MULTIPLE NORMALIZED SOLUTIONS FOR p-LAPLACIAN
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ABSTRACT. In this paper, we investigates the existence and multiplicity of normalized solutions for
the p-Laplacian Schrodinger-Poisson system:

—Apu+ APt — g (|27 x uP) uPTh = f(u) in R,
Jps lulPde = a?, u>0 in R3,

where a > 0 represents the prescribed LP-norm, x € R\ {0} is a parameter, and A € R appears as an
undetermined Lagrange multiplier. Our principal findings are summarized as follows: (i) For x < 0,
under the conditions that f is odd and satisfies LP-supercritical yet Sobolev subcritical growth, we
establish the existence of a normalized ground state solution for sufficiently small a > 0 by employing
the Pohozaev manifold method combined with genus theory. In this setting, we prove that the problem
admits infinitely many normalized solutions whose energies tend to infinity. The asymptotic behavior of
the normalized ground state energy is also analyzed. (ii) For x > 0 and the Sobolev critical nonlinearity
flu) = |u|p* ~2u, we use a truncation technique together with the concentration-compactness principle
to address the lack of lower boundedness of the energy functional. Under appropriate constraints on
k and a, we demonstrate the existence of infinitely many normalized solutions possessing negative
energy. These results extend earlier work by some of the authors on p-Laplacian Schrédinger-Poisson
systems.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Overview. In this paper, we focus on the existence and multiplicity of normalized solutions for
the p-Laplacian Schrodinger-Poisson system:

—Apu+ P =k (Jz| 7t JufP) wPt = f(u) in RS,

1.1
(11) Jgs luPdz = P, uw >0 in R3,

where a > 0 is a prescribed mass, 1 < p < 3, the parameter kK € R\ {0} and A € R serves as
a Lagrange multiplier. Here, Ayu = div (]Vu|p_2Vu) represents the p-Laplacian operator. The

convolution |z|~! * [ulP is explicitly given by

P
(ol o) = [ Py, s ew
R3 [ — Y|
and the precise conditions on f will be given in the sequel.
Now let us consider the equation in (1.1), i.e.,

(1.2) —Apu+ P — g (Jz[ 7t ufP) uP Tt = f(u) in RP
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When p = 2 and kK = —1 with the parameter A € R fixed, the fixed-frequency problem corresponding to
Eq. (1.2) has attracted considerable attention. Following the pioneering work of Benci and Fortunato
[8], a substantial body of literature has been devoted to studying the existence, nonexistence, and
multiplicity of solutions to (1.2) and related equations—see, for example, [12, 36, 38] and the references
therein—primarily by employing variational methods [37, 44]. More recently, for the case 1 < p < 3
and k£ < 0, problem (1.2) has been investigated by Du, Su, and Wang [15, 16] using variational
approaches.
An alternative approach is to search for solutions to (1.2) under the prescribed mass constraint

(1.3) / |ulPdx = aP > 0.
R3

In this formulation, A € R emerges as an additional unknown parameter. The study of solutions
with prescribed mass has long constituted a major direction of research in mathematical and physical
contexts. From a physical standpoint, the fixed mass constraint characterized by parameter a holds
particular significance, which has stimulated considerable recent interest in investigating solutions
under such normalized conditions. Moreover, the p-Laplacian operator arises naturally in the context
of nonlinear fluid mechanics, where the exponent p characterizes both the flow velocity and constitutive
properties of the medium. The quasi-linear Schrodinger equation (1.1) originates from quantum
mechanical models and semiconductor theory, describing the interaction of charged particles with
electromagnetic fields. For further discussions on p-Laplacian equations without prescribed mass
constraints, we refer to [14, 17, 31] and the references therein.

We note that, in the special case p = 2, system (1.1) reduces to the classical Schrodinger-Poisson
equation, and the normalized solutions have been investigated by many authors in recent years. For
instance, Bellazzini and Siciliano [7] considered the problem:

(1.4) —Au+ M+ (o] u?)u = [u|?%u  in R3,
) ng wldx = a?,

where ¢ € (2,3), and established the existence of normalized solutions for sufficiently small a > 0.
The case g € (3, %) was considered in [6], where the authors showed that (1.4) admits normalized
solutions provided a > 0 exceeds a certain threshold. Subsequently, Jeanjean and Luo [24] identified
a threshold value of a > 0 that determines the existence and nonexistence of normalized solutions for
(1.4). Bellazzini and Jeanjean [5] studied the existence of normalized solutions to (1.4) for 1 < ¢ <6,
the authors established existence of normalized solutions for (1.4) under the assumption of sufficiently
small mass a > 0 by using the Pohozaev manifold method. Recently, Jeanjean and Le [21] investigated
the following Schrodinger-Poisson-Slater equation

(1.5) —Au+ M —y(|z] 7 * |ul?)u — blulP2u =0 in R,

where p € (1,6], 7,b € R, and |[ul|3 = ¢ for prescribed ¢ > 0. Through geometric analysis of the
Pohozaev manifold, they derived existence and nonexistence results for various parameter configura-
tions: (i) v < 0,b < 05 (ii) v > 0,b > 0; and (iii) v > 0,b < 0. For more results of normalized solutions
related to problem (1.4), we refer to [13, 33, 36, 43] and references therein.

We also recall some important advances concerning the normalized solutions to the Schrodinger
equation after the famous paper [20], where Jeanjean investigated the normalized solutions of the
mass supercritical problem

(1.6) {—Au—kuuzf(u) in RY,

Jps v?dz = a?,

where u € R appears as a Lagrange multiplier, by employing the mountain pass lemma and a skillful
compactness argument. Recently, Jeanjean and Lu [22] revisited problem (1.6) under the assumption
that f is continuous and satisfies weakened mass supercritical conditions, they established the exis-
tence of ground state solutions with the help of the Pohozaev manifold. Soave [40] studied the existence
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of normalized solutions to (1.6) with f(u) = Au|9~2u+|u|* ~2u for ¢ € (2,2*), Sobolev critical growth,
representing a counterpart to the Brezis-Nirenberg problem in the L?-constraint framework For fur-
ther results on normalized solutions to Schrodinger-type equations, we refer to [1, 5-7, 11, 24, 39] and
references therein.

Now, let us come back to consider problem (1.1). As far as we know, there are only few papers
on the existence of normalized solutions to (1.1) in the literature. When the parameter x < 0,
Liu and He [28] recently studied normalized ground state solutions of (1.1) with the nonlinearity
f(u) = plu|?2u, +uP"~2u, q € (p, p*), that is the following problem:

—Apu — kdlulP~2u = Mul|P~2u + plul9%u + |[u|P "2u, @€ R3,
(17) G = r e R,
f]RB |U|de = apa

where p* = % denotes the Sobolev critical exponent, and by means of Pohozaev manifold de-

composition technique they established several existence results in the LP-subcritical, LP-critical and
LP-supercritical perturbation p|u|?2u, respectively. In [29], the authors investigated the existence
and multiple solutions of system problem (1.7) when the parameters x < 0 and p > 0 is large enough,
applying the concentration-compactness principle and mountain pass theorem. In [30], the authors
considered problem (1.7) under the Sobolev subcritical nonlinearity: af(u), and derived several exis-
tence and non-existence results by distinguish the positive and negative signs of parameters v,a € R,
through variational methods.

1.2. Main results. In this paper we focus our attention on problem (1.1), with parameter x € R\ {0}
having a wider range of values. It is well-known that seeking normalized solutions of (1.1) is equivalent
to finding critical points of the functional I defined by

(1.8) I(u) = ;/Rg Vulde — %B(u) - /RS Fu)dz,

on the LP-constraint manifold
(1.9) S(a) ={u e WHP(R?) : [|ullh = a?},

where "
e [ [ P
R3 JR3 |x—y|

For a given a > 0, we define the Pohozaev manifold associated with (1.1) as

(1.10) Po 1= {u € S(a)|P(u) = p/Rg \VulPdx — gB(u) - 3/RS F(u)dz = o} ,

where
B(t) = f(t)t — pF(t).
By the Pohozaev identity, every solution of (1.1) necessarily lies in P,.
We first consider the case k < 0 and impose the following conditions on the nonlinearity f:

(f1) f € C(R,R) and there exist constants ¢ € (p, p*) and C' > 0 such that
1f)] < CA+|t)97) for all t € R;

[ ()
() Jim ey =0 and Jim 7 = oo, where Fi(t) = [ f(

F(t
(f3) The function ¢ — ]t(]p
(f1) There exists 0 € (p, p*) such that f(¢)t < OF(t) for all t € R\ {0}.
One can easily check that f(t) = [t[P=2t for p € (p,p*) satisfies conditions (f1)-(f1). To state our
main results, we first provide the definition of a normalized ground state solution on P,.

is strictly decreasing on (—oo,0) and strictly increasing on (0, 400);
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Definition 1.1. A solution u € WP(R3) \ {0} is said to be a normalized ground state solution on
P. of (1.1) if it verifies

(1.11) I'lp,(u)=0 and I(u)=inf{I(v):I'lp,(v)=0,v € P,}.

We remark that condition (f3) can enable the reduction of the normalized solution search to a
minimization problem on the Pohozaev manifold P,, while condition (f;) ensures the positivity of
the Lagrange multiplier A > 0, which plays a crucial role in establishing compactness properties, as
we will show in the sequel. We shall verify that P, # () constitutes a natural constraint and that
the restricted functional I|p, is both bounded below and coercive, as proved in Lemmas 2.3 and 2.4
below. To this aim, it is natural to define the normalized ground state energy as

1.12 o i= inf I(u).
(112) cai= inf I(u)

Our first main result concerning the monotonicity of ground state energy with respect to mass,
which can be stated as follows.

Theorem 1.2. Suppose that k < 0 and (f1)-(fa) hold. Then there exists ay, > 0 small such that for
any a € (0,ax), (1.1) has a normalized solution (u,\) € S(a) x RT and u is a normalized ground state
solution on P,. Moreover, the function a — ¢, is positive, continuous, nonincreasing and

lim ¢, = +o0.
a—07t

Our next result is concerned with the multiplicity of normalized solutions for (1.1).

Theorem 1.3. Suppose that k < 0, f is odd and satisfies (f1)-(f4). Then there exists a* > 0 small
such that for any a € (0,a*), (1.1) has infinitely many radial solutions {uy};>, C S(a), with the
characteristics

I(ug+1) > I(u) >0, Vk €N,
and I(uy) — 400 when k — oco.

Remark 1.1. We note that in [30], Liu and He proved the existence and multiplicity of (1.1) under
the following conditions:
(90) f:R — R is a continuous odd function; that is, f(—t) = —f(¢) holds for all t € R.
(91) There exist positive constants (a, ) € R% with p < a < B < p* such that for all t € R\ {0},
the following inequality holds:

0 < aF(t) < f(t)t < BE(L).

(g2) Define the auxiliary function F(t) := f(t)t — pF(t). Assume that F € C*(R) and satisfies the
strict inequality: 3 3
pE(t) < F'(t)t for all t # 0.
However, the main results of [30] require the higher differentiability of the function F. Our conditions
(f1) — (f1) are more weaker than (gg) — (g2). To see this, we give the following:

Example 1.1. Let us consider the function:

2

£ = [ o+ ) + %)

2
. 2|
3

2
p2 ’t’p+%_2ta te R7
1+ [t]s

then we have the primitive function of f(t) as:

2 2
F(t) = [t|"*5 In(1+|¢|F), teR.

By a simple calculation, we have that f satisfies (f1) — (f1), but does not satisfy the well-known
Jeanjean’s L2-mass supercritical growth condition (g;). Hence, our results improve the main results
in [30].
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We now turn to the case x > 0 and the nonlinearity f(t) = [t|P" 2t being Sobolev critical growth,
and establish multiple solutions with negative energy.

Theorem 1.4. Suppose that x > 0 and f(u) = |u[P"~2u. Then (1.1) has an unbounded sequence of
solutions (uj,\;) € WIP(R3) x RT with A\; > 0,I(u;) <0 and I(u;) — 0~ when j — oo.

The proofs of Theorems 1.2-1.4 are constrained variational methods, and some comments are in
orders:

(i) To prove Theorem 1.2, we shall construct a Palais-Smale sequence for I|p, at the energy level
¢, that precisely satisfies P(uy,) = 0 for all n > 1, adapting techniques from [3, 4, 22], which can
prove that the constructed Palais-Smale sequence admits a convergent subsequence, and in turn
implies the existence of a normalized ground state solution on P,. We remark that, verifying the
positivity of the Lagrange multiplier A plays a crucial role in establishing compactness of the Palais-
Smale sequence, and this verification follows directly from the Pohozaev identity in the p-Laplacian
Schrodinger equation treated in [14, 17, 32], but for the nonlocal term in our setting, we need to adapt
new methods to overcome this issue, with detailed arguments provided in Lemma 3.4.

(ii) In order to show Theorem 1.3, we make use of the radial subspace W, = {u € WIP(R3) :
u(z) = u(|z|)} to obtain the multiplicity of normalized solutions. By using genus theory, one can
obtain an infinite sequence of minimax values f, as in (3.23). For each level {3}, we construct an
appropriate Palais-Smale sequence {uy};21 C Py N W, for the constrained functional I|g(q)mw,. A
key step is to prove the unboundedness of the sequence {f, 1}, while in our situation, the presence
of the nonlocal term |z|~!  |u|P will bring more obstacles, we have to give more refined analytical
arguments.

(iii) For the case x > 0, and the nonlinearity f(u) = |u[P" ~2u is Sobolev critical growth, we shall
prove the existence of infinitely many solutions with negative energy for (1.1). However, the presence
of the Sobolev critical term makes the constrained functional I S(a) is unbounded below. To overcome
this obstacle, we implement a truncation technique introduced in [18], as defined in (4.3). We then
prove that critical points of the truncated functional corresponding to negative critical values are
also critical points of the original functional. Furthermore, to handle the Sobolev critical exponent,
we employ the concentration-compactness principle due to Lions [26, 27], which play a key role in
recovering the loss of compactness and proving Theorem 1.4.

Remark 1.2. In [28-30], the authors only studied the existence of normalized solutions of (1.1) with
k < 0, but in Theorem 1.4 we consider the case x > 0 and complement the aforementioned studies.
Theorem 1.4 also extends the study of [32] to the p-Laplacian Schrodinger equation with Sobolev
critical exponent and a nonlocal perturbation term  (|z| =% * |u[P) uP~!. Our main results also extend
the related studies in [5-7, 21, 24] to the more general p-Laplacian cases.

The remainder part of this paper is structured as follows. In Section 2 we give preliminary results
and investigates fundamental properties of the normalized ground state energy mapping a — ¢,. In
Section 3 we prove Theorems 1.2 and 1.3. Finally, in Section 4 we apply the concentration-compactness
principle and genus theory and complete the proof of Theorem 1.4.

Notation. Throughout this paper, we adopt the following conventions.

e For p € [1,00), LP(R3) denotes the usual Lebesgue space with norm

ol = ( [ upe)”

e WHP(R3) is the standard Sobolev space equipped with the norm

Jull == (/RS(WUP +lup)do)”.
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o W, :={uec W(R3) : u(x) = u(|z|)} denotes the subspace of radially symmetric functions, and
(W,)* stands for its topological dual.
e D'P(R3) is the homogeneous Sobolev space

D'Y?(R?) = {u € LV (R*) : Vu € LP(R?)},

and S denotes the best Sobolev constant:

VulPd
(1.13) S = inf /R3| e

in
ueDLe(R3)\{0} Y
(/R3 |ul d:L‘)

e The mass-critical exponent and the Sobolev critical exponent are respectively

2

_ p R 3p

=p+ —=, = .
L P=3,

e The letters C, 6, Ci,c (i =1,2,...) denote positive constants whose values may change from line

to line.

We write — and — for strong and weak convergence in the relevant function spaces.

on (1) stands for a quantity that tends to 0 as n — co.

2. PRELIMINARY RESULTS

In order to prove Theorems 1.2 and 1.3, we begin by presenting some useful preliminaries. In the
following arguments, without loss of generality, we always assume xk = —1 for k < 0. In the sequel,
we assume (f1)-(f1) hold.

For each given a > 0, we denote by the set

(2.1) M, = {u € W"P(R3) : |jul, < a}.
In the sequel, we shall search for critical points of the functional
1 1
Iu:/ VulPdz + —B(u) — F(u)dx
W= | 1Vupde+ 350 | P

on the Pohozaev manifold

(2.2) P = {uES(a) : P(u) :p/R3|Vupdx+;B(u)—3 F(u)dsz}.

In the following arguments of normalized solutions, we shall use some key inequalities. First, we
recall the Gagliardo-Nirenberg inequality [34] of p-Laplacian type: for any ¢ € (p,p*) and N > 2,

R3

(2.3) lully < CN, @) |Vl [l 7,
where the interpolation exponent is given by v, = N <% — %)

Next, we introduce the Hardy-Littlewood-Sobolev inequality [25]: for functions f € LP(RY), g €
LY(RYN) with 0 < s < N,

(2.4)

(y)
/ T drdy| < C(N,s,p, ) flpllgllg,
RN JRN |~”U ?/|

under the scaling condition p,q > 1, 5+ 5 +x =2

Lemma 2.1. The following conclusions hold true:
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(i) For any a > 0, there exists 0 = o(a) such that

1
1/ |VulPde < I(u) < C (/ |VulPdx + (/ ]Vupdx> p)
2p Jrs R3 R3

for all w € M, with |[Vul|, <o.
(i) If {un,} C WHP(R3) is a bounded sequence, and li_}m llunllp =0, then

lim F(up)dz = lim F(uy)dz = 0.

n—oo R3 n—oo R3

(i) If {un} C WP(R3) and {v,} C WHP(R3) are bounded sequences, and ILm |lonllp =0, then

lim f(up)vpdx = 0.

n—oo R3

Proof. (i) We first check that there exists a sufficiently small ¢ = o(a) > 0 such that for every u € M,
satisfying |Vu|, < o,

1
(2.5) F(u)|ds < — / Vuldz.
R3 2p R3

In fact, it follows from (f1)—(f2) that for any e > 0, there exists C. > 0 such that for all ¢ € R,
|F(t)] < elt]? + Cclt]?"

Thus, for any u € M,, using the Gagliardo-Nirenberg inequality (2.3), we infer to

|F(u)|dz Se/ |u]pdx+C€/ ulP” dz
R3 R3 R3

p*

, v

< EClapB/ \VulPdz + C.C </ |Vupd:z:> !
R3 R3

/ |VulPdz.
R3

p*—p
2
= [eCraT + C.0y (/ \vu|Pda:> ’
R3

1
Taking ¢ = —1 — and 0 = (ﬁ) P7% then (2.5) follows.
4pCha 3 €
Taking into account of the Hardy-Littlewood-Sobolev inequality (2.4) and the Gagliardo-Nirenberg

inequality (2.3) we can infer that
)P
Blu) = / / [w@Plu@P ;. 4,
R3 JR3 |z —y|

26) < Cyllullg
< Gyl|Vulpllul,

here 5],, Cp > 0 are constants. Using (2.5) and (2.6), we can easily verify statement (i).
(i) For any € > 0, assumptions (f1) — (f2) ensure the existence of a constant C. > 0 such that

|F(t)] < elt|”” + CL|tP, VteR.

D+ Clfun B
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Since ¢ is arbitrary and |u,|; — 0, we conclude that
lim F(up)dz = 0.

n—oo R3

Similarly, we can conclude that,

lim F(up)dz =0, whenever |uyl/; — 0.
n—oo R3

(iii) We first claim that there exists a constant M > 0, independent of ¢ € [p,p*], such that
lulg < M. Indeed, it follows from (fi)—(f2) that for any € > 0, there exists a constant C; > 0 such
that for all t € R,

|F(0)] < eltfP~ + Celt"
It follows that for all n,
(2.8) |f (un)vn| < dun’pil‘vn‘ + Ce‘un’p*il‘vn‘-

Using the Holder inequality, we have

= 1
/ Iunlp‘llvnldm(/ !un|pdx> ’ (/ |vn|pd:c>p.
R3 R3 R3

Let {u,} € WYP(R3) be a bounded sequence. Firstly, by the Gagliardo-Nirenberg inequality (2.3),

we get
2

_ P _
[l < €I ul gl < €.
R

Moreover, it follows that
p—1

</ \un]pdx> ’ <C.
R3
Finally, if lim |lv,||5 = 0, then clearly
n—oo
</ \vn\pdaﬁ) — 0.
R3
Hence, we have

(2.9) lim / |2 [P~ |0y | d = 0.
R3

n—oo

i

Using the Holder inequality, we obtain

1

pr—1 1
/ \un\p*—lmuxg(/ runrp*dx> ’ </ ]vn]p*dx>p .
R3 R3 R3

Assume that {u,} C WHP(R?) is a bounded sequence. By the Sobolev embedding theorem, we get
/ Jup |P" dz < CMP”.
R3

Consequently, it follows that

p*—1

</ |un|p*d$> To<omr
RB

Moreover, by combining with the Holder inequality:

/ fonl?" dz = / onlloal? 7 < I[oallplvn
R3 R3

p*—p
p*72 _> 0,
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1
=

it follows that ([ps |vn|P"dz)?™ — 0. So,

(2.10) lim / |t [P L | |d = 0.
R3

n—oo

Substituting (2.9) and (2.10) into the integral estimate in (2.8) yields that

Se/ |un|ﬁ_1|vn|d:c—i—CE/ [t |P” Yo |de.
R3 R3

Since € > 0 was arbitrary, we deduce that

0< f(up)vpdx
R3

lim f(upn)vpdz = 0.

n—oo R3

Remark 2.1. Analogous to (2.5), we can show that

~ 1
|F(u)|dx < / |Vu|Pdz
R3 3 Jrs

for all w € M, satisfying ||Vull, < o, from which it follows that

1 3 [ - p—1
Pu:/ Vupd:n—{—Bu—/Fud:UZ/ VulPdz.
= [ vupds+ 3-8~ [ Fayde =22 [ (vu

Remark 2.2. Under the conditions (f1), (f2), and (fs) on f, if we define a continuous function
k:R — R as follows:

f®)t—pF()

k(t) = |t‘p+p2/3 Y fOTt#O,

0, fort=0.

Then, k is strictly decreasing on (—00,0) and strictly increasing on (0, 00).

We recall the following conclusion from [28].
Proposition 2.1(Lemma 2.2 [28]) Let {u,} be a sequence in WHP(R?) with u, — u weakly and
un — u almost everywhere in R®. Denote by B’ the Fréchet derivative of the functional B. Then, as
n — oo, the following hold:

(1) Bup —u) = B(un) — B(u) + on(1),
(ii) B'(up —u) = B'(up) — B'(u) 4+ 0,(1) in (WHP(R3))*.
Following the approach from [20], we can define an auxiliary functional associated with I via a
continuous LP-norm preserving map 1 : E — W1P(R3) as:

(2.11) n(u, s)(x) = e%u(esx) for uwe W ([R3), scR, zcR3

1
where E := W1P(R3) x R is endowed with the norm ||(u, s)||g = (||u||” +s|P)?. A direct computation
shows that ||n(u, s)||, = ||u||p, which implies n(u, s) € S(a).
We define the auxiliary functional associated with I by

~ 3s

y&i S 1 3s
) i= T(nw,9) = 2 IVallp + 3Bl = o [ Pl

Clearly, I belongs to C*(WP(R3) x R, R). The following lemma describes the geometric properties
of I.
Lemma 2.2. For every u € S(a), we have

I(u,s) = 0" ass = —o0  and I(u,s) — —oo as s — +o0.
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Proof. For every u € S(a), we see that |[Vn(u,s)|[h = eP%||Vul/h. Moreover, by Lemma 2.1-(i), it
follows that

1
) ) 1
—eP? |[VulPde < I(u) <C <eps |\Vu|Pdz + €® </ ]Vu|pdx> p) ,
2p Jps R3 RS
which implies that I(u,s) — 0" when s — —oc.

For each given p > 0, we define the function

£l if £ # 0
(1) ::{ltlp“" ifé#0,

2.12
( ) 1, if t =0.

By (f1) — (f2), the function h,(t) is continuous and satisfies h,(t) = 400 as t — co. Obviously,
F(t) = hy(t)[t|P — p|t|P. By a similar argument to Lemma 2.3 in [22] and using (f1) — (f3), we can
claim that for all ¢ # 0,

(2.13) f)t > pF(t) > 0.
We prove (2.13) by splitting the proof into several steps.

Step 1. F(t) > 0 for any ¢t # 0. Indeed, if F(tp) < 0 for some ¢y # 0, by (f1) and (f3), the function

F(t)/|t|P+P2/3 achieves its global minimum at some s # 0 such that F'(s) < 0 and
2
p+p?/3 ! _ f(S)S — (p+p /3)F(5) _
(Feyterrs) () =
In view of f(t)t > pF(t) for any t # 0, and by Remark 2.2, we can infer to

0 < f(s)s — pF(s) = LF(s) <0,

which leads to contradiction and complete the proof of Step 1.

Step 2. There exists a positive sequence {s;"} and a negative sequence {s, } satisfying |s:*| — +o0
and f(sF)st > (p+p?/3)F(st) for each n > 1.

We only deal with the positive case, since the negative case can be treated similarly. Assume
by contradiction that, there exists 77 > 0 small enough such that f(t)t < (p + p?/3)F(t) for any
t € (0,71]. From Step 1, we have

F@) o F(T)
tptp?/3 = pptp?/3
1

>0 forall te(0,TY].

By virtue of limy_o F(t)/[t[/*?*/3 = 0 and (f1), we can infer to a contradiction. So, we finish the
proof of Step 2.
Step 3. We construct a positive sequence {3} and a negative sequence {3, } so as to || — +oo
and f(B)BE > (p+p?/3)F(B;E) for each n > 1.
The two cases can treated similarly, we only construct the existence of {3, }. Suppose by contra-
diction that there exists T > 0 such that f(t)t < (p + p?/3)F(t) for each t < —T». We obtain
P _ F(-T)
tptp?/3 = pptp?/3
2

< +oo forall t < —Ts,

which yields a contradiction to (f3). Hence, the sequence {3, } exists and we prove Step 3.

Step 4. f(t)t > (p+p*/3)F(t) for each t # 0. If not, then f(to)to < (p+p?/3)F(to) for some to # 0.
Because the cases tg < 0 and ty > 0 can be treated in a similar manner, and so, we consider here that
to < 0. From Steps 2 and 3, there exists Tin, Tmax € R such that Ty < to < Tmax < 0, and

(2.14) ft < (p+p*/3)F(t) for any t € (Timin, Timax),
and
(2.15) fOt = (p+p*/3)F(t) when t = Tuin, Tax
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It follows from (2.14) that,

F(Tmax) F(Tmm)
| Tz [PTP?/3 " | Topin|PTP?/3

But, by (2.15) and (f1), we can infer to

(2.16)

F(Tmaw) _ E ﬁ(Tmaz) i FV(Tm”L) _ F(Tmzn)
| Tonaw[PTP2/3 D2 | Tonaa|PH9%/3 7 92 [T [PHP2/3 Do [P°/37

(2.17)

which yields a contradiction, and we complete the proof of Step 4.

Step 5. f(t)t > (p+ p?/3)F(t) for each ¢ # 0. From Step 4, the function F(t)/|t|P*?*/3 is nonin-
creasing on (—oo, 0) and nondecreasing on (0, c0). Notice that, by (f1) we see that f(¢t)/[¢|P~17*/3 is
strictly increasing on (—o0,0) and (0,00). Then, for each ¢ # 0, we can obtain

(0 + P2 /3)F(t) = (p+p2/3) /0 £(s)ds

t
<+t [ s s = po

and this proves Step 5. Thus, from Steps 1 and 5, the conclusion (2.13) follows.
By (2.13) with Fatou’s lemma, we obtain that for every u € S(a),

: By oo
(2.18) skgloo - hu(er u)|ulPde = 4o0.
Now, from

y&i S _ _
I(u,s) = e—||VUH§ + e—B(u) + ueps/ |ulPdx — eps/ hu(e%‘su)|u|pdx
(2.19) p 2p R3 RS
' 1 1 ) 5, -
= eP? <||VUH£ + ?e(l_p)sB(u) + ,u/ |ulPdx — / hu(ef’ u)|u|pd$) :
p P R3 R3

we derive from (2.18) that I(u,s) — —oc as s — +00. O

Lemma 2.3. Let u € WYP(R?) be fized, then the following limitations hold true.
(i) There exists a unique s, € R such that

P(U(% Su)) = 0.
In particular, if u € S(a), then n(u, sy) € Pa, with Py defined in (1.10).
(ii) I(u,sy) > I(u,s) for all s # sy, and moreover, I(u,s,) > 0.
(iii) The map u — s, is continuous in u € WHP(R3).
(10) Sy(.42) = Su for any z € R3. If f is odd, then s_, = s,.

Proof. (i) For fixed u € WHP(R3) \ {0}, we get

d = 1 3 - 8s
£I(u, s) = e[| Vulll + %esB(u) - 56_35 . F(e?; u)dx = P(n(u, s)).

From Lemma 2.2, it follows that there exists s, € R at which I(u,s) attains its global maximum.
Moreover, we have

%f(u, sy) = P(n(u,sy,)) = 0.

In what follows, we prove the uniqueness of s,,.
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By the definition of the function k(t) given in Remark 2.2, we have F(t) = k(t)|t|P for every t € R,
and
1 3 3s -
P(n(u, s)) = e <||vu|yp+ —eI7PsB(y) — / k(e u)u|pda:> .
2p P Jrs
For a fixed t € R, it follows from (f3) that the function s — k:(e%st) is strictly increasing. Consequently,
P(n(u, s)) is strictly decreasing in s, which implies the uniqueness of s,,.

(ii) This assertion follows easily by the strict concavity of I(u,-) established in part (i).

(iii) In view of part (i), the mapping u +— s(u) is well-defined. Let u € W1P(R3)\ {0} and consider
an arbitrary sequence {u,} C WIP(R3)\ {0} such that u, — u in W'P(R3). For each n > 1, put
Sp = $(up). We only need to verify that there exists a subsequence for which s,, — s(u) as n — oo.

Now, we show that the sequence {s,} is bounded. From the continuous coercive function hy defined
in (2.12), we have that ho(t) > 0 for all ¢ € R by (2.13). Suppose by contradiction, there holds that
s, — +00, along a subsequence. and then, by Fatou’s lemma and u,, — u # 0 a. e. in R?, we infer as

3sn

lim ho (e P un) [up|Pdz = +o00.
n—oo R3

From part (ii) and equation (2.19) with u = 0, it follows that
~ 1 1 3sn -
(2.20) 0 <e P I(up,sn) = —||Vun|b + ?e(lfp)S”B(un) —/ ho (edp un> |up|Pde — —o0
p P R3

This contradicts the non-negativity of the expression, thus showing that {s,} is bounded above.
Moreover, by part (ii), we have

I(tn, $p) > I(un, s(u))  VneN.
In view of 7(un, s(u)) — n(u, s(u)) in WHP(R3),

f(un, s(u)) = f(u, s(u)) + on(1)

we conclude that

and consequently,

(2.21) lim inf I(up, s,) > I(u, s(u)) > 0.

n—oo

Since {n(un, sn)} C M, for sufficiently large a > 0, it follows from Lemma 2.1(i) and the fact that
IV (s 50))lp = € ([ Vanllp,

we deduce from (2.21) that {s,} is also bounded from below. Thus, without loss of generality, we
may suppose
Sp — S« € R.

As u,, — win WEP(R3), it follows that 1(uy, sp) — n(u, s.) in WHP(R3). Moreover, by P(n(uy, sp)) =
0 for all n > 1, we conclude that P(n(u, s«)) = 0. By Item (i), we have that s, = s(u) and so Item
(iii) is verified.

(iv) For every z € R3, a change of variables in the integrals gives that

Pn(u(- + 2),s(u))) = P(n(u, s(u))) = 0
and hence s,,(.4.) = s, by part (i). If f is odd, then clearly

P(n(=u,s(u))) = P(=n(u, s(u))) = P(n(u,s(u))) =0

and thus, s_, = sy. O

In what follows, we investigate several essential properties of the Pohozaev manifold

Py = {u € 5(a) | P(u) = p/RS Yl de + %B(u) _ 3/R

Lemma 2.3 guarantees that P, # (). The next lemma collects its basic features.

F(u)dx = O}.

3
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Lemma 2.4. Let P, be defined as in (1.10). Then the following hold:
1) inf ||V > 0.
(1) int |Vul,
(2) inf I(u) > 0.
uEPa
(3) 1 is coercive on Py: assume that {u,} C P, satisfies ||up| — 400, then I(u,) — +o0.
Proof. (1) Suppose by contradiction that, there exists a sequence {u,} C P, such that ||Vuy,l|/, — 0.
Then Remark 2.1 implies that for sufficiently large n,
-1
0= P(u,) > pTHVuan >0,
which is impossible. Hence inf,ep, ||[Vul|, > 0.
(2) For each u € P,, Lemma 2.3-(i),(ii) gives that
I(u) = I(u,0) > I(u, s) for all s € R.

Let 5 := In(c/||Vulp), where o is the constant provided by Lemma 2.1-(i). Then [[Vn(u,3)||, = o,
and using Lemma 2.1-(i) we obtain

~ 1 1
I(u) > I(u,s) =1 5)) > —||V $)||F = —aP > 0.
(1) 2 1w 8) = 1(3(0.9) = 5[Vl 3)15 = oo
Consequently, inf,ep, I(u) > 0.

(3) Suppose by contradiction that, there exist C' > 0 and a sequence {v,} C P, with |jv,| — co such
that

(2.22) sup I(v,) < C.
n>1

For each n € N, let
Sp 1= 1n(||anHp), Wy, = 1(Vn, —5p).

Obviously, s, — +00. A direct computation shows that ||wy||, = a and |[[Vw,||, = 1. Denote by

d:= limsup(sup / |wp|P d$>.
n—o0 ‘zeR3 JBj(z)

To obtain a contradiction, we distinguish the following two cases: non-vanishing and vanishing.

Case 1: Non-vanishing: that is 6 > 0. In this case, there exists {z,} C R3 such that, setting
Wy, 1= wp (- + 2p,), we have W, — w # 0 in WHP(R3) and @,, — w a.e. in R3. Let h,(¢) be as in (2.12)
with p = 0. Since s, — 400, (2.13) together with Fatou’s lemma yields

3 _

(2.23) lim ho(e»"™ 1y ) [Wn|P dz = +oo.

n—oo R3
Using item (2), (2.19) with p = 0, and (2.23), we obtain
0 < e PnI(vy) = e P I(n(wn, sn))

1 1 3 _
=~ 4 —eUPnBw,) — [ ho(er™ Pq
. + 2pe (wp) /]R3 o(e?™ wy,) |wp [P dx
1 1 3 _
= — + —eI"PsnB(w,) — / ho (eiswn) |t |P dx — —o0,
P 2p R3

a contradiction. Hence Case 1 cannot occur.

Case 2: Vanishing, that is 6 = 0. In this case, using Lions’s lemma, we conclude by w, — 0 in
LP(R3) for every p € (p,p*). Consequently, from (2.6) and Lemma 2.1-(ii) we obtain, for any fixed
s €R, as n — oo,

e’ 3
(2.24) —B(wy) — 0, 638/ F(er wy) dz — 0.
2p R3
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Take § > % with C as in (2.22). Since P(n(wy,sn)) = P(vn) = 0, Lemma 2.3-(i),(ii) together
with (2.24) gives, for large n,

C > I(vp) = I(n(wn, $n)) = I(wy, s5) > I(wy, 3)

1 . € 5 33
= _ePS 1 B —e 3 F(er’® d
pe + o (wy) — e /R3 (erwy) da
1 .. N
= —eP’ +o0,(1) > C,
p
again a contradiction. Thus Case 2 is also impossible. Therefore I is coercive on P, and item (3) is
proved. O

To understand the structure of Palais-Smale sequences, we employ a Brezis-Lieb type splitting
lemma. The proof is standard and follows the same lines as Lemma 2.6 in [22].

Lemma 2.5. Assume that {u,} C WYP(R3) is a bounded sequence such that u, — u a. e. in R for
some u € WHP(R3), then there holds that

lim (F(up) — F(up —u) — F(u)) dx = 0.

n—oo R3
For each a > 0, we define the infimum of I on the Pohozaev manifold P, as

2.25 o i= inf I(u).
(2:25) o= inf I(u)

Lemma 2.4-(2) guarantees that ¢, > 0. The dependence of ¢, on the parameter a is described in the
following lemma, a result that will play a key role in dealing with the lack of compactness inherent
to the problem.

Lemma 2.6. For every a > 0, let ¢, be defined as in (2.25). Then the following properties hold:
(i) The function a — ¢, is continuous on (0,00).
(ii) The function a — ¢, is nonincreasing on (0, 00).

Proof. We first establish the continuity of the mapping a + ¢,. Let {a,} C (0,+00) satisfy a, —
a > 0. It suffices to prove that

(2.26) lim ¢, = cq.

n—oo

Fix u € P, and define

1
Uy = (a—">pu65’(an), n € NT.
a
Clearly u, — u in WHP(R?). By Lemma 2.3-(ii),(iii) there exists s, € R such that 7(u,,s,) € Pa,
and s, — 0 as n — oco. Consequently, when n — co, we get
(2.27) Nty $n) — n(u,0) =u  in WHP(R3).

From (2.25) we obtain
lim sup ¢,, < limsup I(n(un, sn)) = I(u),

m—0o0 n—oo
hence
(2.28) limsup ¢,,, < ¢q.
n—oo

On the other hand, for each n € N we can choose v, € P,, with
1
(2.29) I(vy) < cq,, + —.
n

Set t,, = (i)%, then t,, — 1 and
Uy = vn(+/tn) € S(a).
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By Lemma 2.3-(i) there exists s;, € R such that 1(0,, s5,) € P,. Using Lemma 2.3-(ii) together with
(2.29) we obtain

cq < I(U(ﬁm S@n)) = i(ﬁm Sﬁn)
< i(Un,Sﬁn) + ‘f(f}n, S5,) — f(vn, s@n)‘
< f(Un,O) + ’f(’an’ Sf)n) - f(vna Sf)n)‘
S can + % + ’f(’ljn’ sﬁn) - f(vn’ S’Dn)}
Denote by
C(n):= ‘[(n(@n, s@n)) — I(n(vn, s@n))‘.
If we show
(2.30) C(n) =0 asn— oo,

then the previous inequality yields

cqe < liminfe,,,
n—oo

which together with (2.28) gives lim;,, ;oo ¢4, = Cq.
We now prove (2.30). Observing that n(u(-/t),s) = n(u, s)(-/t), we have

1, 4 1
Cm) = |67 = 1) [ 1955, do 4+ 505 = 1B (0(wns55,)
p R3 2p
_ (ti — 1)/ F(n(vn,s;}n)) d:c‘
R3
1
S M\ (R T TCC)

+ |1€731 — 1] / |F(77(Un,s@n)) ‘ dx
]R?’

1 o5 1
= ];ltf’z P —1A(n) + %lff’z = 1B (n(vn, 53,)) + [t — 1D (n).

Since t, — 1, it is enough to verify that the three quantities
(2.31) limsup A(n), limsup B(n(vn, s5,)), limsup D(n)
n—oo n—oo n—oo

are finite. This will be accomplished through three claims.

Claim 1. The sequence {v,} is bounded in W1?(R3). To this aim, by (2.28) and (2.29), we have
limsup,,_,o I(vyn) < ¢q. Because v, € P,, and a,, — a, an argument similar to that in Lemma 2.4-(3)
shows that {v,} is bounded in W1P(R3).

Claim 2. The sequence {@,} is bounded in W1P?(R3), and moreover, there exist a sequence {y,} C
R? and v € WP(R3) such that, along a subsequence, ¥, (- + yn) — v a.e. in R3,

The boundedness of {9, } follows from Claim 1 and ¢,, — 1. Define

p:=lim sup(sup / |0y, [P d:c).
n—=o0 MyeR3 JBi(y)
If p = 0, Lions’ lemma [26] implies that @, — 0 in LP(R3). Consequently,
/ [0 |P dx = / T (tn, )P dor = t_?’/ [T |P dz — 0.
Since P(v,) = 0, Lemma 2.1-(ii) yields

1 3 ~
VuplP doe + —B(v, :/ F(v,)dx — 0.
Lol dat 5B =5 [ Fw)
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By Remark 2.1 we then obtain, for large n,
1
0= P(vy) > / Vo, P dz > 0,
D JRr3

a contradiction. Hence p > 0 and Claim 2 follows.

Claim 3. limsup s, < +00. Assume, after passing to a subsequence, that
n—oo

(2.32) 85, = +00  (n — 00).

By Claim 2 we may further assume (subsequence) that

(2.33) Op(-4+yn) = v#0 a.e. in R3.
Lemma 2.3-(iv) together with (2.32) gives that

(2.34) S5 (+yn) = Stn — +00.
Moreover, Lemma 2.3-(ii) implies

(2.35) I(Bn (- + Yn)s S5, (-4m)) = O

Combining (2.33), (2.34) and (2.35) and arguing exactly as in the derivation of (2.19) leads to a
contradiction. Thus Claim 3 holds. From Claims 1 and 3 we conclude that

25%p _
lim sup||1(vn, 5,)|| = limsup |[e 7 v, (e" )
1
3517” p SSﬁn p ;
= limsup / Ve v vp(emx)| +|e 7 vy(enx)| do
n—oo R3

%
= lim sup (/ e |V (2)P + |vn ()P d:c)
R3

n—o0

< +00.

Consequently limsup,,_,., A(n) < +oo, and by (f1)—-(f2) also limsup,,_,., D(n) < 4+o0o0. Using the
HLS inequality (2.4) and GN inequality (2.3), we obtain
2 2p—1
B(n(vn; 53,)) < Cl[n(vn; s5.) s < Cal[Vnlvn, s5,)[[,"
hence limsup,,_,, B(n(vy, s5,)) < +oo. Since ¢, — 1, the three terms in the definition of C(n) tend
to zero; therefore C'(n) — 0 as n — oco. This proves the continuity of a — ¢,.
We now show that a — ¢, is nonincreasing on (0,400). It suffices to prove that for every ¢ > 0
and every pair a > a’ > 0,

Ca Z Cqr F €.
By the definition of ¢, there exists v € P, with
(2.36) I(v) < co + %
Fix o > 0 and define v, (z) = v(x) ((0z), where ( is a radial function in C§°(R3) satisfying
L, lz] <1,
((z)=4¢€(0,1), 1<]z|<2,
0, |x| > 2.

Clearly vy, — v in WHP(R3) as 0 — 0. Then by Lemma 2.3-(iil) we infer to
(2.37) N(Vo, 50,) — N(v,0) = v in WHP(R3).

Thus, we can can choose o > 0 sufficiently small, such that

(2.38) I(n(vo, s,)) < I(v) + Z
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Next, pick u € C§°(R?) with supp(u) C By44/5(0) \ By, (0) and set
D _ p 1
o (2l
[Jullp
For any given b < 0, we define w, = v, + n(@,b). By construction, one has
supp(vy) N supp(n(i, b)) = 0,

and a direct computation shows wy, € S(a). Lemma 2.3-(i) yields s., € R such that n(ws, S.,) € Pa.
Moreover, an argument analogous to the one leading to (2.20) proves that {s,,, } is uniformly bounded
in b. Consequently, as b — —oo,

S, + b — —o0,

which implies that,

(2.39) (@, 84, +b) — 0 in LP(R3).

By Lemma 2.1-(ii) we obtain

(2.40) /RS F(n(, su, + b)) dz — 0.
Furthermore,

(2.41) IVn(a, sw, + )|, =0, (@, sw, + b)H%p — 0.
In view of (2.6) we also have

(2.42) B(n(@, sw, + b)) — 0.

Combining (2.40)—(2.42) yields

(2.43) I(n(a, su, + b)) — 0.

Finally, using Lemma 2.3 together with (2.38) and (2.43) we obtain

Cq < I(ﬁ(wb, wa))
Vo, Swy)) + 1 (n(0(@,1), 5,))
)) + I(n(ﬂ, Sy T b))

By (2.36) this gives ¢, < ¢ + €, completing the proof of the lemma. O
Lemma 2.7. Let ¢, be defined as in (2.25). Then
Cq — +00 as a— 0T,

Proof. Consider a sequence {u,} C P,, satisfying ||u,||, — 01, that is, a, — 07 as n — oo. It is
sufficient to prove that
I(up) — 400 as n — oc.
For each n € N, set
sp = In(||Vuyllp) and wy = n(up, —sp).
Then uy, = n(wy, $p) € Pa,, with ||wy ||, = ||[unllp = 0 and || Vw,||, = 1.
_ 6

By Hélder’s inequality, w, — 0 in both LP(R3) and L5 (R3). Applying Lemma 2.1 and (2.6), we

obtain for every s € R,

(2.44) 638/ F(G%Swn) dr -0 and e°B(w,) =0 asn— oo.
R3
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Since P(uy) = P(n(wny, $n)) = 0, Lemma 2.3 together with (2.44) implies
I(un) = I(n(wn, sn)) = I(n(wy, s))

1 1 3
= — Ps _ sB _ —3s F S d
pe + 2pe (wp) —e /]RS (er*wy) dx
1
= Eeps + o, (1).
Since s > 0 can be chosen arbitrarily large, we conclude that I(u,) — +00 as n — oo, which yields
the desired result. O

The next lemma provides a refined description of the behavior of the Lagrange multiplier A and its
relationship with the energy level c,.

Lemma 2.8. Let (u,\) € S(a) x R be a solution of the problem
—Apu+ P+ (2|7 [uP)uP Tt = f(u) i R?,
with I(u) = cq.
(i) If A > 0, then there exists 6 > 0 such that
Ca > Cq  foralld € (a,a+9).
(i1) If A < 0, then there exists § > 0 such that
Ca < Cq foralld € (a,a+9).
Proof. Since (u, A) satisfies the equation and u € P,, we have the identity
(2.45) I'(u)u = =Xullb = —Xa?.
For t > 0 and s € R, define the rescaled function
ut,s :=1(tu, s) € S(ta),

and consider the two-parameter functional
1 1 3
K(t,s) = I(uts) = tpeps/ |Vul|P do + —t*e*B(u) — 6_38/ F(ter®u) du.
p R3 2p R3

A direct computation gives
0K (t,s 3 3
OK(t5) = tp_leps/ \VulP dx 4 t*P~1e* B(u) — 6_38/ f(ter®u)er®udx
ot R3 R3
(246) = t_lll(ut,s)uts.
Moreover, we have the convergence

(2.47) ugs —u  in WHP(R3)  as (t,s) — (1,0).

In the case A > 0, by (2.45), we can obtain I'(u)u = —Xa? < 0. By (2.46)-(2.47), there exists € > 0
such that

0K (t
3(2578) <0 forall (t,s) € (1,1 + €] x [—¢,€].
Applying the mean value theorem, for any ¢ € (1,1 + €] and |s| < ¢, there exists « € (1,¢) such that

0K (a, s)
ot

By Lemma 2.3-(iii), we have sy, — s, = 0 as t — 17. Thus, for a’ > a sufficiently close to a, we set

K(t,s)=K(1,s)+ (t—1) < K(1,s).

/

t:= e €(1,1+¢ and s:=s4 € [—¢€,€l.
a
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Since u s € S(ta) = S(a’), we obtain
car < I(urs) = K(t,5) < K(1,s) =I(n(u,s)) < I(u) = ca,

which proves ¢y < ¢q.
In the case A < 0, the argument is analogous to the case A > 0 and we omit it for brevity. O

An immediate consequence of Lemmas 2.6 and 2.8 yields the following result.

Corollary 2.9. Let (u,\) € S(a) x R be a solution of the problem
—Apu+ P+ (2|7 [uP)uP Tt = f(u) in RP,
and suppose that I(u) = c¢q. Then A > 0. Moreover, if A > 0, we have
Cq > Cq if a' > a.

3. PROOF OF THEOREMS 1.2-1.3

This section is devoted to the proof of Theorems 1.2 and 1.3. To achieve this, our first step is to
construct a Palais-Smale sequence for the constrained functional I|g(,) at the energy level c,. This
sequence will be constructed to lie entirely within the Pohozaev manifold P, and to possess a specific
refined property.

3.1. Proof of Theorem 1.2. For any a > 0 and u € WP(R3), we define an auxiliary functional
J: WP(R3)\{0} — R by

- - DPSu Su 1 35y
(3.1) ) = F(u,sa) = © | Vullp + © B - / Fe’ u)dz,
p 2p R3

€3Su

here, s, € R is provided by Lemma 2.3 and satisfies the condition P(n(u,s,)) = 0. The next result
can be established through a standard variational argument.

Lemma 3.1. The functional J is C'-differentiable. Furthermore, for every v € C§°(R3), we have

- p p 2
J’(u)w:eps“/ \Vu|p2Vu-dex+eS“/ / ‘u | |u | ( ) ( )da:dy
R3 R3 |x—y|

354 Ssu, ), osu d
/Rg fler ™ u)er ™ pdx
(3:2) = I'(n(u, su))0(, sy).

For a fixed a > 0, we define the restriction of .J to the sphere S(a) by

(3.3) U= Jlg) : S(a) >R
Clearly, ¥ € C1(S(a),R) and it satisfies
(34) V' (u)p = T (w)o = I'(n(u, )0, ).

for any u € S(a) and ¢ € T,,5(a), here we introduce the definition of tangent space at a point u € S(a)
by

T,S(a) == {U c WP(R?) / lulP~2uvde = O} .
R3

Our aim is to construct a Palais-Smale sequence for the constrained functional I| S(a) at the energy
level ¢,, with the additional property that each term lies in P,.

For this purpose, we introduce some basic concepts and tools from [19] and [4] regarding constrained
critical point theory and the construction of Palais—Smale sequences. These preliminaries will provide
the necessary theoretical framework for our subsequent proofs.
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Definition 3.2. Let M be a metric space and let B C M be a closed subset. Let § be a class of
compact subsets of Ml. We say that § is a homotopy stable family with closed boundary B if the
following two conditions hold:

(i) every set in § contains B;
(ii) for every B € § and every continuous map ¢ € C([0,1] x M, M) satisfying
p(t,z) =x  forall (t,z) € ({0} x M) U ([0,1] x B),
one has p({1} x B) € §.
The case B = is allowed.

The following lemma guarantees the existence of a Palais—Smale sequence with the desired analytical
properties, which is essential for applying variational methods in the proof of our main result.

Lemma 3.3. Let § be a homotopy stable family of compact subsets of S(a) (with B = 0) and define

Ca 3 = ]ijréfggleag)( U(u).

If cag > 0, then there exists a Palais-Smale sequence {un,} C Py for I|gq) at the level ca3. In
particular, if § consists of all singletons contained in S(a), then cq = cq5 and {u,} constitutes a
Palais—Smale sequence for I|g,) at the energy level c, .

Proof. Let {A,} C § be a minimizing sequence for I|g(,) at level ¢, 3. Define the continuous mapping
H:[0,1] x S(a) — S(a), H(t,u) = n(u,tsy),
whose continuity is guaranteed by Lemma 2.3-(iii). Observe that H(t,u) = u for every (t,u) €
{0} x S(a). By the homotopy-stability property of § we obtain
D, :=H(1,A,) = {n(u, su) |u € An} €35
Clearly D,, C P, for all n € N*. Since ¥(n(u,s,)) = ¥(u) for each u € A,, it follows that

U(u) = max U(u) —
max (w) max (u) — a3,

so {Dy} C § is also a minimizing sequence for ¢, 3.

According to [30, Lemma 2.17], there exists a Palais-Smale sequence {v,} C W1HP(R3) for ¥ on
S(a) at the level ¢, 5. Consequently, as n — oo,
(i) W(vn) = Cap;
(i) dist(vp, Dyn) — 0;
(iii) ||d¥(vp)|v,,« — O, where || - ||, « denotes the dual norm of (T, S(a))*.

We denote by

Sn = Sup, Up = 1(Vn, Sn) = N(Vn, Su,,)-

We shall verify that {u,} C P, is a Palais-Smale sequence for I at the same level ¢, 3.

Claim 1. There exists a constant C' > 0 such that e ?» < C for all n € NT. Indeed, from the
definition of s,,
—PSn vaan
IVunlp
Because {un} C P,, Lemma 2.4-(i) implies that {||Vu,||,} is bounded below by a positive constant.
Hence it suffices to show that sup,, ||[Vu,]||, < co.
For each n € N, D,, C P,, we have that

I = v — .
gg(w max (u) = ca

Lemma 2.4-(iii) implies the uniform boundedness of {D,,} in W1P(R3). Since dist(v,, D,,) — 0, we
obtain sup,, ||[Vu,||, < oo, which proves the claim.
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Claim 2. {u,} is a Palais-Smale sequence for I on S(a). Since {u,} C P,, we have I(u,) =
U(up) = ¥(vy) = cq5. It remains to estimate the constrained gradient of I at w,.
For any ¢ € T, S(a), it follows from (2.11) that

/ ]vn]p U (Y, —Sp dx—/ |vn P~ 2y

= ‘e v (en |p7 ann(es"z) P(z)dz

e ) da

/|u (P2 (2 (2) d= = 0
whence 1(¢, —s,) € T, S(a). By Claim 1,
In(, —sa) || < max{C"?, 1}[|¢].

Using Lemma 3.1, we obtain

AL (un)llunx = sup —|dI (un)[¢]]
YeTy, S(a)
l[4lI<1

— sup |dI(7](vn,8n))[T7(7l(¢a _Sn)asn)”
¢€Tun5(a)
l4ll<1

= sup  |dW(va)[n(¢); —sn)l]
TJJETvnS(a)
lyll<1

< ¥ (vn)llon«  sup [0y, —sa)l
YTy, S(a)
[¥ll<1

< max{C"?, 1}[|dT (vy)||v, -
Since [|d¥(vy)||v,,« — 0, we conclude ||dI(up)||u, « — 0, proving Claim 2.

Conclusion. The collection of all singletons contained in S(a) is a homotopy-stable family with
empty boundary 8 = (). When f is odd, choosing § to be this family, condition (f;) together with
Lemma 2.3-(iv) ensures that ¥ is even. We may then select a minimizing sequence {4, } C §, which
yields a corresponding minimizing sequence {D,} C §. Repeating the argument above produces a
Palais-Smale sequence {u,} C P, for I|g(q) at the level ¢, 3.

Finally, we verify that ¢, 3 = c,. By definition,

Ca§ = 1%%5162%\1/(11) uelgf )I( n(u, sy)).
For any u € S(a), by n(u, s,) € P,, we have I(n(u, s,)) > cq, hence ¢, 5 > ¢,. Conversely, for any
u € Po, I(u) = I(n(w,0)) > cq5, 50 ¢o5 < ¢q. Therefore ¢, 5 = ¢,, which completes the proof of the
lemma. g

Lemma 3.4. There exists a* > 0 such that for any a € (0,a*), if {u,} is a Palais—-Smale sequence
at the level c,, then up to a subsequence, there exist u € WIP(R3) and X\ € R satisfying u, — u in
WLP(R3) and

A+ X+ (a7 Pt = fu),
Proof. Let {u,} C P, be a Palais-Smale sequence for I|g(,) at the level c,. Then, as n — oo,

I(uy) — cq, I/(Un)’s(a) — 0.
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Since {u,} C P,, Lemma 2.4-(iii) implies that {u,} is bounded in W1?(R?). By [10, Lemma 3],
there exists a sequence {\,} C R such that, for any {z,} C R?,
(3.:5)  —Apun(- + 2n) + Apun(- + Zn)p_l + (|55'|_1 # |un (- 4 2n) [P)un (- + Zn)p_l — flun(- +21)) = 0
in (WHP(R3))*, where
1
Ap 1= —( £ (up)uny, dx—/ \Vun\pdx—B(un))
aP \ Jgrs3 R3

Owing to (f1)—(f2), inequality (2.6) and the Sobolev inequality, the sequence {\,} is bounded in
R. Passing to a subsequence, we may assume \, — A for some A € R. From (3.5) it then follows that

(3.6) —Apupn + M4 (|27 un P)ul T = fuy) — 0 in (WHP(R3))*.
Define the limit
0 :=lim sup(sup / [t [P da:).
n—oo  “2eR3 J Bi(z)

We claim § > 0. Otherwise, if § = 0, then Lions’s lemma yields u,, — 0 in L4(R?) for every
q € (p,p*). Lemma 2.1 together with (2.6) gives

/ Flun)dz >0,  Blun) — 0.
R3
Since P(uy) = 0, we infer to

1 3 ~
Vu,|? de = ——B(u,) + — F(u,)dr — 0.
[, el de == B + > [ Fu)

From (f1)-(f3) we also obtain [p3 F(uy) dz — 0, whence I(uy) — 0, contradicting I(u,) — cq > 0.
Consequently, up to a subsequence there exist {z}} € R and u! € WP(R3) \ {0} such that

Un(- + 2L) = ub in WHP(R3),
un(-—i—z}L) —ul in quOC(R3), Vg€ p,p),
un(-+2) — ub ae. in R3.

Set vy, == up (- + 21). Standard arguments show that, for any ¢ € C§°(R3),

| iweds— [ s ds

p p—2 p =21
// [0 (@) Plon P o)) 4 // ju @) Pl ()Pt e w)
R3xR3 |m—y| R3 xR3 \fU—y\
Thereby, by (3.6) we obtain

(3.7) —Aput + AP+ (o el ) () = ).

Thus u! is a nontrivial solution of (3.7). Moreover, u' satisfies the Pohozaev-type identity

3—P w1 5 1 1 3A 1
(3.8) vl + 5B - 3/Rs F(u) de = =2 '
Multiplying (3.7) by u' and integrating shows that
(3.9) Va2 + B(u! / F(udyul de = —Alju 2.
From (3.8) and (3.9), we can deduce by

1 3 ~

3.10 o[l Bl—/Fld:O
(3.10) ||VUI|p+2p (u’) o Jos (u”)dz =0,

ie. P(u')=0.



ON p-LAPLACIAN SCHRODINGER-POISSON SYSTEMS IN R3 23

For each n € Nt set w} := u, —ul(- — 2L). Then w}(- + z1) — 0 in W1P(R3) and

(3.11) a? = lim [luwh(-+25) +ul [ = ul g + lim [leb]2.

From Lemma 2.5 we drive that

(3.12) lim [ F(un(-+ 2))) dzx :/ Fu')de + lim [ F(wl(-+2}))de.
n—00 Jp3 R3 n—0o0 Jp3
Moreover, by Proposition 2.1, we have
(3.13) lim B(un(- + 21)) = B(u') + lim B(wl(- + 2})).
n—00 n—00

Combining (3.11)-(3.13), we obtain

_ . o . . 1
Cq = nh_}ngo I(uy,) = nlgrolo I(un(-+ 2,))

(3.14) = I(u') + lim I(wy(- + 2,))
n—oo
= I(u') 4+ lim I(w}).
n—oo
Next, we prove lim I(w).) > 0. In fact, if lim, o I(w}) < 0, then {w}} is non-vanishing, and
n—oo
passing to a further subsequence, there exists {22} C R? such that
lim lw P da > 0.
n—oo BI(Z%)

P (R?), we have |22 — 2| = co. Up to another subsequence, w} (- +22) —
u? in WHP(R3) for some u? € WHP(R3). Notice that

w4 22) = wh(+ 22 bul (4 22—z~ in W(RD).

Because w} (- +z1) — 0in L

Arguing as before, from (3.5) we infer P(u?) = 0. Moreover, using (2.13), we deduce to

1 1
I(u?) = ’ /R3 IVu? [P dz + %B(uQ) - /RS F(u?) dx

_p—1 3 ~ _ W2 dos

= WB(UQ) pz/le F(u?)dx /RS F(u®)d

_ p2;2lB(u2) ])32/]RS [f(uZ)uz _ p(S;_p)F(UQ)} dx
>0

Define w? := w} —u?(-— 22) = up, —u' (- —z}) —u?(- — 22). Thus, Brezis-Lieb’s lemma and Proposition

2.1 imply that
2

IV2liz = lim [VualZ - 3 [V
i=1

lim
n—oo
and
: 1y _ 7(,2 . 2 . 2
0> nl;rgo I(w,) = I(u®) + nhﬁrgo I(w;) > nlg& I(w;).

Proceeding inductively, we can obtain an infinite sequence {u*} C S(m)\ {0} with P(u*) = 0 and

k
Z V'[P < lim ||[Vup |} < 400 for every k € N.
This is impossible because Lemma 2.4(2) implies the existence of a 6 > 0 such that ||[Vul|[h > ¢ for all
u € Py, with P(u) = 0. Hence the claim is proved, and (3.14) gives

(3.15) ca > I(u').
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Set m := |lut||, € (0,a]. Since P(u') =0, we have u! € P,,. Lemma 2.6 together with (3.14) yields
Cq 2 I(ul) > Cm 2 Cq,

whence ¢, = I(u!) = ¢, and lim,, o I(w}) = 0. Corollary 2.9 then gives A > 0.
In the sequel, we show the positivity of A\. To this aim, we note that, from (f1)-(f2), for any § > 0
there exists Cs5 > 0 such that
[F ()] < O[tP + Cslt|?, vt e R,
where ¢ € (p,p*) is the exponent appearing in (f1). Using (3.10) and the Gagliardo—Nirenberg
inequality(2.3), we can find constants C(p), C(q) > 0 for which

2 39—3p pPg—3q+3p

IVulllf — C@)sIVu [Pllu'lly* — Ca)Csl[Vulllp * llu'll,

3 ~ 1
<Ivatlp -2 [ Futydo = - B! <o

Choosing § > 0 sufficiently small we obtain

3q—3p Pg—3q+3p

Gsl|Va'llp = C)Cs |V, * 'l * <0,

which implies
Pq—3q+3p p2—3q+3p

Cllu'lpy, * 2|Vull, *

i.e.
Pq—3q+3p —p?+3¢—3p 1
(3.16) lullly ™ (IVull, 7 ==
Cs

for some constant Cs > 0. Because ¢ € (p, p*), inequality (3.16) shows that if ||ul[|, is small enough,
then ||[Vul||, must be large.
On the other hand, multiplying (3.8) by 6/3 and subtracting (3.9) gives, in view of (f4),

560 — 6p

0—p 360 — pd — 3p
St = -

3p
(3.17) + /Rg(f(ul)ul — 0F (u'))dx

< —||Vu' [P+ ——B(u).

Recall that 0 € (p,p*). Combining (3.17) with (2.6) and Young’s inequality yields
360 — pd — 3p

3(0—p)
033 —p) —3p, o 1 3p— 0B —-p) o 1 e =

1 <—————||[Vu'|P+C | ————=|IVu |+ C Pt
(319) < BRIVl + 0 (R 2o vy + ol

0B —p)—3p, o 1 M=
= — -7 - v p C p—1
60 —p) V| + Csllu(lp

Choose a* > 0 sufficiently small. For any a € (0,a*) we have m = |Jul||, < a, hence |Ju!|, is small;
by (3.16) this forces |[Vul|, to be large. Because § < p*, the right-hand side of (3.18) is negative,
and consequently A > 0.

It remains to show that m = a. If m < a, the fact A > 0 together with Lemma 2.8 would give
Ca < Cm, contradicting ¢, = ¢,,. Hence m = a, and therefore u, — u' in LP(R3). Using Holder
inequality, we see that u, — u! in LI(R3) for each ¢ € (p,p*). By Proposition 2.1 we get

(3.19) B(uy) — B(ub).

IVl I} + B(u')

=Alutllp < IVl [} + Crll v [l 57~
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Applying (2.6) and (f1)-(f2), we also obtain

(3.20) / (Flun) — F(u)))u dz — 0.
R3
Lemma 2.1-(iii) implies that
(3.21) fun) (un — ut) dz — 0.
R3

From (3.20) and (3.21) we infer to

(3.22) fup)up de — fuhu! da.
R3 R3

Finally, combining (3.6), (3.7), (3.19) and (3.22) we can deduce that

lunlly = [lutllpy [ Vually = [V ||y,
and by the Brezis-Lieb lemma we have that u, — u' in W1P(R3), completing the proof. O

Proof of Theorem 1.2. Combining Lemmas 2.6, 2.7, 3.3 and 3.4, we complete the proof of Theorem
1.2.

3.2. Proof of Theorem 1.3. We now turn to establishing the existence of infinitely many radial
normalized solutions for (1.1) under the assumption that the nonlinearity f is odd. First, we introduce
some relevant notation and concepts.

Define the transformation o : Wy ?(R3) — W, (R3) by

o(u) = —u.
Given a subspace W C W,P(R3), a set A € W is called o-invariant if 0(4) = A. A homotopy
¢ :[0,1] x A — A is said to be o-equivariant if
o(t,o(u) =o(e(t,u)), YV (t,u)€[0,1] x A.
From [19], we have the following
Definition 3.5. ([19]) Let M be a metric space and let B C M be a closed o-invariant subset. A

class § of compact subsets of M is called a o-homotopy stable family with closed boundary B if the
following hold:

(1) Every A € § is o-invariant;

(2) Every A € § contains B;

(8) For each A € § and every o-equivariant homotopy ¢ € C([0,1] x M, M) such that
o(s,u) = (s,o(u)), Vsel0,1], ueM,

and
p(s,2) =z, V(s,z) € ({0} x M) U ([0,1] x B),
one has ({1} x A) € §.

Since f is an odd function and by Lemma 2.3-(iv), the functional ¥ = f|5(a) :S(a) = R (see (3.3))
is even with respect to u € S(a). Consequently, ¥ is o-invariant on S(a). Following an approach
analogous to Lemma 3.3, we establish the following result.

Lemma 3.6. Assume that F is a o-homotopy stable family of compact subsets of S(a) N W, (with
B=10). Set

Ca,7 = inf max¥(u).
DeF ueD

If ca,7 > 0, then there exists a Palais-Smale sequence {un} C Poa MW, for I|g)nw, at the level cq 7.
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Lemma 3.6 ensures the existence of Palais—Smale sequences, lying in P,, for the constrained func-
tional I S(a)nw,- In the sequel we construct a sequence of o-homotopy stable families of compact
subsets of S(a) N W, (with B = 0).

Let {e/,}°2; be a Schauder basis of W1P(R3) (see e.g. [42]). Set

%z/ e (g(x)) dug,
O(N)

where O(N) is the orthogonal group on R? and du, denotes the Haar measure on O(N). After

deleting possible repeated elements, {e, }5° ; becomes a Schauder basis of WP (R3). Without loss of
generality we may assume ||e,|| = 1 for every n € N, and we write

Ly, := span{ey, ..., ex}, Ly :=span{e; : 1 > k + 1}.
Clearly WP (R?) = L, @ Li for all Kk € N. We shall use genus theory to prove the existence of

infinitely many solutions; the precise definition of genus is recalled below.

Definition 3.7 ([37]). For any nonempty closed o-invariant set A C WHP(R3), the genus of A is
defined by

0, if A=0,
v(A) = inf{n € N : 3 an odd continuous map ¢ : A — R™\ {O}},
400, if mo such map exists.
Define the collection
Yo :={AC S(a)NW, : Ais compact and o-invariant}.
and for each k € N* set
Yop ={A€Xq:v(A) >k}

We observe that X, ; # 0. Indeed, for any k € Nt, we have S, ;, = S(a) N Ly, C X, Theorem 10.5 of
2] gives v(Sqk) = k. Since k < k + 1, we obtain y(S, 1) =k < k+ 1 = 7(Sgk+1); hence the genus is

strictly increasing with k.
Introduce the minimax levels

3.23 ok = inf U (u).
52 o= 40y )

Because ¥ k1 C X4 for every k, we have

Ba,k < /Ba,kJrl'
For any A € ¥, and u € A, Lemma 2.3 guarantees a number s, € R such that n(u, s,) € Pq.
Consequently,

U(u) = I(u) = I 2)) > inf I(v) >0,
ey ) = ma T () = g nlo ) 2 J2f 1)

0 fq,r > 0. The next lemma describes the asymptotic behaviour of the sequence {3, }.
Lemma 3.8. For each a > 0, let 3,1, be defined by (3.23). Then Bok < Bak+1-
Proof. Suppose by contradiction that 8,5 = Bqr+1- Then there exists A € ¥, ;41 such that
I = .
max I(7(u, su)) = Bak

However, by the monotonicity of genus, v(A) > k+1 > k = ~(S,x), while Sq; € ¥, and
maxyes, , (4, su)) = Bak- This contradicts the fact that the minimax energy of a set with higher
genus should be greater than that of a set with lower genus. Therefore, 3,1 < B4,%+1, which implies
that the energy is strictly increasing. O
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Lemma 3.9. For each a > 0, if there exist solutions u; and u; such that u; = u;, then I(u;) # I(u;).

Proof. For any ¢ < j, from the fact that the energy is strictly increasing, we have 8,; < B4,;. If there
exist solutions u; and u; such that u; = u;, then I(u;) = I(u;), that is, 5, = B4,j, which contradicts
Bai < Ba,j- As a result, all solutions uj are distinct. O

Lemma 3.10. There exists a > 0 such that, for every a € (0,ay), the following holds: if {u,} C
PoNW,. is a Palais—Smale sequence for I‘S(a)ﬁWr at a positive level ¢ > 0, then a subsequence converges
strongly in W, to a function u € W,., and there exists A > 0 satisfying

—Apu+ ANul2u+ (|27 uf?) [ulP e = f(u), xR
Moreover, I(u) = c.

Proof. For each a > 0, let {u,} C P, N W, be a Palais—Smale sequence for the functional I restricted
to S(a) N W, at the level ¢ > 0. Following the argument of Lemma 3.4, one obtains that {u,} is
bounded in W1P(R3). By the compact embedding W, «— LI(R3) for ¢ € (p,p*), after passing to a
subsequence we can find u € W, such that u, — u in W,., u,, — u in LY(R3),VYq € (p,p*), and u,, — u
a.e. in R3. The Lagrange multiplier principle provides a sequence {\,} C R satisfying

(3.24) — Aty + A |tn P2 up + (|x\_1 * |un|P) |t P2 — flugn) — 0 in (W),
which yields the identity

Ay = i( [ (up)uy dz — / |Vu,|P de — B(un)>
R3

aP R3

Since {u,} is bounded in WHP(R?), the sequence {)\,} remains bounded in R. After extracting a
subsequence, we may assume A\, — A for some A € R. Arguing as in the derivation of (3.7), we
conclude that

(3.25) —Apu+ AulP2u+ (|27 JulP) |l = fu).

Following the same line of argument as in Lemma 3.4, we show that u # 0. Moreover, there exists
ay > 0 such that for every a € (0, ag), the Lagrange multiplier satisfies A > 0.

We next prove that for every a € (0, aj), there holds that u,, — v in W,., and [Jul|, = ||un||, = a. In
Lemma 3.4 this was obtained from the non-increasing behavior of the map a — ¢,, a property that
is not guaranteed for 3, j; this partly explains why we work in the radial subspace W;..

By Proposition 2.1, we have that

(3.26) B(up,) — B(u),

and since u,, — u in L4(R3) for q € (p, p*), arguing as in the proof of (3.19)-(3.22), we can derive as
(3.27) /]1&3 (f(un) = f(u))udz — 0.

Lemma 2.1-(iii) gives

(3.28) » f(un)(up —u)dz — 0.

Combining (3.27) and (3.28), we obtain

(3.29) fup)up de — fw)udz.
R3 R3
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From (3.24), (3.26) and (3.29), we derive

lim ( |Vuy,|P de + /\/ |un|P d:c)
R3 R3

n—o0

= lim ( f(up)uy, do — B(“ﬂ))

n—oo

/ f(u)udr — B(u)
:/ |Vu|P de + /\/ |ulP dx.
R3 R3

Since A > 0, the previous equality implies
IVunllp = IVullp, — lually = lull, = a,

and by the Brezis-Lieb lemma [44] we conclude that w, — w in W,. Consequently, the convergence
I(up) — I(u) = c follows directly. O

Proof of Theorem 1.3. For each fixed k € NT the set ¥, 4 is non-empty and 8, < +oco. Given
a > 0, Lemma 3.6 yields a Palais-Smale sequence {uf}°%, C P, N W, for the restricted functional
Ils(a)w, at the level B, > 0. Applying Lemma 3.10, we can find numbers a; > 0, a function
u € W, and a Lagrange multiplier A\; > 0 such that, for every a € (0, ay),

—Apug 4 Mgl P2 + (|27 Jugl?) g PP = f (ug), z € R?,

and I(ug) = Bq k. Lemma 3.8 tells us that the minimax values S, are strictly increasing in &, while
Lemma 3.9 guarantees that distinct indices k give rise to distinct solutions. By Palais’s principle of
symmetric criticality [35], every critical point of I in the radial subspace W, is in fact a critical point
in the full space W1P(R?). Consequently, each uy € W, solves (1.1) with A; > 0 at the energy level
Ba,k, and (1.1) possesses infinitely many radially symmetric solutions whose energies tend to infinity.
This completes the proof of Theorem 1.3. U

4. PROOF OF THEOREM 1.4

In this section we deal with the Sobolev critical case f(t) = |t[P"~2t under the assumption x > 0.
To establish Theorem 1.4, we note that the critical Sobolev nonlinearity causes the functional I to be
unbounded from below on S(a). Following the idea of [18], we apply a truncation method to control
the influence of the critical term. This procedure allows us to define a modified functional that is
bounded from below.

Recall that for any u € S(a), the constrained functional of ( 1) on S(a) is defined by

(4.1) I(u) = /R Vulrds - - /R /R [u(z ’x’jj“

By (2.3) and (1.13), we obtain

1 o1 v 1 2
I(u) > / |VulPdz — Cpra |VulPdz ) — 3 / |VulPdx
(4.2) D Jr3 R3 p*S35 \JR3
= o(Iul),

where

Observe that the function
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attains a unique positive maximum at a point ¢ty > 0, and h(tg) > 0. If kCpa?’~1 < h(tg) =: ¢, then
g also possesses a positive local maximum at £y, and there exist numbers 0 < Ry < Ry such that

g(t) <0 for 0 <t< Ry, g(t) >0 for Ry <t < Ry, g(t) <0 for t > Rs.
Using these radii Ry, Ry > 0, we define a cut-off function £ € C*°(R™, [0, 1]) by

1, 0<t< Ry,
) =
0, t> Ro.
We introduce the truncated functional as
NE
(4.3) 1" (u) = |VulPdr — / / z)Plu(y)l” PRI qdy — M
R? 2p Jos Jrs |z —yl p R3

and note that I7 € Cl(Wl’p(R:s),R). By (4.3), we have
I"(u) > g" (| Vull,),

where ,
t t .
gt (t) = — — KCpa*~'t — L):;tp .
p p*SE

From the definition of ¢ and if kKCpa?~! < ¢, we observe that for g7 (t) = g(t) < 0 for 0 < t < Ry

and g7 (t) > 0 for t € (Ry,+00), and when ¢ € (R, +0oc), one has g7 (¢) % kCpa®~1t > 0. In the
sequel we always assume that

¢
(4.4) 0<ka®? ! <a:= o

Without loss of generality, in the following discussion we can take that Ry > 0 is small enough such
that

tP P
(4.5) — - -
p p*SB—p

>0 forte[0,R)] and Ry < S7.

Remark 4.1. From the above arguments, we see that, if u, € S(a), and |Vuy|l, = 00 as n — oo,

we have
Vo, |Pde — — / / [un ()l (9) 7 dxdy
/ | | 2p Jgrs Jrs |z — |

1 2p—1 z
> — |Vup [Pdx — Cpra®? |Vuy,|[Pdx
P JRr3 R3

— +00,

which implies that IT is coercive on S(a). Furthermore, if I (u) <0, then ||Vul|, < Ry and I(u) =
I (u).

Lemma 4.1. Under the condition ka*’~' < «, then the truncated functional IT|37,(a) satisfies the
(PS)q condition for any d < 0.

Proof. Let {u,} C S,(a) := S(a) N W, be a Palais-Smale sequence for I’ at a level d < 0. To
establish the lemma, it suffices to prove that {u,} possesses a convergent subsequence in S,(a). By
the coercivity of I7 on S(a) (see Remark 4.1), the sequence {u,,} is bounded in W,. Moreover, for all
sufficiently large n, we have ||[Vuy||, < Ri. Due to the construction of I7, the same sequence {u,}
forms a bounded Palais-Smale sequence for the restriction I| Sr(a); Namely,

(4.6) I(uy,) — d and HI'\ST(G)(un)H — 0.
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Up to a subsequence, there exists u € W,. such that
Up — u  in W,
up — u  a. e. in R3,
up —u in LI(R3) for ¢ € (p, p*).
Arguing as in (3.5), we obtain
(4.7) —Apuy + Ml — k(|27 un [P)ul T — [un | "2, — 0 in (W),

with
A\, = 1(/ ]un]p*dx — / |V [Pdx + /iB(Un))'
aP \ Jgs3 R3

The boundedness of {u,} in W, implies that {\,} is bounded in R. Consequently, passing to a further
subsequence, A, converges to some A € R. We claim that u # 0. If, on the contrary, u = 0, then
Lions’ lemma yields

lim |up|%dx =0 for all g € (p,p*).

n—-+4oo R3

Hence, by (2.6) and (4.5),

1 1
I(un) = 17 (up) > p/Rg Vunldi = Cyrlun [ — — (/R VunlPdz) "7

3

prST
> —Cpﬁllun\liﬁ — 0,
5

which contradicts I(u,) — d < 0. Therefore u # 0. Using the weak convergence u,, — u in W, and
arguing similarly to (3.7), we deduce that u € W, satisfies

4.8 —Apu+ M P — k(2|7 ulP)uP = up_2 x € R3.
( p

According to [38] u fulfills the Pohozaev-type identity

3 «
(4.9) / \VulPdz +/ |u[Pdz —73( ) — / ulP" da = 0.
R3 R3

p
Multiplying (4.8) by u and integrating gives

(4.10) / ]Vu|pdx+)\/ |ulPdx — kB(u / |ulP"dz = 0.
R3

Combining (4.9) and (4.10), we find

(2p— 1)k
A Pdr = ————B(u).
[ lupde = B2 )

Since u # 0 and k > 0, it follows that A > 0.
We now prove the strong convergence u, — u in W,.. By the concentration-compactness principle
[26, 27], we have

Vual? = p > [Vl + 3 by ual” = v =l + 3 id,,
ieJ €T

P

with >, Vazi " < 4o00. Here p, v, i, v; are positive measures, J is an at most countable index
set, {z;} C R? are the atoms of the singular parts of y and v, and &, denotes the Dirac mass at x;.
Moreover,

b

(4.11) SvP <p; forallie J.

)
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We claim that J is either empty or a finite set. The argument is as follows. The continuous
Sobolev embedding W, < LP"(R3) together with the boundedness of {u,} in W, implies that {u,}
is bounded in LP" (R?). Hence there exists M > 0 such that

/ |un|P dz < M for all n € N.
R3

Since v is the weak limit of |u,|P”, for any measurable E C R3,

/du:lim/ | |P" da < limsup/ Jun|P" dz < M,
E n JE n E

showing that v is a bounded measure. In particular, v can carry at most finitely many atoms;
consequently J is either empty or finite. N

Assume now that J is nonempty (hence finite). Choose a cut-off function .(x) = ¥e(z — x;),
where 1. = 1 in B.(0), 1. = 0 in BS_(0), |[Vibe| < 2/e, and ¢, € C§°(R?,[0,1]). The remainder of the
proof is divided into three steps.

Step 1. u; < y; for every i € J. It is straightforward to verify that {u,i.} is bounded in W,.
From (4.7), we obtain

/ |Vun|p_2Vun -V up dx :/ (—An\un\p — | Vu,|P + ]un|p*>¢5 dz
R3 R3

[un (@) [Pun (y) P ()
+H//R3xR3 P— dxdy + on(1).

(4.12)

Using Holder’s inequality, we infer to

lim sup’ ]Vun]p_2Vun -V up dx‘
n—o0 R3
1 p=1
< limsup(/ |V)e un|pdaz>p </ \Vun\pdm) g
n—0o0 BQs(l'i) B25(xi)

1

<C / VpeulPdz ) *
(4.13) ( o [ Vipeul )
<cl(/ V) |%dw>w</ ]u\p*dw>pl*
= 3
Bae (i) Bae (i)
X
:Cg(/ ]u\p*dx>p —0 ase—0.
BQE(I'L)

By the Hardy-Littlewood-Sobolev inequality (2.4), one has

[[ ),
R3 xR3

[z —y

< (4 </R3 ]unl?d:v)g(/R3(|un\p@/)5)gdx>g

5
o 5
< C'3Hun||gp/5 </R3 [un| > ¢Edﬂs) 6

5
< fn] F gz ) .
BQE(Ii)

(4.14)
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)P p
im lim / / (@) Pl )P ) 0
e—0n—o0 R3 xR3 |CE _ y|

6p
(4.15) < Cs lim lim (/ o |tp |3 qud;c)
B (x;

e—0n—o00

—gigg)(/BQ Ll %)’

Furthermore, because ). has compact support,

Taking limits, we have

o]t

(4.16) Tim / Vun Pipedc > / ValPiede + (3 i, ),
ieJ
(4.17) nl;rgo/ |un|P wgda:—/ |ulP" heda + ZV’ i Ve ).
ieJ
Combining (4.12)-(4.17), we obtain
lim Sup/ |Vun|p_2Vun - Ve Uy, dx
n—00 3
(4.18) / ‘Vu|p¢ad$_ ZN@ xlﬂ/}a
ieJ
/ ulP peda + ) vibe,, e ) —/ AulPyode.
ieJ R?

Letting ¢ — 0 in the last inequality and using (4.13) and (4.18), we get

0< lim (- Zuz by the) + (D vid, ) )

e—0t icT
= lim (—M¢¢s(0) + Vﬂ#e@))
e—0+
= — U + Vi,

whence p; < v;. Together with (4.11) we obtain

3
v; >Sr forallie J.
Step 2. p; = 0 for every ¢ € J, and consequently 7 = (). Suppose, by contradiction, that there
3
exists some ¢ € J. Then from (4.11) we have p; > S». Thus,

R > lim sup ||Vu, | > thUP/ |V [Ppeda

n—-+00

> [ IVulPvede + (3 iy )

keJ

> ;> S,

which contradicts (4.5). Hence J = () and
(4.19) Up —u in L

loc

(R?).
Step 3. Strong convergence u,, — u in W,.. Since {u,} C W, is bounded, it follows from [41] that

2 2
lun ()| < Cllug|| |z| "7 < Ci|z| "7 a.e. inR3, VneN.
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Consequently, for all n € N,

*

C
|un ()P < ‘ |26 a.e. in R3,
x|3-p

Noticing that C’g/|x]% € LY(R3\ Bg(0)) and wu,(r) — u(z) almost everywhere in R3\ Br(0),
Lebesgue’s dominated convergence theorem yields

(4.20) un, —u in L (R®\ Bg(0)).
Together with (4.19) this gives

(4.21) U, —u in LP (R3).

From (4.7) and (4.8) we have

(4.22) Aalltal2 + V|2 = £B(un) + [[unlr + 0n(1)
and

(4.23) Ml + [ Vully = xB(u) + [|uf..

By Proposition 2.1, we have

(4.24) B(up) = B(u) + on(1).

Thereby, from (4.22)-(4.24) we deduce
tim (Malluallf + 1900 3) = Aul}y + [Vl
Using A, = A > 0, we obtain
Jim ffuy [, = [lul, and — lim [[Vup[l, = [V,
which implies
U, —u in W, asn — oo.
This completes the proof. O

In the sequel we aim to obtain the multiplicity of normalized solution by the genus theory. First,
for any € > 0, define the set

(4.25) C.:={ueW,n8a): I (u) < —e} C W,.
which is a closed symmetric subset of S,(a), because I is even and continuous. For any ¢ € R, set
I :={uec Sa)nW,: IT(u) <cl.
Lemma 4.2. For each n € N, there exist ,, > 0 and k > 0 such that
(Ce) = n
for all e € (0,ey)].
Proof. For a given n € N, we select n radial functions
{u1,us, ..., u,} C C(R3),
satisfying:
suppu; Nsuppu; =0 (i # j), llujllp = a, IVuill,=7<R1 (i=1,...,n).
We then define the n-dimensional subspace
W, := span{ui,ug, ..., u,} C W,.
Define

n n

Gn(s) = {Zrin(ui,s) : Z |ri|P = 1},

i=1 i=1



34 M. LI, X. HE, AND M. SQUASSINA

and
n
V(s) = { (o, oum) € R 2 3 |l = 7P 4o}
i=1

There exists an odd homeomorphism between G, (s) and Y (s); consequently, by the properties of the
genus,

1(Gals)) =1(Y(5) = n.
Now, let u =Y, r;in(u;,s) € Gp(s) with s < 0. Then

|Vulp, = e’T < Ry.
Observe now that for v =>"" | rin(u;, s) € Gp(s),

pS p P p*s " *
IT(U) = I(u) = L M Ke 219/]R3 /}R3 z)/T|Plw(y) /7] da dy — %Tp /}RB lw/T[P" da,

|z =yl

where w = " | r;u;. We define
= inf{HvHﬁI tv € Wy, ||Vull, =1} >0,
Bn = inf{B(v) : v € Wy, [|[Vull, =1} > 0.
Thus, we obtain the estimate
eP? KkeST2P eP s P’

1T (u) < 7P — - .
) p 2p & pr "

Hence we can select £, > 0 and s,, < 0 such that, for every ¢ € (0,¢,] and any fixed k > 0,
I (u) < —¢, Yu € Gp(sn),
which implies G,,(s,,) C C.. Using once more the monotonicity of the genus, we conclude

Y(Ce) = 7(Gnlsn)) = n,

which finishes the proof. O
For each j € N, we introduce the minimax value
(4.26) d; = inf sup I’ (u),
AeX; yeA
where

Y= {fl C W, NS(a): Ais closed, symmetric (A = —A), and v(A) > i}

Because I is bounded from below on S,(a), it follows that d; > —oco. For a level d € R, we denote
by K4 the set of critical points of IT at that level:

Ka={ueW,nS(a): (") (u)=0, I"(u) = d}.

Lemma 4.3. Assume that d := dy, = dg+1 = -+ - = dj4r < 0 for some k,r € N, then v(Kq) > r + 1.
Proof. From Lemma 4.2, for any k € N there exists g > 0, such that

v(Ce) > k, Ve € (0,ex].
Since IT is continuous and even, C;, € Xy; consequently,

dp < —e, <0, Vk e N.

Because IT is bounded from below, we also have dj, > —occ for every k.
Now assume d := dj, = -+ = djp4,. As d < 0, Lemma 4.1 implies that I” satisfies the Palais-Smale
condition on Kg4, and it is straightforward to verify that K4 is compact.
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If v(Kyq) < r, then there exists a closed symmetric set U with K; C U such that v(U) < r. In
particular, we may choose U C IT? because d < 0. By the classical deformation lemma [9], there
exists an odd homeomorphism 7 € C ([0, 1] x S(a), S(a)) satisfying

77(17 IT,d+5 \ U) C IT,d*(S’

for some § > 0. At this stage we select 0 < § < —d; since IT satisfies the Palais-Smale condition on
IT0 we require I7:4+0  [T:0 By definition, we have

d=dyy, = inf supl”(u).
A€Zkyr ue A

Hence there exists A € Yk4r with sup, 3 I(u) < d+9; ie., A c JTd+s, Consequently,
(4.27) n(1, A\U) C n(1, 150\ U) c 17470,
Observe that

Y(A\U) > 7(A) =y (U) > k,
and

Y(n(LANU)) 2 4(A\U) = 5(A) = () = k.

Thus 77(1,121 \ U) € 3. This, however, contradicts (4.27). Indeed, from n(1, A\ U) € 3 we obtain

sup  I'(u) > dy = d,
uen(1,A\U)

whereas (4.27) implies the supremum is at most d — § < d. O

Proof of Theorem 1.4. For each k € N, Lemma 4.2 yields an ¢j, such that v(C,,) > k. Hence C;, € X,
and X; # (). We can therefore define a non-increasing sequence of minimax values

dy = inf supIT(u), Vk € N,
A€Zy ye A

satisfying —oo < dy < dg < ---. By Theorem 2.1 of [23] we obtain the following:

(i) If di < 0, then dj, is a critical value of IT|ST(a).

(ii) Assume d :=di = dg41 = -+ - = dpgr—1 < 0 for some k,r > 1, and let K4 be the set of critical
points of IT]ST(G) at level d. Then «(K4) > r; in particular, if » > 2, the functional IT\ST(Q)
possesses infinitely many critical points at level d.

(iii) If di < O for every k > 1, then dy — 0~ as k — oc.

The functional I7 is bounded from below, and Lemma 4.1 guarantees that it satisfies the (P.S)y
condition for all d < 0. Consequently, each dj, is indeed a critical value of I, and dj, — 0~ as k — oo.

According to Remark 4.1, the equality 17 (u) = I(u) holds in a small neighborhood of v whenever
I"(u) < 0. Thus the critical points of I7|g, (,) obtained above are also critical points of I|g, (4). This
completes the proof.
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