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1. Introduction and Main Result

1.1. Introduction

The main goal of this paper is to provide, in the framework of nonsmooth critical
point theory (cf. [11, 12, 18] and references therein), a general minimax varia-
tional principle for a class of lower semi-continuous functionals satisfying certain
monotonicity properties under polarization, allowing to detect critical points in the
sense of the weak slope (cf. Definitions 3.1 and 3.4) of minimax type which are
radially symmetric and decreasing. In the case of C1 smooth functionals these type
of results were studied by Van Schaftingen in [29] (see also [30–32]), where vari-
ous applications to semi-linear elliptic equations of the form −∆u = g(|x|, u) in Ω
with u = 0 on ∂Ω were also derived under suitable assumptions on g, when Ω is
either a ball B1 or an annulus (see also [33]). On the other hand, typically, in the
general context of quasi-linear problems of variational type, the energy functional
f : H1

0 (B1) → R ∪ {+∞} is, say,

f(u) =
∫

B1

j(u, |∇u|)dx −
∫

B1

G(|x|, u)dx, (1.1)

and under reasonable assumptions f is merely either lower semi-continuous or con-
tinuous on H1

0 (B1), depending on the growth conditions which are imposed on j
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and G (cf. [7, 28, 34]). A class of minimization problems, constrained to the unit
sphere of Lp(RN ), for functionals (1.1) defined on the whole R

N has been recently
investigated in [21] by exploiting the following generalized Polya–Szegö and Hardy–
Littlewood type inequalities for Schwarz symmetrization

∫
RN

j(u∗, |∇u∗|)dx ≤
∫

RN

j(u, |∇u|)dx,

∫
RN

G(|x|, u)dx ≤
∫

RN

G(|x|, u∗)dx,

the latter holding true under suitable monotonicity conditions on G in the radial
argument. These inequalities also hold in the unit ball B1 and immediately yield
f(u∗) ≤ f(u) for all u ∈ H1

0 (B1), namely (1.1) decreases upon Schwarz sym-
metrization. In turn, the existence of a global minimizer for f on a sphere
{u ∈ H1

0 (B1) : ‖u‖Lp = 1}, with p ≥ 2, immediately yields the existence of a
radially symmetric and decreasing minimizer. The first of the previous symmetriza-
tion inequalities holds under mild assumptions, allowing j(s, |ξ|) to be unbounded
with respect to s, say, for instance j(s, |ξ|) ≤ α(|s|)|ξ|2 where α : R

+ → R
+ is an

increasing function. This constrained minimization problems arise, for instance, in
the study of standing wave solutions for semi-linear and quasi-linear Schrödinger
equations (see [9] for a recent study). Concerning the study of free critical points
for f , in [28] it was obtained existence of infinitely many critical points via Z2-
symmetric nonsmooth mountain pass theorems, under (a subset of) the assump-
tions listed in Sec. 1.2 (see also [35] and references therein for various applications
of nonsmooth critical point theory to quasi-linear elliptic problems). In this paper,
we shall prove a general nonsmooth minimax principle (cf. Theorem 3.9) and, in
turn, we shall derive the main abstract result of the paper (cf. Theorem 3.10), a
symmetric version of Theorem 3.9 working for a large class of lower semi-continuous
functionals (in abstract spaces) which are decreasing upon (abstract) polarization.
In our main concrete result (cf. Theorem 1.2) we state the existence of a nontrivial
radially symmetric and decreasing distributional solution of problem

{−div(jξ(u, |∇u|)) + js(u, |∇u|) = g(|x|, u), in B1,

u = 0, on ∂B1,
(P)

corresponding to the mountain pass critical level of the functional f . In particular,
to mention a case connected with a physically meaningful situation and that can
be covered in our framework, we get a radial distributional mountain pass solution
to the problem, say in B1 ⊂ R

3,



−∆u − 1

2
u∆u2 = γ(|x|)|u|p−2u, in B1,

u = 0, on ∂B1,

(1.2)
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where 4 < p < 6 and γ : R
+ → R

+ is a bounded decreasing function. This boundary
value problem corresponds to (P) with the choice

j(s, ξ) =
1
2
(1 + s2)|ξ|2, for s ∈ R and ξ ∈ R

3,

and all the assumptions of the framework of section (1.2) are fulfilled. Problem (1.2)
is related to a quasi-linear Schrödinger equation that arises, for instance, in dissi-
pative quantum mechanics ([22]), plasma physics and fluid mechanics ([17]) and in
condensed matter theory ([25]).

The weak slope critical points u of f naturally correspond to generalized solu-
tions (see Definition 4.1) of problem (P), which become in turn distributional by
showing that u is bounded. We point out that Theorem 3.10 often provides, in
general contexts, also an alternative tool to concentration compactness arguments,
see Remark 3.11 for more details. Even in the classical cases such as j(s, ξ) = |ξ|2, if
the nonlinearity g(|x|, s) = DsG(|x|, s) is a merely continuous function, the moving
plane argument (cf. [15]) and the homotopy argument due to Brock (cf. [4]) yielding
local symmetry of positive solutions cannot be applied. In the general quasi-linear
setting, even for functions g of class C1, to the author’s knowledge, no symmetry
results based upon moving plane arguments are available in the current literature.
On the contrary, for the p-Laplacian operator j(|ξ|) = |ξ|p, there are various results
for positive solutions and Liploc and autonomous nonlinearities (cf. [5, 13, 14] for
equations and [26] for systems). Finally we notice that, in some cases, the symmetry
can be inferred by Palais’s symmetric criticality principle (cf. [27]) restricting the
functional to radial functions. Of course, in this case, one would loose the global
mountain pass minimization property.

1.2. The main concrete result

Let B1 be the unit ball in R
N centered at the origin, N ≥ 3 and let f : H1

0 (B1) →
R ∪ {+∞} be the functional defined by

f(u) =
∫

B1

j(u, |∇u|)dx −
∫

B1

G(|x|, u)dx, (1.3)

where j(s, |ξ|) : R×R
+ → R is of class C1. We consider the following assumptions.

1.2.1. Assumptions on j

We assume that for every s in R

{|ξ| 
→ j(s, |ξ|)} is strictly convex and increasing. (1.4)

Moreover, there exist a constant α0 > 0 and a positive increasing function α ∈ C(R)
such that, for every (s, ξ) ∈ R × R

N , it holds

α0|ξ|2 ≤ j(s, |ξ|) ≤ α(|s|)|ξ|2. (1.5)
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The functions js(s, |ξ|) and jξ(s, ξ) denote the derivatives of j(s, ξ) with respect to
the variables s and ξ respectively. Regarding the function js(s, |ξ|), we assume that
there exist a positive increasing function β ∈ C(R) and a positive constant R such
that

|js(s, |ξ|)| ≤ β(|s|)|ξ|2, for every s in R and all ξ ∈ R
N , (1.6)

js(s, |ξ|)s ≥ 0, for every s in R with |s| ≥ R and all ξ ∈ R
N . (1.7)

Furthermore, we assume that

j(−s, |ξ|) ≤ j(s, |ξ|), for every s in R
− and all ξ ∈ R

N . (1.8)

1.2.2. Assumptions on g, G

The function G(|x|, s) is the primitive with respect to s of a Carathéodory function
g(|x|, s) such that G(|x|, 0) = 0. We assume that there exist p ∈ (2, 2N/(N − 2)), a
positive constant C, µ > 2 and R′ > 0 such that

|g(|x|, s)| ≤ C(1 + |s|p−1), for every s in R and x ∈ B1, (1.9)

0 < µG(|x|, s)
≤ g(|x|, s)s, for every s in R with |s| ≥ R′ and x ∈ B1,

(1.10)

lim
s→0

g(|x|, s)
s

= 0, uniformly in B1, (1.11)

g(|x|, s) ≥ g(|y|, s), for every s ∈ R
+ and x, y ∈ B1 with |x| ≤ |y|,

(1.12)

G(|x|, s) ≤ G(|x|,−s), for every s ∈ R
− and x ∈ B1. (1.13)

1.2.3. Joint assumptions of j and g

There exist R′′ > 0 and δ > 0 such that

µj(s, |ξ|) − js(s, |ξ|)s − (1 + δ)jξ(s, |ξ|) · ξ ≥ 0, for every s ∈ R with |s| ≥ R′′

(1.14)

and all ξ ∈ R
N . Finally, it holds

lim
|s|→∞

α(|s|)
|s|µ−2

= 0. (1.15)

Remark 1.1. The asymptotic sign condition (1.7) is typical for quasi-linear elliptic
problems and, in general, plays a role both in the regularity theory (see Frehse’s
counterexample in [20]) and in the verification of the Palais–Smale condition (see
e.g. [28, 34]). Assumption (1.12) is necessary in order to get some inequality for∫

B1
G(|x|, u) under polarization, while (1.14) is used to prove that Palais–Smale
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sequences are bounded (see [28, 34]). Assumption (1.15) is needed for the functional
to satisfy some Mountain Pass geometry (see [28]). Finally, we point out that the
growth (1.9) on g could be weakened, allowing that for all ε > 0 there exists
aε ∈ Lr(B1) with r > 2N

N+2 such that |g(|x|, s)| ≤ aε(x) + ε|s|(N+2)/(N−2) for all
x ∈ B1 and s ∈ R. If r > N/2 the solutions are bounded (cf. [28, Theorem 7.1(b)]).

1.2.4. Statement

The principal result is the following general Ambrosetti-Rabinowitz [2] mountain
type theorem which includes the additional information on the radial symmetry of
the solution.

Theorem 1.2. Assume that conditions (1.4)–(1.15) hold. Then there exists a
nontrivial nonnegative radially symmetric and decreasing mountain pass solution
u ∈ H1

0 ∩ L∞(B1) to problem (P).

Although we state our result in the unit ball, a similar statement could be
provided for the functional defined in the unit ball or in the annulus without the
monotonicity condition (1.12) on g, yielding a solution u which is invariant under
spherical cap symmetrization, namely u depends solely upon |x| and an angular
variable. In [29] further applications of the symmetric minimax principle for C1

smooth functionals are provided, for instance the case of linking geometry. We
limit ourself to the statement of Theorem 1.2 although also in the nonsmooth setting
some of the applications discussed in [29] could be derived from Theorem 3.10 under
appropriate assumptions.

Remark 1.3. Theorem 1.2 covers, in particular, the case where the function
α : R

+ → R
+, which appears in growth condition (1.5), is bounded. Under this

assumption, the functional f defined in (1.3) is continuous on H1
0 (B1) (and con-

dition (1.15) is automatically fulfilled). For this framework, we refer the reader to
the lectures [8] and to the references therein.

Remark 1.4. We considered the framework of lower semi-continuous function-
als defined on the Sobolev space H1

0 (B1) for simplicity. In fact, a result such as
Theorem 1.2 could be stated in the more general setting of functionals over the
Sobolev space W 1,q

0 (B1), for any q ≥ 2, as the results from [28] that we used in the
proof of Theorem 1.2 can be extended to the case q �= 2. We also refer to [34, 35]
and references therein for further results.

2. Tools from Symmetrization Theory

2.1. Abstract symmetrization

We recall a definition from [29].
Let X and V be two Banach spaces and S ⊂ X . We consider two maps ∗ : S →

V , u 
→ u∗ (symmetrization map) and h : S ×H∗ → S, (u, H) 
→ uH (polarization
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map), where H∗ is a path-connected topological space. We assume that the following
conditions hold:

(1) X is continuously embedded in V ;
(2) h is a continuous mapping;
(3) for each u ∈ S and H ∈ H∗ it holds (u∗)H = (uH)∗ = u∗ and uHH = uH ;
(4) there exists a sequence (Hm) in H∗ such that, for u ∈ S, uH1···Hm converges to

u∗ in V ;
(5) for every u, v ∈ S and H ∈ H∗ it holds ‖uH − vH‖V ≤ ‖u − v‖V .

Furthermore ∗ : S → V can be extended to the whole space X by setting u∗ :=
(Θ(u))∗ for all u ∈ X , where Θ : (X, ‖ · ‖V ) → (S, ‖ · ‖V ) is a Lipschitz function
such that Θ|S = Id|S .

Remark 2.1. There exists a positive constant CΘ such that

∀u, v ∈ X : ‖u∗ − v∗‖V ≤ CΘ‖u − v‖V . (2.1)

In fact, given u, v ∈ X , by assumption (5) it holds

‖(Θ(u))H1···Hm − (Θ(v))H1···Hm‖V ≤ ‖Θ(u)− Θ(v)‖V ≤ CΘ‖u − v‖V ,

where (Hm) is a sequence in H∗ according to assumption (4) and CΘ is the positive
Lipschitz constant of Θ. Then, by the definition of ∗ : X → V , we obtain

‖u∗ − v∗‖V ≤ ‖(Θ(u))∗ − (Θ(u))H1···Hm‖V + ‖(Θ(u))H1···Hm − (Θ(v))H1···Hm‖V

+ ‖(Θ(v))H1···Hm − (Θ(v))∗‖V

≤ ‖(Θ(u))∗ − (Θ(u))H1···Hm‖V + CΘ‖u − v‖V

+ ‖(Θ(v))H1···Hm − (Θ(v))∗‖V ,

for all m ≥ 1. Therefore, taking into account the convergence property in assump-
tion (4), letting m → ∞ into the previous inequality immediately yields (2.1).

2.1.1. Polarization

A subset H of R
N is called a polarizer if it is a closed affine half-space of R

N ,
namely the set of points x which satisfy α ·x ≤ β for some α ∈ R

N and β ∈ R with
|α| = 1. Given x in R

N and a polarizer H the reflection of x with respect to the
boundary of H is denoted by xH . The polarization of a function u : R

N → R
+ by

a polarizer H is the function uH : R
N → R

+ defined by

uH(x) =

{
max{u(x), u(xH)}, if x ∈ H

min{u(x), u(xH)}, if x ∈ R
N\H .

(2.2)

The polarization CH ⊂ R
N of a set C ⊂ R

N is defined as the unique set which sat-
isfies χCH = (χC)H , where χ denotes the characteristic function. The polarization
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uH of a positive function u defined on C ⊂ R
N is the restriction to CH of the

polarization of the extension ũ : R
N → R

+ of u by zero outside C. The polariza-
tion of a function which may change sign is defined by uH := |u|H , for any given
polarizer H .

2.1.2. Schwarz symmetrization

The Schwarz symmetrization of a set C ⊂ R
N is the unique open ball centered

at the origin C∗ such that LN (C∗) = LN (C), being LN the N -dimensional outer
Lebesgue measure. If the measure of C is zero we set C∗ = ∅, while if the measure
of C is not finite we put C∗ = R

N . A measurable function u is admissible for the
Schwarz symmetrization if it is nonnegative and, for every ε > 0, the Lebesgue
measure of {u > ε} is finite. The Schwarz symmetrization of an admissible function
u : C → R

+ is the unique function u∗ : C∗ → R
+ such that, for all t ∈ R, it holds

{u∗ > t} = {u > t}∗. Considering the extension ũ : R
N → R

+ of u by zero outside
C, then u∗ = (ũ)∗|C∗ and (ũ)∗|RN\C∗ = 0. The symmetrization for u which are not
nonnegative can be the defined by u∗ := |u|∗.
Remark 2.2. Let us set H∗ = {H ∈ H : 0 ∈ H or H = H+∞}, Ω = B(0, 1) and
either

X = W 1,p
0 (Ω), S = W 1,p

0 (Ω, R+), V = Lp ∩ Lp∗
(Ω),

or

X = S = W 1,p
0 (Ω), V = Lp ∩ Lp∗

(Ω), uH := |u|H , u∗ := |u|∗.
Then the requirements (1)–(5) in the abstract symmetrization framework are sat-
isfied (cf. [29, Propositions 2.3, 2.5 and Theorem 2.1, see the examples at p. 469]).
Furthermore u = u∗ if and only if u = uH for all H ∈ H∗ and C = C∗ if and only
if C = CH , for every H ∈ H∗.

Remark 2.3. Different types of symmetrization can be considered, such as the
Steiner symmetrization or the spherical cap symmetrization, for which the abstract
framework above is fulfilled and our main result would work. We refer the interested
reader to [29] and to the references therein for further details. See also [30, 31].

2.2. Symmetric approximation of curves

In general, except in the one-dimensional case (see [10]) the Schwarz symmetric
rearrangement is not a continuous function (see [1]). To overcome this problem, we
recall a very useful and general approximation tool for continuous curves in Banach
spaces provided in Van Schaftingen’s paper (see [29, Proposition 3.1]).

Proposition 2.4. Let X and V be two Banach spaces, S ⊆ X, ∗ and H∗ which
satisfy the requirements of the abstract symmetrization framework. Let M be a
metric space, M0 and M1 be disjoint closed sets of M and γ ∈ C(M, X). Let
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H0 ∈ H∗ and γ(M) ⊂ S. Then, for every δ > 0, there exists a curve γ̃ ∈ C(M, X)
such that

‖γ̃(τ) − γ(τ)∗‖V ≤ δ, ∀ τ ∈ M1,

γ̃(τ) = γ(τ)H1···H[θ]Hθ for all τ ∈ M, with Hs ∈ H∗ for s ≥ 0, γ̃(τ) = γ(τ)H0 for
τ ∈ M0. Here [θ] denotes the largest integer less than or equal to θ.

3. Tools from Nonsmooth Critical Point Theory

3.1. Preliminary notions and results

In this section we consider abstract notions and results that will be used in the
proof of the main results. For the definitions, we refer to [12, 18, 23, 24], where the
theory was developed.

We denote with B(u, δ) the open ball of center u and of radius δ. We recall the
definition of the weak slope for a continuous function.

Definition 3.1. Let X be a metric space, g : X → R a continuous function, and
u ∈ X . We denote by |dg|(u) the supremum of the real numbers σ in [0,∞) such
that there exist δ > 0 and a continuous map H : B(u, δ) × [0, δ] → X, such that,
for every v in B(u, δ), and for every t in [0, δ] it results

d(H(v, t), v) ≤ t, g(H(v, t)) ≤ g(v) − σt.

The extended real number |dg|(u) is called the weak slope of g at u.

The next result establishes the connection between the weak slope of a function
g and its differential dg(u), in the case where g is of class C1. For the proof,
see [18, Corollary 2.12].

Proposition 3.2. If X is an open subset of a normed space E and g is a function
of class C1 on X, then |dg|(u) = ‖dg(u)‖ for every u ∈ X.

Let now X be a metric space and let f : X → R̄ be a function. We set

dom(f) = {u ∈ X : f(u) < +∞} and epi(f) = {(u, ξ) ∈ X × R : f(u) ≤ ξ},
and let us define the function Gf : epi(f) → R by

Gf (u, ξ) = ξ. (3.1)

In the following, epi(f) will be endowed with the metric

d((u, ξ), (v, µ)) = (d(u, v)2 + (ξ − µ)2)1/2,

so that the function Gf is Lipschitz continuous of constant 1.
Let us recall [16] a device allowing to reduce the study of continuous or

lower semi-continuous functionals to that of Lipschitz functionals. We refer to
[18, Proposition 2.3].
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Lemma 3.3. Let f : X → R be a continuous function. Then, for every (u, ξ) ∈
epi(f), we have

|dGf |(u, ξ) =




|df |(u)√
1 + |df |(u)2

if f(u) = ξ and |df |(u) < +∞,

1 if f(u) < ξ or |df |(u) = +∞.

On the basis of the previous result, one can define the weak slope of a lower
semi-continuous function f by using |dGf |(u, f(u)). More precisely, we have the
following

Definition 3.4. Let f : X → R̄ be a lower semi-continuous function. For every
u ∈ X such that f(u) ∈ R, let

|df |(u) =




|dGf |(u, f(u))√
1 − |dGf |(u, f(u))2

, if |dGf |(u, f(u)) < 1,

+∞, if |dGf |(u, f(u)) = 1.

The previous notions allow us to give the following

Definition 3.5. Let X be a metric space and f : X → R ∪ {+∞} a lower semi-
continuous function. We say that u ∈ dom(f) is a (lower) critical point of f if
|df |(u) = 0. We say that c ∈ R is a (lower) critical value of f if there exists a
(lower) critical point u ∈ dom(f) of f with f(u) = c.

Definition 3.6. Let X be a metric space, f : X → R ∪ {+∞} a lower semi-
continuous function and let c ∈ R. We say that f satisfies the Palais–Smale con-
dition at level c ((PS)c in short), if every sequence (un) in dom(f) such that
|df |(un) → 0 and f(un) → c admits a subsequence (unk

) converging in X .

In [12, 18] variational methods for lower semi-continuous functionals are devel-
oped. Moreover, it is shown that the following condition is fundamental in order to
apply the abstract theory to the study of lower semi-continuous functions

∀(u, ξ) ∈ epi(f) : f(u) < ξ ⇒ |dGf |(u, ξ) = 1. (3.2)

Let ρ > 0 and assume that epi(f) is endowed with the metric

dρ((u, ξ), (v, µ)) = (d(u, v)2 + ρ2(ξ − µ)2)1/2. (3.3)

Clearly the metric dρ is equivalent to the metric d on epi(f). Moreover, with respect
to dρ the function Gf is Lipschitz continuous of constant 1/ρ.

Proposition 3.7. Let f : X → R̄ be a function. Then

|dρGf |(u, ξ) =
|dGf |(u, ξ)√

1 + (ρ2 − 1)|dGf |(u, ξ)2
,

for every (u, ξ) ∈ epi(f). In particular, if |dGf |(u, ξ) = 1, it follows |dρGf |(u, ξ) = 1
ρ .
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Proof. The proof follows the lines of the proof of [18, Proposition 2.3]. On the
other hand, for the sake of completeness, we sketch the proof. Let us first prove
that

|dρGf |(u, ξ) ≥ |dGf |(u, ξ)√
1 + (ρ2 − 1)|dGf |(u, ξ)2

.

If |dGf |(u, ξ) = 0, then there is nothing to prove. Otherwise, let 0 < σ < |dGf |(u, ξ)
and let H : Bδ(u, ξ)× [0, δ] → epi(f) be a continuous map, according to the defini-
tion of weak slope, so that

d(H1((v, µ), t), v)2 + |H2((v, µ), t) − µ|2 ≤ t2, H2((v, µ), t) ≤ µ − σt,

for all t ∈ [0, δ] and every (v, µ) ∈ Bδ(u, ξ). Let now choose δ′ > 0 (with δ′ = δ if
ρ ≤ 1) be such that δ′ ≤ δ

√
1 + (ρ2 − 1)σ2 and consider the continuous function

K = (K1,K2) : Bδ′(u, ξ) × [0, δ′] → epi(f) defined by

K1((v, µ), t) = H1

(
(v, µ),

t√
1 + (ρ2 − 1)σ2

)
,

K2((v, µ), t) = µ − σt√
1 + (ρ2 − 1)σ2

.

Of course K((v, µ), t) ∈ epi(f) for all t ∈ [0, δ′] and every (v, µ) ∈ Bδ′(u, ξ). More-
over, we have

dρ(K((v, µ), t), (v, µ))2 = d(K1((v, µ), t), v)2 + ρ2|K2((v, µ), t) − µ|2

= d

(
H1

(
(v, µ),

t√
1 + (ρ2 − 1)σ2

)
, v

)2

+ ρ2 σ2t2

1 + (ρ2 − 1)σ2

≤ t2

1 + (ρ2 − 1)σ2
+

(ρ2 − 1)σ2t2

1 + (ρ2 − 1)σ2
= t2,

for all t ∈ [0, δ′] and every (v, µ) ∈ Bδ′(u, ξ). Furthermore, we have

Gf (K((v, µ), t)) = K2((v, µ), t) = Gf (v, µ) − σ√
1 + (ρ2 − 1)σ2

t,

for all t ∈ [0, δ′] and every (v, µ) ∈ Bδ′(u, ξ). In turn, we have

|dρGf |(u, ξ) ≥ σ√
1 + (ρ2 − 1)σ2

,

yielding, by the arbitrariness of σ,

|dρGf |(u, ξ) ≥ |dGf |(u, ξ)√
1 + (ρ2 − 1)|dGf |(u, ξ)2

.
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Concerning the proof of the opposite inequality, it is sufficient to show that

|dGf |(u, ξ) ≥ |dρGf |(u, ξ)√
1 − (ρ2 − 1)|dρGf |(u, ξ)2

.

This can be achieved by arguing as above by considering, in place of K, the contin-
uous function K̂ = (K̂1, K̂2) : Bδ′(u, ξ) × [0, δ′] → epi(f) defined by

K̂1((v, µ), t) = H1

(
(v, µ),

t√
1 − (ρ2 − 1)σ2

)
,

K̂2((v, µ), t) = µ − σt√
1 − (ρ2 − 1)σ2

.

This concludes the proof.

Remark 3.8. The notion of weak slope for a function f : X → R (not even assumed
to be lower semi-continuous) was also provided (see [6, Definition 2.1]) in terms of
local deformations, consistently with Definition 3.1 (see [6, Proposition 2.2]). Of
course, the extended real number |df |(u) is independent of ρ and, arguing as in
[6, Proposition 2.3], it is possible to show that

|dρGf |(u, f(u)) =
|df |(u)√

1 + ρ2|df |(u)2
, |dGf |(u, f(u)) =

|df |(u)√
1 + |df |(u)2

,

for every u with |df |(u) < +∞. In turn, combining these equalities one immediately
obtains the assertion of Proposition 3.7 with ξ = f(u).

3.2. The non-symmetric minimax theorem

In the framework of the previous section we have the following nonsmooth minimax
principle (for C1 functionals, see the corresponding version in [36]).

Theorem 3.9. Let X be a complete metric space and f : X → R ∪ {+∞} a lower
semi-continuous function satisfying (3.2). Let D and S denote the closed unit ball
and the sphere in R

N respectively and Γ0 ⊂ C(S, X). Let us define

Γ = {γ ∈ C(D, X) : γ|S ∈ Γ0}.

Assume that

+∞ > c = inf
γ∈Γ

sup
τ∈D

f(γ(τ)) > sup
γ0∈Γ0

sup
τ∈S

f(γ0(τ)) = a.

Then, for every ε ∈ (0, (c − a)/2), every δ > 0 and γ ∈ Γ such that

sup
τ∈D

f(γ(τ)) ≤ c + ε,
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there exists u ∈ X such that

c − 2ε ≤ f(u) ≤ c + 2ε,

dist(u, γ(D) ∩ f−1([c − 3ε, c + 3ε])) ≤ 3δ, |df |(u) ≤ 3ε/δ.

Proof. We divide the proof into two cases.

Case I. We prove the result for continuous functions f : X → R. In this case, the
assertion follows as a direct application of the quantitative nonsmooth deformation
theorem [11] with the stronger conclusion that there exists u ∈ X with c − 2ε ≤
f(u) ≤ c + 2ε and

dist(u, γ(D) ∩ f−1([c − 2ε, c + 2ε])) ≤ 2δ, |df |(u) ≤ ε/δ. (3.4)

In fact, if this was not the case, by applying [11, Theorem 2.3] with the choice
of the closed set A = γ(D) ∩ f−1([c − 2ε, c + 2ε], one could find a deformation
η : X × [0, 1] → X such that d(η(u, t), u) ≤ 2δt for all u ∈ X and t ∈ [0, 1],
f(η(u, t)) < f(u) for all u ∈ X and t ∈ [0, 1] with η(u, t) �= u and

u ∈ A, c − ε ≤ f(u) ≤ c + ε ⇒ f(η(u, 1)) ≤ c − ε. (3.5)

If Ξ : X → [0, 1] is a continuous function such that Ξ(u) = 0 if f(u) ≤ a and Ξ(u) =
1 if f(u) ≥ c − ε, considering γ̃ ∈ C(D, X) defined by γ̃(τ) = η(γ(τ), Ξ(γ(τ))), it
follows that γ̃ ∈ Γ, since for all τ ∈ S we have Ξ(γ(τ)) = 0, due to

f(γ(τ)) ≤ sup
γ0∈Γ0

sup
τ∈S

f(γ0(τ)) = a.

Given an arbitrary τ ∈ D, either f(γ(τ)) < c−ε and thus f(γ̃(τ)) ≤ f(γ(τ)) < c−ε

or f(γ(τ)) ≥ c − ε, in which case, by the definition of Ξ and (3.5), we get

f(γ̃(τ)) = f(η(γ(τ), Ξ(γ(τ)))) = f(η(γ(τ), 1)) ≤ c − ε.

Hence, we conclude that f ◦ γ̃|D ≤ c − ε, providing the desired contradiction with
the definition of c and concluding the proof for the case of f : X → R continuous.

Case II. We cover the general case of lower semi-continuous functions f : X →
R ∪ {+∞}. We introduce the sets Γ̂0 ⊂ C(S, epi(f)) and Γ̂ ⊂ C(D, epi(f)) by
setting

Γ̂0 = {γ̂ ∈ C(S, epi(f)) : γ̂ = (γ̂1, γ̂2) with γ̂1 ∈ Γ0 and γ̂2(τ) ≤ a for all τ ∈ S},
Γ̂ = {γ̂ ∈ C(D, epi(f)) : γ̂|S ∈ Γ̂0}.

The space epi(f) is equipped with the metric dρ defined in (3.3), for ρ > 0. As we
prove below, Γ̂ �= ∅. Of course, by the definition of Γ̂0, we have

sup
γ̂∈Γ̂0

sup
τ∈S

Gf (γ̂(τ)) = a. (3.6)
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Let us now prove that

inf
γ̂∈Γ̂

sup
τ∈D

Gf (γ̂(τ)) = c. (3.7)

We first show that

inf
γ̂∈Γ̂

sup
τ∈D

Gf (γ̂(τ)) ≤ c. (3.8)

In fact, given b > c, let γ ∈ Γ be such that

a < α := sup
τ∈D

f(γ(τ)) ≤ b.

Consider now the continuous function ϑ : D → D defined by setting ϑ(τ) = τ |τ |−1

for all τ ∈ D\D/2 and ϑ(τ) = 2τ for all τ ∈ D/2, and define γ̂1 : D → X by setting
γ̂1(τ) = γ(ϑ(τ)) for all τ ∈ D. Furthermore, for any M ≥ M0 with

M0 := max
τ∈S

max
τ̃∈D/2

b − a

|τ̃ − τ | = 2(b − a) > 0,

we introduce a continuous function γ̂2 : D → R by setting

γ̂2(τ) := sup{f(γ̂1(τ̃ )) − M |τ − τ̃ | : τ̃ ∈ D}.
Of course f(γ̂1(τ)) ≤ γ̂2(τ) for τ ∈ D and, by an easy check,

max
τ∈D

γ̂2(τ) = α.

Furthermore, being M ≥ M0 and f(γ̂1)|D\D/2 ≤ a, it is readily seen that γ̂2(τ) ≤ a

for all τ ∈ S. Therefore, taking into account that by construction γ̂1|S = γ ◦ ϑ|S =
γ|S ∈ Γ0, it follows that γ̂ = (γ̂1, γ̂2) ∈ Γ̂, yielding

inf
γ̂∈Γ̂

sup
τ∈D

Gf (γ̂(τ)) ≤ sup
τ∈D

Gf (γ̂(τ)) = α = sup
τ∈D

f(γ(τ)) ≤ b,

which proves (3.8) by the arbitrariness of b. On the contrary, given d with

d > inf
γ̂∈Γ̂

sup
τ∈D

Gf (γ̂(τ)),

we find γ̂ = (γ̂1, γ̂2) ∈ Γ̂ with

sup
τ∈D

Gf (γ̂(τ)) ≤ d.

Then, we have γ̂1 ∈ Γ and f(γ̂1(τ)) ≤ γ̂2(τ) = Gf (γ̂(τ)) ≤ d, for all τ ∈ D. In
particular we get c ≤ d, yielding the desired inequality by the arbitrariness of d.
This concludes the proof of formula (3.7). At this point, in light of (3.6) and (3.7),
given ε ∈ (0, (c − a)/2), δ > 0 and γ ∈ Γ with supτ∈D

f(γ(τ)) ≤ c + ε, if γ̂1 and γ̂2

are defined as before, we have γ̂ = (γ̂1, γ̂2) ∈ Γ̂ with γ̂1(D) = γ(D) and

sup
τ∈D

Gf (γ̂(τ)) ≤ c + ε,
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and we can apply the theorem (cf. (3.4)) to the continuous function Gf , yielding
the existence of a pair (u, λ) ∈ epi(f) such that c − 2ε ≤ λ ≤ c + 2ε and

distρ((u, λ), γ̂(D) ∩ G−1
f ([c − 2ε, c + 2ε])) ≤ 2δ, |dρGf |(u, λ) ≤ ε/δ. (3.9)

Now, by choosing ρ := 2
√

2δ
3ε for the metric in epi(f), we have

|dρGf |(u, λ) ≤ ε/δ <
1
ρ
.

Therefore, by virtue of Proposition 3.7 and in light of condition (3.2), we deduce
that λ = f(u), which yields

c − 2ε ≤ f(u) ≤ c + 2ε, dist(u, γ(D) ∩ f−1([c − 3ε, c + 3ε])) ≤ 3δ. (3.10)

Concerning the second assertion, observe that from the first inequality of (3.9),
replacing δ with a slightly larger δ if necessary, there exists τ ∈ D such that

d(u, γ̂1(τ)) ≤ 2δ, c − 2ε ≤ γ̂2(τ) ≤ c + 2ε.

Now, by continuity, there exists δ′ > 0 such that

∀ τ̃ ∈ D : |τ̃ − τ | ≤ δ′ ⇒ d(γ̂1(τ̃ ), γ̂1(τ)) ≤ δ, c − 3ε ≤ γ̂2(τ̃ ) ≤ c + 3ε.

Observe now that, for any given µ ∈ R, it follows

f(γ̂1)|{τ̃∈D:|τ̃−τ |≤δ′} ≤ µ ⇒ γ̂2(τ) ≤ µ,

if M ≥ max{M0,
c+ε−µ

δ′ } in the definition of γ̂2. In fact, it holds

∀ τ̃ ∈ D : |τ̃ − τ | ≤ δ′ ⇒ f(γ̂1(τ̃ )) − M |τ − τ̃ | ≤ µ,

∀ τ̃ ∈ D : |τ̃ − τ | > δ′ ⇒ f(γ̂1(τ̃ )) − M |τ − τ̃ | ≤ c + ε − Mδ′ ≤ µ.

Hence, since γ̂2(τ) > c − 3ε, if M ≥ max{M0,
4ε
δ′ } in the definition of γ̂2, we have

∃ τ̃ ∈ D : |τ̃ − τ | ≤ δ′ and c − 3ε < f(γ̂1(τ̃ )) ≤ γ̂2(τ̃ ) ≤ c + 3ε.

Since γ̂1(τ̃ ) ∈ γ(D) ∩ f−1([c − 3ε, c + 3ε]), we obtain

dist(u, γ(D) ∩ f−1([c − 3ε, c + 3ε]))

≤ d(u, γ̂1(τ̃ )) ≤ d(u, γ̂1(τ)) + d(γ̂1(τ), γ̂1(τ̃ )) ≤ 3δ.

Finally, by virtue of Proposition 3.7, it holds

|df |(u) =
|dGf |(u, f(u))√

1 − |dGf |(u, f(u))2
=

|dρGf |(u, f(u))√
1 − ρ2|dρGf |(u, f(u))2

≤ ε/δ√
1 − ρ2ε2/δ2

= 3ε/δ.

This concludes the proof.
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3.3. The symmetric minimax theorem

The main abstract tool of the paper is a symmetric version of Theorem 3.9, namely
the following

Theorem 3.10. Let X and V be two Banach spaces, S ⊂ X, ∗ and H∗ satisfying
the requirements of the abstract symmetrization framework. Let f : X → R∪{+∞}
a lower semi-continuous function satisfying (3.2). Let D and S denote the closed
unit ball and the sphere in R

N respectively and Γ0 ⊂ C(S, X). Let us define

Γ = {γ ∈ C(D, X) : γ|S ∈ Γ0}.
Assume that

+∞ > c = inf
γ∈Γ

sup
τ∈D

f(γ(τ)) > sup
γ0∈Γ0

sup
τ∈S

f(γ0(τ)) = a,

and that

∀H ∈ H∗, ∀u ∈ S : f(uH) ≤ f(u).

Then, for every ε ∈ (0, (c − a)/3), every δ > 0 and γ ∈ Γ such that

sup
τ∈D

f(γ(τ)) ≤ c + ε, γ(D) ⊂ S, γ|H0
S

∈ Γ0 for some H0 ∈ H∗,

there exists u ∈ X such that

c − 2ε ≤ f(u) ≤ c + 2ε, |df |(u) ≤ 3ε/δ, ‖u − u∗‖V ≤ 3((1 + CΘ)K + 1)δ,

(3.11)

being K the norm of the embedding map i : X → V and CΘ the Lipschitz constant
of Θ.

Proof. Let ε ∈ (0, (c − a)/3), δ > 0 and γ ∈ Γ satisfying the assumptions.
Moreover, let ϑ : D → D be the continuous function introduced in the proof of
Theorem 3.9, and consider the function η : D → X , defined as η(τ) := γ(ϑ(τ)) for
all τ ∈ D. Then η ∈ Γ, we have η(D) = γ(ϑ(D)) = γ(D) ⊂ S and, setting

M1 := (f ◦ η)−1([c − 3ε, c + ε]),

M1 ⊂ D is of course closed and M1 ∩ S = ∅. In fact, assume by contradiction that
this is not the case and let τ ∈ M1 ∩ S. Then

τ ∈ S, τ = lim
j

τj , c − 3ε ≤ f(γ(ϑ(τj))) ≤ c + ε, for all j ≥ 1.

In particular, τj ∈ D\D/2 eventually for j ≥ 1, so that ϑ(τj) ∈ S eventually for
j ≥ 1. Therefore, for such j ≥ 1, we obtain

c − 3ε ≤ f(γ(ϑ(τj))) ≤ sup
τ∈S

f(γ(τ)) ≤ sup
γ0∈Γ0

sup
τ∈S

f(γ0(τ)) = a < c − 3ε
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yielding the desired contradiction. Now, from Proposition 2.4 (applied with the
choice M = D and M0 = S) there exists a curve η̃ ∈ C(D, X) with η̃|S = η|H0

S
=

γ|H0
S

∈ Γ0 for the polarizer H0 (so that η̃ ∈ Γ) such that ‖η̃(τ) − η(τ)∗‖V ≤ 3δ, for
all τ ∈ M1. Notice that, by construction, η̃(τ)∗ = η(τ)∗ and f(η̃(τ)) ≤ f(η(τ)) for
every τ ∈ D, as η̃ is built from η through polarizations. Hence, we obtain

sup
τ∈D

f(η̃(τ)) ≤ sup
τ∈D

f(η(τ)) = sup
τ∈D

f(γ(τ)) ≤ c + ε.

By applying Theorem 3.9 to η̃ and since

η̃(D) ∩ f−1([c − 3ε, c + 3ε]) ⊂ η̃(M1),

there exists u ∈ X such that dist(u, η̃(M1)) ≤ 3δ and the first two inequalities in the
above conclusion (3.11) hold. According to the abstract symmetrization framework
u∗ is well defined. Furthermore, in light of inequality (2.1) (cf. Remark 2.1), for all
τ ∈ M1 we have

‖η(τ)∗ − u∗‖V = ‖η̃(τ)∗ − u∗‖V ≤ CΘ‖u − η̃(τ)‖V .

Then, the last assertion in (3.11) follows by adding and subtracting η̃(τ) and η(τ)∗

with τ ∈ M1, as in the end of [29, proof of Theorem 3.2], namely

‖u − u∗‖V ≤ inf
τ∈M1

[‖u − η̃(τ)‖V + ‖η̃(τ) − η(τ)∗‖V + ‖η(τ)∗ − u∗‖V ]

≤ inf
τ∈M1

[(1 + CΘ)‖u − η̃(τ)‖V + ‖η̃(τ) − η(τ)∗‖V ]

≤ 3((1 + CΘ)K + 1)δ.

This concludes the proof.

Remark 3.11. Let X and V be two Banach spaces such that X is continuously
embedded in V and let S ⊂ X . We consider a symmetrization map ∗ : S → V

which satisfies the requirements of the abstract symmetrization framework. Theo-
rem 3.10 provides, in some sense, a useful alternative to concentration compactness.
In fact, for a broad range of lower semi-continuous functionals f : X → R ∪ {+∞}
possessing a mountain pass geometry, Theorem 3.10 yields a sequence of functions
(uh) ⊂ X such that, as h → ∞,

f(uh) → c, |df |(uh) → 0, ‖uh − u∗
h‖V → 0. (3.12)

It is often the case that the first two limits yield the boundedness of (uh) in X ,
so that uh → u weakly in X for some u ∈ X and that the symmetric sequence
(u∗

h) ⊂ Xr converges strongly, up to a subsequence, to some v ∈ Xr in some
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subspace V ′ with V ⊂ V ′ with continuous injection i : V → V ′. In particular,

u∗
h → v in V ′ as h → ∞, ‖uh − u∗

h‖V ′ ≤ C‖uh − u∗
h‖V → 0,

which yields

uh → u weakly in X and strongly in V ′. (3.13)

This conclusion is often sufficient in order to prove, after some work, that the
Palais–Smale sequence (uh) converges to u strongly in X . As a concrete functional
framework one can think, for instance, to the case (here Ω can be the whole R

N )
where

X = W 1,p
0 (Ω), V = Lp ∩ Lp∗

(Ω), V ′ = Lm(Ω), p < m < p∗.

Therefore, if (uh) is bounded in W 1,p
0 (Ω), the sequence (u∗

h) is bounded in W 1,p
0 (Ω)

too by the Polya–Szegö inequality and compact in Lm(Ω) with p < m < p∗ in light
of [3, Theorem A.I′, p. 341]. Finally, the injection i : Lp ∩ Lp∗

(Ω) → Lm(Ω) is,
of course, continuous. For an application of conclusion (3.13) in the case p = 2,
Ω = R

N and f ∈ C1(H1(RN ), R), see [29, Theorem 4.5].

Remark 3.12. As pointed out in [29] the condition that γ|H0
S

∈ Γ0 for some
polarizer H0 ∈ H∗ imposes a minimality condition on the energy levels on which
one can guarantee the symmetry of critical points.

4. Proof of Theorem 1.2

4.1. Some preliminary lemmas

Given a fixed function u in H1
0 (B1), we define the following subspace of H1

0 (B1)

Wu = {v ∈ H1
0 (B1) : jξ(u, |∇u|) · ∇v ∈ L1(B1) and js(u, |∇u|)v ∈ L1(B1)}.

(4.1)

The space Wu is dense in H1
0 (B1). It was originally introduced in [19] and subse-

quently used also throughout [28]. We give the definition of generalized solution.

Definition 4.1. We say that u is a generalized solution to (P) if u ∈ H1
0 (B1) and

it results jξ(u, |∇u|) · ∇u ∈ L1(B1), js(u, |∇u|)u ∈ L1(B1) and∫
B1

jξ(u, |∇u|) · ∇vdx +
∫

B1

js(u, |∇u|)vdx =
∫

B1

g(|x|, u)vdx, ∀ v ∈ Wu.

We recall some preliminary results.

Lemma 4.2. Assume that conditions (1.4)–(1.15) hold. If u ∈ dom(f) is a critical
point of f, namely |df |(u) = 0, then u is a generalized solution to{−div(jξ(u, |∇u|)) + js(u, |∇u|) = g(|x|, u), in B1,

u = 0, on ∂B1.

Furthermore, if jξ(u, |∇u|) · ∇u ∈ L1(B1), then u is a distributional solution.
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Proof. Combine [28, Proposition 6.4 and Theorem 4.10].

Lemma 4.3. Assume that conditions (1.4)–(1.15) hold. Then, for every (u, ξ) ∈
epi(J) with f(u) < ξ, there holds |dGf |(u, ξ) = 1.

Proof. See [28, Theorem 6.1].

Lemma 4.4. Assume that conditions (1.4)–(1.15) hold. Then, there exists e ∈
H1

0 (B1) such that f(e) < 0 and ρ, σ > 0 such that f(u) ≥ σ for all u ∈ H1
0 (B1)

with ‖u‖H1
0

= ρ.

Proof. See [28, the beginning of the proof of Theorem 2.3].

Lemma 4.5. Assume that conditions (1.4)–(1.15) hold. Then the functional f sat-
isfies the (PS)c condition at every level c ∈ R.

Proof. See [28, Theorem 6.9].

Lemma 4.6. Let u ∈ H1
0 (B1, R

+) and let H be a given half-space in H∗. Then∫
B1

j(u, |∇u|)dx =
∫

B1

j(uH , |∇uH |)dx, (4.2)

provided that 0 ∈ H and that both integrals are finite. Furthermore, under (1.12),∫
B1

G(|x|, u)dx ≤
∫

B1

G(|x|, uH)dx.

Proof. See e.g. [21, Lemma 2.5] and [29, Proposition 2.3], respectively. The state-
ments therein are provided for functions ũ : R

N → R
+, for instance (4.2) reads as∫

RN

j(ũ, |∇ũ|)dx =
∫

RN

j(ũH , |∇ũH |)dx. (4.3)

On the other hand, given a function u in H1
0 (B1, R

+), if ũ : R
N → R

+ is the
extension of u by zero outside B1, we have ũ ∈ H1

0 (B1, R
+) and ũH |RN\B1 = 0 for

all H in H∗. In fact, if x ∈ (RN\B1) ∩ H , then ũH(x) = max{ũ(x), ũ(xH)} = 0,
being x, xH ∈ R

N\B1 (since 0 belongs to H). If, instead, x ∈ (RN\B1) ∩ (RN\H),
then ũH(x) = min{ũ(x), ũ(xH)} = min{0, ũ(xH)} = 0, being ũ ≥ 0. The, recalling
that by definition uH := ũH |BH

1
= ũH |B1 (since BH = B for all H in H∗), the

desired conclusion (4.2) then follows from (4.3), being j(s, 0) = 0.

4.2. Proof of Theorem 1.2 concluded

In view of Lemma 4.6 we have f(uH) ≤ f(u), for every u ∈ H1
0 (B1, R

+) and all
polarizer H ∈ H∗. This holds for all u ∈ H1

0 (B1) as well. In fact, notice that,
since for sign changing functions uH := |u|H , taking into account assumptions (1.8)
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and (1.13), we obtain that

f(uH) = f(|u|H) ≤ f(|u|) ≤ f(u), for all u ∈ H1
0 (B1) and H ∈ H∗. (4.4)

By virtue of Lemma 4.3, we are allowed to apply the abstract symmetric minimax
Theorem 3.10 to the lower semi-continuous functional f : X → R ∪ {+∞} by
choosing X = S = H1

0 (B1), V = L2 ∩ L2∗
(B1), D = [0, 1], S = {0, 1},

Γ = {γ ∈ C([0, 1], H1
0 (B1)) : γ|{0,1} ∈ Γ0}

and Γ0 = {0, e: e ∈ H1
0 (B1) is such that f(e) < 0}. If follows that Γ �= ∅ in light

of Lemma 4.4, also yielding c > 0 = a by definition of a and c in Theorem 3.10.
Of course, it holds f(0H) = f(0) = 0 and f(eH) ≤ f(e) < 0, for any polarizer
H , so that γ(0)H , γ(1)H ∈ Γ0, for any γ ∈ Γ. Moreover, take ε = εh = 1/h2,
δ = δh = 1/h, γ = γh ∈ C([0, 1], H1

0 (B1)) such that

sup
τ∈[0,1]

f(γh(τ)) ≤ c +
1
h2

. (4.5)

Hence, Theorem 3.10 yields a sequence (uh) ⊂ H1
0 (B1) such that

c − 2
h2

≤ f(uh) ≤ c +
2
h2

, |df |(uh) ≤ 8
h

, ‖uh − u∗
h‖L2(B1) ≤ 3((1 + CΘ)K + 1)

h
.

In particular, (uh) is a Palais–Smale sequence at level c. By means of Lemma 4.5,
up to a subsequence, (uh) strongly converges in H1

0 (B1) to some û ∈ H1
0 (B1) with

f(û) = c > 0 (hence û is nontrivial) and |df |(û) = 0. In light of Lemma 4.2, it follows
that û is a generalized solution of the problem. Taking into account the growth
condition (1.9) on g, by virtue of [28, Theorem 7.1(b)] it follows that û ∈ L∞(Ω).
Now, by combining assumptions (1.4) and (1.5), it holds |jξ(s, |ξ|)| ≤ 4α(|s|)|ξ|, for
every s ∈ R and all ξ ∈ R

N (cf. [28, Remark 4.1]). Then, again by Lemma 4.2, it
follows that û is a distributional solution, being∫

B1

|jξ(û, |∇û|) · ∇û|dx ≤
∫

B1

4α(û)|∇û|2dx ≤ 4α(M)
∫

B1

|∇û|2dx < ∞,

where M = esssupB1
|u|. Finally, from ‖uh − u∗

h‖L2(B1) → 0 and uh → û in L2(B1)
as h → ∞, we get u∗

h → û∗ and u∗
h → û in L2(B1), so that û = û∗ by uniqueness

of the limit. This concludes the proof.

Remark 4.7. In the proof of Theorem 1.2, we applied the abstract machinery,
Theorem 3.10, with the choice X = S = H1

0 (B1) by defining uH := |u|H and
u∗ := |u|∗, for all u ∈ X (see also Remark 2.2). In a similar fashion, we could have
applied Theorem 3.10 with the choice X = H1

0 (B1) and S = H1
0 (B1, R

+) ⊂ X by
only extending ∗ : S → V to ∗ : X → V (according to the abstract symmetrization
framework, cf. Sec. 2.1) by setting u∗ = |u|∗, hence taking Θ(u) := |u|, for all
u ∈ X , which is Lipschitz of constant 1 as a map from (X, ‖ · ‖V ) to (S, ‖ · ‖V ).
In this case, instead of exploiting assumptions (1.8) and (1.13) (which guarantee
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f(|u|) ≤ f(u), for all u in X) in the verification of (4.4) we would have used them
to find the curves γh ∈ Γ with γh([0, 1]) ⊂ S which satisfy inequality (4.5) by
just taking γh(τ) := |γ̃h(τ)| for all τ ∈ [0, 1], being γ̃h ∈ Γ some curve which
satisfies inequality (4.5) by the definition of the minimax value c. In fact, in light of
conditions (1.8) and (1.13), we obtain f(γh(τ)) = f(|γ̃h(τ)|) ≤ f(γ̃h(τ)) ≤ c + 1

h2 ,
for all h and τ ∈ [0, 1].
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