τ = inf h∈B supu∈Q I (h(u)) ≥ α is a critical
value of I.

Proof of Theorem 2.2 concluded. We follow the argument in [22, Theorem 7.7]. Since we
have b > c∞ from Lemma 5.13 and I (�[y]) ↘ c∞ if |y| → ∞ from Lemma 5.15, there
exists ρ̄ > 0 such that

c∞ < max|y|=ρ̄ I (�[y]) < b. (5.11)

In order to apply the linking theorem, we take

Q := �(Bρ̄ (0)), S := {
u ∈ Hs(Rn) : u ∈ P, β(u) = 0

}
,

and we show that ∂Q and S link with respect to H = {
h ∈ C(Q,P) : h|∂Q = id

}
. Since

β(�[y]) = y from Lemma 5.14, we have that ∂Q ∩ S = ∅, as if u ∈ S, then β(u) = 0,
and if u ∈ ∂Q, u = �[y] for some y ∈ Rn with |y| = ρ̄ and then β(u) = y �= 0. Now we
show that h(Q) ∩ S �= ∅ for any h ∈ H. Given h ∈ H, let T : Bρ̄ (0) → Rn by defined by
T (y) = β ◦h ◦�[y]. The function T is continuous, by composition. Moreover, for |y| = ρ̄,
we have that �[y] ∈ ∂Q, thus h ◦�[y] = �[y], as h|∂Q = id , and hence T (y) = y by
Lemma 5.14. By Brouwer Fixed Point Theorem there is ỹ ∈ Bρ̄ (0) with T (ỹ) = 0, which
implies h(�[ỹ]) ∈ S. Then h(Q) ∩ S �= ∅ and S and ∂Q link. Now, from (5.11), we may
write

b = inf
S

I > max
∂Q

I

Let us define

d = inf
h∈H

max
u∈Q

I (h(u)).

It is d ≥ b. In fact, if h ∈ H, there exists w ∈ S with w = h(v) for some v ∈ �(Bρ̄ (0)).
Therefore,

max
u∈Q

I (h(u)) ≥ I (h(v)) = I (w) ≥ inf
u∈S

I (u) = b,

and hence d ≥ b, which implies d > c∞. Furthermore, if h = id, then

inf
h∈H

max
u∈Q

I (h(u)) < max
u∈Q

I (u) < min{c�, 2c∞},

in light of Lemma 5.16. Then d ∈ (c∞,min{c�, 2c∞}) and thus from Lemma 5.9 the
(Ce) condition is satisfied at level d. Then, by the linking theorem, d is a critical level
for I. �
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