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Abstract. We study the spectral structure of the complex linearized operator
for a class of nonlinear Schrödinger systems, obtaining as byproduct some
interesting properties of non-degenerate ground state of the associated elliptic
system, such as being isolated and orbitally stable.

1. Introduction and main results. In the last few years, the interest in the study
of Schrödinger systems has considerably increased, in particular, for the following
class of two weakly coupled nonlinear Schrödinger equations



















i∂tφ1 +
1

2
∂xxφ1 +

(

|φ1|2p + β|φ2|p+1|φ1|p−1
)

φ1 = 0 in R × R
+,

i∂tφ2 +
1

2
∂xxφ2 +

(

|φ2|2p + β|φ1|p+1|φ2|p−1
)

φ2 = 0 in R × R
+,

φ1(0, x) = φ0
1(x), φ2(0, x) = φ0

2(x) in R,

(1.1)

where Φ = (φ1, φ2) and φi : [0,∞) × R → C, φ0
i : R → C, 0 < p < 2. Usually the

coupling constant β > 0 models the birefringence effects inside a given anisotropic
material (see e.g. [13], [14]). A soliton or standing wave solution is a solution of the
form Φ(x, t) = (u1(x)e

it, u2(x)e
it) where U(x) = (u1(x), u2(x)) solves the elliptic

system










−1

2
∂xxr1 + r1 = r2p+1

1 + βrp
1r

p+1
2 in R,

−1

2
∂xxr2 + r2 = r2p+1

2 + βrp
2r

p+1
1 in R.

(1.2)
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Among all the solutions of (1.2) there are the ground states, namely least energy
solutions. It is known (see e.g. [11], [19]) that for p ≥ 1 there exists a ground state
R = (r1, r2) ∈ C2(R) ∩W 2,s(R) for any positive s; Moreover, R has nonnegative
components ri which are even, decreasing on R+ and exponentially decaying. In [12]
it is shown that R can be characterized as a solutions of the following minimization
problem

E(R) = inf
M

E(V ) where M :=
{

V ∈ H1(R) ×H1(R), ‖V ‖2 = ‖R‖2

}

, (1.3)

and

E(V ) = E(v1, v2) =
1

2
‖∂xV ‖2

2 −
1

p+ 1

∫

(

|v1|2p+2 + |v2|2p+2 + 2β|v1v2|p+1
)

, (1.4)

when the exponent p satisfies

1 ≤ p < 2. (1.5)

The interest in finding ground states is also motivated by their properties with
respect of the analysis of the dynamical system (1.1), such as stability properties.
For the single Schrödinger equation many notions of stability have been introduced
and proved, among all, we recall [5] and [21, 22]; in the former it is proved that the
ground state, which is unique, of the equation

− 1

2
∂xxz + z = z2p+1 in R, (1.6)

is orbitally stable, that is, roughly speaking, if φ0 is a function close to z with
respect to the H1 norm then the solution of the Cauchy problem







i∂tφ+
1

2
∂xxφ+ |φ|2pφ = 0 in R × R+,

φ(0, x) = φ0(x) in R,
(1.7)

where φ : [0,∞)×R → C, φ0 : R → C and 1 ≤ p < 2, remains close to z up to phase
rotations and translations. This kind of results has been extended to Schrödinger
systems in [17] and [16] in the one dimensionale case. In [21, 22] the stability analysis
for the single equation becomes deeper assuming that z is non-degenerate, that is
the linearized operator for (1.6) has a 1-dimensional kernel which is spanned by ∂xz.
More precisely, it is proved that for every φ ∈ H1(R) such that ‖φ‖L2 = ‖z‖L2, the
following inequality holds

E(φ) − E(z) ≥ C inf
x0∈R

θ∈[0,2π)

‖φ− eiθz(· − x0)‖2
H1 , (1.8)

for some positive constant C, provided that the energy E(φ) is sufficiently close to
E(z). Here, E is the energy defined in (1.4) once we consider V = (z, 0). Inequality
(1.8) allows to provide not only the same orbital stability result proved in [5], but it
also permits to derive explicit differential equation to which the phase and position
adjustment have to obey for the ground state to be linearly stable. Moreover, (1.8)
tells us that the energy functional can be seen as a Lyapunov functional, as it
measures the deviation of the solution of (1.1) from the ground state orbit.

The main goal of this paper is to extend inequality (1.8) to the more general
framework of 1D vector Schrödinger problems. In order to do this we are lead to
consider non-degenerate ground state for system (1.2). This notion is introduced in
the following definition.
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Definition 1.1. We will say that a ground state solution R = (r1, r2) of sys-
tem (1.2) is non-degenerate if the set of solutions of the linearized system











−1

2
∂xxφ+ φ = [(2p+ 1)r2p

1 + βprp−1
1 rp+1

2 ]φ+ β(p+ 1)rp
1r

p
2ψ in R,

−1

2
∂xxψ + ψ = [(2p+ 1)r2p

2 + βprp+1
1 rp−1

2 ]ψ + β(p+ 1)rp
1r

p
2φ in R,

(1.9)

is an 1-dimensional vector space and any solution (φ, ψ) of (1.9) is given by θ∂xR,
for some θ ∈ R.

The main result of the paper is stated in the following

Theorem 1.2. Let R be non-degenerate and assume (1.5). Then there exists a real

constant C > 0 such that, for every Φ ∈ H1 ×H1 with

‖Φ‖L2×L2 = ‖R‖L2×L2 ,

the following inequality holds

E(Φ) − E(R) ≥C inf
x∈R

θ∈[0,2π)2

‖Φ − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1×H1

+ o

(

inf
x∈R

θ∈[0,2π)2

‖Φ − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1×H1

)

where o(x) satisfies o(x)/x→ 0 as x→ 0.

As interesting consequences, we will obtain the property of being isolated, and of
being orbitally stable for a non-degenerate ground state. In [12] it has been recently
proved that the set of ground states of (1.2) enjoys the orbital stability property. To
this respect, we have to recall that up to now it is not yet been proved a uniqueness
result for ground state solutions of the system (1.2). Therefore, a solution of (1.1)
which starts near a ground state R, may leave the orbit around R and approach
the orbit generated by another ground state. But, this is not the case, once we
know that the ground states are isolated. This property is easily obtained as a
consequence of Theorem 1.2 as stated in the following corollary.

Corollary 1.3. Let R be non-degenerate and assume (1.5). Then R is isolated,

that is, if there exists a ground state of (1.2) S satisfying ‖R−S‖H1 < δ for a δ > 0
sufficiently small, then S = R up to a translation and a phase change.

Then, we can also prove the following

Corollary 1.4. Let R be non-degenerate and assume (1.5). Then R is orbitally

stable.

We recall that a ground state R = (r1, r2) is said to be orbitally stable if for any
given ε > 0, there exist δ(ε) > 0 such that

sup
t∈[0,∞)

inf
x∈R

θ∈[0,2π)2

‖Ψ(t, ·) − (eiθ1r1(· − x), eiθ2r2(· − x)‖H1×H1 < ε,

provided that

inf
x∈R

θ∈[0,2π)2

‖Ψ0 − (eiθ1r1(· − x), eiθ2r2(· − x)‖H1×H1 < δ,

where Ψ is the solution of (1.1) with initial datum Ψ0.
Theorem 1.2 plays a very important role also in the study of the so-called soli-

ton dynamics for Schrödinger. More precisely, when one considers (1.1) when the
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Plank’s constant ~ explicitly appears in the equations, and studies the evolution, in
the semi-classical limit (~ → 0), of the solution of (1.1) starting from a ~-scaling of
a soliton, once the action of external forces appears. We refer the reader to [3, 9, 10]
for the scalar case and to [15] for systems, where the authors have recently showed,
in semi-classical regime, how the soliton dynamics can be derived from Theorem
1.2.

Finally, we have to point out that some of our results can be proved in general
dimension n ≥ 1 as well, with minor changes. Unfortunately, this is not the case
for our main Theorem, since, in order to work on the linearized equation, and to
perform Taylor expansion on the energy functional E , we need enough regularity
on the nonlinear term and this forces us to restrict the range of p because of the
presence of the coupling term. Of course, it is a really interesting open problem, to
prove the assertion of Theorem 1.2 for any n ≥ 1 and any 0 < p < 2/n.

In Section 2, we will study some delicate spectral properties of the linearized sys-
tem introduced in Definition 1.1. The proofs of Theorem 1.2 and of Corollaries 1.3
and 1.4 will be carried out in Section 3. Finally, in Section 4, we shall prove that
there exists a non-degenerate ground state for system (1.2).

2. Spectral analysis of the linearized operators. In this section we will prove
some important properties concerning the linearized Schrödinger system associated
with (1.1). We will make use of the functional spaces L2 = L2(R,C) × L2(R,C)
and H1 = H1(R,C)×H1(R,C). We recall that the inner product between u, v ∈ C

is given by u · v = ℜ(uv̄) = 1/2(uv̄ + vū). It is known (see [4, 20]) that (1.1)
is well locally posed in time, for any p, in the space H

1 endowed with the norm
‖Φ‖2

H1 = ‖∂xΦ‖2
2 + ‖Φ‖2

2 for every Φ = (φ1, φ2) ∈ H1. Moreover we set the Lq norm
as ‖Φ‖q

q = ‖φ1‖q
q + ‖φ2‖q

q for any q ∈ [1,∞), we denote by (U, V ) the inner scalar

product in L2 and by (U, V )H1 the inner scalar product in H1. In [7] it is proved
that, for p satisfying 0 < p < 2 the solution of the Cauchy problem (1.1) exists
globally in time and the mass of a solution and its total energy are preserved in
time, that is having defined the total energy of system (1.1) as

E (Φ(t)) =
1

2
‖∂xΦ(t)‖2

2 −
∫

F (Φ(t)) (2.1)

where

F (U) = F (u1, u2) =
1

p+ 1

(

|u1|2p+2 + |u2|2p+2 + 2β|u1u2|p+1
)

, (2.2)

the following conservation laws hold (see [7]):

‖φ1‖2
2 = ‖φ0

1‖2
2, ‖φ2‖2

2 = ‖φ0
2‖2

2, E (Φ(t)) = E(0) =
1

2

∥

∥∂xΦ0
∥

∥

2

2
−

∫

F
(

Φ0
)

.

Setting φi = ri + εwi, i = 1, 2, the linearized Schrödinger system at ri in wi is











i∂tw1 +
1

2
∂xxw1 − w1 +G1(w1, w2) = 0 in R,

i∂tw2 +
1

2
∂xxw2 − w2 +G2(w1, w2) = 0 in R,

(2.3)
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where we have set

G1(w1, w2) =
[

r2p
1 + βrp−1

1 rp+1
2

]

w1

+
[

2pr2p
1 + β(p− 1)rp−1

1 rp+1
2

]

ℜ(w1) + β(p+ 1)rp
1r

p
2ℜ(w2),

G2(w1, w2) =
[

r2p
2 + βrp+1

1 rp−1
2

]

w2

+
[

2pr2p
2 + β(p− 1)rp+1

1 rp−1
2

]

ℜ(w2) + β(p+ 1)rp
1r

p
2ℜ(w1).

System (2.3) can be written down as ∂tW = LW, where L : L2 × L2 → L2 × L2 is
the operator defined by

L =

(

0 L−

−L+ 0

)

, W ∈ C
2, W = (w1, w2)

and where the operators L−, L+ : L2(R,R)×L2(R,R) → L2(R,R)×L2(R,R) acting
respectively on the real and imaginary parts of wi. are the following

L+ =

(

L11
+ L12

+

L21
+ L22

+

)

L− =

(

L11
− 0
0 L22

−

)

(2.4)

where Lij
+,− : L2(R,R) → L2(R,R) are defined by

L11
+ = −1

2
∂xx + 1 −H11(R) L12

+ = L21
+ = −H12(R)

L22
+ = −1

2
∂xx + 1 −H22(R)

L11
− = −1

2
∂xx + 1 −

[

r2p
1 + βrp−1

1 rp+1
2

]

L22
− = −1

2
∂xx + 1 −

[

r2p
2 + βrp+1

1 rp−1
2

]

and the Hessian matrix HF (U) = (Hij) : (R+)2 →M2×2(R) is given by

H11 = (2p+ 1)u2p
1 + pβup−1

1 up+1
2 H12 = H21 = (p+ 1)βup

2u
p
1

H22 = (2p+ 1)u2p
2 + pβup−1

2 up+1
1 .

We will study L+ on V , namely the closed subspace of H1 defined as

V =
{

U ∈ H
1 : (U,R) = 0

}

. (2.5)

The first important property of L+ on V is proved in the following proposition.

Proposition 2.1. Assume (1.5) and that R a ground state of (1.2). Then

inf
V

(L+(U), U) = 0.

Proof. First notice that U∗ = (r′1, r
′
2) belongs to V and U∗ satisfies (L+(U∗), U∗) = 0,

showing that the infimum is less or equal than zero. On the other hand, since R
solves problem (1.3), of course R is also a minimum point of I = E(Φ) + ‖Φ‖2

2 on
M. Consequently, for any smooth curve ϕ : [−1, 1] → M such that ϕ(0) = R, it
follows

d2I(ϕ(s))

ds2

∣

∣

∣

∣

∣

s=0

≥ 0.
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Therefore, taking into account that I ′(R) = 0, we get

0 ≤ 〈I′′(ϕ(s))ϕ′(s), ϕ′(s)〉
∣

∣

∣

s=0
+ 〈I ′(ϕ(s)), ϕ′′(s)〉

∣

∣

∣

s=0

= 〈I ′′(R)ϕ′(0), ϕ′(0)〉 + 〈I ′(R), ϕ′′(0)〉 = 〈I ′′(R)ϕ′(0), ϕ′(0)〉.
Now, taking into account that the map s 7→ ‖ϕ(s)‖2 is constant, it readily follows
that ϕ′(0) belongs to V , which yields the assertion by the arbitrariness of ϕ.

The above result is the first step to show that L+ is coercive once we restrict it
on a closed subspace of V , as shown in the following proposition.

Proposition 2.2. Assume (1.5) and that R is a ground state of (1.2) satisfying

Definition 1.1. Then

inf
U∈V0,

(L+(U), U)

‖U‖2
2

> 0, V0 = {U ∈ H
1 : (U,R) = (U,HF (R)∂xR) = 0}. (2.6)

Proof. Denoting with α the infimum

α = inf
‖V ‖

L2=1, V ∈V0

(L+(V ), V ),

first notice that Proposition 2.1 implies that α is nonnegative, so that we only have
to show that α is not zero. Let us argue by contradiction and suppose that α = 0.
Taken Un a minimizing sequence, from the regularity properties of R it follows that
Un is bounded in H

1. These gives us a function U ∈ H
1, such that Un ⇀ U weakly

(up to a subsequence) in H1, implying that U ∈ V0. From Proposition 2.1 and (2.6),
we get

0 ≤ (L+(U), U) ≤ lim inf
n→∞

{‖Un‖2
H1 − (Un, HF (R)Un)}

= lim
n→∞

(L+(Un), Un) = 0.

So that U solves (L+(U), U) = 0 and (L+(Un), Un) → (L+(U), U). Moreover,

‖U‖2
H1 ≤ lim inf

n→∞
‖Un‖2

H1 ≤ lim sup
n→∞

‖Un‖2
H1

= lim
n→∞

{(L+(Un), Un) + (Un, HF (R)Un)}

= (L+(U), U) + (U,HF (R)U) = ‖U‖2
H1 ,

from which Un → U strongly in H
1, so that ‖U‖L2 = 1 and U solves the constrained

minimization problem (2.6). When we derive the functional (L+(V ), V )/‖V ‖2
L2 and

use that (L+(U), U) = 0 we obtain that there exists Lagrange multipliers µ, γ ∈ R

such that

(L+U, V ) = µ (R, V ) + (γ ·HF (R)∂xR, V ) , for every V ∈ H
1. (2.7)

Choosing as test function V = ∂xR and taking into consideration that (R, ∂jR) = 0,
gives

0 = (L+(U), ∂xR) = (γ ·HF (R)∂xR, ∂xR) = γ(HF (R)∂xR, ∂xR),

where we have taken into account that L+ is a self-adjoint operator and ∂xR =
(∂xr1, ∂xr2) is a solution of L+V = 0. Since R has even components the summands
on the right hand side are nonzero, so that γ = 0. As a consequence, U solves
L+U = µR. Moreover, we consider the vector x · ∂xR, whose components are x ·
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∂xR = (x∂xr1, x∂xr2) and we compute L+(x ·∂xR). After some simple calculations,
one reaches

L+(x · ∂xR) = (−∂xxr1,−∂xxr2),

L+(R/p) = −2(r2p+1
1 + βrp+1

2 rp
1 , r

2p+1
2 + βrp+1

1 rp
2).

Then, in turn, we get L+(R/p+ x · ∂xR) = −2R, and by linearity

L+ (−µ/2(R/p+ x · ∂xR)) = µR.

Then, Definition 1.1 (nondegeneracy) immediately yields

U = −µ/2(R/p+ x · ∂xR) + θ · ∂xR (2.8)

for some constant θ ∈ R. Now we have to show that θ = 0, by using the available
constraints. By applying to equation (2.8) the self-adjoint operator HF = HF (R),
we get

HFU = − µ

2p
HFR− µ

2
HFx · ∂xR+HF θ · ∂xR.

As U ∈ V0, it results (HFU, ∂xR) = (U,HF∂xR) = 0. Furthermore, since R is a
radial solution of (1.2), we also have that (HFR, ∂xR) = (HFx · ∂xR, ∂xR) = 0. On
the other hand

(HF θ · ∂xR, ∂xR) = θ(HF ∂xR, ∂xR) = cθ

with c 6= 0, so it has to be θ = 0. Then (2.8) reduces to

U = − µ

2p
R− µ

2
x · ∂xR.

Computing the L2-scalar product with R and keeping in mind that U ∈ V0 yields

0 = (U,R) = −µ
2

[

1

p
‖R‖2

2 + (x · ∂xR,R)

]

.

As far as concern the last term in the previous relation, we integrate by parts and
obtain

(x · ∂xR,R) = −1

2
‖R‖2

2.

The last two equations and (1.5) give the desired contradiction.

Remark 2.3. The argument in the proof of the previous Proposition shows that
there exists a positive constant α0 such that

(L+V, V ) ≥ α0‖V ‖2
2, for all V ∈ V0. (2.9)

Moreover, if we consider |||U ||| =
√

(L+U,U) for every U ∈ V0, we obtain that ||| · |||
satisfies all the required properties of a norm, by (2.9) and by the self-adjointness
property of L+. In addition, every Cauchy sequence {Un} with respect to ||| · ||| has
a strong limit U belonging L2; moreover U satisfies all the orthogonality relations
required in V0. Besides, computing (L+(Un−Um), Un−Um) gives that also {∂xUn}
is a Cauchy sequence in L2 then U is necessarily the strong limit of {Un} in H1.
Finally, |||Un −U ||| → 0 by the definition of L+. As a consequence, V0 is a Banach
space with respect to this norm, and we get the equivalence with the standard H1

norm, namely there exists α > 0 such that

(L+V, V ) ≥ α‖V ‖2
H1 , for all V ∈ V0.

Before stating our next result let us prove the following lemma.
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Lemma 2.4. Let us take Φ ∈ L2 such that ‖Φ‖2 = ‖R‖2 and consider the difference

W = Φ −R. Denoting with U and V the real and imaginary part of W , it results

(R,U) = −1

2

[

‖U‖2
2 + ‖V ‖2

2

]

= −1

2
‖W‖2

2 (2.10)

Proof. The above identity immediately follows by imposing ‖R+W‖2
2 = ‖R‖2

2 and
by recalling that R is a real function.

Proposition 2.5. Assume (1.5) and that R satisfies Definition 1.1. Moreover, let

us take W = U + iV satisfying (2.10) with U verifying

(U,HF (R)∂xR) = 0. (2.11)

Then, there exists positive constants D, Di such that

(L+U,U) ≥ D‖U‖2
H1 −D1‖W‖4

H1 −D2‖W‖3
H1 . (2.12)

Proof. Without loss of generality, we can suppose that ‖R‖2 = 1; moreover, we
decompose U as U = U|| + U⊥ where U|| = (U,R)R, while U⊥ = U − U|| is

orthogonal to R with respect to the L2 scalar product. Since L+ is self-adjoint it
results

(L+U,U) =
(

L+U||, U||

)

+ 2
(

L+U⊥, U||

)

+ (L+U⊥, U⊥) . (2.13)

Next, we study separately the summands on the right hand side of this formula.
Observe that, taking into account identity (2.10), we have

‖∂xU⊥‖2
2 ≥ ‖∂xU‖2

2 − C‖W‖2
2‖∂xW‖2, (2.14)

for some positive constant C. Since (U||, HF (R)∂xR) = 0, condition (2.11) im-
plies that also U⊥ has to be orthogonal to HF (R)∂xR, hence U⊥ is in V0. Then
Remark 2.3, (2.14) and (2.10) give us

(L+U⊥, U⊥) ≥ D‖U⊥‖2
H1 ≥ D‖U‖2

H1 − CD‖W‖2
2‖∂xW‖2 −D‖U||‖2

2 (2.15)

= D‖U‖2
H1 − d1‖W‖2

2

[

‖W‖2
2 + ‖∂xW‖2

]

.

We also obtain from (2.10) that

(

L+U⊥, U||

)

= (R,U) (L+U⊥, R) = −1

2
‖W‖2

2 (L+U⊥, R) (2.16)

≥ −d2‖W‖2
2(‖∂xW‖2 + ‖W‖2).

As far as concern the last term in (2.13), it results

(

L+U||, U||

)

= (U,R)2 (L+R,R) =
1

4
‖W‖4

2 (L+R,R) ≥ −d3‖W‖4
2.

This last equation, joint with (2.15) and (2.16) yields the conclusion.

Proposition 2.6. It results inf
V 6=0, (vi,ri)H1=0

(L−(V ), V )

‖V ‖2
2

> 0.

Proof. Let us first prove that L− is a positive operator. Denoting with σd(L−) the
discrete spectrum of the operator L− it results

σd(L−) = σd(L11
− ) ∪ σd(L

22
− ). (2.17)

Indeed, if λ ∈ σd(L
11
− ) we get that L11

− (u) = λu, then λ ∈ σd(L−) with eigenfunction
U = (u, 0), analogous argument holds for λ ∈ σd(L

22
− ), proving that σd(L

11
− ) ∪

σd(L
22
− ) ⊆ σd(L−). On the other hand, if λ ∈ σd(L−) there exists U = (u1, u2) 6=

(0, 0) such that
L11
− u1 = λu1, L22

− u2 = λu2
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so that, if u1 6= 0 λ ∈ σd(L
11
− ), otherwise u2 6= 0 and λ ∈ σd(L

22
− ), showing (2.17).

Moreover, since L−R = 0, with R = (r1, r2) 6= (0, 0), ri ≥ 0, we get that λ = 0 is the
first eigenvalue of L11

− and L22
− when both r1, r2 6= 0. Besides, if for example r1 ≡ 0,

λ = 0 is the first eigenvalue of L22
− , while L11

− = −∂xx + 1 and its discrete spectrum
is empty (see e.g. Chapter 3 in [2]), yielding that λ = 0 is the first eigenvalue
of L−. Then (L−(V ), V ) ≥ 0 for every function V ∈ H1, proving that L− is a
positive operator. Arguing now as in the proof of Proposition 2.2, and considering
the (nonnegative) infimum

α = inf
‖V ‖

L2=1, (Vi,ri)H1=0
(L−(V ), V ),

assuming by contradiction that α = 0, we find that there exists a nonzero minimizer
U (satisfying the constraints) for the problem such that

(L−U,U) = 0 (2.18)

Taking into account that the constraints (Ui, ri)H1 = 0 can be written in the L2

form

(q11− (R)R1, U) = 0, (q22− (R)R2, U) = 0, (2.19)

where we have set R1 = (r1, 0), R2 = (0, r2) and

q11− (R) = r2p
1 + βrp−1

1 rp+1
2 , q22− (R) = r2p

2 + βrp+1
1 rp−1

2 .

we have three lagrange parameters λ, γ1, γ2 ∈ R such that

(L−U, V ) = λ(U, V ) + γ1(q
11
− (R)R1, V ) + γ2(q

22
− (R)R2, V )

for all V ∈ H1. Hence, by choosing V = U and taking into account (2.18) and
that U satisfies the constraints (2.19), we immediately get λ = 0. Choosing now
V = R1 and V = R2 and taking into account L− is self-adjoint and that L−Ri = 0
we obtain γ1 = γ2 = 0. Therefore, we conclude that

L−U = 0,

namely L11
− u1 = 0 and L22

− u2 = 0 where we set U = (u1, u2). In turn, ui is a first

eigenfunction of Lii
−, which yields ui ∈ span(ri) since the first eigenvalue is simple

(see e.g. Theorem 3.4 in [2]). This is of course a contradiction with (2.19). Hence
α > 0 and the proof is complete.

Remark 2.7. Arguing as in Remark 2.3, it is possible to find a positive constant
α > 0 such that

(L−V, V ) ≥ α‖V ‖2
H1 , for all V ∈ H

1 with (vi, ri)H1 = 0, i = 1, 2.

3. Proofs of the main results. In order to prove Theorem 1.2, the following
characterization will be crucial.

Proposition 3.1. Let us consider y0 ∈ R and Γ = (γ1, γ2) ∈ R2 be such that

min
x0∈R

Θ∈R2

‖(φ1(·+x0)e
iθ1 , φ2(·+x0)e

iθ2)−R‖2
H1 = ‖(φ1(·+y0, t)eiγ1 , φ2(·+y0)eiγ2)−R‖2

H1

(3.1)
Then, writing

(φ1(· + y0, t)e
iγ1 , φ2(· + y0, t)e

iγ2) = R+W,

where W = U + iV , the following orthogonality condition are satisfied

(U,HF (R)∂xR) = 0, (v1, r1)H1 = (v2, r2)H1 = 0. (3.2)
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Proof. Let us introduce the functions P, Q : R × R2 → R defined by

P (x0,Θ) = P (x0, θ1, θ2) = ‖(φ1(· + x0)e
iθ1 , φ2(· + x0)e

iθ2) −R‖2
2

Q(x0,Θ) = Q(x0, θ1, θ2) = ‖(∂xφ1(· + x0)e
iθ1 , ∂xφ2(· + x0)e

iθ2) − ∂xR‖2
2.

Writing down the partial derivatives of P and Q and integrating by parts, give us

∂x0P (x0,Θ) =

2
∑

j=1

∫

(

φje
iθj − rj

)

e−iθj∂x0φj +
(

φje
−iθj − rj

)

eiθj∂x0φj

= −2

2
∑

j=1

∫

rjℜ
(

eiθj∂x0φj

)

;

∂x0Q(x0,Θ) =

2
∑

j=1

∫

∂x

(

φje
iθj − rj

)

∂x∂x0φje
−iθj + ∂x

(

φje
−iθj − rj

)

∂x∂x0φje
iθj

= −2

2
∑

j=1

∫

∂xrjℜ
(

∂x∂x0φje
iθj

)

;

∂P

∂θj
(x0,Θ) = i

∫

[

−
(

φje
iθj − rj

)

e−iθjφj +
(

φje
−iθj − rj

)

eiθjφj

]

= 2

∫

rjℑ
(

eiθjφj

)

;

∂Q

∂θj
(x0,Θ) = i

∫

[

−∂x

(

φje
iθj − rj

)

∂xφje
−iθj + ∂x

(

φje
−iθj − rj

)

∂xφje
iθj

]

= 2

∫

∂xrjℑ
(

∂xφje
iθj

)

.

If x0 = y0 and Γ = (γ1, γ2) realize the minimum in the minimization problem (3.1),
then the following equations are satisfied

∂(P +Q)

∂x0
(x0,Θ) = −2

2
∑

j=1

∫

[

rj(x)ℜ
(

eiγj
∂φj

∂x0
(x− y0)

)

+ ∂xrj(x)ℜ
(

eiγj∂x
∂φj

∂x0
(x − y0)

)]

= 0,

∂(P+Q)

∂θj
(x0,Θ) = 2

∫

[

rj(x)ℑ
(

eiγjφj(x−y0)
)

+∂xrj(x)ℑ
(

eiγj∂xφj(x− y0)
)]

= 0.

Denoting with U and V the real and imaginary (respectively) part of W = Φ(x −
y0)e

iΓ −R(x) and taking into account that R is real and does not depend on x0, it
follows

∂(P +Q)

∂x0
(x0,Θ) =

2
∑

j=1

∫ [

rj
∂uj

∂x0
+ ∂xrj∂x

∂uj

∂x0

]

= −
2

∑

j=1

∫ [

uj
∂rj
∂x0

+ ∂xuj∂x
∂rj
∂x0

]

= 0,

∂(P +Q)

∂θj
(x0,Θ) =

∫

[rjvj + ∂xrj∂xvj ] = 0, j = 1, 2.
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The second line of the above equations can be read as the orthogonality conditions
on V in (3.2). As far as regards U , we only have to notice that ∂xR satisfies the
linearized system of (1.2) so that all the conditions in (3.2) are proved.

We are now ready to complete the proof of the main result, Theorem 1.2.

Proof of Theorem 1.2 concluded. Let us consider Φ ∈ H
1 with ‖Φ‖2 = ‖R‖2 and

W (x) = Φ(x − y0)e
iΓ − R(x), where y0 ∈ R and Γ ∈ R2 satisfy the minimality

conditions (3.1). We want to control the H1 norm of W in terms of the difference
I(Φ) −I(R), being I is the action functional associated to the system and defined
as

I(Φ) = E(Φ) + ‖Φ‖2
2.

To this aim, we first compute the difference I(Φ)−I(R) and we use scale invariance,
obtaining I(Φ) − I(R) = I(R +W ) − I(R). Then, recalling that 〈I ′(R),W 〉 = 0,
Taylor expansion gives

I(Φ) − I(R) = I(R +W ) − I(R) = 〈I ′(R),W 〉 + 〈I ′′(R+ ϑW )W,W 〉
= 〈I ′′(R)W,W 〉 + 〈I ′′(R + ϑW )W,W 〉 − 〈I′′(R)W,W 〉.

In order to evaluate the difference on the right hand side we will use the C2 regularity
of I, at this point it is crucial (1.5). For simplicity, let us consider separately the
nonlinear terms in I. The term G : H1 → R defined by

G(U) = G(u1, u2) = ‖u1‖2p+2
2p+2 + ‖u2‖2p+2

2p+2,

is of class C3, as p ≥ 1, so that

〈G′′(R+ ϑW )W,W 〉 − 〈G′′(R)W,W 〉 ≥ −c1‖W‖3
H1 . (3.3)

As far as concern the coupling term Υ : H1 → R defined by Υ(U) = Υ(u1, u2) =

‖u1u2‖p+1
p+1, it results

〈Υ′′(U)W,W 〉 =(p2 − 1)

∫

|u1|p−3|u2|p−3
[

|u2|4ℜ2(u1)|w1|2 + |u1|4ℜ2(u2)|w2|2
]

+ (p+ 1)

∫

|u1|p−1|u2|p−1
[

|u2|2|w1|2 + |u1|2|w2|2
]

+ 2(p+ 1)2
∫

|u1|p−1|u2|p−1ℜ(u1)ℜ(u2)ℜ(w1w2).

When we write the difference 〈Υ′′(R)W,W 〉 − 〈Υ′′(R + ϑW )W,W 〉 we use that R
is a real function and we control the first two terms with the real parts by the
modulus; finally we use the inequality

∣

∣|rj + ϑwj |p−1 − |rj |p−1
∣

∣ ≤ C|wj |p−1,

to get

〈Υ′′(R)W,W 〉 − 〈Υ′′(R+ ϑW )W,W 〉 ≥ −c1‖W‖2+µ
H1 for some µ > 0. (3.4)

This inequality joint with (3.3) implies that

〈I ′′(R+ ϑW )W,W 〉 − 〈I′′(R)W,W 〉 ≥ −C‖W‖2+µ
H1 . (3.5)

Therefore,

I(Φ) − I(R) ≥ 〈I′′(R)W,W 〉 − C‖W‖2+µ
H1 = 〈L−V, V 〉 + 〈L+U,U〉 − C‖W‖2+µ

H1 .

Taking into account the orthogonality conditions of Proposition 3.1, the assertion
now follows from Proposition 2.5 and Remark 2.7.
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Proof of Corollary 1.3. Let δ be a positive number to be chosen later. Moreover, let
R = (r1, r2) ∈ H1 and S = (s1, s1) ∈ H1 be two given non-degenerate ground state
solutions to system (1.2) such that

‖R− S‖2
H1 < δ.

Then, taking into account the variational characterization (1.3) for ground states,
we learn that

E(R) = E(S), ‖R‖L2 = ‖S‖L2.

Notice also that

inf
x0∈R

θ∈R2

‖R− (eiθ1s1(· − x0), e
iθ2s2(· − x0))‖2

H1 ≤ ‖R− S‖2
H1 < δ.

Therefore, by applying Theorem 1.2, if δ > 0 is chosen sufficiently small, we get

inf
x0∈R

θ∈R2

‖R− (eiθ1s1(· − x0), e
iθ2s2(· − x0))‖2

H1 ≤ 0.

In turn we conclude that R = S, up to a suitable translation and phase change.
�

Proof of Corollary 1.4. Let T > 0 and let us fix ε > 0 sufficiently small. Consider
the solution Ψ of system (1.1) with initial datum Ψ0. By the conservation laws, we
have

‖Ψ(t)‖L2 = ‖Ψ0‖L2 , E(Ψ(t)) = E(Ψ0), for all t ∈ [0,∞).

By the continuity of the energy E , there exists δ = δ(ε) > 0 such that

E(Ψ(t)) − E(R) = E(Ψ0) − E(R) < ε, for all t ∈ [0,∞),

provided that

inf
θ∈R2

x∈R

‖Ψ0(·) − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1 < δ. (3.6)

Then, if we define for any t > 0 the positive number

ΓΨ(t) = inf
θ∈R2

x∈R

‖Ψ(t) − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1 ,

we learn from Theorem 1.2 that there exist two positive constants A and C such
that

ΓΨ(t) ≤ C(E(Ψ(t)) − E(R)), (3.7)

provided that ΓΨ(t) < A. Let us define the value

T0 := sup
{

t ∈ [0, T ] : ΓΨ(s) < A for all s ∈ [0, t)
}

.

Of course, it holds T ≥ T0 > 0 by means of (3.6) (up to reducing the size of δ, if
necessary) and the continuity of Ψ(t). Hence, we deduce that

sup
t∈[0,T0]

inf
θ∈R2

x∈R

‖Ψ(t, ·) − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1 (3.8)

≤ C(E(Ψ(t)) − E(R)) = C(E(Ψ0) − E(R)) < Cε.

On the other hand, it is readily seen that, from this inequality, one obtains T0 = T .
In fact, assume by contradiction that T0 < T . Then, since by (3.8)

ΓΨ(T0) = inf
θ∈R2

x∈R

‖Ψ(T0, ·) − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1 < Cε,
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inequality ΓΨ(t) < A holds true by continuity for any t ∈ [T0, T0 +ρ), for some small
ρ > 0, which is a contradiction by the definition of T0. Hence T0 = T and, for any
T > 0, from (3.8) we get

sup
t∈[0,T ]

inf
θ∈R2

x∈R

‖Ψ(t, ·) − (eiθ1r1(· − x), eiθ2r2(· − x))‖2
H1 < Cε,

which is the desired property on [0, T ]. By the arbitrariness of T the assertion
follows. To cover the general case of perturbations Ψ0 which do not preserve the
L2, namely ‖Ψ0‖L2 6= ‖R‖L2, it is sufficient to follow the deformation argument
used in the scalar case, see [22, bottom of page 59]. In fact, if R is a non-degenerate
ground state solution to (1.2), then Rλ(x) = (r1,λ, r2,λ) = (λ1/pr1(λx), λ

1/pr2(λx))
is a non-degenerate ground state solution to the system











−1

2
∂xxr1,λ + λ2r1,λ = r2p+1

1,λ + βrp
1,λr

p+1
2,λ inR

−1

2
∂xxr2,λ + λ2r2,λ = r2p+1

2,λ + βrp
2,λr

p+1
2,λ inR

for all λ > 0, so that, thanks to assumption (1.5) we can choose λ > 0 such that
‖Rλ‖L2 = ‖Ψ0‖L2. �

4. Existence of a non-degenerate ground state. In the following section we
will show that there exists a non-degenerate ground state Z. More precisely, let us
consider z be the unique positive radial least energy solution of (1.6) and let a be
given by

a = (1 + β)−1/2p. (4.1)

We will prove the following result.

Theorem 4.1. Let a be given in (4.1), then the vector Z = a(z, z) is a non-

degenerate ground state of system (1.2) for every p > 0, β > 1 and p 6= β.

Remark 4.2. In [11] it is proved that for β ≤ 1 every ground state of (1.2)
necessarily has one trivial component, that is the reason of the assumption β > 1.
Moreover, it can been easily seen that for p = β the ground state Z is a degenerate
solution that is why we assume p 6= β.

This result will be a consequence of the two following results.

Theorem 4.3. Let a be given in (4.1), then the vector Z = a(z, z) is a ground state

of system (1.2) for every p > 0, β > 1.

Theorem 4.4. Let a be given in (4.1), then the vector Z = a(z, z) is a non-

degenerate ground state of system (1.2) for every p > 0, β > 1 and p 6= β.

Remark 4.5. In [7] it is studied the global existence for the Cauchy problem (1.1)
and it is proved that the solution exists for any time if p < 2/n, while it can blow
up if p ≥ 2/n. In the critical case p = 2/n it is given a bound on the L2-norm of the
initial data which guarantees the global existence of the solution (see Theorem 2).
Since Theorem 4.3 shows that the test functions used in [7] to estimate the blow-up
threshold belong to the set of ground state solutions, as a by product, we obtain
that the bound given in [7] is the exact threshold value.
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Remark 4.6. The above results have been proved for p = 1, respectively, in [19]
and [6] in any dimension. Actually, the same arguments work for any p > 0. In the
following we include the details for completeness. Let us notice that the same proof
of Theorem 4.3 holds in dimension greater than one; in addition, the arguments used
in [6] hold for p ∈ (0, 2/n) for every n ≥ 1. Thus, the vector Z is a non-degenerate
ground state solution of (1.2) in any dimension n ≥ 1, our conjecture is that it is
the only one if β > 1. Here our interest, is restricted to the one dimension setting
so that we will see the proof of Theorem 4.1 in this case.

4.1. Proof of Theorem 4.3. First, we recall this simple facts.

Proposition 4.7. Let us set

S1 = inf
H1(R)\{0}

‖u‖2
H1

‖u‖2
2p+2

, T1 = inf
N1

{1

2
‖u‖2

H1 − 1

2p+ 2
‖u‖2p+2

2p+2

}

,

where

N1 =
{

u ∈ H1(R) : u 6= 0, ‖u‖2
H1 = ‖u‖2p+2

2p+2

}

.

Then, the following equality holds

T1 =
1

2

p

p+ 1
(S1)

(p+1)/p.

Proof. As z solves the minimization problems that defines S1 and T1, using (1.6)
we get

S1 =
‖z‖2

H1

‖z‖2
2p+2

=
‖z‖2

H1

‖z‖2/(p+1)
= ‖z‖2p/(p+1)

H1 = ‖z‖2p
2p+2,

namely

‖z‖2
H1 = S

(p+1)/p
1 and ‖z‖2p+2 = S

1/2p
1 . (4.2)

Using these equalities in the definition of T1 permits to conclude the proof.

Define now the sets

N0 =
{

U ∈ H
1 : U 6= (0, 0), ‖U‖2

H1 = ‖U‖2p+2
2p+2 + 2β‖u1u2‖p+1

p+1

}

,

N =
{

U ∈ H
1 : ui 6= 0, ‖ui‖2

H1 = ‖ui‖2p+2
2p+2 + β‖u1u2‖p+1

p+1, i = 1, 2
}

.

Moreover, if H1
r is the set of radial function of H1, we introduce the numbers

A0 = inf
U∈N0

I(U), A = inf
U∈N

I(U), Ar = inf
U∈N∩H1

r

I(U), (4.3)

where

I(U) =
1

2
‖U‖2

H1 − 1

2p+ 2
‖U‖2p+2

2p+2 −
1

p+ 1
β‖u1u2‖p+1

p+1.

Let a be a positive number. Writing down the equations that define N and recalling
that z satisfies (1.6) it is easy to see that a(z, z) ∈ N if a satisfies (4.1).

Concerning the infimum problems A0, A,Ar, in [19] the following result is proved
for p = 1; actually the same proof holds for any p satisfying (1.5), we include some
details.

Proposition 4.8. Let a satisfies (4.1). Then the following inequalities hold

0 < A0 ≤ A ≤ Ar ≤ p

p+ 1
a2S

(p+1)/p
1 , (4.4)

where the values A0 and Ar are defined in (4.3).
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Proof. First note that, taken any U = (u1, u2) ∈ N0, the value I(U) is equal to

I(U) =
1

2

( p

p+ 1

)

[

‖U‖2p+2
2p+2 + 2β‖u1u2‖p+1

p+1

]

=
1

2

( p

p+ 1

)

‖U‖2
H1. (4.5)

Moreover, since a(z, z) ∈ N and has radial components, recalling (4.2) we get

Ar ≤ I(az, az) =
1

2

( p

p+ 1

)

‖(az, az)‖2
H1 (4.6)

=
( p

p+ 1

)

a2‖z‖2
H1 =

( p

p+ 1

)

a2S
(p+1)/p
1 ,

which is the last inequality on the right-hand side in (4.4). It just remains to show
that A0 > 0. To this aim, take U ∈ N0 and observe that Hölder and Sobolev
inequalities imply that there exist positive constants C0, C1 such that

‖U‖2
H1 = ‖U‖2p+2

2p+2 + 2β‖u1u2‖p+1
p+1 ≤ C0‖U‖2p+2

2p+2 ≤ C1‖U‖2p+2
H1

so that the norm ‖U‖H1 remains uniformly away from zero. Hence, recalling for-
mula (4.5), we conclude the proof.

We are now ready to complete the proof of Theorem 4.3.
Proof of Theorem 4.3 concluded. We will obtain Theorem 4.3 by showing that the
infimum A equals Ar and it is achieved at the couple a(z, z), which is thus a ground
state solution of (1.2).

First, let (Um) = (um,1, um,2) ⊂ N be a minimizing sequence for A, namely
I(Um) = A + o(1) as m → ∞. Let us set ym,i = ‖um,i‖2

2p+2 for any m ∈ N and
i = 1, 2. Hence, by the definition of S1 and Hölder inequality, it follows that, for all
m ∈ N,

S1ym,1 ≤ ‖um,1‖2
H1 = ‖um,1‖2p+2

2p+2 + β‖um,1um,2‖p+1
p+1 (4.7)

≤ yp+1
m,1 + βy

(p+1)/2
m,1 y

(p+1)/2
m,2 ,

for all m ∈ N. Of course, for all m ∈ N, the analogous inequality holds

S1ym,2 ≤ ‖um,2‖2
H1 = ‖um,2‖2p+2

2p+2 + β‖um,1um,2‖p+1
p+1 (4.8)

≤ yp+1
m,2 + βy

(p+1)/2
m,1 y

(p+1)/2
m,2 .

Furthermore, taking into account formula (4.5), by addition of the first inequalities
in (4.7) and (4.8) one obtains

S1(ym,1 + ym,2) ≤ 2
p+ 1

p
I(Un) = 2

p+ 1

p
A+ o(1), as m→ ∞. (4.9)

By combining this inequality with Proposition 4.8 gives

S1(ym,1 + ym,2) ≤ 2a2S
(p+1)/p
1 + o(1), as m→ ∞.

Hence, defining zm,i = ym,i/S
1/p
1 , we derive zm,1 + zm,2 ≤ 2a2 + o(1), as m tends

to infinity. Also, by dividing (4.7) by S1ym,1 and (4.8) by S1ym,2 and using S1 =

S
(p−1)/2p
1 S

(p+1)/2p
1 we obtain that, as m → ∞, (zm,1, zm,2) satisfies the following

system of inequalities














zm,1 + zm,2 ≤ 2a2 + o(1),

zp
m,1 + βz

(p−1)/2
m,1 z

(p+1)/2
m,2 ≥ 1,

zp
m,2 + βz

(p+1)/2
m,1 z

(p−1)/2
m,2 ≥ 1.



882 E. MONTEFUSCO, B. PELLACCI AND M. SQUASSINA

Taking into account (4.1) we are lead to the study of the associated algebraic system
of inequalities















x+ y ≤ 2a2,

xp + βx(p−1)/2y(p+1)/2 ≥ (1 + β)a2p,

yp + βx(p+1)/2y(p−1)/2 ≥ (1 + β)a2p,

(4.10)

for which we refer to Figure 1.
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1

Figure 1. Plot of the three curves involved in the algebraic system
of inequalities (4.10) in the case p = 0.7 (left) and p = 2.2 (right).
For p = 1 the system becomes linear. In all cases the curves inter-
sect to a unique point on the bisecting line. This is also the unique
solution to (4.10) (region above both red curves and below the blue
line). The value of ω was set to 1.2.

Then, for β > 1 and any i = 1, 2, the sequence (zm,i) remains bounded away
from zero and it has to be zm,1 → a2 and zm,2 → a2 as m→ ∞, so that looking at
the first (in)equality of (4.10) with x = y (by figure 1) yields x = y = a2), so that

ym,1 → a2S
1/p
1 , and ym,2 → a2S

1/p
1 , as m diverges. Whence, passing to the limit in

formula (4.9), in light of Proposition 4.8 we obtain

2S
(p+1)/p
1 a2 ≤ 2

p+ 1

p
A ≤ 2a2S

(p+1)/p
1

so that, (4.6), gives

A ≤ Ar ≤ I(az, az) ≤
( p

p+ 1

)

a2 (S1)
(p+1)/p

= A,

which gives A = Ar = I(az, az), concluding the proof.

4.2. Proof of Theorem 4.4. According to Section 4.1, let us consider Z = a(z, z)
the particular ground state solution of (1.2), with a given in (4.1); we will now show
the non-degeneracy property of Z. First, notice that the linearized system (1.9) can
be obtained using the operator L+ acting on Z, and by the explicit expression of Z
we get

L+ =







−1

2
∂xx + 1 0

0 −1

2
∂xx + 1






−







p(2 + β) + 1

1 + β
z2p β(p+ 1)

1 + β
z2p

β(p+ 1)

1 + β
z2p p(2 + β) + 1

1 + β
z2p






.
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In accordance with Section 2, we denote with HF (Z) the second matrix on the
right hand side. The quadratic form related to HF (Z) can be diagonalized by an
orthonormal change of coordinates, introducing

w1 =

√
2

2
(φ1 + φ2), w2 =

√
2

2
(φ1 − φ2). (4.11)

Since we have

Tr(HF (Z)) = 2
(2 + β)p+ 1

1 + β
= (2p+ 1) +

2p+ 1 − β

1 + β
,

Det(HF (Z)) =
(2p+ 1)(2p+ 1 − β)

1 + β
,

it follows that its eigenvalues are

λ1 = 2p+ 1, λ2 =
2p+ 1 − β

1 + β
∈ (−1, 2p+ 1) (4.12)

so the linear elliptic system L+Φ = 0 decouples and reduces to










−1

2
∂xxw1 + w1 = (2p+ 1)z2p(x)w1, in R

−1

2
∂xxw2 + w2 =

2p+ 1 − β

1 + β
z2p(x)w2, in R.

(4.13)

Taking into account that the weight z is exponentially decaying, the spectrum of
the linear self-adjoint operator − 1

2∂xx + Id − µz2p is discrete. Furthermore, from
[21, (a) and (b) of Proposition 2.8] with proofs for n = 1 in [21, Appendix A], we
learn that the eigenvalues of

− 1

2
∂xxw + w − µz2p(x)w = 0 in R, (4.14)

are given by µ1 = 1, µ2 = 2p+ 1, µ3 > 2p+ 1, and, denoting by Vµi
the eigenspace

corresponding to the eigenvalue µi, we have Vµ1 = span
{

z
}

, Vµ2 = span
{

∂xz
}

.

Therefore, from the first equation of (4.13) we deduce w1 ∈ span
{

∂xz
}

. From
(4.12) we also deduce, from the second equation of (4.13), that w2 = 0. In turn, by
the orthonormal change of coordinates (4.11) we obtain φ1 = φ2 = c∂xz, for some
coefficient c ∈ R. Whence Ker(L+) = 〈∂xZβ〉, which concludes the proof.

References

[1] A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equa-

tions, J. London Math. Soc., 75 (2007), 67–82.

[2] F. A. Berezin and M. A. Shubin, “The Schrd̈inger Equation,” Translated from the 1983
Russian edition by Yu. Rajabov, D. A. Lei tes and N. A. Sakharova and revised by Shubin.
With contributions by G. L. Litvinov and Leites. Mathematics and its Applications (Soviet
Series), 66. Kluwer Academic Publishers Group, Dordrecht, 1991. xviii+555 pp. ISBN: 0-
7923-1218-X.

[3] J. Bronski and R. Jerrard, Soliton dynamics in a potential, Math. Res. Letters, 7 (2000),
329–342.

[4] T. Cazenave, “An Introduction to Nonlinear Schrödinger Equations,” Textos de Métodos
Matemáticos 26, Universidade Federal do Rio de Janeiro 1996.

[5] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear

Schrödinger equations, Comm. Math. Phys., 85 (1982), 549–561.
[6] E. N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with

attractive interaction, Trans. Amer. Math. Soc., 361 (2009), 1189–1208.

https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR2302730&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR1186643&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR1764326&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR0677997&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR2457395&return=pdf


884 E. MONTEFUSCO, B. PELLACCI AND M. SQUASSINA

[7] L. Fanelli and E. Montefusco, On the blow-up threshold for two coupled nonlinear Schrödinger

equations, J. Phys. A: Math. Theor., 40 (2007), 14139–14150.
[8] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of

symmetry. I, J. Funct. Anal., 74 (1987), 160–197.
[9] S. Keraani, Semiclassical limit of a class of Schrödinger equation with potential, Comm.

Partial Differential Equations, 27 (2002), 693–704.
[10] S. Keraani, Semiclassical limit for nonlinear Schrödinger equation with potential. II, Asymp-

totic Anal., 47 (2006), 171–186.
[11] L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear

Schrödinger system, J. Differential Equations, 229 (2006), 743–767.
[12] L. A. Maia, E. Montefusco and B. Pellacci, Orbital stability of ground state solutions of cou-

pled nonlinear Schrödinger equations, Adv. Nonlin. Stud. in press. Preprint. arXiv:0809.3320
[13] S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic

waves, Sov. Phys. JETP, 38 (1974), 248–253.
[14] C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum

Electron, 23 (1987), 174–176.
[15] E. Montefusco, B. Pellacci and M. Squassina, Soliton dynamics for CNLS systems with po-

tentials, Asympt. Anal., 66 (2010), 61-86.
[16] N. V. Nguyen and Z. Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger

system. Preprint.
[17] M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear

Anal., 26 (1995), 933–939.
[18] J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys., 100

(1985), 173–190.
[19] B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in

R
n, Comm. Math. Phys., 271 (2007), 199–221.

[20] C. Sulem, P. L. Sulem, “The Nonlinear Schrödinger Equation,” Self-Focusing and Wave Col-
lapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. xvi+350 pp.
ISBN: 0-387-98611-1.

[21] M. I. Weinstein, Modulational stability of ground state of nonlinear Schrödinger equations,

SIAM J. Math. Anal., 16 (1985), 472–491.

[22] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equa-

tions, Comm. Pure Appl. Math., 39 (1986), 51–67.

Received October 2008; revised February 2010.

E-mail address: montefusco@mat.uniroma1.it

E-mail address: benedetta.pellacci@uniparthenope.it

E-mail address: marco.squassina@univr.it

https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR2438116&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR0901236&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR1900559&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR2233919&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR2263573&return=pdf
https://sslvpn.univr.it/pdf/,DanaInfo=arxiv.org+0809.3320
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR1362765&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR0804458&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR2283958&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR1696311&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR0783974&return=pdf
https://sslvpn.univr.it/,DanaInfo=www.ams.org+mathscinet-getitem?mr=MR0820338&return=pdf

	1. Introduction and main results
	2. Spectral analysis of the linearized operators
	3. Proofs of the main results
	4. Existence of a non-degenerate ground state
	4.1. Proof of Theorem 4.3
	4.2. Proof of Theorem 4.4

	References

