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Abstract. In this paper, we investigates the existence and multiplicity of normalized solutions for
the p-Laplacian Schrödinger-Poisson system:{

−∆pu+ λup−1 − κ
(
|x|−1 ∗ |u|p

)
up−1 = f(u) in R3,∫

R3 |u|pdx = ap, u > 0 in R3,

where a > 0 represents the prescribed Lp-norm, κ ∈ R \ {0} is a parameter, and λ ∈ R appears as an
undetermined Lagrange multiplier. Our principal findings are summarized as follows: (i) For κ < 0,
under the conditions that f is odd and satisfies Lp-supercritical yet Sobolev subcritical growth, we
establish the existence of a normalized ground state solution for sufficiently small a > 0 by employing
the Pohozaev manifold method combined with genus theory. In this setting, we prove that the problem
admits infinitely many normalized solutions whose energies tend to infinity. The asymptotic behavior of
the normalized ground state energy is also analyzed. (ii) For κ > 0 and the Sobolev critical nonlinearity

f(u) = |u|p
∗−2u, we use a truncation technique together with the concentration-compactness principle

to address the lack of lower boundedness of the energy functional. Under appropriate constraints on
κ and a, we demonstrate the existence of infinitely many normalized solutions possessing negative
energy. These results extend earlier work by some of the authors on p-Laplacian Schrödinger-Poisson
systems.
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1. Introduction and main results

1.1. Overview. In this paper, we focus on the existence and multiplicity of normalized solutions for
the p-Laplacian Schrödinger-Poisson system:

(1.1)

{
−∆pu+ λup−1 − κ

(
|x|−1 ∗ |u|p

)
up−1 = f(u) in R3,∫

R3 |u|pdx = ap, u > 0 in R3,

where a > 0 is a prescribed mass, 1 < p < 3, the parameter κ ∈ R \ {0} and λ ∈ R serves as
a Lagrange multiplier. Here, ∆pu = div

(
|∇u|p−2∇u

)
represents the p-Laplacian operator. The

convolution |x|−1 ∗ |u|p is explicitly given by

(|x|−1 ∗ |u|p)(x) =
∫
R3

|u(y)|p

|x− y|
dy, x ∈ R3,

and the precise conditions on f will be given in the sequel.
Now let us consider the equation in (1.1), i.e.,

(1.2) −∆pu+ λup−1 − κ
(
|x|−1 ∗ |u|p

)
up−1 = f(u) in R3.
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When p = 2 and κ = −1 with the parameter λ ∈ R fixed, the fixed-frequency problem corresponding to
Eq. (1.2) has attracted considerable attention. Following the pioneering work of Benci and Fortunato
[8], a substantial body of literature has been devoted to studying the existence, nonexistence, and
multiplicity of solutions to (1.2) and related equations—see, for example, [12, 36, 38] and the references
therein—primarily by employing variational methods [37, 44]. More recently, for the case 1 < p < 3
and κ < 0, problem (1.2) has been investigated by Du, Su, and Wang [15, 16] using variational
approaches.

An alternative approach is to search for solutions to (1.2) under the prescribed mass constraint

(1.3)

∫
R3

|u|pdx = ap > 0.

In this formulation, λ ∈ R emerges as an additional unknown parameter. The study of solutions
with prescribed mass has long constituted a major direction of research in mathematical and physical
contexts. From a physical standpoint, the fixed mass constraint characterized by parameter a holds
particular significance, which has stimulated considerable recent interest in investigating solutions
under such normalized conditions. Moreover, the p-Laplacian operator arises naturally in the context
of nonlinear fluid mechanics, where the exponent p characterizes both the flow velocity and constitutive
properties of the medium. The quasi-linear Schrödinger equation (1.1) originates from quantum
mechanical models and semiconductor theory, describing the interaction of charged particles with
electromagnetic fields. For further discussions on p-Laplacian equations without prescribed mass
constraints, we refer to [14, 17, 31] and the references therein.

We note that, in the special case p = 2, system (1.1) reduces to the classical Schrödinger-Poisson
equation, and the normalized solutions have been investigated by many authors in recent years. For
instance, Bellazzini and Siciliano [7] considered the problem:

(1.4)

{
−∆u+ λu+ (|x|−1 ∗ |u|2)u = |u|q−2u in R3,∫
R3 u

2dx = a2,

where q ∈ (2, 3), and established the existence of normalized solutions for sufficiently small a > 0.
The case q ∈ (3, 103 ) was considered in [6], where the authors showed that (1.4) admits normalized
solutions provided a > 0 exceeds a certain threshold. Subsequently, Jeanjean and Luo [24] identified
a threshold value of a > 0 that determines the existence and nonexistence of normalized solutions for
(1.4). Bellazzini and Jeanjean [5] studied the existence of normalized solutions to (1.4) for 10

3 < q < 6,
the authors established existence of normalized solutions for (1.4) under the assumption of sufficiently
small mass a > 0 by using the Pohozaev manifold method. Recently, Jeanjean and Le [21] investigated
the following Schrödinger-Poisson-Slater equation

(1.5) −∆u+ λu− γ(|x|−1 ∗ |u|2)u− b|u|p−2u = 0 in R3,

where p ∈ (103 , 6], γ, b ∈ R, and ∥u∥22 = c for prescribed c > 0. Through geometric analysis of the
Pohozaev manifold, they derived existence and nonexistence results for various parameter configura-
tions: (i) γ < 0, b < 0; (ii) γ > 0, b > 0; and (iii) γ > 0, b < 0. For more results of normalized solutions
related to problem (1.4), we refer to [13, 33, 36, 43] and references therein.

We also recall some important advances concerning the normalized solutions to the Schrödinger
equation after the famous paper [20], where Jeanjean investigated the normalized solutions of the
mass supercritical problem

(1.6)

{
−∆u+ µu = f(u) in RN ,∫
R3 u

2dx = a2,

where µ ∈ R appears as a Lagrange multiplier, by employing the mountain pass lemma and a skillful
compactness argument. Recently, Jeanjean and Lu [22] revisited problem (1.6) under the assumption
that f is continuous and satisfies weakened mass supercritical conditions, they established the exis-
tence of ground state solutions with the help of the Pohozaev manifold. Soave [40] studied the existence
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of normalized solutions to (1.6) with f(u) = λ|u|q−2u+|u|2∗−2u for q ∈ (2, 2∗), Sobolev critical growth,
representing a counterpart to the Brezis-Nirenberg problem in the L2-constraint framework. For fur-
ther results on normalized solutions to Schrödinger-type equations, we refer to [1, 5–7, 11, 24, 39] and
references therein.

Now, let us come back to consider problem (1.1). As far as we know, there are only few papers
on the existence of normalized solutions to (1.1) in the literature. When the parameter κ < 0,
Liu and He [28] recently studied normalized ground state solutions of (1.1) with the nonlinearity
f(u) = µ|u|q−2u,+|u|p∗−2u, q ∈ (p, p∗), that is the following problem:

(1.7)


−∆pu− κϕ|u|p−2u = λ|u|p−2u+ µ|u|q−2u+ |u|p∗−2u, x ∈ R3,

−∆ϕ = |u|p, x ∈ R3,∫
R3 |u|pdx = ap,

where p∗ = 3p
3−p denotes the Sobolev critical exponent, and by means of Pohozaev manifold de-

composition technique they established several existence results in the Lp-subcritical, Lp-critical and
Lp-supercritical perturbation µ|u|q−2u, respectively. In [29], the authors investigated the existence
and multiple solutions of system problem (1.7) when the parameters κ < 0 and µ > 0 is large enough,
applying the concentration-compactness principle and mountain pass theorem. In [30], the authors
considered problem (1.7) under the Sobolev subcritical nonlinearity: af(u), and derived several exis-
tence and non-existence results by distinguish the positive and negative signs of parameters γ, a ∈ R,
through variational methods.

1.2. Main results. In this paper we focus our attention on problem (1.1), with parameter κ ∈ R\{0}
having a wider range of values. It is well-known that seeking normalized solutions of (1.1) is equivalent
to finding critical points of the functional I defined by

(1.8) I(u) =
1

p

∫
R3

|∇u|pdx− κ

2p
B(u)−

∫
R3

F (u)dx,

on the Lp-constraint manifold

(1.9) S(a) = {u ∈W 1,p(R3) : ∥u∥pp = ap},
where

B(u) :=

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dxdy.

For a given a > 0, we define the Pohozaev manifold associated with (1.1) as

(1.10) Pa :=
{
u ∈ S(a)

∣∣∣∣P (u) = p

∫
R3

|∇u|pdx− κ

2
B(u)− 3

∫
R3

F̃ (u)dx = 0

}
,

where

F̃ (t) = f(t)t− pF (t).

By the Pohozaev identity, every solution of (1.1) necessarily lies in Pa.
We first consider the case κ < 0 and impose the following conditions on the nonlinearity f :

(f1) f ∈ C(R,R) and there exist constants q ∈ (p̄, p∗) and C > 0 such that

|f(t)| ≤ C(1 + |t|q−1) for all t ∈ R;

(f2) lim
t→0

f(t)

|t|p̄−1
= 0 and lim

t→∞

F (t)

|t|p̄
= +∞, where F (t) =

∫ t
0 f(s)ds;

(f3) The function t 7→ F̃ (t)

|t|p̄
is strictly decreasing on (−∞, 0) and strictly increasing on (0,+∞);

(f4) There exists θ ∈ (p̄, p∗) such that f(t)t ≤ θF (t) for all t ∈ R \ {0}.
One can easily check that f(t) = |t|p−2t for p ∈ (p̄, p∗) satisfies conditions (f1)-(f4). To state our

main results, we first provide the definition of a normalized ground state solution on Pa.
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Definition 1.1. A solution u ∈ W 1,p(R3) \ {0} is said to be a normalized ground state solution on
Pa of (1.1) if it verifies

(1.11) I ′|Pa(u) = 0 and I(u) = inf{I(v) : I ′|Pa(v) = 0, v ∈ Pa}.

We remark that condition (f3) can enable the reduction of the normalized solution search to a
minimization problem on the Pohozaev manifold Pa, while condition (f4) ensures the positivity of
the Lagrange multiplier λ > 0, which plays a crucial role in establishing compactness properties, as
we will show in the sequel. We shall verify that Pa ̸= ∅ constitutes a natural constraint and that
the restricted functional I|Pa is both bounded below and coercive, as proved in Lemmas 2.3 and 2.4
below. To this aim, it is natural to define the normalized ground state energy as

(1.12) ca := inf
u∈Pa

I(u).

Our first main result concerning the monotonicity of ground state energy with respect to mass,
which can be stated as follows.

Theorem 1.2. Suppose that κ < 0 and (f1)-(f4) hold. Then there exists ak > 0 small such that for
any a ∈ (0, ak), (1.1) has a normalized solution (u, λ) ∈ S(a)×R+ and u is a normalized ground state
solution on Pa. Moreover, the function a→ ca is positive, continuous, nonincreasing and

lim
a→0+

ca = +∞.

Our next result is concerned with the multiplicity of normalized solutions for (1.1).

Theorem 1.3. Suppose that κ < 0, f is odd and satisfies (f1)-(f4). Then there exists a∗ > 0 small
such that for any a ∈ (0, a∗), (1.1) has infinitely many radial solutions {uk}∞k=1 ⊂ S(a), with the
characteristics

I(uk+1) ≥ I(uk) > 0, ∀k ∈ N,
and I(uk) → +∞ when k → ∞.

Remark 1.1. We note that in [30], Liu and He proved the existence and multiplicity of (1.1) under
the following conditions:

(g0) f : R → R is a continuous odd function; that is, f(−t) = −f(t) holds for all t ∈ R.
(g1) There exist positive constants (α, β) ∈ R2

+ with p̄ < α ≤ β < p∗ such that for all t ∈ R \ {0},
the following inequality holds:

0 < αF (t) ≤ f(t)t ≤ βF (t).

(g2) Define the auxiliary function F̃ (t) := f(t)t− pF (t). Assume that F̃ ∈ C1(R) and satisfies the
strict inequality:

p̄F̃ (t) < F̃ ′(t)t for all t ̸= 0.

However, the main results of [30] require the higher differentiability of the function F̃ . Our conditions
(f1)− (f4) are more weaker than (g0)− (g2). To see this, we give the following:

Example 1.1. Let us consider the function:

f(t) :=

(p+
p2

3
) ln(1 + |t|

p2

3 ) +
p2

3 |t|
p2

3

1 + |t|
p2

3

 |t|p+
p2

3
−2t, t ∈ R,

then we have the primitive function of f(t) as:

F (t) = |t|p+
p2

3 ln(1 + |t|
p2

3 ), t ∈ R.
By a simple calculation, we have that f satisfies (f1) − (f4), but does not satisfy the well-known
Jeanjean’s L2-mass supercritical growth condition (g1). Hence, our results improve the main results
in [30].
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We now turn to the case κ > 0 and the nonlinearity f(t) = |t|p∗−2t being Sobolev critical growth,
and establish multiple solutions with negative energy.

Theorem 1.4. Suppose that κ > 0 and f(u) = |u|p∗−2u. Then (1.1) has an unbounded sequence of
solutions (uj , λj) ∈W 1,p(R3)× R+ with λj > 0, I(uj) < 0 and I(uj) → 0− when j → ∞.

The proofs of Theorems 1.2-1.4 are constrained variational methods, and some comments are in
orders:

(i) To prove Theorem 1.2, we shall construct a Palais-Smale sequence for I|Pa at the energy level
ca that precisely satisfies P (un) = 0 for all n ≥ 1, adapting techniques from [3, 4, 22], which can
prove that the constructed Palais-Smale sequence admits a convergent subsequence, and in turn
implies the existence of a normalized ground state solution on Pa. We remark that, verifying the
positivity of the Lagrange multiplier λ plays a crucial role in establishing compactness of the Palais-
Smale sequence, and this verification follows directly from the Pohozaev identity in the p-Laplacian
Schrödinger equation treated in [14, 17, 32], but for the nonlocal term in our setting, we need to adapt
new methods to overcome this issue, with detailed arguments provided in Lemma 3.4.

(ii) In order to show Theorem 1.3, we make use of the radial subspace Wr := {u ∈ W 1,p(R3) :
u(x) = u(|x|)} to obtain the multiplicity of normalized solutions. By using genus theory, one can
obtain an infinite sequence of minimax values βk as in (3.23). For each level {βa,k}, we construct an
appropriate Palais-Smale sequence {uk,n}∞n=1 ⊂ Pa ∩Wr for the constrained functional I|S(a)∩Wr

. A
key step is to prove the unboundedness of the sequence {βa,k}, while in our situation, the presence
of the nonlocal term |x|−1 ∗ |u|p will bring more obstacles, we have to give more refined analytical
arguments.

(iii) For the case κ > 0, and the nonlinearity f(u) = |u|p∗−2u is Sobolev critical growth, we shall
prove the existence of infinitely many solutions with negative energy for (1.1). However, the presence
of the Sobolev critical term makes the constrained functional I|S(a) is unbounded below. To overcome
this obstacle, we implement a truncation technique introduced in [18], as defined in (4.3). We then
prove that critical points of the truncated functional corresponding to negative critical values are
also critical points of the original functional. Furthermore, to handle the Sobolev critical exponent,
we employ the concentration-compactness principle due to Lions [26, 27], which play a key role in
recovering the loss of compactness and proving Theorem 1.4.

Remark 1.2. In [28–30], the authors only studied the existence of normalized solutions of (1.1) with
κ < 0, but in Theorem 1.4 we consider the case κ > 0 and complement the aforementioned studies.
Theorem 1.4 also extends the study of [32] to the p-Laplacian Schrödinger equation with Sobolev
critical exponent and a nonlocal perturbation term κ

(
|x|−1 ∗ |u|p

)
up−1. Our main results also extend

the related studies in [5–7, 21, 24] to the more general p-Laplacian cases.

The remainder part of this paper is structured as follows. In Section 2 we give preliminary results
and investigates fundamental properties of the normalized ground state energy mapping a 7→ ca. In
Section 3 we prove Theorems 1.2 and 1.3. Finally, in Section 4 we apply the concentration-compactness
principle and genus theory and complete the proof of Theorem 1.4.

Notation. Throughout this paper, we adopt the following conventions.

• For p ∈ [1,∞), Lp(R3) denotes the usual Lebesgue space with norm

∥u∥p =
(∫

R3

|u|pdx
) 1

p
.

• W 1,p(R3) is the standard Sobolev space equipped with the norm

∥u∥ :=
(∫

R3

(
|∇u|p + |u|p

)
dx
) 1

p
.
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• Wr := {u ∈ W 1,p(R3) : u(x) = u(|x|)} denotes the subspace of radially symmetric functions, and
(Wr)

∗ stands for its topological dual.
• D1,p(R3) is the homogeneous Sobolev space

D1,p(R3) =
{
u ∈ Lp

∗
(R3) : ∇u ∈ Lp(R3)

}
,

and S denotes the best Sobolev constant:

(1.13) S = inf
u∈D1,p(R3)\{0}

∫
R3

|∇u|pdx(∫
R3

|u|p∗dx
) p

p∗
.

• The mass-critical exponent and the Sobolev critical exponent are respectively

p̄ := p+
p2

3
, p∗ :=

3p

3− p
.

• The letters C, C̃, Ci, ci (i = 1, 2, . . . ) denote positive constants whose values may change from line
to line.

• We write → and ⇀ for strong and weak convergence in the relevant function spaces.
• on(1) stands for a quantity that tends to 0 as n→ ∞.

2. Preliminary results

In order to prove Theorems 1.2 and 1.3, we begin by presenting some useful preliminaries. In the
following arguments, without loss of generality, we always assume κ = −1 for κ < 0. In the sequel,
we assume (f1)-(f4) hold.

For each given a > 0, we denote by the set

(2.1) Ma := {u ∈W 1,p(R3) : ∥u∥p ≤ a}.

In the sequel, we shall search for critical points of the functional

I(u) =
1

p

∫
R3

|∇u|pdx+
1

2p
B(u)−

∫
R3

F (u)dx

on the Pohozaev manifold

(2.2) Pa =
{
u ∈ S(a) : P (u) = p

∫
R3

|∇u|pdx+
1

2
B(u)− 3

∫
R3

F̃ (u)dx = 0

}
.

In the following arguments of normalized solutions, we shall use some key inequalities. First, we
recall the Gagliardo-Nirenberg inequality [34] of p-Laplacian type: for any q ∈ (p, p∗) and N ≥ 2,

(2.3) ∥u∥qq ≤ C(N, q)∥∇u∥qγqp ∥u∥q(1−γq)p ,

where the interpolation exponent is given by γq = N
(
1
p −

1
q

)
.

Next, we introduce the Hardy-Littlewood-Sobolev inequality [25]: for functions f ∈ Lp(RN ), g ∈
Lq(RN ) with 0 < s < N ,

(2.4)

∣∣∣∣∫
RN

∫
RN

f(x)g(y)

|x− y|s
dxdy

∣∣∣∣ ≤ C(N, s, p, q)∥f∥p∥g∥q,

under the scaling condition p, q > 1, 1
p +

1
q +

s
N = 2.

Lemma 2.1. The following conclusions hold true:
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(i) For any a > 0, there exists σ = σ(a) such that

1

2p

∫
R3

|∇u|pdx ≤ I(u) ≤ C

(∫
R3

|∇u|pdx+

(∫
R3

|∇u|pdx
) 1

p

)
for all u ∈Ma with ∥∇u∥p ≤ σ.

(ii) If {un} ⊂W 1,p(R3) is a bounded sequence, and lim
n→∞

∥un∥p̄ = 0, then

lim
n→∞

∫
R3

F (un)dx = lim
n→∞

∫
R3

F̃ (un)dx = 0.

(iii) If {un} ⊂W 1,p(R3) and {vn} ⊂W 1,p(R3) are bounded sequences, and lim
n→∞

∥vn∥p̄ = 0, then

lim
n→∞

∫
R3

f(un)vndx = 0.

Proof. (i) We first check that there exists a sufficiently small σ = σ(a) > 0 such that for every u ∈Ma

satisfying |∇u|p ≤ σ,

(2.5)

∫
R3

|F (u)|dx ≤ 1

2p

∫
R3

|∇u|pdx.

In fact, it follows from (f1)–(f2) that for any ε > 0, there exists Cε > 0 such that for all t ∈ R,

|F (t)| ≤ ε|t|p̄ + Cε|t|p
∗
.

Thus, for any u ∈Ma, using the Gagliardo-Nirenberg inequality (2.3), we infer to∫
R3

|F (u)|dx ≤ ε

∫
R3

|u|p̄dx+ Cε

∫
R3

|u|p∗dx

≤ εC1a
p2

3

∫
R3

|∇u|pdx+ CεC2

(∫
R3

|∇u|pdx
) p∗

p

=

εC1a
p2

3 + CεC2

(∫
R3

|∇u|pdx
) p∗−p

p

∫
R3

|∇u|pdx.

Taking ε = 1

4pC1a
p2

3

and σ =
(

1
4pCεC2

) 1
p∗−p

, then (2.5) follows.

Taking into account of the Hardy-Littlewood-Sobolev inequality (2.4) and the Gagliardo-Nirenberg
inequality (2.3) we can infer that

B(u) =

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dxdy

≤ C̃p∥u∥2p6p
5

≤ Cp∥∇u∥p∥u∥2p−1
p ,

(2.6)

here C̃p, Cp > 0 are constants. Using (2.5) and (2.6), we can easily verify statement (i).
(ii) For any ε > 0, assumptions (f1)− (f2) ensure the existence of a constant C ′

ε > 0 such that

|F̃ (t)| ≤ ε|t|p∗ + C ′
ε|t|p̄, ∀t ∈ R.

Then,

(2.7)

∫
R3

|F̃ (un)|dx ≤ ε∥un∥p
∗

p∗ + C ′
ε∥un∥

p̄
p̄.
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Since ε is arbitrary and |un|p̄ → 0, we conclude that

lim
n→∞

∫
R3

F̃ (un)dx = 0.

Similarly, we can conclude that,

lim
n→∞

∫
R3

F (un)dx = 0, whenever ∥un∥p̄ → 0.

(iii) We first claim that there exists a constant M > 0, independent of q ∈ [p, p∗], such that
|u|q ≤ M . Indeed, it follows from (f1)–(f2) that for any ε > 0, there exists a constant Cε > 0 such
that for all t ∈ R,

|f(t)| ≤ ε|t|p̄−1 + Cε|t|p
∗−1.

It follows that for all n,

(2.8) |f(un)vn| ≤ ε|un|p̄−1|vn|+ Cε|un|p
∗−1|vn|.

Using the Hölder inequality, we have∫
R3

|un|p̄−1|vn|dx ≤
(∫

R3

|un|p̄dx
) p̄−1

p̄
(∫

R3

|vn|p̄dx
) 1

p̄

.

Let {un} ⊂ W 1,p(R3) be a bounded sequence. Firstly, by the Gagliardo-Nirenberg inequality (2.3),
we get ∫

R3

|un|p̄dx ≤ C∥∇un∥pp∥un∥
p2

3
p ≤ CM p̄.

Moreover, it follows that (∫
R3

|un|p̄dx
) p̄−1

p̄

≤ C.

Finally, if lim
n→∞

∥vn∥p̄ = 0, then clearly (∫
R3

|vn|p̄dx
) 1

p̄

→ 0.

Hence, we have

(2.9) lim
n→∞

∫
R3

|un|p̄−1|vn|dx = 0.

Using the Hölder inequality, we obtain∫
R3

|un|p
∗−1|vn|dx ≤

(∫
R3

|un|p
∗
dx

) p∗−1
p∗
(∫

R3

|vn|p
∗
dx

) 1
p∗

.

Assume that {un} ⊂W 1,p(R3) is a bounded sequence. By the Sobolev embedding theorem, we get∫
R3

|un|p
∗
dx ≤ CMp∗ .

Consequently, it follows that (∫
R3

|un|p
∗
dx

) p∗−1
p∗

≤ CMp∗−1.

Moreover, by combining with the Hölder inequality:∫
R3

|vn|p
∗
dx =

∫
R3

|vn|p̄|vn|p
∗−p̄ ≤ ∥vn∥p̄∥vn∥p

∗−p̄
p∗−2 → 0,
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it follows that
(∫

R3 |vn|p
∗
dx
) 1

p∗ → 0. So,

(2.10) lim
n→∞

∫
R3

|un|p
∗−1|vn|dx = 0.

Substituting (2.9) and (2.10) into the integral estimate in (2.8) yields that

0 ≤
∣∣∣∣∫

R3

f(un)vndx

∣∣∣∣ ≤ ε

∫
R3

|un|p̄−1|vn|dx+ Cε

∫
R3

|un|p
∗−1|vn|dx.

Since ε > 0 was arbitrary, we deduce that

lim
n→∞

∫
R3

f(un)vndx = 0.

□

Remark 2.1. Analogous to (2.5), we can show that∫
R3

|F̃ (u)|dx ≤ 1

3

∫
R3

|∇u|pdx

for all u ∈Ma satisfying ∥∇u∥p ≤ σ, from which it follows that

P (u) =

∫
R3

|∇u|pdx+
1

2p
B(u)− 3

p

∫
R3

F̃ (u)dx ≥ p− 1

p

∫
R3

|∇u|pdx.

Remark 2.2. Under the conditions (f1), (f2), and (f3) on f , if we define a continuous function
k : R → R as follows:

k(t) :=


f(t)t− pF (t)

|t|p+p2/3
, for t ̸= 0,

0, for t = 0.

Then, k is strictly decreasing on (−∞, 0) and strictly increasing on (0,∞).

We recall the following conclusion from [28].
Proposition 2.1(Lemma 2.2 [28]) Let {un} be a sequence in W 1,p(R3) with un ⇀ u weakly and
un → u almost everywhere in R3. Denote by B′ the Fréchet derivative of the functional B. Then, as
n→ ∞, the following hold:

(i) B(un − u) = B(un)−B(u) + on(1),
(ii) B′(un − u) = B′(un)−B′(u) + on(1) in (W 1,p(R3))∗.

Following the approach from [20], we can define an auxiliary functional associated with I via a
continuous Lp-norm preserving map η : E →W 1,p(R3) as:

(2.11) η(u, s)(x) := e
3s
p u(esx) for u ∈W 1,p(R3), s ∈ R, x ∈ R3,

where E :=W 1,p(R3)×R is endowed with the norm ∥(u, s)∥E = (∥u∥p+ |s|p)
1
p . A direct computation

shows that ∥η(u, s)∥p = ∥u∥p, which implies η(u, s) ∈ S(a).
We define the auxiliary functional associated with I by

Ĩ(u, s) := I(η(u, s)) =
eps

p
∥∇u∥pp +

es

2p
B(u)− 1

e3s

∫
R3

F (e
3s
p u)dx.

Clearly, Ĩ belongs to C1(W 1,p(R3) × R,R). The following lemma describes the geometric properties

of Ĩ.

Lemma 2.2. For every u ∈ S(a), we have

Ĩ(u, s) → 0+ as s→ −∞ and Ĩ(u, s) → −∞ as s→ +∞.
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Proof. For every u ∈ S(a), we see that ∥∇η(u, s)∥pp = eps∥∇u∥pp. Moreover, by Lemma 2.1-(i), it
follows that

1

2p
eps
∫
R3

|∇u|pdx ≤ Ĩ(u) ≤ C

(
eps
∫
R3

|∇u|pdx+ es
(∫

R3

|∇u|pdx
) 1

p

)
,

which implies that Ĩ(u, s) → 0+ when s→ −∞.
For each given µ ≥ 0, we define the function

(2.12) hµ(t) :=

{
F (t)
|t|p̄ + µ, if t ̸= 0,

µ, if t = 0.

By (f1) − (f2), the function hµ(t) is continuous and satisfies hµ(t) → +∞ as t → ∞. Obviously,
F (t) = hµ(t)|t|p̄ − µ|t|p̄. By a similar argument to Lemma 2.3 in [22] and using (f1) − (f3), we can
claim that for all t ̸= 0,

(2.13) f(t)t > p̄F (t) > 0.

We prove (2.13) by splitting the proof into several steps.
Step 1. F (t) > 0 for any t ̸= 0. Indeed, if F (t0) ≤ 0 for some t0 ̸= 0, by (f1) and (f3), the function

F (t)/|t|p+p2/3 achieves its global minimum at some s ̸= 0 such that F (s) ≤ 0 and(
F (t)/|t|p+p2/3

)′
t=s

=
f(s)s− (p+ p2/3)F (s)

|s|p+1+p2/3sgn(s)
= 0.

In view of f(t)t > pF (t) for any t ̸= 0, and by Remark 2.2, we can infer to

0 < f(s)s− pF (s) =
p2

3
F (s) ≤ 0,

which leads to contradiction and complete the proof of Step 1.
Step 2. There exists a positive sequence {s+n } and a negative sequence {s−n } satisfying |s±n | → +∞

and f(s±n )s
±
n > (p+ p3/3)F (s±n ) for each n ≥ 1.

We only deal with the positive case, since the negative case can be treated similarly. Assume
by contradiction that, there exists T1 > 0 small enough such that f(t)t ≤ (p + p2/3)F (t) for any
t ∈ (0, T1]. From Step 1, we have

F (t)

tp+p2/3
≥ F (T1)

T
p+p2/3
1

> 0 for all t ∈ (0, T1].

By virtue of limt→0 F (t)/|t|p+p
2/3 = 0 and (f1), we can infer to a contradiction. So, we finish the

proof of Step 2.
Step 3. We construct a positive sequence {β+n } and a negative sequence {β−n } so as to |β±n | → +∞

and f(β±n )β
±
n > (p+ p2/3)F (β±n ) for each n ≥ 1.

The two cases can treated similarly, we only construct the existence of {β−n }. Suppose by contra-
diction that there exists T2 > 0 such that f(t)t ≤ (p+ p2/3)F (t) for each t ≤ −T2. We obtain

F (t)

tp+p2/3
≤ F (−T2)
T
p+p2/3
2

< +∞ for all t ≤ −T2,

which yields a contradiction to (f3). Hence, the sequence {β−n } exists and we prove Step 3.
Step 4. f(t)t ≥ (p+p2/3)F (t) for each t ̸= 0. If not, then f(t0)t0 < (p+p2/3)F (t0) for some t0 ̸= 0.

Because the cases t0 < 0 and t0 > 0 can be treated in a similar manner, and so, we consider here that
t0 < 0. From Steps 2 and 3, there exists Tmin, Tmax ∈ R such that Tmin < t0 < Tmax < 0, and

(2.14) f(t)t < (p+ p2/3)F (t) for any t ∈ (Tmin, Tmax),

and

(2.15) f(t)t = (p+ p2/3)F (t) when t = Tmin, Tmax
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It follows from (2.14) that,

(2.16)
F (Tmax)

|Tmax|p+p2/3
>

F (Tmin)

|Tmin|p+p2/3
.

But, by (2.15) and (f4), we can infer to

(2.17)
F (Tmax)

|Tmax|p+p2/3
=

3

p2
F̃ (Tmax)

|Tmax|p+p2/3
<

3

p2
F̃ (Tmin)

|Tmin|p+p2/3
=

F (Tmin)

|Tmin|p+p2/3
,

which yields a contradiction, and we complete the proof of Step 4.

Step 5. f(t)t > (p + p2/3)F (t) for each t ̸= 0. From Step 4, the function F (t)/|t|p+p2/3 is nonin-

creasing on (−∞, 0) and nondecreasing on (0,∞). Notice that, by (f4) we see that f(t)/|t|p−1+p2/3 is
strictly increasing on (−∞, 0) and (0,∞). Then, for each t ̸= 0, we can obtain

(p+ p2/3)F (t) = (p+ p2/3)

∫ t

0
f(s)ds

< (p+ p2/3)
f(t)

|t|p−1+p2/3

∫ t

0
|s|p−1+p2/3ds = f(t)t

and this proves Step 5. Thus, from Steps 1 and 5, the conclusion (2.13) follows.
By (2.13) with Fatou’s lemma, we obtain that for every u ∈ S(a),

(2.18) lim
s→+∞

∫
R3

hµ(e
3
p
s
u)|u|p̄dx = +∞.

Now, from

Ĩ(u, s) =
eps

p
∥∇u∥pp +

es

2p
B(u) + µeps

∫
R3

|u|p̄dx− eps
∫
R3

hµ(e
3
p
s
u)|u|p̄dx

= eps
(
1

p
∥∇u∥pp +

1

2p
e(1−p)sB(u) + µ

∫
R3

|u|p̄dx−
∫
R3

hµ(e
3
p
s
u)|u|p̄dx

)
.

(2.19)

we derive from (2.18) that Ĩ(u, s) → −∞ as s→ +∞. □

Lemma 2.3. Let u ∈W 1,p(R3) be fixed, then the following limitations hold true.

(i) There exists a unique su ∈ R such that

P (η(u, su)) = 0.

In particular, if u ∈ S(a), then η(u, su) ∈ Pa, with Pa defined in (1.10).

(ii) Ĩ(u, su) > Ĩ(u, s) for all s ̸= su, and moreover, Ĩ(u, su) > 0.
(iii) The map u→ su is continuous in u ∈W 1,p(R3).
(iv) su(·+z) = su for any z ∈ R3. If f is odd, then s−u = su.

Proof. (i) For fixed u ∈W 1,p(R3) \ {0}, we get

d

ds
Ĩ(u, s) = eps∥∇u∥pp +

1

2p
esB(u)− 3

p
e−3s

∫
R3

F̃ (e
3s
p u)dx = P (η(u, s)).

From Lemma 2.2, it follows that there exists su ∈ R at which Ĩ(u, s) attains its global maximum.
Moreover, we have

d

ds
Ĩ(u, su) = P (η(u, su)) = 0.

In what follows, we prove the uniqueness of su.
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By the definition of the function k(t) given in Remark 2.2, we have F̃ (t) = k(t)|t|p̄ for every t ∈ R,
and

P (η(u, s)) = eps
(
∥∇u∥p + 1

2p
e(1−p)sB(u)− 3

p

∫
R3

k(e
3s
p u)|u|p̄dx

)
.

For a fixed t ∈ R, it follows from (f3) that the function s 7→ k(e
3s
p t) is strictly increasing. Consequently,

P (η(u, s)) is strictly decreasing in s, which implies the uniqueness of su.

(ii) This assertion follows easily by the strict concavity of Ĩ(u, ·) established in part (i).
(iii) In view of part (i), the mapping u 7→ s(u) is well-defined. Let u ∈W 1,p(R3) \ {0} and consider

an arbitrary sequence {un} ⊂ W 1,p(R3) \ {0} such that un → u in W 1,p(R3). For each n ≥ 1, put
sn := s(un). We only need to verify that there exists a subsequence for which sn → s(u) as n→ ∞.

Now, we show that the sequence {sn} is bounded. From the continuous coercive function h0 defined
in (2.12), we have that h0(t) ≥ 0 for all t ∈ R by (2.13). Suppose by contradiction, there holds that
sn → +∞, along a subsequence. and then, by Fatou’s lemma and un → u ̸= 0 a. e. in R3, we infer as

lim
n→∞

∫
R3

h0

(
e

3sn
p un

)
|un|p̄dx = +∞.

From part (ii) and equation (2.19) with µ = 0, it follows that

(2.20) 0 ≤ e−psn Ĩ(un, sn) =
1

p
∥∇un∥pp +

1

2p
e(1−p)snB(un)−

∫
R3

h0

(
e

3sn
p un

)
|un|p̄dx→ −∞

This contradicts the non-negativity of the expression, thus showing that {sn} is bounded above.
Moreover, by part (ii), we have

Ĩ(un, sn) ≥ Ĩ(un, s(u)) ∀ n ∈ N.
In view of η(un, s(u)) → η(u, s(u)) in W 1,p(R3), we conclude that

Ĩ(un, s(u)) = Ĩ(u, s(u)) + on(1)

and consequently,

(2.21) lim inf
n→∞

Ĩ(un, sn) ≥ Ĩ(u, s(u)) > 0.

Since {η(un, sn)} ⊂Ma for sufficiently large a > 0, it follows from Lemma 2.1(i) and the fact that

∥∇(η(un, sn))∥p = esn∥∇un∥p,
we deduce from (2.21) that {sn} is also bounded from below. Thus, without loss of generality, we
may suppose

sn → s∗ ∈ R.
As un → u inW 1,p(R3), it follows that η(un, sn) → η(u, s∗) inW

1,p(R3). Moreover, by P (η(un, sn)) =
0 for all n ≥ 1, we conclude that P (η(u, s∗)) = 0. By Item (i), we have that s∗ = s(u) and so Item
(iii) is verified.

(iv) For every z ∈ R3, a change of variables in the integrals gives that

P (η(u(·+ z), s(u))) = P (η(u, s(u))) = 0

and hence su(·+z) = su by part (i). If f is odd, then clearly

P (η(−u, s(u))) = P (−η(u, s(u))) = P (η(u, s(u))) = 0

and thus, s−u = su. □

In what follows, we investigate several essential properties of the Pohožaev manifold

Pa :=
{
u ∈ S(a) | P (u) = p

∫
R3

|∇u|p dx+
1

2
B(u)− 3

∫
R3

F̃ (u) dx = 0
}
.

Lemma 2.3 guarantees that Pa ̸= ∅. The next lemma collects its basic features.
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Lemma 2.4. Let Pa be defined as in (1.10). Then the following hold:

(1) inf
u∈Pa

∥∇u∥p > 0.

(2) inf
u∈Pa

I(u) > 0.

(3) I is coercive on Pa: assume that {un} ⊂ Pa satisfies ∥un∥ → +∞, then I(un) → +∞.

Proof. (1) Suppose by contradiction that, there exists a sequence {un} ⊂ Pa such that ∥∇un∥p → 0.
Then Remark 2.1 implies that for sufficiently large n,

0 = P (un) ≥
p− 1

p
∥∇un∥pp > 0,

which is impossible. Hence infu∈Pa ∥∇u∥p > 0.

(2) For each u ∈ Pa, Lemma 2.3-(i),(ii) gives that

I(u) = Ĩ(u, 0) ≥ Ĩ(u, s) for all s ∈ R.
Let s̃ := ln

(
σ/∥∇u∥p

)
, where σ is the constant provided by Lemma 2.1-(i). Then ∥∇η(u, s̃)∥p = σ,

and using Lemma 2.1-(i) we obtain

I(u) ≥ Ĩ(u, s̃) = I
(
η(u, s̃)

)
≥ 1

2p
∥∇η(u, s̃)∥pp =

1

2p
σp > 0.

Consequently, infu∈Pa I(u) > 0.

(3) Suppose by contradiction that, there exist Ĉ > 0 and a sequence {vn} ⊂ Pa with ∥vn∥ → ∞ such
that

(2.22) sup
n≥1

I(vn) ≤ Ĉ.

For each n ∈ N, let
sn := ln

(
∥∇vn∥p

)
, wn := η(vn,−sn).

Obviously, sn → +∞. A direct computation shows that ∥wn∥p = a and ∥∇wn∥p = 1. Denote by

δ := lim sup
n→∞

(
sup
z∈R3

∫
B1(z)

|wn|p dx
)
.

To obtain a contradiction, we distinguish the following two cases: non-vanishing and vanishing.
Case 1: Non-vanishing: that is δ > 0. In this case, there exists {zn} ⊂ R3 such that, setting

w̃n := wn(·+ zn), we have w̃n ⇀ w ̸= 0 in W 1,p(R3) and w̃n → w a.e. in R3. Let hµ(t) be as in (2.12)
with µ = 0. Since sn → +∞, (2.13) together with Fatou’s lemma yields

(2.23) lim
n→∞

∫
R3

h0
(
e

3
p
snw̃n

)
|w̃n|p̄ dx = +∞.

Using item (2), (2.19) with µ = 0, and (2.23), we obtain

0 ≤ e−psnI(vn) = e−psnI
(
η(wn, sn)

)
=

1

p
+

1

2p
e(1−p)snB(wn)−

∫
R3

h0
(
e

3
p
snwn

)
|wn|p̄ dx

=
1

p
+

1

2p
e(1−p)snB(w̃n)−

∫
R3

h0
(
e

3
p
snw̃n

)
|w̃n|p̄ dx→ −∞,

a contradiction. Hence Case 1 cannot occur.
Case 2: Vanishing, that is δ = 0. In this case, using Lions’s lemma, we conclude by wn → 0 in

Lp̄(R3) for every p̄ ∈ (p, p∗). Consequently, from (2.6) and Lemma 2.1-(ii) we obtain, for any fixed
s ∈ R, as n→ ∞,

(2.24)
es

2p
B(wn) → 0, e−3s

∫
R3

F
(
e

3
p
s
wn
)
dx→ 0.
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Take ŝ > ln(2Ĉ)
2 with Ĉ as in (2.22). Since P (η(wn, sn)) = P (vn) = 0, Lemma 2.3-(i),(ii) together

with (2.24) gives, for large n,

Ĉ ≥ I(vn) = I
(
η(wn, sn)

)
= Ĩ(wn, sn) ≥ Ĩ(wn, ŝ)

=
1

p
epŝ +

eŝ

2p
B(wn)− e−3ŝ

∫
R3

F
(
e

3
p
ŝ
wn
)
dx

=
1

p
epŝ + on(1) > Ĉ,

again a contradiction. Thus Case 2 is also impossible. Therefore I is coercive on Pa, and item (3) is
proved. □

To understand the structure of Palais-Smale sequences, we employ a Brezis-Lieb type splitting
lemma. The proof is standard and follows the same lines as Lemma 2.6 in [22].

Lemma 2.5. Assume that {un} ⊂W 1,p(R3) is a bounded sequence such that un → u a. e. in R3 for
some u ∈W 1,p(R3), then there holds that

lim
n→∞

∫
R3

(F (un)− F (un − u)− F (u)) dx = 0.

For each a > 0, we define the infimum of I on the Pohozaev manifold Pa as

(2.25) ca := inf
u∈Pa

I(u).

Lemma 2.4-(2) guarantees that ca > 0. The dependence of ca on the parameter a is described in the
following lemma, a result that will play a key role in dealing with the lack of compactness inherent
to the problem.

Lemma 2.6. For every a > 0, let ca be defined as in (2.25). Then the following properties hold:

(i) The function a 7→ ca is continuous on (0,∞).
(ii) The function a 7→ ca is nonincreasing on (0,∞).

Proof. We first establish the continuity of the mapping a 7→ ca. Let {an} ⊂ (0,+∞) satisfy an →
a > 0. It suffices to prove that

(2.26) lim
n→∞

can = ca.

Fix u ∈ Pa and define

un =
(an
a

) 1
p
u ∈ S(an), n ∈ N+.

Clearly un → u in W 1,p(R3). By Lemma 2.3-(ii),(iii) there exists sn ∈ R such that η(un, sn) ∈ Pan
and sn → 0 as n→ ∞. Consequently, when n→ ∞, we get

(2.27) η(un, sn) → η(u, 0) = u in W 1,p(R3).

From (2.25) we obtain
lim sup
m→∞

can ≤ lim sup
n→∞

I
(
η(un, sn)

)
= I(u),

hence

(2.28) lim sup
n→∞

can ≤ ca.

On the other hand, for each n ∈ N+ we can choose vn ∈ Pan with

(2.29) I(vn) ≤ can +
1

n
.

Set tn :=
(
a
an

) 2
3 ; then tn → 1 and

ṽn := vn
(
·/tn

)
∈ S(a).
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By Lemma 2.3-(i) there exists sṽn ∈ R such that η(ṽn, sṽn) ∈ Pa. Using Lemma 2.3-(ii) together with
(2.29) we obtain

ca ≤ I
(
η(ṽn, sṽn)

)
= Ĩ(ṽn, sṽn)

≤ Ĩ(vn, sṽn) +
∣∣Ĩ(ṽn, sṽn)− Ĩ(vn, sṽn)

∣∣
≤ Ĩ(vn, 0) +

∣∣Ĩ(ṽn, sṽn)− Ĩ(vn, sṽn)
∣∣

≤ can +
1

n
+
∣∣Ĩ(ṽn, sṽn)− Ĩ(vn, sṽn)

∣∣.
Denote by

C(n) :=
∣∣I(η(ṽn, sṽn))− I

(
η(vn, sṽn)

)∣∣.
If we show

(2.30) C(n) → 0 as n→ ∞,

then the previous inequality yields

ca ≤ lim inf
n→∞

can ,

which together with (2.28) gives limn→∞ can = ca.
We now prove (2.30). Observing that η(u(·/t), s) = η(u, s)(·/t), we have

C(n) =
∣∣∣1
p
(t3−pn − 1)

∫
R3

|∇η(vn, sṽn)|p dx+
1

2p
(t5n − 1)B

(
η(vn, sṽn)

)
− (t3n − 1)

∫
R3

F
(
η(vn, sṽn)

)
dx
∣∣∣

≤ 1

p
|t3−pn − 1|

∫
R3

|∇η(vn, sṽn)|p dx+
1

2p
|t5n − 1|B

(
η(vn, sṽn)

)
+ |t3n − 1|

∫
R3

∣∣F (η(vn, sṽn))∣∣ dx
:=

1

p
|t3−pn − 1|A(n) + 1

2p
|t5n − 1|B

(
η(vn, sṽn)

)
+ |t3n − 1|D(n).

Since tn → 1, it is enough to verify that the three quantities

(2.31) lim sup
n→∞

A(n), lim sup
n→∞

B
(
η(vn, sṽn)

)
, lim sup

n→∞
D(n)

are finite. This will be accomplished through three claims.
Claim 1. The sequence {vn} is bounded in W 1,p(R3). To this aim, by (2.28) and (2.29), we have

lim supn→∞ I(vn) ≤ ca. Because vn ∈ Pan and an → a, an argument similar to that in Lemma 2.4-(3)
shows that {vn} is bounded in W 1,p(R3).

Claim 2. The sequence {ṽn} is bounded in W 1,p(R3), and moreover, there exist a sequence {yn} ⊂
R3 and v ∈W 1,p(R3) such that, along a subsequence, ṽn(·+ yn) → v a.e. in R3.

The boundedness of {ṽn} follows from Claim 1 and tn → 1. Define

ρ := lim sup
n→∞

(
sup
y∈R3

∫
B1(y)

|ṽn|p dx
)
.

If ρ = 0, Lions’ lemma [26] implies that ṽn → 0 in Lp̄(R3). Consequently,∫
R3

|vn|p̄ dx =

∫
R3

|ṽn(tn ·)|p̄ dx = t−3
n

∫
R3

|ṽn|p̄ dx→ 0.

Since P (vn) = 0, Lemma 2.1-(ii) yields∫
R3

|∇vn|p dx+
1

2p
B(vn) =

3

p

∫
R3

F̃ (vn) dx→ 0.
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By Remark 2.1 we then obtain, for large n,

0 = P (vn) ≥
1

p

∫
R3

|∇vn|p dx > 0,

a contradiction. Hence ρ > 0 and Claim 2 follows.
Claim 3. lim sup

n→∞
sṽn < +∞. Assume, after passing to a subsequence, that

(2.32) sṽn → +∞ (n→ ∞).

By Claim 2 we may further assume (subsequence) that

(2.33) ṽn(·+ yn) → v ̸= 0 a.e. in R3.

Lemma 2.3-(iv) together with (2.32) gives that

(2.34) sṽn(·+yn) = sṽn → +∞.

Moreover, Lemma 2.3-(ii) implies

(2.35) Ĩ
(
ṽn(·+ yn), sṽn(·+yn)

)
≥ 0.

Combining (2.33), (2.34) and (2.35) and arguing exactly as in the derivation of (2.19) leads to a
contradiction. Thus Claim 3 holds. From Claims 1 and 3 we conclude that

lim sup
n→∞

∥∥η(vn, sṽn)∥∥ = lim sup
n→∞

∥∥∥∥e 3sṽn
p vn(e

sṽnx)

∥∥∥∥
= lim sup

n→∞

(∫
R3

∣∣∣∣∇e 3sṽn
p vn(e

sṽnx)

∣∣∣∣p + ∣∣∣∣e 3sṽn
p vn(e

sṽnx)

∣∣∣∣p dx) 1
p

= lim sup
n→∞

(∫
R3

epsṽn |∇vn(x)|p + |vn(x)|p dx
) 1

p

< +∞.

Consequently lim supn→∞A(n) < +∞, and by (f1)–(f2) also lim supn→∞D(n) < +∞. Using the
HLS inequality (2.4) and GN inequality (2.3), we obtain

B
(
η(vn, sṽn)

)
≤ C

∥∥η(vn, sṽn)∥∥2p6p
5

≤ Ca
∥∥∇η(vn, sṽn)∥∥2p−1

p
,

hence lim supn→∞B
(
η(vn, sṽn)

)
< +∞. Since tn → 1, the three terms in the definition of C(n) tend

to zero; therefore C(n) → 0 as n→ ∞. This proves the continuity of a 7→ ca.
We now show that a 7→ ca is nonincreasing on (0,+∞). It suffices to prove that for every ε > 0

and every pair a > a′ > 0,
ca ≤ ca′ + ε.

By the definition of ca′ there exists v ∈ Pa′ with

(2.36) I(v) ≤ ca′ +
ε

2
.

Fix σ > 0 and define vσ(x) = v(x) ζ(σx), where ζ is a radial function in C∞
0 (R3) satisfying

ζ(x) =


1, |x| ≤ 1,

∈ (0, 1), 1 < |x| < 2,

0, |x| ≥ 2.

Clearly vσ → v in W 1,p(R3) as σ → 0+. Then by Lemma 2.3-(ii1) we infer to

(2.37) η(vσ, svσ) → η(v, 0) = v in W 1,p(R3).

Thus, we can can choose σ > 0 sufficiently small, such that

(2.38) I
(
η(vσ, svσ)

)
≤ I(v) +

ε

4
.
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Next, pick u ∈ C∞
0 (R3) with supp(u) ⊂ B1+4/σ(0) \B4/σ(0) and set

ũ =
(ap − ∥vσ∥pp

∥u∥pp

) 1
p
u.

For any given b ≤ 0, we define ωb = vσ + η(ũ, b). By construction, one has

supp(vσ) ∩ supp(η(ũ, b)) = ∅,

and a direct computation shows ωb ∈ S(a). Lemma 2.3-(i) yields sωb
∈ R such that η(ωb, sωb

) ∈ Pa.
Moreover, an argument analogous to the one leading to (2.20) proves that {sωb

} is uniformly bounded
in b. Consequently, as b→ −∞,

sωb
+ b→ −∞,

which implies that,

(2.39) η(ũ, sωb
+ b) → 0 in Lp̄(R3).

By Lemma 2.1-(ii) we obtain

(2.40)

∫
R3

F
(
η(ũ, sωb

+ b)
)
dx→ 0.

Furthermore,

(2.41) ∥∇η(ũ, sωb
+ b)∥p → 0, ∥η(ũ, sωb

+ b)∥ 6p
5
→ 0.

In view of (2.6) we also have

(2.42) B
(
η(ũ, sωb

+ b)
)
→ 0.

Combining (2.40)–(2.42) yields

(2.43) I
(
η(ũ, sωb

+ b)
)
→ 0.

Finally, using Lemma 2.3 together with (2.38) and (2.43) we obtain

ca ≤ I
(
η(ωb, sωb

)
)

= I
(
η(vσ, sωb

)
)
+ I
(
η(η(ũ, b), sωb

)
)

≤ I
(
η(vσ, svσ)

)
+ I
(
η(ũ, sωb

+ b)
)

≤ I(v) +
ε

2
.

By (2.36) this gives ca ≤ ca′ + ε, completing the proof of the lemma. □

Lemma 2.7. Let ca be defined as in (2.25). Then

ca → +∞ as a→ 0+.

Proof. Consider a sequence {un} ⊂ Pan satisfying ∥un∥p → 0+, that is, an → 0+ as n → ∞. It is
sufficient to prove that

I(un) → +∞ as n→ ∞.

For each n ∈ N, set
sn := ln(∥∇un∥p) and wn := η(un,−sn).

Then un = η(wn, sn) ∈ Pan , with ∥wn∥p = ∥un∥p → 0 and ∥∇wn∥p = 1.

By Hölder’s inequality, wn → 0 in both Lp̄(R3) and L
6p
5 (R3). Applying Lemma 2.1 and (2.6), we

obtain for every s ∈ R,

(2.44) e−3s

∫
R3

F
(
e

3
p
s
wn
)
dx→ 0 and esB(wn) → 0 as n→ ∞.
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Since P (un) = P (η(wn, sn)) = 0, Lemma 2.3 together with (2.44) implies

I(un) = I(η(wn, sn)) ≥ I(η(wn, s))

=
1

p
eps +

1

2p
esB(wn)− e−3s

∫
R3

F
(
e

3
p
s
wn
)
dx

=
1

p
eps + on(1).

Since s > 0 can be chosen arbitrarily large, we conclude that I(un) → +∞ as n → ∞, which yields
the desired result. □

The next lemma provides a refined description of the behavior of the Lagrange multiplier λ and its
relationship with the energy level ca.

Lemma 2.8. Let (u, λ) ∈ S(a)× R be a solution of the problem

−∆pu+ λup−1 +
(
|x|−1 ∗ |u|p

)
up−1 = f(u) in R3,

with I(u) = ca.

(i) If λ > 0, then there exists δ > 0 such that

ca > ca′ for all a′ ∈ (a, a+ δ).

(ii) If λ < 0, then there exists δ > 0 such that

ca < ca′ for all a′ ∈ (a, a+ δ).

Proof. Since (u, λ) satisfies the equation and u ∈ Pa, we have the identity

(2.45) I ′(u)u = −λ∥u∥pp = −λap.
For t > 0 and s ∈ R, define the rescaled function

ut,s := η(tu, s) ∈ S(ta),

and consider the two-parameter functional

K(t, s) := I(ut,s) =
1

p
tpeps

∫
R3

|∇u|p dx+
1

2p
t2pesB(u)− e−3s

∫
R3

F
(
te

3
p
s
u
)
dx.

A direct computation gives

∂K(t, s)

∂t
= tp−1eps

∫
R3

|∇u|p dx+ t2p−1esB(u)− e−3s

∫
R3

f
(
te

3
p
s
u
)
e

3
p
s
u dx

= t−1I ′(ut,s)ut,s.(2.46)

Moreover, we have the convergence

(2.47) ut,s → u in W 1,p(R3) as (t, s) → (1, 0).

In the case λ > 0, by (2.45), we can obtain I ′(u)u = −λap < 0. By (2.46)-(2.47), there exists ϵ > 0
such that

∂K(t, s)

∂t
< 0 for all (t, s) ∈ (1, 1 + ϵ]× [−ϵ, ϵ].

Applying the mean value theorem, for any t ∈ (1, 1 + ϵ] and |s| ≤ ϵ, there exists α ∈ (1, t) such that

K(t, s) = K(1, s) + (t− 1)
∂K(α, s)

∂t
< K(1, s).

By Lemma 2.3-(iii), we have stu → su = 0 as t→ 1+. Thus, for a′ > a sufficiently close to a, we set

t :=
a′

a
∈ (1, 1 + ϵ] and s := stu ∈ [−ϵ, ϵ].
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Since ut,s ∈ S(ta) = S(a′), we obtain

ca′ ≤ I(ut,s) = K(t, s) < K(1, s) = I(η(u, s)) ≤ I(u) = ca,

which proves ca′ < ca.
In the case λ < 0, the argument is analogous to the case λ > 0 and we omit it for brevity. □

An immediate consequence of Lemmas 2.6 and 2.8 yields the following result.

Corollary 2.9. Let (u, λ) ∈ S(a)× R be a solution of the problem

−∆pu+ λup−1 +
(
|x|−1 ∗ |u|p

)
up−1 = f(u) in R3,

and suppose that I(u) = ca. Then λ ≥ 0. Moreover, if λ > 0, we have

ca > ca′ if a′ > a.

3. Proof of Theorems 1.2–1.3

This section is devoted to the proof of Theorems 1.2 and 1.3. To achieve this, our first step is to
construct a Palais–Smale sequence for the constrained functional I|S(a) at the energy level ca. This
sequence will be constructed to lie entirely within the Pohožaev manifold Pa and to possess a specific
refined property.

3.1. Proof of Theorem 1.2. For any a > 0 and u ∈ W 1,p(R3), we define an auxiliary functional

J̃ :W 1,p(R3)\{0} → R by

(3.1) J̃(u) := J̃(u, su) =
epsu

p
∥∇u∥pp +

esu

2p
B(u)− 1

e3su

∫
R3

F (e
3su
p u)dx,

here, su ∈ R is provided by Lemma 2.3 and satisfies the condition P (η(u, su)) = 0. The next result
can be established through a standard variational argument.

Lemma 3.1. The functional J̃ is C1-differentiable. Furthermore, for every ψ ∈ C∞
0 (R3), we have

J̃ ′(u)ψ = epsu
∫
R3

|∇u|p−2∇u · ∇ψdx+ esu
∫
R3

∫
R3

|u(x)|p|u(y)|p−2u(y)ψ(y)

|x− y|
dxdy

− e−3su

∫
R3

f(e
3
p
suu)e

3
p
suψdx

= I ′(η(u, su))η(ψ, sψ).(3.2)

For a fixed a > 0, we define the restriction of J̃ to the sphere S(a) by

(3.3) Ψ := J̃ |S(a) : S(a) → R.

Clearly, Ψ ∈ C1(S(a),R) and it satisfies

(3.4) Ψ′(u)ψ = J̃ ′(u)ψ = I ′(η(u, su))η(ψ, sψ).

for any u ∈ S(a) and ψ ∈ TuS(a), here we introduce the definition of tangent space at a point u ∈ S(a)
by

TuS(a) :=

{
v ∈W 1,p(R3) :

∫
R3

|u|p−2uvdx = 0

}
.

Our aim is to construct a Palais-Smale sequence for the constrained functional I|S(a) at the energy
level ca, with the additional property that each term lies in Pa.

For this purpose, we introduce some basic concepts and tools from [19] and [4] regarding constrained
critical point theory and the construction of Palais–Smale sequences. These preliminaries will provide
the necessary theoretical framework for our subsequent proofs.
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Definition 3.2. Let M be a metric space and let B ⊂ M be a closed subset. Let F be a class of
compact subsets of M. We say that F is a homotopy stable family with closed boundary B if the
following two conditions hold:

(i) every set in F contains B;
(ii) for every B ∈ F and every continuous map φ ∈ C([0, 1]×M,M) satisfying

φ(t, x) = x for all (t, x) ∈ ({0} ×M) ∪ ([0, 1]×B),

one has φ({1} ×B) ∈ F.

The case B = ∅ is allowed.

The following lemma guarantees the existence of a Palais–Smale sequence with the desired analytical
properties, which is essential for applying variational methods in the proof of our main result.

Lemma 3.3. Let F be a homotopy stable family of compact subsets of S(a) (with B = ∅) and define

ca,F := inf
D∈F

max
u∈D

Ψ(u).

If ca,F > 0, then there exists a Palais–Smale sequence {un} ⊂ Pa for I|S(a) at the level ca,F. In
particular, if F consists of all singletons contained in S(a), then ca = ca,F and {un} constitutes a
Palais–Smale sequence for I|S(a) at the energy level ca.

Proof. Let {An} ⊂ F be a minimizing sequence for I|S(a) at level ca,F. Define the continuous mapping

H : [0, 1]× S(a) −→ S(a), H(t, u) = η(u, tsu),

whose continuity is guaranteed by Lemma 2.3-(iii). Observe that H(t, u) = u for every (t, u) ∈
{0} × S(a). By the homotopy-stability property of F we obtain

Dn := H(1, An) =
{
η(u, su) | u ∈ An

}
∈ F.

Clearly Dn ⊂ Pa for all n ∈ N+. Since Ψ(η(u, su)) = Ψ(u) for each u ∈ An, it follows that

max
u∈Dn

Ψ(u) = max
u∈An

Ψ(u) −→ ca,F,

so {Dn} ⊂ F is also a minimizing sequence for ca,F.
According to [30, Lemma 2.17], there exists a Palais–Smale sequence {vn} ⊂ W 1,p(R3) for Ψ on

S(a) at the level ca,F. Consequently, as n→ ∞,

(i) Ψ(vn) → ca,F;
(ii) dist(vn, Dn) → 0;
(iii) ∥dΨ(vn)∥vn,∗ → 0, where ∥ · ∥vn,∗ denotes the dual norm of (TvnS(a))

∗.

We denote by

sn := svn , un := η(vn, sn) = η(vn, svn).

We shall verify that {un} ⊂ Pa is a Palais–Smale sequence for I at the same level ca,F.

Claim 1. There exists a constant C > 0 such that e−psn ≤ C for all n ∈ N+. Indeed, from the
definition of sn,

e−psn =
∥∇vn∥pp
∥∇un∥pp

.

Because {un} ⊂ Pa, Lemma 2.4-(i) implies that {∥∇un∥p} is bounded below by a positive constant.
Hence it suffices to show that supn ∥∇vn∥p <∞.

For each n ∈ N, Dn ⊂ Pa, we have that

max
u∈Dn

I(u) = max
u∈Dn

Ψ(u) → ca,F.

Lemma 2.4-(iii) implies the uniform boundedness of {Dn} in W 1,p(R3). Since dist(vn, Dn) → 0, we
obtain supn ∥∇vn∥p <∞, which proves the claim.
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Claim 2. {un} is a Palais-Smale sequence for I on S(a). Since {un} ⊂ Pa, we have I(un) =
Ψ(un) = Ψ(vn) → ca,F. It remains to estimate the constrained gradient of I at un.

For any ψ ∈ TunS(a), it follows from (2.11) that∫
R3

|vn|p−2vn η(ψ,−sn) dx =

∫
R3

|vn|p−2vn e
− 3sn

p ψ(e−snx) dx

=

∫
R3

∣∣e 3sn
p vn(e

snz)
∣∣p−2

e
3sn
p vn(e

snz)ψ(z) dz

=

∫
R3

|un(z)|p−2un(z)ψ(z) dz = 0,

whence η(ψ,−sn) ∈ TvnS(a). By Claim 1,

∥η(ψ,−sn)∥ ≤ max
{
C1/p, 1

}
∥ψ∥.

Using Lemma 3.1, we obtain

∥dI(un)∥un,∗ = sup
ψ∈TunS(a)

∥ψ∥≤1

|dI(un)[ψ]|

= sup
ψ∈TunS(a)

∥ψ∥≤1

|dI(η(vn, sn))[η(η(ψ,−sn), sn)]|

= sup
ψ∈TvnS(a)

∥ψ∥≤1

|dΨ(vn)[η(ψ,−sn)]|

≤ ∥dΨ(vn)∥vn,∗ sup
ψ∈TvnS(a)

∥ψ∥≤1

∥η(ψ,−sn)∥

≤ max
{
C1/p, 1

}
∥dΨ(vn)∥vn,∗.

Since ∥dΨ(vn)∥vn,∗ → 0, we conclude ∥dI(un)∥un,∗ → 0, proving Claim 2.

Conclusion. The collection of all singletons contained in S(a) is a homotopy-stable family with
empty boundary B = ∅. When f is odd, choosing F to be this family, condition (f1) together with
Lemma 2.3-(iv) ensures that Ψ is even. We may then select a minimizing sequence {An} ⊂ F, which
yields a corresponding minimizing sequence {Dn} ⊂ F. Repeating the argument above produces a
Palais-Smale sequence {un} ⊂ Pa for I|S(a) at the level ca,F.

Finally, we verify that ca,F = ca. By definition,

ca,F = inf
D∈F

max
u∈D

Ψ(u) = inf
u∈S(a)

I(η(u, su)).

For any u ∈ S(a), by η(u, su) ∈ Pa, we have I(η(u, su)) ≥ ca, hence ca,F ≥ ca. Conversely, for any
u ∈ Pa, I(u) = I(η(u, 0)) ≥ ca,F, so ca,F ≤ ca. Therefore ca,F = ca, which completes the proof of the
lemma. □

Lemma 3.4. There exists a∗ > 0 such that for any a ∈ (0, a∗), if {un} is a Palais–Smale sequence
at the level ca, then up to a subsequence, there exist u ∈ W 1,p(R3) and λ ∈ R satisfying un → u in
W 1,p(R3) and

−∆pu+ λup−1 + (|x|−1 ∗ |u|p)up−1 = f(u).

Proof. Let {un} ⊂ Pa be a Palais–Smale sequence for I|S(a) at the level ca. Then, as n→ ∞,

I(un) → ca, I ′(un)|S(a) → 0.
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Since {un} ⊂ Pa, Lemma 2.4-(iii) implies that {un} is bounded in W 1,p(R3). By [10, Lemma 3],
there exists a sequence {λn} ⊂ R such that, for any {zn} ⊂ R3,

(3.5) −∆pun(·+ zn) + λnun(·+ zn)
p−1 + (|x|−1 ∗ |un(·+ zn)|p)un(·+ zn)

p−1 − f(un(·+ zn)) → 0

in (W 1,p(R3))∗, where

λn :=
1

ap

(∫
R3

f(un)un dx−
∫
R3

|∇un|p dx−B(un)
)
.

Owing to (f1)–(f2), inequality (2.6) and the Sobolev inequality, the sequence {λn} is bounded in
R. Passing to a subsequence, we may assume λn → λ for some λ ∈ R. From (3.5) it then follows that

(3.6) −∆pun + λu p−1
n + (|x|−1 ∗ |un|p)u p−1

n − f(un) → 0 in (W 1,p(R3))∗.

Define the limit

δ := lim sup
n→∞

(
sup
z∈R3

∫
B1(z)

|un|p dx
)
.

We claim δ > 0. Otherwise, if δ = 0, then Lions’s lemma yields un → 0 in Lq(R3) for every
q ∈ (p, p∗). Lemma 2.1 together with (2.6) gives∫

R3

F̃ (un) dx→ 0, B(un) → 0.

Since P (un) = 0, we infer to∫
R3

|∇un|p dx = − 1

2p
B(un) +

3

p

∫
R3

F̃ (un) dx→ 0.

From (f1)–(f3) we also obtain
∫
R3 F (un) dx→ 0, whence I(un) → 0, contradicting I(un) → ca > 0.

Consequently, up to a subsequence there exist {z1n} ⊂ R3 and u1 ∈W 1,p(R3) \ {0} such that
un(·+ z1n)⇀ u1 in W 1,p(R3),

un(·+ z1n) → u1 in Lqloc(R
3), ∀ q ∈ [p, p∗),

un(·+ z1n) → u1 a.e. in R3.

Set vn := un(·+ z1n). Standard arguments show that, for any φ ∈ C∞
0 (R3),∫

R3

f(vn)φdx −→
∫
R3

f(u1)φdx

and ∫∫
R3×R3

|vn(x)|p|vn(y)|p−2vn(y)φ(y)

|x− y|
dxdy −→

∫∫
R3×R3

|u1(x)|p|u1(y)|p−2u1(y)φ(y)

|x− y|
dxdy.

Thereby, by (3.6) we obtain

(3.7) −∆pu
1 + λ(u1)p−1 + (|x|−1 ∗ |u1|p)(u1)p−1 = f(u1).

Thus u1 is a nontrivial solution of (3.7). Moreover, u1 satisfies the Pohozaev-type identity

(3.8)
3− p

p
∥∇u1∥pp +

5

2p
B(u1)− 3

∫
R3

F (u1) dx = −3λ

p
∥u1∥pp.

Multiplying (3.7) by u1 and integrating shows that

(3.9) ∥∇u1∥pp +B(u1)−
∫
R3

f(u1)u1 dx = −λ∥u1∥pp.

From (3.8) and (3.9), we can deduce by

(3.10) ∥∇u1∥pp +
1

2p
B(u1)− 3

p

∫
R3

F̃ (u1) dx = 0,

i.e. P (u1) = 0.
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For each n ∈ N+, set w1
n := un − u1(· − z1n). Then w

1
n(·+ z1n)⇀ 0 in W 1,p(R3) and

(3.11) ap = lim
n→∞

∥w1
n(·+ z1n) + u1∥pp = ∥u1∥pp + lim

n→∞
∥w1

n∥pp.

From Lemma 2.5 we drive that

(3.12) lim
n→∞

∫
R3

F (un(·+ z1n)) dx =

∫
R3

F (u1) dx+ lim
n→∞

∫
R3

F (w1
n(·+ z1n)) dx.

Moreover, by Proposition 2.1, we have

(3.13) lim
n→∞

B(un(·+ z1n)) = B(u1) + lim
n→∞

B(w1
n(·+ z1n)).

Combining (3.11)-(3.13), we obtain

ca = lim
n→∞

I(un) = lim
n→∞

I(un(·+ z1n))

= I(u1) + lim
n→∞

I(w1
n(·+ z1n))

= I(u1) + lim
n→∞

I(w1
n).

(3.14)

Next, we prove lim
n→∞

I(w1
n) ≥ 0. In fact, if limn→∞ I(w1

n) < 0, then {w1
n} is non-vanishing, and

passing to a further subsequence, there exists {z2n} ⊂ R3 such that

lim
n→∞

∫
B1(z2n)

|w1
n|p dx > 0.

Because w1
n(·+z1n) → 0 in Lploc(R

3), we have |z2n−z1n| → ∞. Up to another subsequence, w1
n(·+z2n)⇀

u2 in W 1,p(R3) for some u2 ∈W 1,p(R3). Notice that

un(·+ z2n) = w1
n(·+ z2n) + u1(·+ z2n − z1n)⇀ u2 in W 1,p(R3).

Arguing as before, from (3.5) we infer P (u2) = 0. Moreover, using (2.13), we deduce to

I(u2) =
1

p

∫
R3

|∇u2|p dx+
1

2p
B(u2)−

∫
R3

F (u2) dx

=
p− 1

2p2
B(u2) +

3

p2

∫
R3

F̃ (u2) dx−
∫
R3

F (u2) dx

=
p− 1

2p2
B(u2) +

3

p2

∫
R3

[
f(u2)u2 − p(3 + p)

3
F (u2)

]
dx

> 0.

Define w2
n := w1

n−u2(·−z2n) = un−u1(·−z1n)−u2(·−z2n). Thus, Brezis-Lieb’s lemma and Proposition
2.1 imply that

lim
n→∞

∥∇w2
n∥pp = lim

n→∞
∥∇un∥pp −

2∑
i=1

∥∇ui∥pp,

and

0 > lim
n→∞

I(w1
n) = I(u2) + lim

n→∞
I(w2

n) > lim
n→∞

I(w2
n).

Proceeding inductively, we can obtain an infinite sequence {uk} ⊂ S(m) \ {0} with P (uk) = 0 and

k∑
i=1

∥∇ui∥pp ≤ lim
n→∞

∥∇un∥pp < +∞ for every k ∈ N.

This is impossible because Lemma 2.4(2) implies the existence of a δ > 0 such that ∥∇u∥pp > δ for all
u ∈ Pm with P (u) = 0. Hence the claim is proved, and (3.14) gives

(3.15) ca ≥ I(u1).
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Set m := ∥u1∥p ∈ (0, a]. Since P (u1) = 0, we have u1 ∈ Pm. Lemma 2.6 together with (3.14) yields

ca ≥ I(u1) ≥ cm ≥ ca,

whence ca = I(u1) = cm and limn→∞ I(w1
n) = 0. Corollary 2.9 then gives λ ≥ 0.

In the sequel, we show the positivity of λ. To this aim, we note that, from (f1)-(f2), for any δ > 0
there exists Cδ > 0 such that

|F (t)| ≤ δ|t|p̄ + Cδ|t|q, ∀t ∈ R,
where q ∈ (p, p∗) is the exponent appearing in (f1). Using (3.10) and the Gagliardo–Nirenberg
inequality(2.3), we can find constants C(p̄), C(q) > 0 for which

∥∇u1∥pp − C(p̄)δ∥∇u1∥pp∥u1∥
p2

3
p − C(q)Cδ∥∇u1∥

3q−3p
p

p ∥u1∥
pq−3q+3p

p
p

≤ ∥∇u1∥pp −
3

p

∫
R3

F̃ (u1) dx = − 1

2p
B(u1) ≤ 0.

Choosing δ > 0 sufficiently small we obtain

C̃δ∥∇u1∥pp − C(p)Cδ∥∇u1∥
3q−3p

p
p ∥u1∥

pq−3q+3p
p

p ≤ 0,

which implies

C̃δ∥u1∥
pq−3q+3p

p
p ≥ ∥∇u1∥

p2−3q+3p
p

p ,

i.e.

(3.16) ∥u1∥
pq−3q+3p

p
p ∥∇u1∥

−p2+3q−3p
p

p ≥ 1

Ĉδ

for some constant Ĉδ > 0. Because q ∈ (p̄, p∗), inequality (3.16) shows that if ∥u1∥p is small enough,
then ∥∇u1∥p must be large.

On the other hand, multiplying (3.8) by θ/3 and subtracting (3.9) gives, in view of (f4),

−θ − p

p
λ∥u1∥pp =

3θ − pθ − 3p

3p
∥∇u1∥pp +

5θ − 6p

6p
B(u1)

+

∫
R3

(
f(u1)u1 − θF (u1)

)
dx

≤ 3θ − pθ − 3p

3p
∥∇u1∥pp +

5θ − 6p

6p
B(u1).

(3.17)

Recall that θ ∈ (p̄, p∗). Combining (3.17) with (2.6) and Young’s inequality yields

−λ∥u1∥pp ≤
3θ − pθ − 3p

3(θ − p)
∥∇u1∥pp + C1∥∇u1∥p∥u1∥2p−1

p

≤ θ(3− p)− 3p

3(θ − p)
∥∇u1∥pp + C1

(
3p− θ(3− p)

6(θ − p)C1
∥∇u1∥pp + C2∥u1∥

p(2p−1)
p−1

p

)
=
θ(3− p)− 3p

6(θ − p)
∥∇u1∥pp + C3∥u1∥

p(2p−1)
p−1

p .

(3.18)

Choose a∗ > 0 sufficiently small. For any a ∈ (0, a∗) we have m = ∥u1∥p ≤ a, hence ∥u1∥p is small;
by (3.16) this forces ∥∇u1∥p to be large. Because θ < p∗, the right-hand side of (3.18) is negative,
and consequently λ > 0.

It remains to show that m = a. If m < a, the fact λ > 0 together with Lemma 2.8 would give
ca < cm, contradicting ca = cm. Hence m = a, and therefore un → u1 in Lp(R3). Using Hölder
inequality, we see that un → u1 in Lq(R3) for each q ∈ (p, p∗). By Proposition 2.1 we get

(3.19) B(un) → B(u1).
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Applying (2.6) and (f1)-(f2), we also obtain

(3.20)

∫
R3

(
f(un)− f(u1)

)
u1 dx→ 0.

Lemma 2.1-(iii) implies that

(3.21)

∫
R3

f(un)(un − u1) dx→ 0.

From (3.20) and (3.21) we infer to

(3.22)

∫
R3

f(un)un dx −→
∫
R3

f(u1)u1 dx.

Finally, combining (3.6), (3.7), (3.19) and (3.22) we can deduce that

∥un∥p → ∥u1∥p, ∥∇un∥p → ∥∇u1∥p,

and by the Brezis-Lieb lemma we have that un → u1 in W 1,p(R3), completing the proof. □

Proof of Theorem 1.2. Combining Lemmas 2.6, 2.7, 3.3 and 3.4, we complete the proof of Theorem
1.2.

3.2. Proof of Theorem 1.3. We now turn to establishing the existence of infinitely many radial
normalized solutions for (1.1) under the assumption that the nonlinearity f is odd. First, we introduce
some relevant notation and concepts.

Define the transformation σ :W 1,p
r (R3) →W 1,p

r (R3) by

σ(u) = −u.

Given a subspace W ⊂ W 1,p
r (R3), a set A ⊂ W is called σ-invariant if σ(A) = A. A homotopy

ϕ : [0, 1]×A→ A is said to be σ-equivariant if

ϕ(t, σ(u)) = σ(ϕ(t, u)), ∀ (t, u) ∈ [0, 1]×A.

From [19], we have the following

Definition 3.5. ([19]) Let M be a metric space and let B ⊂ M be a closed σ-invariant subset. A
class F of compact subsets of M is called a σ-homotopy stable family with closed boundary B if the
following hold:

(1) Every A ∈ F is σ-invariant;
(2) Every A ∈ F contains B;
(3) For each A ∈ F and every σ-equivariant homotopy φ ∈ C([0, 1]×M,M) such that

φ(s, u) = φ(s, σ(u)), ∀ s ∈ [0, 1], u ∈ M,

and

φ(s, z) = z, ∀ (s, z) ∈
(
{0} ×M

)
∪
(
[0, 1]×B

)
,

one has φ
(
{1} ×A

)
∈ F.

Since f is an odd function and by Lemma 2.3-(iv), the functional Ψ = Ĩ|S(a) : S(a) → R (see (3.3))
is even with respect to u ∈ S(a). Consequently, Ψ is σ-invariant on S(a). Following an approach
analogous to Lemma 3.3, we establish the following result.

Lemma 3.6. Assume that F is a σ-homotopy stable family of compact subsets of S(a) ∩Wr (with
B = ∅). Set

ca,F := inf
D̃∈F

max
u∈D̃

Ψ(u).

If ca,F > 0, then there exists a Palais–Smale sequence {un} ⊂ Pa∩Wr for I|S(a)∩Wr
at the level ca,F .
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Lemma 3.6 ensures the existence of Palais–Smale sequences, lying in Pa, for the constrained func-
tional I|S(a)∩Wr

. In the sequel we construct a sequence of σ-homotopy stable families of compact
subsets of S(a) ∩Wr (with B = ∅).

Let {e′n}∞n=1 be a Schauder basis of W 1,p(R3) (see e.g. [42]). Set

en =

∫
O(N)

e′n
(
g(x)

)
dµg,

where O(N) is the orthogonal group on R3 and dµg denotes the Haar measure on O(N). After

deleting possible repeated elements, {en}∞n=1 becomes a Schauder basis of W 1,p
r (R3). Without loss of

generality we may assume ∥en∥ = 1 for every n ∈ N, and we write

Lk := span{e1, . . . , ek}, L⊥
k := span{ei : i ≥ k + 1}.

Clearly W 1,p
r (R3) = Lk ⊕ L⊥

k for all k ∈ N. We shall use genus theory to prove the existence of
infinitely many solutions; the precise definition of genus is recalled below.

Definition 3.7 ([37]). For any nonempty closed σ-invariant set A ⊂ W 1,p(R3), the genus of A is
defined by

γ(A) :=


0, if A = ∅,

inf
{
n ∈ N+ : ∃ an odd continuous map ϕ : A → Rn \ {0}

}
,

+∞, if no such map exists.

Define the collection

Σa := {A ⊂ S(a) ∩Wr : A is compact and σ-invariant}.
and for each k ∈ N+ set

Σa,k := {A ∈ Σa : γ(A) ≥ k}.
We observe that Σa,k ̸= ∅. Indeed, for any k ∈ N+, we have Sa,k = S(a)∩Lk ⊂ Σa,k Theorem 10.5 of
[2] gives γ(Sa,k) = k. Since k < k + 1, we obtain γ(Sa,k) = k < k + 1 = γ(Sa,k+1); hence the genus is
strictly increasing with k.

Introduce the minimax levels

(3.23) βa,k := inf
A∈Σa,k

max
u∈A

Ψ(u).

Because Σa,k+1 ⊂ Σa,k for every k, we have

βa,k ≤ βa,k+1.

For any A ∈ Σa,k and u ∈ A, Lemma 2.3 guarantees a number su ∈ R such that η(u, su) ∈ Pa.
Consequently,

max
u∈A

Ψ(u) = max
u∈A

Ĩ(u) = max
u∈A

I
(
η(u, su)

)
≥ inf

v∈Pa

I(v) > 0,

so βa,k > 0. The next lemma describes the asymptotic behaviour of the sequence {βa,k}.

Lemma 3.8. For each a > 0, let βa,k be defined by (3.23). Then βa,k < βa,k+1.

Proof. Suppose by contradiction that βa,k = βa,k+1. Then there exists A ∈ Σa,k+1 such that

max
u∈A

I(η(u, su)) = βa,k.

However, by the monotonicity of genus, γ(A) ≥ k + 1 > k = γ(Sa,k), while Sa,k ∈ Σa,k and
maxu∈Sa,k

I(η(u, su)) = βa,k. This contradicts the fact that the minimax energy of a set with higher
genus should be greater than that of a set with lower genus. Therefore, βa,k < βa,k+1, which implies
that the energy is strictly increasing. □
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Lemma 3.9. For each a > 0, if there exist solutions ui and uj such that ui = uj, then I(ui) ̸= I(uj).

Proof. For any i < j, from the fact that the energy is strictly increasing, we have βa,i < βa,j . If there
exist solutions ui and uj such that ui = uj , then I(ui) = I(uj), that is, βa,i = βa,j , which contradicts
βa,i < βa,j . As a result, all solutions uk are distinct. □

Lemma 3.10. There exists ak > 0 such that, for every a ∈ (0, ak), the following holds: if {un} ⊂
Pa∩Wr is a Palais–Smale sequence for I|S(a)∩Wr

at a positive level c > 0, then a subsequence converges
strongly in Wr to a function u ∈Wr, and there exists λ > 0 satisfying

−∆pu+ λ|u|p−2u+
(
|x|−1 ∗ |u|p

)
|u|p−2u = f(u), x ∈ R3.

Moreover, I(u) = c.

Proof. For each a > 0, let {un} ⊂ Pa ∩Wr be a Palais–Smale sequence for the functional I restricted
to S(a) ∩Wr at the level c > 0. Following the argument of Lemma 3.4, one obtains that {un} is
bounded in W 1,p(R3). By the compact embedding Wr ↪→ Lq(R3) for q ∈ (p, p∗), after passing to a
subsequence we can find u ∈Wr such that un ⇀ u in Wr, un → u in Lq(R3),∀q ∈ (p, p∗), and un → u
a.e. in R3. The Lagrange multiplier principle provides a sequence {λn} ⊂ R satisfying

(3.24) −∆pun + λn|un|p−2un +
(
|x|−1 ∗ |un|p

)
|un|p−2un − f(un) −→ 0 in (Wr)

∗,

which yields the identity

λn =
1

ap

(∫
R3

f(un)un dx−
∫
R3

|∇un|p dx−B(un)
)
.

Since {un} is bounded in W 1,p(R3), the sequence {λn} remains bounded in R. After extracting a
subsequence, we may assume λn → λ for some λ ∈ R. Arguing as in the derivation of (3.7), we
conclude that

(3.25) −∆pu+ λ|u|p−2u+
(
|x|−1 ∗ |u|p

)
|u|p−2u = f(u).

Following the same line of argument as in Lemma 3.4, we show that u ̸= 0. Moreover, there exists
ak > 0 such that for every a ∈ (0, ak), the Lagrange multiplier satisfies λ > 0.

We next prove that for every a ∈ (0, ak), there holds that un → u in Wr, and ∥u∥p = ∥un∥p = a. In
Lemma 3.4 this was obtained from the non-increasing behavior of the map a 7→ ca, a property that
is not guaranteed for βa,k; this partly explains why we work in the radial subspace Wr.

By Proposition 2.1, we have that

(3.26) B(un) −→ B(u),

and since un → u in Lq(R3) for q ∈ (p, p∗), arguing as in the proof of (3.19)-(3.22), we can derive as

(3.27)

∫
R3

(
f(un)− f(u)

)
u dx −→ 0.

Lemma 2.1-(iii) gives

(3.28)

∫
R3

f(un)(un − u) dx −→ 0.

Combining (3.27) and (3.28), we obtain

(3.29)

∫
R3

f(un)un dx −→
∫
R3

f(u)u dx.
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From (3.24), (3.26) and (3.29), we derive

lim
n→∞

(∫
R3

|∇un|p dx+ λ

∫
R3

|un|p dx
)

= lim
n→∞

(∫
R3

f(un)un dx−B(un)
)

=

∫
R3

f(u)u dx−B(u)

=

∫
R3

|∇u|p dx+ λ

∫
R3

|u|p dx.

Since λ > 0, the previous equality implies

∥∇un∥p → ∥∇u∥p, ∥un∥p → ∥u∥p = a,

and by the Brezis-Lieb lemma [44] we conclude that un → u in Wr. Consequently, the convergence
I(un) → I(u) = c follows directly. □

Proof of Theorem 1.3. For each fixed k ∈ N+ the set Σa,k is non-empty and βa,k < +∞. Given

a > 0, Lemma 3.6 yields a Palais–Smale sequence {ukn}∞n=1 ⊂ Pa ∩Wr for the restricted functional
I|S(a)∩Wr

at the level βa,k > 0. Applying Lemma 3.10, we can find numbers ak > 0, a function
uk ∈Wr and a Lagrange multiplier λk > 0 such that, for every a ∈ (0, ak),

−∆puk + λk|uk|p−2uk +
(
|x|−1 ∗ |uk|p

)
|uk|p−2uk = f(uk), x ∈ R3,

and I(uk) = βa,k. Lemma 3.8 tells us that the minimax values βa,k are strictly increasing in k, while
Lemma 3.9 guarantees that distinct indices k give rise to distinct solutions. By Palais’s principle of
symmetric criticality [35], every critical point of I in the radial subspace Wr is in fact a critical point
in the full space W 1,p(R3). Consequently, each uk ∈ Wr solves (1.1) with λk > 0 at the energy level
βa,k, and (1.1) possesses infinitely many radially symmetric solutions whose energies tend to infinity.
This completes the proof of Theorem 1.3. □

4. Proof of Theorem 1.4

In this section we deal with the Sobolev critical case f(t) = |t|p∗−2t under the assumption κ > 0.
To establish Theorem 1.4, we note that the critical Sobolev nonlinearity causes the functional I to be
unbounded from below on S(a). Following the idea of [18], we apply a truncation method to control
the influence of the critical term. This procedure allows us to define a modified functional that is
bounded from below.

Recall that for any u ∈ S(a), the constrained functional of (1.1) on S(a) is defined by

(4.1) I(u) =
1

p

∫
R3

|∇u|pdx− κ

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dxdy − 1

p∗

∫
R3

|u|p∗dx.

By (2.3) and (1.13), we obtain

I(u) ≥ 1

p

∫
R3

|∇u|pdx− Cpκa
2p−1

(∫
R3

|∇u|pdx
) 1

p

− 1

p∗S
3

3−p

(∫
R3

|∇u|pdx
) 3

3−p

=: g(∥∇u∥p),
(4.2)

where

g(t) :=
tp

p
− Cpκa

2p−1t− tp
∗

p∗S
3

3−p

.

Observe that the function

h(t) :=
tp−1

p
− tp

∗−1

p∗S
3

3−p
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attains a unique positive maximum at a point t0 > 0, and h(t0) > 0. If κCpa
2p−1 < h(t0) =: ℓ, then

g also possesses a positive local maximum at t0, and there exist numbers 0 < R1 < R2 such that

g(t) < 0 for 0 < t < R1, g(t) > 0 for R1 < t < R2, g(t) < 0 for t > R2.

Using these radii R1, R2 > 0, we define a cut-off function ξ ∈ C∞(R+, [0, 1]) by

ξ(t) =

1, 0 ≤ t ≤ R1,

0, t ≥ R2.

We introduce the truncated functional as

(4.3) IT (u) :=
1

p

∫
R3

|∇u|pdx− κ

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dxdy − ξ(∥∇u∥p)

p∗

∫
R3

|u|p∗dx,

and note that IT ∈ C1(W 1,p(R3),R). By (4.3), we have

IT (u) ≥ gT (∥∇u∥p),
where

gT (t) =
tp

p
− κCpa

2p−1t− ξ(t)

p∗S
3

3−p

tp
∗
.

From the definition of ξ and if κCpa
2p−1 < ℓ, we observe that for gT (t) = g(t) < 0 for 0 < t < R1

and gT (t) > 0 for t ∈ (R1,+∞), and when t ∈ (R2,+∞), one has gT (t) = tp

p − κCpa
2p−1t > 0. In the

sequel we always assume that

(4.4) 0 < κa2p−1 < α :=
ℓ

Cp
.

Without loss of generality, in the following discussion we can take that R1 > 0 is small enough such
that

(4.5)
tp

p
− tp

∗

p∗S
3

3−p

≥ 0 for t ∈ [0, R1] and R1 < S
3
p .

Remark 4.1. From the above arguments, we see that, if un ∈ S(a), and ∥∇un∥p → ∞ as n → ∞,
we have

IT (un) =
1

p

∫
R3

|∇un|pdx− κ

2p

∫
R3

∫
R3

|un(x)|p|un(y)|p

|x− y|
dxdy

≥ 1

p

∫
R3

|∇un|pdx− Cpκa
2p−1

(∫
R3

|∇un|pdx
) 1

p

→ +∞,

which implies that IT is coercive on S(a). Furthermore, if IT (u) ≤ 0, then ∥∇u∥p ≤ R1 and I(u) =
IT (u).

Lemma 4.1. Under the condition κa2p−1 < α, then the truncated functional IT |Sr(a) satisfies the
(PS)d condition for any d < 0.

Proof. Let {un} ⊂ Sr(a) := S(a) ∩ Wr be a Palais-Smale sequence for IT at a level d < 0. To
establish the lemma, it suffices to prove that {un} possesses a convergent subsequence in Sr(a). By
the coercivity of IT on S(a) (see Remark 4.1), the sequence {un} is bounded in Wr. Moreover, for all
sufficiently large n, we have ∥∇un∥p ≤ R1. Due to the construction of IT , the same sequence {un}
forms a bounded Palais-Smale sequence for the restriction I|Sr(a); namely,

(4.6) I(un) → d and ∥I ′|Sr(a)(un)∥ → 0.
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Up to a subsequence, there exists u ∈Wr such that
un ⇀ u in Wr,

un → u a. e. in R3,

un → u in Lq(R3) for q ∈ (p, p∗).

Arguing as in (3.5), we obtain

(4.7) −∆pun + λnu
p−1
n − κ

(
|x|−1 ∗ |un|p

)
up−1
n − |un|p

∗−2un → 0 in (Wr)
∗,

with

λn =
1

ap

(∫
R3

|un|p
∗
dx−

∫
R3

|∇un|pdx+ κB(un)
)
.

The boundedness of {un} inWr implies that {λn} is bounded in R. Consequently, passing to a further
subsequence, λn converges to some λ ∈ R. We claim that u ̸= 0. If, on the contrary, u = 0, then
Lions’ lemma yields

lim
n→+∞

∫
R3

|un|qdx = 0 for all q ∈ (p, p∗).

Hence, by (2.6) and (4.5),

I(un) = IT (un) ≥
1

p

∫
R3

|∇un|pdx− Cpκ∥un∥2p6p
5

− 1

p∗S
p

3−p

(∫
R3

|∇un|pdx
) 3

3−p

≥ −Cpκ∥un∥2p6p
5

→ 0,

which contradicts I(un) → d < 0. Therefore u ̸= 0. Using the weak convergence un ⇀ u in Wr and
arguing similarly to (3.7), we deduce that u ∈Wr satisfies

(4.8) −∆pu+ λup−1 − κ
(
|x|−1 ∗ |u|p

)
up−1 = |u|p∗−2u, x ∈ R3.

According to [38], u fulfills the Pohozaev-type identity

(4.9)
3− p

p

∫
R3

|∇u|pdx+
3λ

p

∫
R3

|u|pdx− 5κ

2p
B(u)− 3

p∗

∫
R3

|u|p∗dx = 0.

Multiplying (4.8) by u and integrating gives

(4.10)

∫
R3

|∇u|pdx+ λ

∫
R3

|u|pdx− κB(u)−
∫
R3

|u|p∗dx = 0.

Combining (4.9) and (4.10), we find

λ

∫
R3

|u|pdx =
(2p− 1)κ

2p
B(u).

Since u ̸= 0 and κ > 0, it follows that λ > 0.
We now prove the strong convergence un → u in Wr. By the concentration-compactness principle

[26, 27], we have

|∇un|p ⇀ µ ≥ |∇u|p +
∑
i∈J

µiδxi , |un|p
∗
⇀ ν = |u|p∗ +

∑
i∈J

νiδxi ,

with
∑

i∈J ν
p
p∗
i < +∞. Here µ, ν, µi, νi are positive measures, J is an at most countable index

set, {xi} ⊂ R3 are the atoms of the singular parts of µ and ν, and δxi denotes the Dirac mass at xi.
Moreover,

(4.11) Sν
p
p∗
i ≤ µi for all i ∈ J .
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We claim that J is either empty or a finite set. The argument is as follows. The continuous
Sobolev embedding Wr ↪→ Lp

∗
(R3) together with the boundedness of {un} in Wr implies that {un}

is bounded in Lp
∗
(R3). Hence there exists M > 0 such that∫

R3

|un|p
∗
dx ≤M for all n ∈ N.

Since ν is the weak limit of |un|p
∗
, for any measurable E ⊂ R3,∫

E
dν = lim

n

∫
E
|un|p

∗
dx ≤ lim sup

n

∫
E
|un|p

∗
dx ≤M,

showing that ν is a bounded measure. In particular, ν can carry at most finitely many atoms;
consequently J is either empty or finite.

Assume now that J is nonempty (hence finite). Choose a cut-off function ψε(x) = ψ̃ε(x − xi),

where ψ̃ε ≡ 1 in Bε(0), ψ̃ε ≡ 0 in Bc
2ε(0), |∇ψ̃ε| ≤ 2/ε, and ψ̃ε ∈ C∞

0 (R3, [0, 1]). The remainder of the
proof is divided into three steps.

Step 1. µi ≤ νi for every i ∈ J . It is straightforward to verify that {unψε} is bounded in Wr.
From (4.7), we obtain∫

R3

|∇un|p−2∇un · ∇ψε un dx =

∫
R3

(
−λn|un|p − |∇un|p + |un|p

∗
)
ψε dx

+ κ

∫∫
R3×R3

|un(x)|p|un(y)|pψε(y)
|x− y|

dxdy + on(1).

(4.12)

Using Hölder’s inequality, we infer to

lim sup
n→∞

∣∣∣∫
R3

|∇un|p−2∇un · ∇ψε un dx
∣∣∣

≤ lim sup
n→∞

(∫
B2ε(xi)

|∇ψε un|pdx
) 1

p
(∫

B2ε(xi)
|∇un|pdx

) p−1
p

≤ C
(∫

B2ε(xi)
|∇ψεu|pdx

) 1
p

≤ C1

(∫
B2ε(xi)

|∇ψε|
pp∗
p∗−pdx

) p∗−p
pp∗
(∫

B2ε(xi)
|u|p∗dx

) 1
p∗

= C2

(∫
B2ε(xi)

|u|p∗dx
) 1

p∗ → 0 as ε→ 0.

(4.13)

By the Hardy-Littlewood-Sobolev inequality (2.4), one has∫∫
R3×R3

|un(x)|p|un(y)|pψε(y)
|x− y|

dxdy

≤ C3

(∫
R3

|un|
6p
5 dx

) 5
6
(∫

R3

(
|un|pψε

) 6
5dx

) 5
6

≤ C3∥un∥p6p/5
(∫

R3

|un|
6p
5 ψεdx

) 5
6

≤ C4

(∫
B2ε(xi)

|un|
6p
5 ψεdx

) 5
6
.

(4.14)
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Taking limits, we have

lim
ε→0

lim
n→∞

∫∫
R3×R3

|un(x)|p|un(y)|pψε(y)
|x− y|

dxdy

≤ C5 lim
ε→0

lim
n→∞

(∫
B2ε(xi)

|un|
6p
5 ψεdx

) 5
6

= lim
ε→0

(∫
B2ε(xi)

|u|
6p
5 ψεdx

) 5
6
= 0.

(4.15)

Furthermore, because ψε has compact support,

(4.16) lim
n→∞

∫
R3

|∇un|pψεdx ≥
∫
R3

|∇u|pψεdx+
〈∑
i∈J

µiδxi , ψε
〉
,

(4.17) lim
n→∞

∫
R3

|un|p
∗
ψεdx =

∫
R3

|u|p∗ψεdx+
〈∑
i∈J

νiδxi , ψε
〉
.

Combining (4.12)-(4.17), we obtain

lim sup
n→∞

∫
R3

|∇un|p−2∇un · ∇ψε un dx

≤ −
∫
R3

|∇u|pψεdx−
〈∑
i∈J

µiδxi , ψε
〉

+

∫
R3

|u|p∗ψεdx+
〈∑
i∈J

νiδxi , ψε
〉
−
∫
R3

λ|u|pψεdx.

(4.18)

Letting ε→ 0 in the last inequality and using (4.13) and (4.18), we get

0 ≤ lim
ε→0+

(
−
〈∑
i∈J

µiδxi , ψε
〉
+
〈∑
i∈J

νiδxi , ψε
〉)

= lim
ε→0+

(
−µiψ̃ε(0) + νiψ̃ε(0)

)
= −µi + νi,

whence µi ≤ νi. Together with (4.11) we obtain

νi ≥ S
3
p for all i ∈ J .

Step 2. µi = 0 for every i ∈ J , and consequently J = ∅. Suppose, by contradiction, that there

exists some i ∈ J . Then from (4.11) we have µi ≥ S
3
p . Thus,

Rp1 ≥ lim sup
n→+∞

∥∇un∥pp ≥ lim sup
n→+∞

∫
R3

|∇un|pψεdx

≥
∫
R3

|∇u|pψεdx+
〈∑
k∈J

µkδxk , ψε
〉

≥ µi ≥ S
3
p ,

which contradicts (4.5). Hence J = ∅ and

(4.19) un → u in Lp
∗

loc(R
3).

Step 3. Strong convergence un → u in Wr. Since {un} ⊂Wr is bounded, it follows from [41] that

|un(x)| ≤ C∥un∥ |x|−
2
p ≤ C1|x|−

2
p a.e. in R3, ∀n ∈ N.
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Consequently, for all n ∈ N,

|un(x)|p
∗ ≤ C2

|x|
6

3−p

a.e. in R3.

Noticing that C2/|x|
6

3−p ∈ L1(R3 \ BR(0)) and un(x) → u(x) almost everywhere in R3 \ BR(0),
Lebesgue’s dominated convergence theorem yields

(4.20) un → u in Lp
∗
(R3 \BR(0)).

Together with (4.19) this gives

(4.21) un → u in Lp
∗
(R3).

From (4.7) and (4.8) we have

(4.22) λn∥un∥pp + ∥∇un∥pp = κB(un) + ∥un∥p
∗

p∗ + on(1)

and

(4.23) λ∥u∥pp + ∥∇u∥pp = κB(u) + ∥u∥p
∗

p∗ .

By Proposition 2.1, we have

(4.24) B(un) = B(u) + on(1).

Thereby, from (4.22)-(4.24) we deduce

lim
n→∞

(
λn∥un∥pp + ∥∇un∥pp

)
= λ∥u∥pp + ∥∇u∥pp.

Using λn → λ > 0, we obtain

lim
n→∞

∥un∥p = ∥u∥p and lim
n→∞

∥∇un∥p = ∥∇u∥p,

which implies
un → u in Wr as n→ ∞.

This completes the proof. □

In the sequel we aim to obtain the multiplicity of normalized solution by the genus theory. First,
for any ε > 0, define the set

(4.25) Cε := {u ∈Wr ∩ S(a) : IT (u) ≤ −ε} ⊂Wr.

which is a closed symmetric subset of Sr(a), because I
T is even and continuous. For any c ∈ R, set

IT,c := {u ∈ S(a) ∩Wr : IT (u) ≤ c}.

Lemma 4.2. For each n ∈ N, there exist εn > 0 and κ > 0 such that

γ(Cε) ≥ n

for all ε ∈ (0, εn].

Proof. For a given n ∈ N, we select n radial functions

{u1, u2, . . . , un} ⊂ C∞
0 (R3),

satisfying:

suppui ∩ suppuj = ∅ (i ̸= j), ∥uj∥p = a, ∥∇ui∥p = τ < R1 (i = 1, . . . , n).

We then define the n-dimensional subspace

Wn := span{u1, u2, . . . , un} ⊂Wr.

Define

Gn(s) :=
{ n∑
i=1

ri η(ui, s) :
n∑
i=1

|ri|p = 1
}
,
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and

Y (s) :=
{
(y1, . . . , yn) ∈ Rn :

n∑
i=1

|yi|p = τpeps + ap
}
.

There exists an odd homeomorphism between Gn(s) and Y (s); consequently, by the properties of the
genus,

γ
(
Gn(s)

)
= γ

(
Y (s)

)
= n.

Now, let u =
∑n

i=1 ri η(ui, s) ∈ Gn(s) with s < 0. Then

∥∇u∥p = esτ < R1.

Observe now that for u =
∑n

i=1 ri η(ui, s) ∈ Gn(s),

IT (u) = I(u) =
eps

p
τp − κes

2p
τ2p
∫
R3

∫
R3

|w(x)/τ |p|w(y)/τ |p

|x− y|
dx dy − ep

∗s

p∗
τp

∗
∫
R3

|w/τ |p∗ dx,

where w =
∑n

i=1 riui. We define

αn := inf
{
∥v∥p

∗

p∗ : v ∈Wn, ∥∇v∥p = 1
}
> 0,

βn := inf
{
B(v) : v ∈Wn, ∥∇v∥p = 1

}
> 0.

Thus, we obtain the estimate

IT (u) ≤ eps

p
τp − κesτ2p

2p
βn −

ep
∗sτp

∗

p∗
αn.

Hence we can select εn > 0 and sn < 0 such that, for every ε ∈ (0, εn] and any fixed κ > 0,

IT (u) < −ε, ∀u ∈ Gn(sn),

which implies Gn(sn) ⊂ Cε. Using once more the monotonicity of the genus, we conclude

γ(Cε) ≥ γ
(
Gn(sn)

)
= n,

which finishes the proof. □

For each j ∈ N, we introduce the minimax value

(4.26) dj := inf
Ã∈Σj

sup
u∈Ã

IT (u),

where

Σj :=
{
Ã ⊂Wr ∩ S(a) : Ã is closed, symmetric (Ã = −Ã), and γ(Ã) ≥ j

}
.

Because IT is bounded from below on Sr(a), it follows that dj > −∞. For a level d ∈ R, we denote
by Kd the set of critical points of IT at that level:

Kd :=
{
u ∈Wr ∩ S(a) : (IT )′(u) = 0, IT (u) = d

}
.

Lemma 4.3. Assume that d := dk = dk+1 = · · · = dk+r < 0 for some k, r ∈ N, then γ(Kd) ≥ r + 1.

Proof. From Lemma 4.2, for any k ∈ N there exists εk > 0, such that

γ(Cε) ≥ k, ∀ε ∈ (0, εk].

Since IT is continuous and even, Cεk ∈ Σk; consequently,

dk ≤ −εk < 0, ∀k ∈ N.

Because IT is bounded from below, we also have dk > −∞ for every k.
Now assume d := dk = · · · = dk+r. As d < 0, Lemma 4.1 implies that IT satisfies the Palais-Smale

condition on Kd, and it is straightforward to verify that Kd is compact.
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If γ(Kd) < r, then there exists a closed symmetric set U with Kd ⊂ U such that γ(U) < r. In
particular, we may choose U ⊂ IT,0 because d < 0. By the classical deformation lemma [9], there
exists an odd homeomorphism η ∈ C

(
[0, 1]× S(a), S(a)

)
satisfying

η
(
1, IT,d+δ \ U

)
⊂ IT,d−δ,

for some δ > 0. At this stage we select 0 < δ < −d; since IT satisfies the Palais-Smale condition on
IT,0, we require IT,d+δ ⊂ IT,0. By definition, we have

d = dk+r = inf
Ã∈Σk+r

sup
u∈Ã

IT (u).

Hence there exists Ã ∈ Σk+r with supu∈Ã I
T (u) < d+ δ; i.e., Ã ⊂ IT,d+δ. Consequently,

(4.27) η(1, Ã \ U) ⊂ η
(
1, IT,d+δ \ U

)
⊂ IT,d−δ.

Observe that

γ
(
Ã \ U

)
≥ γ(Ã)− γ(U) ≥ k,

and

γ
(
η
(
1, Ã \ U

))
≥ γ

(
Ã \ U

)
≥ γ(Ã)− γ(U) ≥ k.

Thus η
(
1, Ã \ U

)
∈ Σk. This, however, contradicts (4.27). Indeed, from η

(
1, Ã \ U

)
∈ Σk we obtain

sup
u∈η(1,Ã\U)

IT (u) ≥ dk = d,

whereas (4.27) implies the supremum is at most d− δ < d. □

Proof of Theorem 1.4. For each k ∈ N, Lemma 4.2 yields an εk such that γ(Cεk) ≥ k. Hence Cεk ∈ Σk
and Σk ̸= ∅. We can therefore define a non-increasing sequence of minimax values

dk := inf
Ã∈Σk

sup
u∈Ã

IT (u), ∀k ∈ N,

satisfying −∞ < d1 ≤ d2 ≤ · · · . By Theorem 2.1 of [23] we obtain the following:

(i) If dk < 0, then dk is a critical value of IT |Sr(a).
(ii) Assume d := dk = dk+1 = · · · = dk+r−1 < 0 for some k, r ≥ 1, and let Kd be the set of critical

points of IT |Sr(a) at level d. Then γ(Kd) ≥ r; in particular, if r ≥ 2, the functional IT |Sr(a)

possesses infinitely many critical points at level d.
(iii) If dk < 0 for every k ≥ 1, then dk → 0− as k → ∞.

The functional IT is bounded from below, and Lemma 4.1 guarantees that it satisfies the (PS)d
condition for all d < 0. Consequently, each dk is indeed a critical value of IT , and dk → 0− as k → ∞.

According to Remark 4.1, the equality IT (u) = I(u) holds in a small neighborhood of u whenever
IT (u) < 0. Thus the critical points of IT |Sr(a) obtained above are also critical points of I|Sr(a). This
completes the proof. □
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