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Abstract. We prove concavity properties for solutions to anisotropic quasi-
linear equations, extending previous results known in the Euclidean case. We

focus the attention on nonsmooth anisotropies and in particular we also allow

the functions describing the anisotropies to be not even.

1. Introduction. A natural question in the framework of nonlinear elliptic PDEs
is whether a solution inherits some qualitative properties from it domain of def-
inition. Starting from [25] extensive research has been developed in order to de-
duce symmetry of solutions from the symmetry of the domain, via the so called
Alexandroff-Serrin moving plane method. But when the symmetry of the domain
is dropped, one may wonder if the solutions still exhibit some convexity proper-
ties just from the convexity of their domain. As it turns out, classical concavity
of, say, positive solutions with zero Dirichlet boundary conditions is often rather
demanding: it can be achieved for the torsion problem{

−∆u = 1 in Ω

u = 0 on ∂Ω,
(1)

for example, only for convex Ω which are suitably small perturbations of ellipsoids
[29] (see also [18]) and the first eigenfunctions of the Dirichlet Laplacian are actually
never concave, in any convex domain [32, Remark 3.4]. One may instead look for
quasi-concavity of positive solutions in convex domains, meaning that all their super-
level sets are convex. This is usually accomplished by requiring that for a suitable
strictly increasing functions φ the composition φ(u) is concave, a property called
φ-concavity of u. Indeed, in the seminal paper [37] it is shown that the solution
of the torsion problem (1) for Ω convex is such that

√
u is concave and in [12] the

authors show that the logarithm of a first positive eigenfunctions of the Dirichlet
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Laplacian is always concave if the domain is convex. More generally, for the positive
solution of {

−∆u = uβ in Ω

u = 0 on ∂Ω,

in a convex Ω, the power u(1−β)/2 is concave for any β ∈ [0, 1], the 0-th power being
formally identified with log u, see [33, 34]. These last two investigations, based on
the so-called concavity function method, gave birth to a rich research field on quasi-
convexity properties of solutions to PDEs in the eighties, and we refer to [32] for the
relevant bibliography. The concavity function method was also successfully applied
to quasilinear equation of p-Laplacian type in [40]. Another approach to deduce
quasi concavity is to couple the classical continuity argument with the constant
rank method initiated in [15], ensuring strict convexity of suitable tranformations
of u. Unfortunately, this technique requires solutions to be at least C2 and is
not applicable to problems driven by p-Laplacian. Later, a new approach to these
problems, the convex envelope method, was introduced in [3] in the framework of
viscosity solutions to fully nonlinear PDEs.

Recent contributions. These three strategies for investigating convexity prop-
erties of solutions to PDEs have been revisited, extended and modified in various
ways. In the resulting vast literature, representative contributions are for instance
[27, 26] for the concavity function method, [35, 8] for the constant rank one and
[19, 9, 30] for the convex envelope one.

More recently, a general class of reactions f ensuring quasi-concavity of the
positive solutions of {

−∆u = f(u) in Ω

u = 0 on ∂Ω,
(2)

(and more generally of quasi-linear problems involving the p-Laplace operator) has
been singled out in [10, 11], providing a precise connection on how the quasi-
concavity of the solution is affected by the nonlinear term f through the above
mentioned φ. Indeed, the class of continuous increasing φ can be partially ordered
in a natural way according to their concavity, and one of the goals of [10] was, given
f obeying suitable conditions, to determine a “minimally concave” φ ensuring φ-
concavity of the solutions of the corresponding quasilinear problem. Note that, for
general positive reactions f , quasi-concavity of positive solutions of (2) can fail for
some smooth convex Ω, as shown in [28].

In [2] the optimality of the assumptions of [10] was discussed and the results were
then extended to cover positive solutions to the quasi-linear problem

−div(α(u)Du) +
1

2
α′(u)|Du|2 = f(u)

(coupled with zero boundary conditions), related to the so called modified nonlinear
Schrödinger equation, under suitable joint hypothesis on α and f .

Another direction recently investigated in the literature is the quasi-concavity of
the solutions if the nonlinearity is perturbed [14] or if the equation is nonautonomous
in the diffusion or on the source term, like in the second order semilinear problem

−Tr
(
A(x)D2u

)
= a(x)uβ ,
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see [1]. Finally, strict quasi-concavity of positive solutions to{
−∆pu = f(u) in Ω

u = 0 on ∂Ω

has also been investigated, despite the above mentioned failure of the constant rank
theorem in the p-Laplacian framework. In fact, once concavity of a suitable smooth
strictly monotone transformation φ(u) is achieved, the constant rank theorem can
be applied outside the maximum points of u, since the latter is sufficiently regular
there. The problem is thus reduced to prove uniqueness of the maximum point of u
and we refer to [11] for the relevant literature and open questions in the quasilinear
setting.

Equations considered. In this paper, given a bounded convex Ω ⊆ RN , we
investigate the quasi-concavity of positive solutions of{

−div (DH(Du)) = f(u) in Ω
u = 0 on ∂Ω ,

(3)

where H is a continuous convex p-homogenous function for some fixed p > 1 vanish-
ing only at the origin and f is continuous and fulfils suitable concavity conditions
detailed below. We are particularly interested in the case where H is not even and
possibly non-smooth, in which case (3) requires a suitable variational formulation
due to the possible lack of differentiability of H.

When H is even, the operator appearing on the right of (3) is also known as the
Finsler p-Laplacian, since the corresponding kinetic energy

u 7→
∫
Ω

H(Du) dx

has density which can be expressed as

H(Du) = Φ(Du)p

for a suitable Finsler norm Φ. Clearly, when the norm is the standard Euclidean
one, we are reduced to the usual p-Laplacian.

This kind of energies can be used to model several anisotropic phenomena related
to physics and biology [4]. In materials science and chemistry a central role is
played by non-smooth Finsler norms in order to describe the behavior of crystalline
microstructures [7, 41]. Non-smooth Finsler norms are also used in control theory
to describe the cost functional in some optimization problems [22]. Moreover, in
differential geometry it is possible to consider non-even energy densities H, as for
instance those related to Randers metrics, which have applications also in relativity
[39].

Problem (3) and the qualitative properties of its solutions has been thoughtfully
investigated in recent years under the assumption that H is smooth and its corre-
sponding Finsler norm has strongly convex unit ball, see for instance [16, 17, 20, 21].
Even under these more stringent assumptions, however, the quasi-concavity of so-
lutions to (3) (in relation with suitable assumptions on the reaction f) was not
generally known, although the results of [3] and [9] could be, at least formally,
applied to get concavity properties of the solutions.

Note that (3) has to be understood, for crystalline non-differentiable energies,
in weak sense either as a differential inclusion or as minimisation property of the
corresponding energy. This will be made precise in the forthcoming paragraph. The
regularity of solutions of (3) is therefore very poor, at best Cα(Ω) for some α ∈ ]0, 1[,
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and this poses serious issues in the direct applicability of the aforementioned meth-
ods. It is worth noting that even when H is smooth away from the origin, as for
instance in the model case of the p-Laplacian whose corresponding solutions enjoy
better regularity, the convex envelope technique of [3] still runs into problems. The
very notion of viscosity solution is quite different from the standard one, and the co-
incidence of weak and viscosity solutions for general quasilinear degenerate/singular
equations is object of contemporary research, mainly built around the ideas of [31].
We are not aware of any result of this kind for the general crystalline case we are
considering in the present investigation.

Main result. In order to state our main result, given a continuous f ∈ C0(R+),
set

F (t) =

∫ t

0

f(s) ds

and let φ be

φ(t) =

∫ t

1

F (s)−
1
p ds . (4)

which is well defined on ]0,Mf ] ∩ R, for
Mf = inf{t > 0 : f(t) ≤ 0} (5)

(in most instances we will actually have Mf = +∞). Note that in general φ may
be unbounded near 0 and also possibly near some t̄ > Mf . In order to deal with
possibly non-smooth convex H, we restrict to special variational solutions of (3),
namely minimisers of the corresponding energy{

w ∈W 1,p
0 (Ω) : w ≥ 0

}
∋ w 7→ J(w) =

∫
Ω

1

p
H(Dw)− F (w) dx. (6)

This is not restrictive, since if H is differentiable and f fulfils the additional re-
quirements specified in the statement below, any positive solution of (3) turns out
to minimise (6).

Theorem 1.1. Suppose that H ∈ C0(RN ) is convex, positively p-homogeneous and
vanishes only at the origin, while f ∈ Cα(]0,Mf ]),R)∩C0([0,∞[,R) fulfils Mf > 0.

Let u ∈W 1,p
0 (Ω) be a non-negative, nontrivial minimiser for (6).

Assume that

1. F
1
p is concave and F/f is convex on ]0,Mf [

and one of the following conditions

(2H) H is strictly convex
(2F ) t 7→ F (t1/p) is strictly concave.

Then u ≤Mf and the function v = φ(u) is concave in Ω, where φ is given in (4).

Comments on the statement.

• We are not assuming any regularity or evenness hypothesis on H in Theorem
1.1. This lack of regularity and symmetry on H forces us to build suitable
tools such as comparison principles and Hopf type Lemma without relying on
PDE arguments and are therefore, as far as we know, new.

• Due to the assumed p-positive homogeneity of H, its strict convexity is equiv-
alent to the strict convexity of {H ≤ 1}. Note that in general the strong
convexity of {H ≤ 1} (meaning that the principal curvature of its boundary
are positively bounded from below) is required to get classical C1,α regularity
of the corresponding solution.
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• By elementary means, one can show that if t 7→ F 1/p(t) is concave, so is
t 7→ F (t1/p), which in turn means that t 7→ f(t)/tp−1 is non-increasing, a
common notion in Brezis-Oswald uniqueness type results, cfr. [13, 24].

• If H ∈ C1(RN ) and t 7→ F (t1/p) is concave it will turn out that any solution
of (3) is actually a non-negative minimiser for J . This fact can be proved
(see (29)) in the more general framework of possibly non-differentiable H, by
using the notion of energy critical point developed in Section 3 and inspired
by [23].

• Either of condition (2H) and (2F ) above, coupled with the concavity of t 7→
F (t1/p) implies that the non-negative minimisers of J are essentially unique.
More precisely, either t 7→ F (t1/p) is linear and u is a first Dirichlet positive
eigenfunction minimising the corresponding Rayleigh quotient (see (7) below),

or u is the unique non-negative minimiser of J on W 1,p
0 (Ω). This has been

proved in [38], see Proposition 3.4 for a precise statement.
• Existence of non-negative minimisers (or, equivalently, of non-negative criti-
cal points) for J can be characterised in terms of the asymptotic behaviour
at 0 and +∞ of t 7→ f(t)/tp−1, assuming it is non-increasing. This is the
content of a Brezis-Oswald type result proved in Proposition 3.3 below, which
complement the results of [38].

• Assumption (1) can be weakened to
(1’) t 7→ f(t)/tp−1 is non increasing and t 7→ e(p−1)t/f(et) is convex
allowing to establish log-concavity of u. This follows coupling the arguments
in [10] with tools developed in this manuscript. Note that (1) implies (1′),
but in this case if φ-concavity is strictly stronger that log-concavity.

• The assumption f ∈ Cα(]0,Mf ]) is a technical one. Indeed, from the convexity
of F/f and the positivity of f in ]0,Mf [ one infers that f ∈ Liploc(]0,Mf [) so
that we actually require a Hölder control at Mf alone.

Applications.

• A natural choice for the energy density is H(z) = |z|pr for given r ∈ [1,∞] and
p ∈ ]1,∞[, where |z|r denotes the ℓr norm on RN . Note that with this choice
{H ≤ 1} is never strongly convex unless r = 2, but H is strictly convex for
any r ∈ ]1,∞[, so that assumption (1) on the reaction suffices to get quasi-
concavity of the corresponding solutions of (3). If r = 1 or ∞, H fails to be
strictly convex and assumption (2F ) is needed to obtain quasi-concavity of
the minimisers.

In the non-even setting we can choose any convex, bounded, open K ⊆
RN containing 0 (but not necessarily symmetric) and consider its Minkowski
functional

Φ(z) = inf{t > 0 : z/t ∈ K}.

defining the energy density as H = Φp. The resulting H fulfils (2H) as long
as K is strictly convex.

• Given p > 1, the typically used reaction is F (t) = c tq for 1 ≤ q < p, c > 0,
which then fulfils (1) and (2F ) above. In this case, given any convex, positively
p-homogeneous H vanishing only at the origin and a convex bounded Ω ⊆ RN ,
a non-negative minimiser u of J has the property that u(p−q)/q is concave. In
this case, since (2F ) holds true, H may fail to be strictly convex allowing
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for example to establish the power-concavity of the minimisers of the non-
homogeneous Rayleigh quotient

inf


∫
Ω

|Du|2∞ dx(∫
Ω

|u|q dx
)2/q

: u ∈W 1,2
0 (Ω) \ {0}


for any q ∈ [1, 2[ and convex, bounded Ω.
Other explicit examples where (2F ) holds true, thus allowing such a generality
for H, can be found in [10, Section 2].

• Another application of our main result is when u is a first Dirichlet positive
eigenfunction of a convex bounded domain Ω, thus minimising the homoge-
neous Rayleigh quotient

λ+1,H(Ω) = inf


∫
Ω

H(Du) dx∫
Ω

up
: u ∈W 1,p

0 (Ω) \ {0}, u ≥ 0

 . (7)

Then F (t) = λ+1,H(Ω) tp/p and u is log-concave as long as H is strictly convex.

Note that F fulfils (1) in this case, but not (2F ), and that the requirement
u ≥ 0 in (7) is needed since H may fail to be even.

A sample consequence is the log-concavity of the first positive Dirichlet
eigenfunction of the pseudo p-Laplacian studied in [5], solving

−∆̃pu = −
N∑
i=1

|∂iu|p−2∂iu = λ̃1,p(Ω)u
p−1

for p ∈ ]1,∞[. The energy-density of the corresponding kinetic energy is
H(z) = |z|pp which, as already noted, is strictly convex but {H ≤ 1} is not
strongly convex.

Sketch of proof. The proof of Theorem 1.1 relies on a two-steps approximation
tailored on both H and F . First we smooth out H, by keeping its positive p-
homogeneity and ensuring a form of strong p-ellipticity that the original H may
not have. The uniqueness (up to scalar multiples when t 7→ F (t1/p) is linear) of
the minimiser proved in Section 3 is key to grant the convergence of the minimisers
corresponding to the smoothed functional to the original one. Thus we are reduced
to prove φ-concavity of a minimiser u when H is smooth and p-elliptic. Standard
regularity theory ensures in this setting up to C1,α(Ω) regularity, but since H is not
assumed to be even, nor can be its regularisations. An appropriate and apparently
new anisotropic version of the Hopf Lemma is proved in subsection 4.2 and turns
out to be essential for the second regularisation procedure, since we can infer from
it uniform C2 bounds in an inner thin strip arbitrarily near the boundary of Ω.
A family of different approximating problem is then built, whose corresponding
minimisers are globally C2. The form of this approximation (see (47)) has be to
chosen carefully, in order to ensure that classical results of Kennington and Korevaar
can be applied under conditions involving solely the reaction f . Then the strategy
of Sakaguchi [40] can be employed, namely to consider separately the concavity
function related the corresponding solutions far from ∂Ω and on the boundary of
the aforementioned strip, where uniform C2 bounds are available. By passing to
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the limit, this allows to conclude the concavity of φ(u) on any strongly convex
subdomain sufficiently close to Ω, and thus the theorem.

As a final point of interest it may be worth mentioning some cases which, despite
natural, are not covered by Theorem 1.1. One may consider the crystalline, 2-
homogeneous energy H(z) = |z|2∞ and given a convex Ω ⊆ R2, look for a positive

minimiser u ∈ W 1,2
0 (Ω) of the Rayleigh quotient (7). Note that H is not strictly

convex and F (t1/2) = λ1,H(Ω) t/2 is not strictly concave, thus we are not able to
prove through Theorem 1.1 that log u is concave, as one may naively guess. The
reason, as should be clear from the previously described proof of Theorem 1.1, is
that we don’t known wether the corresponding eigenvalue is simple, a fact that may
well be false for some convex Ω.

Notations. In the paper c and C (eventually with subscripts) denote constants
which are allowed to vary from line to line; their dependance on various parameters
will be outlined only when relevant to the proof. For t ∈ R we denote t+ = max{t, 0}
and t− = max{−t, 0}.

For a, b ∈ RN we denote by (a, b) the standard Euclidean scalar product, by |a|
the Euclidean norm and by a ⊗ b the matrix whose entries are (a ⊗ b)ij = aibj .
Recall that, for v, w ∈ RN , there holds:(

a⊗ b v, w
)
=
(
b, v
) (
a,w

)
.

For a measurable E ⊆ RN , we let |E| be its N -dimensional Lebesgue measure and
for p ≥ 1, the Lp(E) norm of a measurable u : E → R will be denoted by ∥u∥p
when omitting the domain E of u causes no confusion.

2. Preliminary results.

2.1. Main assumptions. Throughout the paper Ω will be an open subset of RN

with finite measure, often assumed to be convex and bounded. Recall that a strongly
convex set is a smooth convex set such that the principal curvatures of ∂Ω are
positive. Clearly, any strongly convex Ω is strictly convex, but the opposite may
not be true.

Moreover, H : RN → [0,∞[ will denote a continuous convex function, obeying
at least the one-sided bound

H(z) ≥ 1

C
|z|p. (8)

A strengthening of the previous condition will be often assumed, namely

1

C
|z|p ≤ H(z) ≤ C |z|p (9)

and in many instancesH will be additionally required to be positively p-homogeneous
(p > 1), meaning

H(t z) = tpH(z) ∀t > 0, z ∈ RN .

Any such H clearly obeys (9).
The reaction f belongs to C0(R), is even and satisfies the one-sided growth

condition

f(t) ≤ C
(
tp−1 + 1

)
t ≥ 0 (10)

as well as Mf > 0, where Mf is given in (5), (possibly Mf = +∞). Let us remark
that the evenness condition on f is assumed only for convenience, since we are
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interested in non-negative critical points for the corresponding functional. Given
such a function, we will set

F (t) =

∫ t

0

f(s) ds.

and

f+(t) = max{0, f(t)}, F+(t) =

∫ t

0

f+(s) ds.

Note that we are making a slight abuse of notation here as F+(t) ̸= (F (t))+. We
will often assume (see e. g. the following paragraph) that F 1/p is concave on [0,M [.
Note that from the concavity of F 1/p on [0,∞[ we readily infer (10) and, more
importantly the following condition

R+ ∋ t 7→ f(t)

tp−1
is non-increasing, (11)

which in turn is equivalent to the concavity of t 7→ F (t1/p) on R+. Note that the
opposite implication is not true, i. e. t 7→ F (t1/p) may be concave but t 7→ F 1/p(t)
may fail to be concave, see [10, Remark 3.4].

2.2. Concavity function. Given a continuous function v : Ω → R with Ω convex,
its convexity function c : Ω× Ω× [0, 1] → R is defined as

cv(x, y, t) = t v(x) + (1− t) v(y)− v
(
t x+ (1− t) y

)
.

Clearly, v is concave in Ω if and only if cv ≤ 0 in its domain. We recall the following
fundamental properties of the concavity function and its relation with solutions of
PDE. Recall that a function g : G ⊆ Rm → R with G convex is called harmonic
concave if for any x, y ∈ G such that g(x) + g(y) > 0 it holds(

g(x) + g(y)
)
g
(x+ y

2

)
≥ 2 g(x) g(y)

If g is positive, this is equivalent to the convexity of 1/g.

Proposition 2.1 ([27]). Let Ω be bounded and convex in RN , N ≥ 2 and v ∈ C2(Ω)
solve

−Tr
(
A(Dv)D2v

)
= b(x, v,Dv)

where A ∈ C1(RN ,RN×N ) fulfills for some 0 < λ ≤ Λ <∞

λ |ξ|2 ≤ (A(z) ξ, ξ) ≤ Λ |ξ|2 for all z, ξ ∈ RN

while (x, t, ξ) 7→ b(x, t, ξ) is continuous, differentiable with respect to x and ξ and

∂xb, ∂ξb ∈ L∞
loc(Ω× R× RN ).

If

1. t 7→ b(x, t, ξ) is non-increasing on v(Ω) for any (x, ξ) ∈ Ω×Dv(Ω)
2. (x, t) 7→ b(x, t, ξ) is harmonic concave on Ω× v(Ω) for any ξ ∈ RN

then cv cannot attain a positive interior maximum in Ω× Ω× [0, 1].

Proof. This is a rephrasement of [27, Theorem 2.1] applied to v̂ = −v with Â(ξ) =

A(−ξ), b̂(x, t, ξ) = b(x,−t,−ξ). The proof in [27] uses the C1 regularity of both Â

and b̂ to prove that the convexity function

v̂
(x+ y

2

)
− v̂(x) + v̂(y)

2
(12)
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satisfies a differential inequality ensuring that it cannot attain a positive interior
maximum in Ω×Ω. The same proof shows that for any given t ∈ [0, 1], the function

(x, y) 7→ v̂(t x+ (1− t) y)− t v̂(x)− (1− t) v̂(y)

cannot attain a positive maximum in Ω × Ω. This stronger statement a fortiori
implies that

(x, y, t) 7→ v̂(t x+ (1− t) y)− t v̂(x)− (1− t) v̂(y)

cannot attain a positive interior maximum in Ω × Ω × [0, 1]. We will show how to

remove the regularity assumption on b̂ in the proof of [27] for the the convexity
function (12). To this end, note that it suffices to study the convexity function near
points (x, y) ∈ Ω× Ω such that

v̂
(x+ y

2

)
− v̂(x) + v̂(y)

2
> 0, (13)

which form an open set by continuity. The only point where the regularity of

t 7→ b̂(x, t, ξ) (lacking in our setting) is used is applying Lagrange theorem to deduce
the inequality

b̂
(
z, v̂(z), Dv̂(z)

)
≥ b̂
(
z,
v̂(x) + v̂(y)

2
, Dv̂(z)

)
+ d(x, y)

(
v̂(z)− v̂(x) + v̂(y)

2

)
for suitable d(x, y) ≥ 0, where z = (x + y)/2. However, this inequality is only
needed at points (x, y) ∈ Ω×Ω fulfilling (13), in which case it is certainly true with

d = 0 regardless of the regularity of b̂(z, ·, ξ), since b̂ is non-decreasing.

In the following, given Ω ⊆ RN and δ > 0, we set

Ωδ = {x ∈ Ω : δ < dist(x, ∂Ω)}. (14)

Proposition 2.2 ([34], Lemma 2.4). Suppose that Ω is smooth, bounded and strongly
convex and u ∈ C1(Ω) ∩ C2(Ω \ Ωη) for some η > 0 is such that

u > 0 in Ω, u = 0 on ∂Ω,
∂u

∂n
> 0 on ∂Ω. (15)

If φ ∈ C2(R+;R) fulfils

φ′′ < 0 < φ′ near 0, lim
t→0+

1

φ′(t)
= lim

t→0+

φ(t)

φ′(t)
= lim

t→0+

φ′(t)

φ′′(t)
= 0, (16)

set v = φ(u). Then there exists δ ∈ ]0, η[ such that

D2v < 0 on Ω \ Ωδ (17)

and for all x0 ∈ Ω \ Ωδ and x ∈ Ω \ {x0} it holds

v(x0) + (Dv(x0), x− x0) > v(x). (18)

Proof. The proof of (17) is in [34, Lemma 2.4, fact 2]. Let then δ0 > 0 be such that
D2v < 0 in Ω\Ωδ0 . We give another proof of (18) since the last part of [34, Lemma
2.4] is a bit obscure. Let

Ax0
= {x ∈ Ω : v(x0) + (Dv(x0), x− x0) ≤ v(x)} .

Fix δ1 = δ1(δ0,Ω) ∈ ]0, δ0[ such that

x0 ∈ Ω, dist (x0, ∂Ω) < δ1 =⇒ Bδ1(x0) ∩ Ω ⊆ Ω \ Ωδ0 . (19)

We then claim that for sufficiently small δ < δ1 (depending on u as well) it holds

x0 ∈ Ω, dist (x0, ∂Ω) < δ =⇒ Ax0
⊆ Bδ1(x0) ∩ Ω. (20)
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Before proving the claim, let us note that it implies (18) thanks to (19) and the
strict concavity of v in the convex open set Bδ1(x0)∩Ω granted by (17), which force
Ax0

= {x0}.
We prove (20) by contradiction, thus assuming that there exists δn ↓ 0, xn ∈

Ω \ Ωδn and yn ∈ Ω such that

|yn − xn| ≥ δ1, v(xn) + (Dv(xn), yn − xn) ≤ v(yn).

By compactness we can suppose xn → x̄ ∈ ∂Ω and yn → ȳ ∈ Ω, with |ȳ − x̄| ≥ δ1.
Denoting by n(x̄) the interior normal to ∂Ω at x̄, it holds

lim
n
(Du(xn), yn − xn) = (Du(x̄), ȳ − x̄) = |Du(x̄)| (n(x̄), ȳ − x̄) > 0

by the strict convexity of ∂Ω and (15). Therefore there exists θ > 0 such that for
sufficiently large n it holds

(Du(xn), yn − xn) > θ.

Recalling the definition of v, we thus have

φ′(u(xn))

(
φ(u(xn))

φ′(u(xn))
+ (Du(xn), yn − xn)

)
= v(xn) + (Dv(xn), yn − xn)

≤ v(yn) = φ(u(yn))

so that for sufficiently large n

φ′(u(xn))

(
φ(u(xn))

φ′(u(xn))
+ θ

)
≤ φ(u(yn)).

However, since u(xn) → 0, the left hand side goes to +∞ by (16) while the right
and side is bounded from above (since φ is smooth on ]0,+∞[ and increasing near
0). This proves claim (20) and then (18).

Remark 2.3. The conditions in (16) can be slightly weakened, see [27, Lemma 3.1
and 3.2].

The next proposition shows the rôle of condition (18) in analysing the boundary
behaviour of the convexity function. Notice that we will apply it for convex domains
slightly smaller than the domain of definition of the function v defined above, in
order to ensure that it is smooth up to the boundary.

Proposition 2.4 ([34], Lemma 2.1). Suppose that Ω is smooth, bounded and strongly
convex and η > 0. If v ∈ C1(Ω) fulfils (18) for all x0 ∈ ∂Ω and x ∈ Ω, then cv
cannot attain a positive maximum on ∂(Ω× Ω)× [0, 1].

Clearly, condition (18) is not stable under C2 convergence, but the conjunction
of (17) and (18) is, as has been observed in [10]. We report the argument therein
for sake of completeness.

Proposition 2.5. Let Ω be smooth, bounded and strongly convex, η > 0 and let
vn ∈ C1(Ω) ∩ C2(Ω \ Ωη) be such that vn → v in C1(Ω) and in C2(Ω \ Ωη). If v

fulfils (17) for some δ ∈ ]0, η] and (18) at all points x0 ∈ ∂Ω and x ∈ Ω\{x0} then,
for all sufficiently large n, vn fulfils them as well.

Proof. Clearly (17) holds true for sufficiently large n, which we’ll assume henceforth.
If (18) does not hold, for a (not relabelled) subsequence there are points xn ∈ ∂Ω
and yn ∈ Ω with yn ̸= xn and

vn(xn) + (Dvn(xn), yn − xn) ≤ vn(yn). (21)
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By the smoothness and strong convexity of ∂Ω we can find c > 0 such that Bcδ(x̄)∩
Ω ⊆ Ω \Ωδ. Let n be so large that Bcδ/2(xn) ⊆ Bcδ(x̄). Since vn is strictly concave
on the convex open set Bcδ/2(xn) ∩ Ω, the point yn cannot lie in Bcδ/2(xn), and
thus

|xn − yn| ≥ c δ/2.

By taking a subsequence we can suppose that xn → x̄0 ∈ ∂Ω, yn → x̄ ∈ Ω and from
the previous display we get |x̄0 − x̄| > 0. Taking the limit in (21), we reach

v(x̄)0 + (Dv(x̄0), x̄− x̄0) ≤ v(x̄), Ω ∋ x̄ ̸= x̄0 ∈ ∂Ω,

contradicting assumption (18) for v.

The previous Propositions will eventually be applied to v = φ(u), with φ defined
as in (4), in a smaller domain Ω′ ⊂ Ω. To this end, we recall the following elementary
facts from [10].

Lemma 2.6. Let f ∈ C0([0,+∞[,R) fulfill (10). If F 1/p is concave and F/f is
convex on ]0,Mf ] ∩ R, with Mf as in (5), then

1. The function φ defined in (4) is invertible and fulfils (16) on ]0,Mf [.
2. If ψ = φ−1, then ψ′′/ψ′ is non-increasing and ψ′/ψ′′ is convex on ]0, φ(Mf )[

3. Critical point theory. In this section we give a meaning to problem (3), which
at the moment is oddly defined as H may fail to be differentiable, by using the
notion of energy critical point. We then study the existence and uniqueness of the
corresponding energy critical points.

3.1. Energy critical points. Given a convex H ∈ C0(RN ) fulfilling (8) and an
even f ∈ C0(R) obeying (10), the corresponding functional J will be defined as

J(v) =

∫
Ω

1

p
H(Dv)− F (v) dx, v ∈W 1,p

0 (Ω).

Note that J is always well defined and J(u) > −∞ for all u ∈W 1,p
0 (Ω), as (F (v))+ ∈

L1(Ω) for any v ∈W 1,p
0 (Ω) (thanks to (10), the finite measure assumption on Ω and

Poincaré inequality) but, as (8) and (10) are only one-sided, the resulting J may
assume the value +∞. Note that under assumption (10), J is anyway sequentially

l. s. c. in the weak topology of W 1,p
0 (Ω), as

−
∫
Ω

F (v) dx =

∫
Ω

(F (v))− dx−
∫
Ω

(F (v))+ dx

and the first term is l. s. c. by Fatou lemma while the second is continuous by (10)
and the finite measure assumption on Ω. As we are interested in non-negative
solutions of (3), we let(

W 1,p
0 (Ω)

)
+
:=
{
v ∈W 1,p

0 (Ω) : v ≥ 0
}
.

and define u ∈
(
W 1,p

0 (Ω)
)
+

to be a non-negative energy critical point for J on(
W 1,p

0 (Ω)
)
+
if u minimises the corresponding semi-linearized convex functional

v 7→ Ju(v) :=

∫
Ω

1

p
H(Dv)− f(u) v dx (22)
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on
(
W 1,p

0 (Ω)
)
+
. Alternatively, an energy critical point u for J on the full W 1,p

0 (Ω)

is a minimiser of (22) over

Vu =
{
v ∈W 1,p

0 (Ω) :
(
f(u) v

)
+
∈ L1(Ω)

}
.

These different definitions of critical point, taken from [23], deserve some com-

ment. Note that Ju, as defined in (22) is always well defined on
(
W 1,p

0 (Ω)
)
+
under

assumption (10), thanks to the same argument as before and the condition v ≥ 0.

This is not the case for Ju on the whole W 1,p
0 (Ω) and in this case the requirement(

f(u) v
)
+
∈ L1(Ω) is needed.

Note, moreover, that as before (10) ensures that Ju(u) > −∞ while trivially
Ju(0) = 0, so that

u ∈ CJ or C+
J =⇒ H(Du) ∈ L1(Ω), f(u)u ∈ L1(Ω). (23)

The set of all energy critical points for J on
(
W 1,p

0 (Ω)
)
+

and W 1,p
0 (Ω), respec-

tively, will be denoted by C+
J and CJ , respectively. By using the nonlinearity f+

instead of f , we can define the functional

J+(v) =

∫
Ω

1

p
H(Dv)− F+(v) dx

and the consider corresponding critical points CJ+
and C+

J+
.

Under quite general assumptions on f , all the previuos notions of critical points
coincide.

Lemma 3.1. Let Ω ⊆ RN have finite measure, H be convex and obey (8) and
f ∈ C0(R) be even, fulfil (10), and

f(t) > 0 for |t| < Mf , f(t) ≤ 0 for |t| ≥Mf (24)

for some Mf ≥ 0, with possibly Mf = +∞. Then

CJ = C+
J = C+

J+
= CJ+ (25)

and any energy critical points fulfils 0 ≤ u ≤Mf

Proof. Denote by C any one of the set CJ , CJ+ , C
+
J or C+

J+
. We can assume that f

does not vanishes identically, otherwise the claim is trivial as all the previous sets
are {0}. In this case, Mf > 0 in (24). We claim that

u ∈ C =⇒ |u| ≤Mf . (26)

Recalling (23), we test the minimality of u with v = min{u,Mf} to get∫
Ω

1

p
H(Du)− f(u)u dx ≤

∫
Ω

1

p
H(Dv)− f(u) v dx

=

∫
{u≤Mf}

1

p
H(Du)− f(u)u dx−

∫
{u>Mf}

f(u)Mf dx.
(27)

Note from (24) and (23) that it holds

0 ≤ −
∫
{u>Mf}

f(u)Mf dx ≤ −
∫
{u>Mf}

f(u)u dx

so that all terms in (27) are finite and rearranging we get∫
{u>Mf}

1

p
H(Du)− f(u) (u−Mf ) dx ≤ 0
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proving that u ≤ Mf thanks to (8) and (24). The same conclusion holds if f is

replaced by f+, hence (26) is proved if u ∈
(
W 1,p

0 (Ω)
)
+
, so it suffices to consider

the case u ∈ C = CJ or CJ+ . But in this case, û(x) = −u(−x) ∈ C, where Ω is
replaced by −Ω, so that the previous argument ensures û ≤ Mf , i. e.u ≥ −Mf ,
which concludes the proof of (26) in all cases. Therefore f(u) = f+(u) ≥ 0 for any
u ∈ C, hence the functionals in (22) are the same for f or f+. It follows that

CJ+
= CJ , C+

J+
= C+

J .

Moreover, by [38, Corollary 3.6]1, any u ∈ CJ+
is non-negative in Ω, so that

CJ+
⊆
(
W 1,p

0 (Ω)
)
+
. Finally, again from f(u) ≥ 0, we get that minimisation over(

W 1,p
0 (Ω)

)
+

of the functional in (22) is equivalent to minimisation over the whole

W 1,p
0 (Ω), since∫

Ω

1

p
H(Dv)− f(u) v dx ≥

∫
Ω

1

p
H(Dv+)− f(u) v+ dx.

so that C+
J+

= CJ+
and the proof is complete.

By [38, Theorem 3.2 and Theorem 3.5], if Ω is bounded, ∂Ω is Lipschitz and
H fulfils the two-sided bound (9), any of the corresponding energy critical point
belongs to Cα(Ω), with α ∈ ]0, 1[ and its Cα(Ω) norm depends on ∥u∥p, Ω and
the structural constants appearing the bounds for H and f . Moreover, on each
connected component of Ω either u vanishes identically or it is strictly positive in
Ω.

A particular reaction f and the corresponding energy critical points provide the
notion of first positive Dirichlet eigenfunction. More precisely, the number

λ+1,H(Ω) = inf

{∫
Ω

H(Dv) dx : v ≥ 0, ∥v∥p = 1

}
is called the first positive Dirichlet eigenvalue and the corresponding minimisers
are the normalised first positive Dirichlet eigenfunctions. The latter are the non-
negative energy critical points for J with f(t) = λ+1,H(Ω) tp−1.

We finally prove the following form of the weak comparison principle, which holds
true under very mild assumptions on H and Ω. It basically ensures that if u solves
(3) in Ω and u solves −div (DH(Du)) = 0 in A ⊆ Ω, then u ≤ u in A as long as the
inequality holds true on ∂A. While usually this is deduced through a strong form
of convexity for H, here we deal with possibly non-strictly convex H.

Proposition 3.2. Let Ω, H and f be as in the previous lemma and u ∈ C+
J . For

A ⊆ Ω open, let u ∈W 1,p(A) be a minimiser of

u+W 1,p
0 (A) ∋ v 7→

∫
A

H(Dv) dx

such that (u− u)+ ∈W 1,p
0 (A). Then u ≥ u in A.

Proof. Fix a representative of u and u, noting that using the assumption (u−u)+ ∈
W 1,p

0 (A) this can be done in such a way that {u > u} ⊆ A. By the previous Lemma
we can use f+ instead of f in the definition of J , hence we can assume f ≥ 0.
By the previous Lemma it holds 0 ≤ u ≤ Mf , with Mf given in (24), possibly

infinite. If Mf is finite from (u − Mf )+ ≤ (u − u)+ ∈ W 1,p
0 (A) we infer that

1Note that only (8) is used in the proof of point 1 therein.



3682 SUNRA MOSCONI, GIUSEPPE RIEY AND MARCO SQUASSINA

min{u,Mf} = u− (u−Mf )+ ∈ u+W 1,p
0 (A), hence by the minimality of u againts

the competitor min{u,Mf} we find∫
A

H(Du) dx ≤
∫
{u<Mf}

H(Du) dx

therefore ∫
{u≥Mf}

H(Du) dx ≤ 0

and thus u ≤ Mf in A. Since W 1,p
0 (A) ⊆ W 1,p

0 (Ω) by extending each element of
the former as 0 outside A, we can test the minimality of u against max{u, u} =

u+ (u− u)+ ∈W 1,p
0 (Ω) for the functional in (22). This gives∫

Ω

1

p
H(Du)−f(u)u dx ≤

∫
{u>u}

1

p
H(Du)−f(u)u dx+

∫
{u≤u}

1

p
H(Du)−f(u)u dx

so that, recalling (23),∫
{u>u}

1

p
H(Du)− f(u)u dx ≤

∫
{u>u}

1

p
H(Du)− f(u)u dx. (28)

On the other hand, by the minimality of u against the competitor min{u, u} =

u− (u− u)+ ∈ u+W 1,p
0 (A), we have∫

A

H(Du) ≤
∫
{u≤u}

H(Du) dx+

∫
{u>u}

H(Du) dx

so that ∫
{u>u}

H(Du) dx ≤
∫
{u>u}

H(Du) dx.

Inserting the latter into (28) and rearranging we obtain∫
{u>u}

f(u) (u− u) dx ≤ 0.

Since 0 ≤ u ≤ Mf and f(t) > 0 for t ∈ ]0,Mf [, the previous inequality forces
f(u) (u − u) = 0 a. e. on {u > u} and that equality holds in (28). In particular
a. e. point in {u > u} belongs to either {u = 0} or {u =Mf}. Being u ≤Mf a. e., the
second case cannot occur in a set of positive measure and thus {u > u} ⊆ {u = 0}∩A
a. e..

The equality in (28) then reads∫
{u>u}

H(Du) dx =

∫
{u>u}

H(Du) dx

and the left hand side vanishes since Du = 0 a. e. on {u = 0}. Moreover, still from
{u > u} ⊆ {u = 0} ∩A, we see that u = (u− u)+ a. e. on A, hence

0 =

∫
{u>u}

H(Du) dx =

∫
A

H(D(u− u)+) dx

which implies that u ≤ u a. e. in A by (8).
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3.2. Existence and uniqueness. The existence of non-negative energy critical
points can be variationally characterised for H being positively p-homogeneous and
f fulfilling (11). Indeed, in this case [38, Theorem 5.3, point 1] provides

C+
J = Argmin J (29)

where, by (25), the minimisation problem on the right can be equivalently settled

on either
(
W 1,p

0 (Ω)
)
+
or W 1,p

0 (Ω).

Necessary and sufficient conditions on f for the existence of positive critical
points under assumption (11) have been derived for ∂Ω of class C2 and H(z) = |z|p
(see [10, Proposition 3.8]) through the Hopf Lemma. Here we consider the case of
possibly non-smooth H and Ω, so that the Hopf lemma does not hold.

Proposition 3.3. Let Ω ⊆ RN be an open, connected set with finite measure,
H ∈ C0(RN ) be convex, positively p-homogeneous and vanishing only at the origin
and f ∈ C0(R) be even and such that (11) holds true. Then either C+

J \{0} consists
of first positive Dirichlet eigenfunctions or

C+
J \ {0} ≠ ∅ ⇐⇒ lim

t→+∞

f(t)

tp−1
< λ+1,H(Ω) < lim

t→0+

f(t)

tp−1
. (30)

Proof. Suppose that

µ∞ := lim
t→+∞

f(t)

tp−1
< λ+1,H(Ω) < lim

t→0+

f(t)

tp−1
=: µ0

holds true. Then for a fixed ε ∈ ]0, λ+1,H(Ω)− µ∞[ there exists t0 > 0 such that

F (t) ≤ (λ+1,H(Ω)− ε)
tp

p
for t > t0

hence for any v ∈
(
W 1,p

0 (Ω)
)
+
it holds

J(v) ≥
∫
Ω

1

p
H(Dv) dx−

∫
v≤t0

F (v) dx− (λ+1,H(Ω)− ε)

∫
Ω

vp

p
dx

so that by the definition of λ+1,H(Ω)

J(v) ≥ ε

p λ+1,H(Ω)

∫
Ω

H(Dv) dx− sup
[0,t0]

F |Ω|

which implies coercivity of J on
(
W 1,p

0 (Ω))+ thanks to (9) (which still holds true
under the present, weaker assumption on H). Therefore J admits a minimiser
u ∈ C+

J (Ω). To prove that u ̸= 0, note that from µ0 > λ+1,H(Ω) we infer that for
some positive ε and t1

F (t) ≥ (λ+1,H(Ω) + ε)
tp

p
for t ∈ [0, t1].

Therefore, if w is a first positive normalised Dirichlet eigenfunction (which is
bounded), for sufficiently small t > 0 we have

J(t w) ≤ tp

p

∫
Ω

H(Dw)− (λ+1,H(Ω) + ε)wp dx = −ε t
p

p
< 0.

Thus J(u) < 0 and u ∈ C+
J \ {0}.



3684 SUNRA MOSCONI, GIUSEPPE RIEY AND MARCO SQUASSINA

Vice-versa, suppose that u ∈ C+
J \ {0} and that u is not a first positive Dirichlet

eigenfunction. By [38, Corollary 2.7] it holds∫
Ω

H(Du) dx =

∫
Ω

f(u)u dx

so by the definition of λ+1,H(Ω) and (11)

λ+1,H(Ω)

∫
Ω

up dx ≤
∫
Ω

H(Du) dx =

∫
Ω

f(u)u dx =

∫
Ω

f(u)

up−1
up dx ≤ µ0

∫
Ω

up dx,

proving that µ0 ≥ λ+1,H(Ω) and furthermore that µ0 > λ+1,H(Ω), since otherwise the
previous inequalities are all equalities, forcing

f(t) = λ+1,H(Ω) tp on u(Ω),

i. e. that u is a first positive Dirichlet eigenfunction. To prove that µ∞ < λ+1,H(Ω),

recall that for any bounded v ∈
(
W 1,p

0 (Ω)
)
+
it holds (see [38, eq. (5.7)])∫

Ω

H(v) dx ≥
∫
Ω

f(u)

up−1
vp dx

and in particular the integrand on the right is in L1(Ω). Choosing v to be a first
positive Dirichlet eigenfunction in the previous inequality, we obtain by (11)

λ+1,H(Ω)

∫
Ω

vp dx =

∫
Ω

H(v) dx ≥
∫
Ω

f(u)

up−1
vp dx ≥ µ∞

∫
Ω

vp dx

so that µ∞ ≤ λ+1,H(Ω) and, as before, equality holds if and only if u is a first positive
Dirichlet eigenfunction.

Regarding uniqueness, we recall the following result from [38, Theorem 5.3].

Proposition 3.4. Under the assumptions of the previous proposition, let u ∈ C+
J \

{0}. Then either u is a first positive Dirichlet eigenfunction or u is the unique
positive energy critical point for J in the following cases:

1. H is strictly convex
2. t 7→ f(t)/tp−1 is strictly decreasing on u(Ω).

Moreover, if H is strictly convex the first positive Dirichlet eigenvalue is simple,
meaning that any other first positive Dirichlet eigenfunction is a positive scalar
multiple of u.

4. Regularised problems. In this section we construct regular problems approx-
imating (3) and derive the relevant regularity properties of the solutions, together
with their boundary behaviour.

4.1. Approximation scheme.

Lemma 4.1. Let G ∈ C∞(RN ) be such that

G(0) = 0, D2G(z) ≥ λ Id ∀z ∈ RN ,

for fixed λ > 0 and set

Φ(z) = inf {t > 0 : G(z/t) ≤ 1} .
Then Φ ∈ C∞(RN \ {0}), is positively 1-homogeneous and(

D2Φ(z) v, v
)
≥ λ̂ |v|2, ∀z, v such that Φ(z) = 1, (DΦ(z), v) = 0 (31)

for λ̂ > 0 depending on G and λ.
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Proof. The assumptions on G ensure that the latter is strongly convex, so that Φ,
being the Minkowski functional of {G ≤ 1}, is automatically C∞(RN \ {0}) and
positively 1-homogeneous. By construction it holds {G = 1} = {Φ = 1} and

G (z/Φ(z)) = 1 ∀z ̸= 0

which, differentiated, gives

DG(z/Φ(z))

Φ(z)
− DΦ(z) (DG(z/Φ(z)), z)

Φ2(z)
= 0,

or
Φ(z)DG(z/Φ(z)) = DΦ(z) (DG(z/Φ(z)), z) . (32)

Differentiating once more, we obtain for Φ(z) = 1

DΦ(z)⊗DG(z) +D2G(z) (Id− z ⊗DΦ(z))

= (DG(z), z) D2Φ(z) +DΦ(z)⊗
(
DG(z) + z D2G(z) (Id− z ⊗DΦ(z))

)
.

For such z’s, if v obeys (DΦ(z), v) = 0, we have

D2G(z) v = (DG(z), z) D2Φ(z) v +DΦ(z)
(
z D2G(z), v

)
and taking the scalar product with v provides by (DΦ(z), v) = 0(

D2G(z) v, v
)
= (DG(z), z)

(
D2Φ(z) v, v

)
.

The claim is thus proved with

λ̂ =
λ

sup{G=1} (DG(z), z)
.

Proposition 4.2. Let Ω ⊆ RN be open, connected and with finite measure. Suppose
that

1. H : RN → [0,+∞[ is convex, positively p-homogeneous and vanishes only at
the origin

2. f ∈ C0(R) is even and fulfils (11)

and that either the convexity of H or the monotonicity of R+ ∋ t 7→ f(t)/tp−1 are
strict. If u ∈ C+

J \ {0} is not a first positive Dirichlet eigenfunction, there exists a
sequence of convex, positively p-homogeneous Hn ∈ C1(RN ) ∩ C∞(RN \ {0}) such
that

λn |v|2 |z|p−2 ≤
(
D2Hn(z) v, v

)
≤ Λn |v|2 |z|p−2 (33)

for 0 < λn ≤ Λn and corresponding un ∈ C+
Jn

with

Jn(v) =

∫
Ω

1

p
Hn(Dv)− F (v) dx

such that un ⇀ u in W 1,p
0 (Ω).

Proof. Fix an even φ ∈ C∞
c (B1; [0,∞[) such that ∥φ∥1 = 1 and set, for a sequence

εn ↓ 0, φn(z) = ε−N
n φ(z/εn). By Jensen inequality it holds φn ∗ H ≥ H and for

each n the function φn ∗H is smooth and convex. We can then set

Gn(z) = φn ∗H(z) + εn
|z|2

2

so that each Gn is convex as well and it holds

Gn ≥ H, Gn → H in C0
loc(RN ). (34)
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Define the convex sets

Kn = {z : Gn(z) ≤ 1} ⊆ {H ≤ 1} = K.

Thanks to (34) and (9) there exists δ > 0 such that for sufficiently large n it holds

Bδ(0) ⊆ Kn (35)

so that for such n’s we can then let Φn be the Minkowski functional of Kn and
similarly define Φ as the Minkowski functional of K := {H ≤ 1} (notice that then
H = Φp). Being Kn ⊆ K it holds Φn ≥ Φ and from (35) we infer

Φn(z) ≤ |z|/δ (36)

for all sufficiently large n. Given z ̸= 0, from

1 = Gn(z/Φn(z))

and the local uniform convergence of Gn to H, we infer that any limit point µ ∈ R
of the bounded sequence (Φn(z)) fulfils H(z/µ) = 1, i. e.µ = Φ(z). Therefore, a
sub-subsequence argument ensures that Φn → Φ point-wise and thus, being each
Φn, as well as Φ, convex and finite, locally uniformly on RN . Finally set

Hn(z) = Φp
n(z),

which, by (36), satisfies

Hn(z) ≤
|z|p

δp
∀z ∈ RN (37)

for any sufficiently large n. By construction, each Hn is smooth on RN \{0}, strictly
convex and positively p-homogeneous. Since D2Gn ≥ εn Id, by Lemma 4.1 Φn has
strongly convex unit ball in the sense that (31) holds true, so that (33) follows from
[21, Proposition 3.1]. Moreover, by the previous analysis of the sequence Φn, it
holds

Hn ≥ H, Hn → H in C0
loc(RN )

so that in particular Jn ≥ J . By Proposition 3.3, (30) holds true, hence Jn has a
nontrivial non-negative energy critical point un. By the variational characterisation
(29) and Proposition 3.4, un is the unique minimiser for Jn on

(
W 1,p

0 (Ω)
)
+
, hence

in particular Jn(un) ≤ 0. By (30), for a suitable θ ∈ ]0, 1[ there exists L > 0 such
that

f(t) ≤ θ λ+1,H(Ω)tp−1 for t > L,

so that for t > 0 it holds

F (t) ≤ θ λ+1,H(Ω)
tp

p
+ L sup

[0,L]

f.

By Hn ≥ H, the definition of λ+1,H(Ω) and (9) we thus infer

0 ≥ Jn(un) ≥ J(un) ≥
1

p

∫
Ω

H(Dun) dx−
θ λ+1,H(Ω)

p

∫
Ω

upn dx− C |Ω|

≥ 1− θ

p

∫
Ω

H(Dun) dx− C |Ω| ≥ 1− θ

C p

∫
Ω

|Dun|p dx− C |Ω|.

Therefore (un) is bounded in W 1,p
0 (Ω). Suppose, up to subsequences, that un ⇀

ū ∈
(
W 1,p

0 (Ω)
)
+
. From the lower semicontinuity of J , Jn ≥ J and the minimality

of un we get
J(ū) ≤ lim

n
J(un) ≤ lim

n
Jn(un) ≤ lim

n
Jn(u). (38)
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Finally, by (37) and dominated convergence

lim
n

∫
Ω

Hn(Du) dx =

∫
Ω

H(Du) dx

so that

J(ū) ≤ lim
n
Jn(u) = J(u).

Since by (29) u is a minimiser for J , so is ū, and using again Proposition 3.4 grants
ū = u.

We also provide a similar approximation scheme for first Dirichlet positive eigen-
functions.

Proposition 4.3. Let Ω ⊆ RN be open, connected and with finite measure and
H : RN → [0,+∞[ be strictly convex and positively p-homogeneous. If u is a first
positive Dirichlet eigenfunction for λ+1,H(Ω), there exists a sequence of convex, posi-

tively p-homogeneous Hn ∈ C1(RN )∩C∞(RN \{0}) obeying (33) and corresponding

first positive Dirichlet eigenfunctions un such that un ⇀ u in W 1,p
0 (Ω).

Proof. By Proposition 3.4 the strict convexity of H ensures that the eigenvalue
λ+1,H(Ω) is simple, so we can normalise and suppose that ∥u∥p = 1. For Hn : RN →
R defined as in the previous proof, consider the first positive Dirichlet eigenfunctions
un associated to Hn, normalised with unitary Lp norm. Fix v ∈ C∞

c (Ω) such that
∥v∥p = 1 and recall that Hn → H in C0

loc(RN ), hence

lim
n

∫
Ω

Hn(Dv) dx =

∫
Ω

H(Dv) dx

Since by the definition of un it holds∫
Ω

Hn(Dv) dx ≥
∫
Ω

Hn(Dun) dx ≥ 1

C

∫
Ω

|Dun|p dx

hence (un) is bounded in W 1,p
0 (Ω) and we can suppose that un ⇀ ū and ∥ū∥p = 1

by the compactness of W 1,p
0 (Ω) ↪→ Lp(Ω). The chain of inequalities (38) still holds

true, proving that ū is a first positive Dirichlet eigenfunction and then that ū = u
by the simplicity of λ+1,H(Ω) stated in Proposition 3.4.

In [16] is proved an Hopf Lemma for a class of anisotropic operators, where the
function giving the anisotropy is even. In the sequel we extend the result to the
case of a not even anisotropy.

4.2. Hopf Lemma. Let Φ ∈ C∞(RN \ {0}) be convex, positively 1-homogeneous
and such that

{Φ ≤ 1} is bounded and strongly convex. (39)

The polar of Φ is

Φ◦(z) = sup {(ξ, z) : Φ(ξ) ≤ 1}
and Φ◦ has the same regularity of Φ and, for any x ̸= 0, it holds [6]:

Φ(DΦ◦(x)) ≡ 1 ≡ Φ◦(DΦ(x)) , (40)

Φ(x)DΦ◦(DΦ(x)) = x = Φ◦(x)DΦ(DΦ◦(x)) . (41)
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Lemma 4.4. For Φ as given and r > 0 set

Ar = {x ∈ RN : r > Φ̌◦(x) > r/2}, (42)

where

Φ̌◦(x) = Φ◦(−x).
For any m > 0 there exists u ∈ C2(Ar) such that

div (Φp−1(Du)DΦ(Du)) = 0 in Ar

u = m on {Φ̌◦ = r/2}
u = 0, ∂nu > 0 on {Φ̌◦ = r}

where n is the inner normal to {Φ̌◦ ≤ r}.

Proof. We choose u(x) = w(Φ̌◦(x)) for a suitable, decreasing w ∈ C2([r/2, r]). Since
DΦ̌◦(x) = −DΦ◦(−x), we have, for x ̸= 0 (which can be assumed henceforth as
0 /∈ Ar)

Du(x) = w′(Φ̌◦(x))DΦ̌◦(x) = −w′(Φ̌◦(x))DΦ◦(−x). (43)

Therefore, as we are assuming w′ < 0, (40) and (41) and the 0-positive homogeneity
of DΦ̌◦ give

Φ(Du(x)) = −w′(Φ̌◦(x)) Φ(DΦ◦(−x)) = −w′(Φ̌◦(x)).

DΦ(Du(x)) = DΦ(DΦ◦(−x)) = −x
Φ◦(−x)

= − x

Φ̌◦(x)

so that

−div
(
Φp−1(Du(x))DΦ(Du(x))

)
= div

(
x
(−w′(Φ̌◦(x))p−1

Φ̌◦(x)

)
=

(
x,D

(−w′(Φ̌◦(x))p−1

Φ̌◦(x)

)
+N

(−w′(Φ̌◦(x))p−1

Φ̌◦(x)

We compute

D
(−w′(Φ̌◦(x))p−1

Φ̌◦(x)
=− (p− 1) (−w′(Φ̌◦(x))p−2 w′′(Φ̌◦(x))DΦ̌◦(x)

Φ̌◦(x)

− (−w′(Φ̌◦(x))p−1DΦ̌◦(x)

(Φ̌◦(x))2

and note that, by the 1-positive homogeneity of Φ̌◦(
x,DΦ̌◦(x)

)
= Φ̌◦(x),

hence

div
(
Φp−1(Du)DΦ(Du)

)
= (p− 1) (−w′(Φ̌◦)p−2 w′′(Φ̌◦) + (N − 1)

(−w′(Φ̌◦)p−1

Φ̌◦
.

It thus suffices to choose a decreasing w so that

(p− 1) (−w′(t))p−2 w′′(t) + (N − 1)
(−w′(t)p−1

t
= 0

which is equivalent to (
(−w′(t))p−1 tN−1

)′
= 0.
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All the strictly decreasing solutions on R+ of the latter ODE are given by

w(t) =

{
A

p−N t(p−N)/(p−1) +B if p ̸= N

A log t+B if p = N

for arbitrary A < 0, B ∈ R, and if m > 0 it is readily verified that we can indeed
choose A < 0, B ∈ R in such a way that

w(r/2) = m, w(r) = 0

and therefore also w′ < 0. For such a choice, the corresponding u = w(Φ̌◦) fulfils all
the requirements, as the interior normal to {Φ̌◦ ≤ r} is −DΦ̌◦/|DΦ̌◦| and by (43)

∂nu = −
(
DΦ̌◦

|DΦ̌◦|
, w′(Φ̌◦)DΦ̌◦

)
= −w′(Φ̌◦) |DΦ̌◦| > 0

Proposition 4.5. Suppose Ω is bounded and connected with C2 boundary, H ∈
C1(RN ) ∩ C∞(RN \ {0}) is positively p-homogeneous and fulfils (33), and f ∈
C0(R, [0,+∞[) obeys (10). Then any critical point u for J is C1,α(Ω), u > 0 in Ω
and

∂u

∂n
> 0 on ∂Ω (44)

where n is the interior normal to ∂Ω.

Proof. Any critical point for J (which, under the stated assumption is a C1 func-
tional) is a weak solution of (3) with non-negative and subcritical left hand side.
The boundedness and positivity of u has already been discussed and its regularity
up to the boundary follows from (33) and [36]. Let Φ be the Minkowski functional
of {H ≤ 1}, so that H = Φp, and let Ar be given in (42). Since ∂Ω is C2 and
Φ̌◦ ∈ C2(RN \ {0}), for any x0 ∈ ∂Ω there exists x1 ∈ Ω and r > 0 such that

x1 +Ar ⊆ Ω,
(
x1 +Ar

)
∩ ∂Ω = {x0}.

Let
m = inf{u(x) : Φ̌◦(x− x1) = r/2} > 0

and choose the corresponding u given in the previous Lemma. The weak comparison
principle in Proposition 3.2 ensures that u ≥ u, which in turn implies (44).

5. Proof of the main result.

• Step 1
Given u ∈ C+

J , by Lemma 3.1 we can assume that F > 0 on ]0,+∞[. Consider
the sequence (un) given in Propositions 4.2 and 4.3, solving the corresponding
regularised problems. Suppose we can prove that cφ(un) ≤ 0. Since un → u almost
everywhere in Ω , so does φ(un) to φ(u), hence being u (and thus φ(u)) continuous
in Ω, we will have cφ(u) ≤ 0.

Therefore we can assume that H ∈ C1(RN )∩C∞(RN \ {0}) fulfils (55) for some
given 0 < λ ≤ Λ (and is therefore strictly convex). Moreover, proceeding as in [10,
Section 4.1] (with obvious modifications in the case u is a first positive Dirichlet
eigenfunction), we can assume that Ω is strongly convex with smooth boundary. In
particular, the strong minimum principle and the Hopf Lemma apply, so we can
choose η > 0, β ∈ ]0, 1[ such that u ∈ C1,β(Ω) and furthermore

inf
Ωη

u > 0,
∂u

∂n
> 0 on ∂Ω, inf

Ω\Ωη

|Du| > 0. (45)
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We aim at proving that for any given δ ∈ ]0, η[ (which we’ll assume henceforth),

cφ(u) ≤ 0 in Ωδ/2 × Ωδ/2 × [0, 1], (46)

(see (14) for Ωδ), which will prove the theorem. In doing so, we can also assume
that δ is so small that ∂Ωδ/2 is strongly convex and smooth.

• Step 2
Denoting a2/p = (a2)1/p for any a ∈ R, we define the family of integrands (recall

that F is oddly extended to R)

Gε(t, z) =
1

p

[
ε F (t)

2
p +H

2
p (z)

] p
2 − F (t)

and corresponding auxiliary functionals

Iε(u) =
1

p

∫
Ω

[
ε F (u)

2
p +H

2
p (Du)

] p
2

dx−
∫
Ω

F (u)dx (47)

If u is not a first positive Dirichlet eigenfunction, by [10, Lemma 4.1], for any
sufficiently small ε problem

inf
{
Iε(u) : u ∈W 1,p

0 (Ω)
}

admits a minimiser uε with the property that

uε → u in Cβ(Ω). (48)

Indeed, the proof of [10, Lemma 4.1] can be repeated verbatim when u is not a first
positive Dirichlet eigenfunction, since only the uniqueness of the minimiser u of J
is used therein and the latter is granted by the strict convexity of H (due to the
previous point) and Lemma 3.1, (29) and Proposition 3.4. When u is a normalised
first positive Dirichlet eigenfunction we instead consider

inf
{
Iε(u) : u ∈W 1,p

0 (Ω), u ≥ 0, ∥u∥p = 1
}

and proceed in the same way, using again Proposition 3.4 to ensure weak conver-
gence of uε to u, as well as (48) by uniform Cβ(Ω) bounds.

• Step 3
We now improve the convergence of uε → u beyond the Cβ level. Any uε defined

above satisfies weakly the Euler-Lagrange equation for Iε,

−div (DzGε(uε, Duε)) + ∂uGε(uε, Duε) = 0

which is more explicitly computed as

−div

((
εF (uε)

2
p +H

2
p (Duε)

) p−2
2 D

H
2
p

2
(Duε)

)

= f(uε)

[
1− ε

p

(
ε F (uε)

2
p +H

2
p (Duε)

) p−2
2 F (uε)

2−p
p

]
.

(49)

Note that (48) and the positivity of u ensure that given any δ ∈ ]0, η[, there
exists C > 0 such that for a sufficiently small ε (which will be assumed henceforth)
it holds

1

C
≤ uε ≤ C in Ωδ/4 (50)
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and therefore, F (uε) is uniformly bounded from above and below by a positive
constant. Thanks to Lemma A.1, point 2, Tolskdorff local regularity theory [42]
applies , ensuring that

∥uε∥C1,β(Ωδ/3)
≤ C (51)

for a β ∈ ]0, 1[ (possibly different from the one in (48)) depending on Ω, H,N, p
and C > 0 with the same dependencies and additionally on δ and ∥u∥L∞(Ω), but
none of them depending on ε. We’ll assume henceforth that β < α, the Hölder
continuity coefficient of f . In particular It follows that uε → u in C1(Ωδ/3) by
Ascoli-Arzelá. Further regularity can be obtained noting that by (50) and the
boundedness of H(Duε), the matrix D2

zGε is strongly elliptic in Ωδ/4 thanks to

Lemma A.1, point 2. The difference quotient method yields uε ∈W 2,2
loc (Ωδ/4), with

any partial derivative w = ∂iuε, i = 1, . . . , N obeying

−div
(
D2

zGε(uε, Duε)Dw
)
= div (∂uDzGε(uε, Duε)w + ei ∂uGε(uε, Duε))

weakly in Ωδ/4. Using the C1,β regularity of uε, we see that

D2
zGε(uε, Duε) and ∂uDzGε(uε, Duε)w + ei ∂uGε(uε, Duε)

are β-Hölder continuous in Ωδ/3, so that local linear regularity theory ensures w ∈
C1,β(Ωδ/3), i. e.uε ∈ C2,β(Ωδ/3). As ε → 0, the C2,β(Ωδ/3) norm of uε may blow
up, but by (45), for sufficiently small ε it holds

inf
Ω\Ωη

|Duε| > 0,

therefore, by looking at (57), we see that D2
zGε is strongly elliptic in Ω \ Ωη, with

ellipticity constants uniformly bounded from below and above as ε → 0. We con-
clude by local elliptic regularity theory that, given δ ∈ ]0, η[, for any sufficiently
small ε it holds

∥uε∥C2,β(Ωδ/2\Ωδ)
≤ C (52)

with C depending only on Ω, H,N, p, δ, η and ∥u∥∞, but not on ε.

• Step 4
Let vε = φ(uε). We claim that, for any sufficiently small δ ∈ ]0, η[ and, corre-

spondingly, sufficiently small ε, cvε cannot assume a positive maximum on ∂(Ωδ/2×
Ωδ/2) × [0, 1]. Indeed, Proposition 2.2 applies to u, so that for any sufficiently
sufficiently small δ, v = φ(u) fulfils (17) in Ω \ Ωδ and (18) for all x0 ∈ Ω \ Ωδ,
x ∈ Ω \ {x0}. From the uniform bounds (51) and (52) proved in the previous step,
we infer by Ascoli-Arzelá that

uε → u in C1(Ωδ/2) ∩ C2(Ωδ/2 \ Ωδ).

Since uε fulfils (50) for sufficiently small ε and since φ ∈ C2,α
loc (R+), the previous

convergence holds true for vε as well. Note that ∂Ωδ/2 ⊆ Ω \Ωδ, hence v fulfils (18)

for all x0 ∈ ∂Ωδ/2 and x ∈ Ωδ/2 \ {x0}. Then Proposition 2.5, applied to the family
vε and v on the strictly convex set Ωδ/2, ensures that for any sufficiently small ε > 0

(18) holds true for vε at all points x0 ∈ ∂Ωδ/2, x ∈ Ωδ/2 \{x0}. Finally, Proposition
2.4, applied to such functions vε on Ωδ/2, proves the claim.

• Step 5
For ε and vε as above and Mf as in (5), we look at the equation fulfilled by vε.

The proof of the last statement of Lemma 3.1 still holds for the functional Iε and
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its minimiser uε, showing that

Mε = sup
Ω
uε ≤Mf .

Let ψ = φ−1, so that for t ∈ ]0,Mε] it holds

φ′(t) = F− 1
p (t), ψ′(s) = F

1
p (ψ(s)).

We thus have F (uε) = F (ψ(vε)) and

H(Duε) = H(ψ′(vε)Dvε) = F (ψ(vε))H(Dvε) (53)

where we used the positive p-homogeneity of H in the last step. Similarly, by the
positive 1-homogeneity of DH2/p

(DH
2
p )(Duε) = ψ′(vε) (DH

2
p )(Dvε) = F

1
p (ψ(vε)) (DH

2
p )(Dvε).

We look at equation (49) for vε. For the left hand side we compute

div

((
εF (uε)

2
p +H

2
p (Duε)

) p−2
2 D

H

2

2
p

(Duε)

)

= div

(
F 1− 1

p (ψ(vε))
(
ε+H

2
p (Dvε)

) p−2
2 D

H
2
p

2
(Dvε)

)

=

(
1− 1

p

)
F− 1

p (ψ(vε)) f(ψ(vε))ψ
′(vε)

(
ε+H

2
p (Dvε)

) p−2
2

(
D
H

2
p

2
(Dvε), Dvε

)

+ F 1− 1
p (ψ(vε)) div

((
ε+H

2
p (Dvε)

) p−2
2 D

H
2
p

2
(Dvε)

)

=

(
1− 1

p

)
f(ψ(vε))

(
ε+H

2
p (Dvε)

) p−2
2 H

2
p (Dvε)

+ F 1− 1
p (ψ(vε)) div

((
ε+H

2
p (Dvε)

) p−2
2 D

H
2
p

2
(Dvε)

)
where we used ψ′(s) = F 1/p(ψ(s)) and that, being H2/p positively 2-homogeneous,(

DH
2
p (Dvε), Dvε

)
= 2H

2
p (Dvε).

The right-hand side of (49) is, again by (53),

f(uε)

[
1− ε

p

(
ε F (uε)

2
p +H

2
p (Duε)

) p−2
2 F (uε)

2−p
p

]
= f(ψ(vε))

[
1− ε

p

(
ε+H

2
p (Dvε)

) p−2
2

]
.

Hence vε satisfies

− F 1− 1
p (ψ(vε)) div

((
ε+H

2
p (Dvε)

) p−2
2 D

H
2
p

2
(Dvε)

)
=

f(ψ(vε))

[
1− ε

p

(
ε+H

2
p (Dvε)

) p−2
2 +

(
1− 1

p

)(
ε+H

2
p (Dvε)

) p−2
2 H

2
p (Dvε)

]
which rewrites as

−div (DHε(Dvε)) =
f(ψ(vε))

F 1− 1
p (ψ(vε))

bε(Dvε) (54)
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where

Hε(z) =
(
ε+H

2
p (z)

) p
2

bε(z) = p+
(
(p− 1)H

2
p (z)− ε

)(
ε+H

2
p (z)

) p−2
2 .

• Step 6
We finally exclude that, for ε and vε as above, cvε attains a positive maximum

on Ωδ/2 × Ωδ/2 × [0, 1]. Note that

bε(z) ≥ b(0) = p− ε
p
2

which is positive for sufficiently small ε. On the other hand, for s ∈ vε(Ωδ/2) ⊆
]0, φ(Mε)] it holds

f(ψ(s))

F 1− 1
p (ψ(s))

=
(
F

1
p
)′
(ψ(s))

which is non-increasing since ψ is non-decreasing and F 1/p is concave, while

ψ′′(s) =
(
F

1
p (ψ(s))

)′
=

1

p
F 1− 1

p (ψ(s)) f(ψ(s))ψ′(s) =
F (ψ(s))

f(ψ(s))

so that

F 1− 1
p (ψ(s))

f(ψ(s))
=
ψ′′(s)

ψ′(s)

which is convex by Lemma 2.6, point 2. Finally, since vε ∈ C2(Ωδ/2), (54) rewrites
as

−Tr
(
D2Hε(Dvε)D

2vε) =
f(ψ(vε))

F 1− 1
p (ψ(vε))

bε(Dvε)

and since H(Dvε) is bounded in Ωδ/2, Lemma A.1, point 2, grants the strong

ellipticity of D2Hε(z) for z ∈ Dvε(Ωδ/2). Therefore Proposition 2.1 ensures that
cvε cannot attain a positive maximum on Ωδ/2×Ωδ/2× [0, 1]. By step 4 we conclude
that, given a sufficiently small δ, for any sufficiently small ε > 0, cvε ≤ 0 on
Ωδ/2×Ωδ/2× [0, 1] and taking the limit for ε ↓ 0, we infer (46), proving the theorem.

Appendix A. Ellipticity estimates. In this appendix we prove strong ellipticity
estimates for the auxiliary integrands constructed during the proof of Theorem 1.1,
starting from a smooth, positively p-homogeneous H obeying

λ |z|p−2 |v|2 ≤
(
D2H(z) v, v

)
≤ Λ |z|p−2 |v|2 ∀z ∈ RN \ {0}, v ∈ RN . (55)

Their proofs are variants of [20, Appendix A], where (55) is shown to be a conse-
quence of the strong convexity of {H ≤ 1}.

Lemma A.1. Suppose H ∈ C1(RN ) ∩ C2(RN \ {0}) is positively p-homogeneous
and fulfils for 0 < λ ≤ Λ the ellipticity estimate (55).

Then

1. H2/p is strongly elliptic in the sense that there exists positive λ̂, Λ̂ depending
only H and p such that for any z, v ∈ RN it holds

λ̂ |v|2 ≤
(
D2H2/p(z) v, v

)
≤ Λ̂ |v|2 (56)
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2. For any θ ≥ 0 the function

Hθ(z) =
(
θ +H

2
p (z)

) p
2

fulfils

λ̃
(
θ +H

2
p (z)

) p−2
2 |v|2 ≤

(
D2Hθ(z) v, v

)
≤ Λ̃

(
θ +H

2
p (z)

) p−2
2 |v|2 (57)

for all z, v ∈ RN , where λ̃, Λ̃ are positive numbers depending on H and p but
not on θ.

Proof. From the positive p-homogeneity of H we get

pH(z) = (DH(z), z) , p (p− 1)H(z) =
(
D2H(z) z, z

)
(58)

as well as
D2H(z) z = (p− 1)DH(z). (59)

Let

nz =
DH(z)

|DH(z)|
be the exterior normal to the level sets of H. Then by (58) for any z ̸= 0

(z, nz) = p
H(z)

|DH(z)|
≥ c |z|

where

c = c(H, p) = inf
z ̸=0

p
H(z)

|DH(z)| |z|
= inf

|z|=1
p

H(z)

|DH(z)|
(where we used the p-positive homogeneity of H and of |DH(z)| |z|), which is finite
and positive. In particular any v ∈ RN can be uniquely written as

v = k z + t with k ∈ R, t ∈ RN , (t, nz) = 0. (60)

We clearly have
|v|2 ≤ 2

(
|t|2 + k2 |z|2

)
.

On the other hand, by Schwartz inequality

|v| ≥ |(v, nz)| = |k| (z, nz) ≥ c |k| |z|,
while by triangle inequality and the latter estimate

|t| ≤ |v|+ |k| |z| ≤
(
1 +

1

c

)
|v|.

All in all, we have found a constant C = C(H, p) such that for any z ̸= 0 and all
v ∈ RN decomposed as in (60), it holds

1

C
(k2 |z|2 + |t|2) ≤ |v|2 ≤ C (k2 |z|2 + |t|2). (61)

Decomposition (60) allows the following computations for z ̸= 0. Thanks to (58)
and (DH(z), t) = 0, we have

(DH(z) v, v)2 = k2(DH(z), z)2 = p2H2(z) k2. (62)

On the other hand,

(D2H(z) v, v) = k2 (D2H(z) z, z) + 2 k (D2H(z) z, t) + (D2H(z) t, t)

= p (p− 1)H(z) k2 + (D2H(z) t, t)
(63)

thanks to (58), (59) and again (DH(z), t) = 0.
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With these tools at hand, let us prove assertion (1) of the Lemma. Being H2/p a
positively 2-homogeneous function, D2H2/p is 0-homogeneous, hence it suffices to
consider the case z ∈ {H = 1}. We compute

D2H
2
p (z) =

2

p
H

2−p
p (z)

[
2− p

p
H−1(z)DH(z)⊗DH(z) +D2H(z)

]
so that for a given z ∈ {H = 1}(

D2H
2
p (z) v, v

)
=

2

p

[
2− p

p
(DH(z) v, v)2 + (D2H(z) v, v)

]
. (64)

Inserting (62) and (63) in (64) gives, for any z ∈ {H = 1},(
D2H

2
p (z) v, v

)
= 2 k2 +

2

p
(D2H(z) t, t)

and using (55) we obtain

2 k2 +
2λ

p
|z|p−2 |t|2 ≤

(
D2H

2
p (z) v, v

)
≤ 2 k2 +

2Λ

p
|z|p−2 |t|2.

Since |z| is uniformly bounded from above and below on {H = 1}, the two-sided
estimate (61) provides (56) for z ∈ {H = 1}, and thus for all z ∈ RN by 0-
homogeneity.

To prove assertion (2), we set Ĥ = H2/p, which is 2 homogeneous and satisfies
(56), so that

Hθ(z) =
(
θ + Ĥ(z)

) p
2

.

A standard computation gives

D2Hθ(z) =
p

2

(
θ + Ĥ(z)

) p−2
2

[
p− 2

2 (θ + Ĥ(z))
DĤ(z)⊗DĤ(z) +D2Ĥ(z)

]
.

For z ̸= 0 and v ∈ RN , we consider again the decomposition (60), so that (62) and

(63) applied to Ĥ (so that p = 2 therein), give(
D2Hθ(z) v, v

)
=
p

2

(
θ + Ĥ(z)

) p−2
2

[
p− 2

2 (θ + Ĥ(z))
4 Ĥ2(z) k2 + 2 Ĥ(z) k2 +

(
D2H(z) t, t

)]

= p
(
θ + Ĥ(z)

) p−2
2

[
θ + (p− 1) Ĥ(z)

θ + Ĥ(z)
Ĥ(z) k2 +

1

2

(
D2Ĥ(z) t, t

)]
.

Next note that

ap := min{1, p− 1} = inf
t≥0

θ + (p− 1) t

θ + t
, bp := max{1, p− 1} = sup

t≥0

θ + (p− 1) t

θ + t

which are positive and independent of θ, hence (56) provides[
ap Ĥ(z) k2 +

λ̂

2
|t|2
]
≤

(
D2Hθ(z) v, v

)
p
(
θ + Ĥ(z)

) p−2
2

≤

[
bp Ĥ(z) k2 +

Λ̂

2
|t|2
]

(65)



3696 SUNRA MOSCONI, GIUSEPPE RIEY AND MARCO SQUASSINA

where λ̂ and Λ̂ are given in (56), hence are independent of θ. Since Ĥ is positively
2-homogeneous and vanishes only at the origin, we readily have

1

C
|z|2 ≤ Ĥ(z) ≤ C |z|2

for a constant C = C(H, p), and using these inequalities in (65) together with (61)
provides (57) with the stated dependencies.
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