
Nonlinear Analysis 136 (2016) 84–101

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Nonlocal problems at nearly critical growth
Sunra Mosconi, Marco Squassina∗
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a b s t r a c t

We study the asymptotic behavior of solutions to the nonlocal nonlinear equation
(−∆p)su = |u|q−2u in a bounded domain Ω ⊂ RN as q approaches the critical
Sobolev exponent p∗ = Np/(N − ps). We prove that ground state solutions
concentrate at a single point x̄ ∈ Ω and analyze the asymptotic behavior for
sequences of solutions at higher energy levels. In the semi-linear case p = 2, we prove
that for smooth domains the concentration point x̄ cannot lie on the boundary, and
identify its location in the case of annular domains.
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1. Introduction and main results

Let Ω be a smooth bounded domain of RN , N > ps, s ∈ (0, 1) and p > 1. For any sufficiently small ε > 0,
we consider the nonlocal nonlinear problem

(−∆p)su = |u|p
∗−2−εu, in Ω ,

u = 0 in RN \ Ω ,
(1.1)

where p∗ = Np/(N − sp) is the critical exponent for the immersion of

W s,p0 (Ω) :=

u ∈ Lp(RN ) :


R2N

|u(x)− u(y)|p

|x− y|N+ps dx < +∞, u = 0 in RN \ Ω


into the space Lq(Ω). By a weak solution to problem (1.1) we mean a critical point for the C1 functional
Iε : W s,p0 (Ω)→ R defined by

Iε(u) = 1
p


R2N

|u(x)− u(y)|p

|x− y|N+sp dx dy − 1
p∗ − ε


Ω

|u|p
∗−εdx.
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The nonlinear operator (−∆p)s : W s,p0 (Ω)→W−s,p(Ω) is defined (up to a multiplicative constant which we
will ignore in the following) as the differential of the first term in Iε and it can be represented, on smooth
functions, by

(−∆p)s u(x) = 2 lim
ε↘0


RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))
|x− y|N+s p dy, x ∈ RN .

Solutions of (1.1) inherit some mild smoothness when seen as general non-homogeneous non-local equations.
The regularity theory for p ̸= 2 is far from complete, however the basic continuity instances of it are covered
at the interior in [9,8] for the homogeneous case and in [18,5] for nonhomogeneous equations, while in [16]
regularity up to the boundary is established for boundedly nonhomogeneous equations.

In this paper, we are interested in the asymptotic behavior of a sequence of solutions {uε}ε>0 to (1.1) as
ε↘ 0, as determined by the limit energy c = limε→0 Iε(uε).

The interest in such “nearly critical” problems arises from the fact that for ε > 0 compactness is recovered
and the problem is more easily solved, hopefully providing in the limit a solution to the non-compact problem
at ε = 0. In many cases, however, the validity of a Pohozaev identity rules out existence of nontrivial solutions
for ε = 0, and the asymptotic behavior of the approximating solutions describes the phenomenon of lack of
solutions in the limit.

In the seminal paper [1], the asymptotic behavior of the (unique and radial) solution uε
−∆uε = u2∗−ε

ε , uε > 0 in B,

uε = 0 on ∂B
where B is a ball in R3 (1.2)

is considered, showing, among other things, that uε concentrates at a single point, the center of B, at
a rate max uε = uε(0) ≃

√
ε. This kind of results were extended and refined in [7]. For general smooth

domains, where uniqueness of solutions (and nonexistence of the latter for ε = 0) to (1.2) is lost, the same
kind of behavior is proved in [14,26] for the ground states of (1.2), namely, nontrivial solutions minimizing
the associated energy functional. Indeed, regardless of the existence of positive solutions of the limiting
equation, ground states always concentrate all their mass at some point, which is therefore called the point
of concentration. Through a rather fine analysis, the concentration point is shown in [25] to be a minimum
point of the Robin function of Ω . For smooth domains, this implies that the concentration points cannot
belong to ∂Ω , while for nonsmooth domain the boundary concentration phenomenon can happen, as shown
e.g. in [11].

For more general, nonlinear equations, the situation is less clear. In [13] the concentration of ground
states is proved for the p-Laplacian via critical points methods, while in [22] via Γ -convergence ones (see the
latter for more references on this approach). In [21] more general and non regular operators are considered.
However, the location of concentration points for ground states is not clear, (even trying to prove that they
do not belong to ∂Ω in smooth domains), and precise asymptotic behavior of the maxima are even less so.
It is worth noting, however, that for a different but related problem involving the p-Laplacian, the location
of concentration points has been determined with the technique of p-harmonic transplantation, see [10].

Regarding the nonlocal problem (1.1), the semi-linear case p = 2 is considered in [24] with a Γ -convergence
approach and in [23] via profile decomposition. The latter approach relies on the Hilbert structure to take
advantage of abstract profile decomposition theory, but, as shown in [17], no such precise decomposition
can hold for general bounded sequences when p ̸= 2. A more suitable profile decomposition when
p ̸= 2 has recently been obtained for Palais–Smale sequences in [6], which in principle may lead to
the same kind of results we will discuss in a short while. However, a direct approach through non local
Concentration-Compactness seems more convenient for ground state solutions, and is flexible enough to
provide informations at higher critical levels as well.
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In order to state our main results, let us set

|Dsu|p(x) :=


RN

|u(x)− u(y)|p

|x− y|N+ps dy, for a.e. x ∈ RN .

For general p > 1, s ∈ ]0, 1[ and N > ps we define

S := inf


RN
|Dsu|p dx :


RN
|u|p

∗
dx = 1


.

We will prove the following.

Theorem 1.1 (Ground States). Let Ω be a bounded domain and {un} be a sequence of ground state solutions
to (1.1) for εn ↓ 0. For each subsequence (not relabeled) such that |un|p

∗ weakly converges in the sense of
measure, it holds

(1) un → 0 in Lq(RN ) for any q ∈ [1, p∗);
(2) there exists x̄ ∈ Ω such that |Dsun|p ⇀ S

N
ps δx̄ and |un|p

∗
⇀ S

N
ps δx̄ weakly in the sense of measures.

Theorem 1.2 (Higher States). Let Ω , un, εn be as above and suppose that

Iεn(un)→ c ∈
 s
N

S
N
ps , 2 s

N
S
N
ps


, (1.3)

and let, up to subsequences, un ⇀ u in W s,p0 (Ω). Then one of the following alternatives holds:

(1) un → u strongly in W s,p0 (Ω) with u being a positive or negative solution of the limit equation (1.1) for
ε = 0.

(2) u = 0 and there exists x̄ ∈ Ω such that |Dsun|p ⇀ cNs δx̄ weakly in the sense of measures.

In the case p = 2 and Ω smooth we can exclude that the concentration points lie on the boundary, and
in some cases precisely locate them.

Theorem 1.3 (Inner Concentration). Let N > 2s and Ω be a bounded C1,1 domain. For any {εn} with
εn ↓ 0, let un be a ground state solution of

(−∆)sun = u2∗−εn−1
n , u > 0 in Ω ,

un = 0 in Ωc.
(1.4)

Then, up to subsequence, |un|2
∗
⇀ S N2s δx̄ weakly in the sense of measures, for some x̄ ∈ Ω .

Theorem 1.4 (Location for Annuli). Let r2 > r1 > 0,Ω = Br2 \ Br1 and N > 2s. Then the ground state
solutions of (1.4) concentrate at points x̄ with |x̄| the harmonic mean of r2 and r1.

Let us point out the main features of the previous theorems. In order to prove Theorem 1.1, we will derive a
Concentration-Compactness alternative for nonlocal problems. In order to do so we proceed directly, control-
ling through a domain decomposition and Lemma 2.6 below all the nonlocal interactions which, in principle,
could contribute to the limiting measures. In a similar way we prove a bound from below on the singular
part arising from concentration. One fundamental difficulty in the case p ̸= 2 is that entire ground state
solutions of the limiting problem are unknown explicitly. Thus, we will have to use an auxiliary function
recently constructed in [20] to prove that the energy of the ground states converges to the minimal one.
To prove Theorem 1.2 we will bound from below the absolutely continuous part of the limiting measures,
again through the crucial Lemma 2.6.

For Theorems 1.3 and 1.4 we will employ the Moving Plane method which has recently been proved in [2]
in the nonlocal case, together with suitable fractional Kelvin transforms. Our main lemma here is a Harnack
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inequality on segments for positive solutions u of a large class of semilinear equations. The inequality is of
the form

sup
[a,b]

u ≤ Cu(b)

where [a, b] ⊆ Ω is a segment of suitable fixed length, normal to ∂Ω at the point a, with C being a
geometric constant depending only on the domain. For a precise statement see Theorem 4.1. This forces
the concentration to happen at least a distance |b − a| away from the boundary. The construction can be
performed explicitly for annular domains, yielding Theorem 1.4.
Structure of the paper. In Section 2.1 we fix some notations. In Section 2.2, after recalling some well known
facts on the space W s,p0 (Ω) and the ground states solutions of (1.1), we will prove some general results on the
weak solutions of (1.1) for fixed ε > 0. Section 2.3 is dedicated to the nonlocal Concentration-Compactness
lemma Theorem 2.5. Then, in Section 3, we will prove Theorems 1.1 and 1.2, and in Section 4 Theorems 1.3
and 1.4.

2. Preliminaries

2.1. Notation

For s ∈ (0, 1), p > 1 and N > ps, we let p∗ = Np/(N − ps). We denote by ωN the measure of the
N -dimensional ball having unit radius. For E ⊆ RN measurable we denote by |E| its N -dimensional Lebesgue
measure, by Ec = RN \E its complement and by χE its characteristic function. If u : E → R is measurable
we set

[u]pW s,p(E) :=

E×E

|u(x)− u(y)|p

|x− y|N+ps dx dy, [u]s,p := [u]W s,p(RN ),

and for any q ≥ 1

|u|Lq(E) :=

E

|u|q dx
1/q

, |u|q := |u|Lq(RN ).

Finally, for t ∈ R and p > 1, we will use the notation

tp−1 := |t|p−2t.

For any u ∈W s,p0 (Ω) and any Lebesgue point x for u, we set

|Dsu|p(x) =


RN

|u(x)− u(y)|p

|x− y|N+ps dy.

Notice that the following approximate Leibniz formula holds true

∀θ > 0 ∃Cθ with


RN
|Ds(uv)|p dx ≤ (1 + θ)


RN
|Dsu|p|v|p dx+ Cθ


RN
|Dsv|p|u|p dx, (2.1)

which follows from the elementary inequality |a+ b|p ≤ (1 + θ)|a|p + Cθ|b|p.

2.2. Functional analytic framework

We let, for any Ω ⊆ RN ,

W s,p0 (Ω) :=

u ∈ Lp

∗
(RN ) : u = 0 in Ωc, [u]s,p < +∞


,

which is a Banach space with respect to the norm [ · ]s,p. This space is often denoted by Ds,p0 (Ω) in the
current literature and it is consistent with the one defined in the introduction as soon as Ω is bounded. For
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N > sp, the Sobolev inequality reads as

S := inf
 [u]ps,p
|u|pp∗

: u ∈W s,p0 (Ω) \ {0}

.

We recall the following

Proposition 2.1 (Hardy’s Inequality). Let N > sp. Then there exists C = C(N, p, s) > 0 such that
RN

|u|p

|x|sp
dx ≤ C[u]ps,p, for every u ∈W s,p0 (RN ).

We will also let, for 1 ≤ q ≤ p∗,

Sq(Ω) := inf
 [u]ps,p
|u|pq

: u ∈W s,p0 (Ω) \ {0}

, (2.2)

so that S = Sp∗(Ω). It is a classical fact that Sp∗(Ω) = Sp∗(RN ) for every domain Ω and that the minimization
problem (2.2) for q = p∗ admits no solution, unless Ω = RN . For 1 < q < p∗ and Ω bounded, Hölder’s
inequality ensures that Sq(Ω) > 0; moreover, any minimizer u for the minimization problem (2.2) (which,
actually, exists due to the compactness of W s,p0 (Ω) ↩→ Lq(Ω)) is, up to a multiplicative constant, a weak
solution of the problem 

(−∆p)su = |u|q−2u in Ω ,
u = 0 in Ωc.

(2.3)

Clearly any such solution is also a critical point for the functional

Jq(u) := 1
p

[u]ps,p −
1
q
|u|qq

where Jq ∈ C1(W s,p0 (Ω)). If

Nq(Ω) := {u ∈W s,p0 (Ω) \ {0} : ⟨dJq(u), u⟩ = 0}

is the corresponding Nehari manifold for Jq, one readily checks that

cq = inf

Jq(u) : u ∈ Nq(Ω)


=


1
p
− 1
q


Sq(Ω)

q
q−p , (2.4)

and minimizers for the latter problem are (up to multiplicative constants) minimizers for (2.2). Any minimizer
for (2.4) is called a ground state solution for (2.3), being a critical point of minimal energy. Following
[27, Theorem 4.2] we have also the following Mountain Pass characterization of the values cq, valid for every
q > p

cq = inf
u∈Ws,p0 (Ω)

u ̸=0

max
t≥0

Jq(tu) = inf
γ∈Γ

max
t∈[0,1]

Jq(γ(t)),

where

Γ :=

γ ∈ C0[0, 1],W s,p0 (Ω)


: γ(0) = 0, Jq


γ(1)


< 0

.

Any ground state solution must be of constant sign, since it also solves problem (2.2), and

[|u|]s,p < [u]s,p if u+, u− ̸= 0.

A more precise statement is given in the following lemma (see also [6, Lemma 2.13]).

Lemma 2.2 (Energy Doubling). Let q ≥ p and u ∈W s,p0 (Ω) be a sign-changing weak solution to
(−∆p)su = |u|q−2u in Ω
u = 0 in RN \ Ω ,

(2.5)
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where Ω is an arbitrary open subset of RN . Then

Jq(u) > 2


1
p
− 1
q


Sq(Ω)

q
q−p .

Proof. If u± := max{±u, 0} ∈W s,p0 (Ω) \ {0}, then

±(u(x)− u(y))p−1(u±(x)− u±(y)) ≥ |u±(x)− u±(y)|p,

for a.e. x, y ∈ RN . Indeed, for the inequality involving the positive part, we have

(u(x)− u(y))p−1(u+(x)− u+(y)) = |u+(x)− u+(y)|pχ{u(x)≥0,u(y)≥0}

+ (u+(x) + u−(y))p−1u+(x)χ{u(x)>0,u(y)<0} + (u−(x) + u+(y))p−1u+(y)χ{u(x)<0,u(y)>0}

≥ |u+(x)− u+(y)|p.

A similar justification holds for the inequality involving the negative part. This also shows that the above
inequalities are strict as long as u± ̸= 0. Then, testing problem (2.5) by ±u± yields

[u±]ps,p ≤


R2N

±(u(x)− u(y))p−1(u±(x)− u±(y))
|x− y|N+sp dx dy =


Ω

uq± dx,

with strict inequality if u± ̸= 0. Now, letting

λ± :=
 [u±]ps,p
|u±|qq

 1
q−p

,

it holds λ±u± ∈ Nq(Ω) and λ± < 1. On the other hand

Jq(u) =


1
p
− 1
q


|u|qq =


1
p
− 1
q


Ω

(uq+ + uq−)dx = 1
λq+

Jq(λ+u+) + 1
λq−

Jq(λ−u−)

> 2


1
p
− 1
q


Sq(Ω)

q
q−p ,

which completes the proof. �

We will choose in the following the nonnegative ground states, which actually turn out to be strictly
positive in Ω by the following result.

Lemma 2.3 (Strong Maximum Principle). Let u ∈W s,p0 (Ω) satisfy
(−∆p)su ≥ 0 weakly in Ω ,
u ≥ 0 in Ωc.

(2.6)

Then u has a lower semi-continuous representative in Ω , which is either identically 0 or positive.

Proof. By the comparison principle of [16, Proposition 2.10], we get u ≥ 0 a.e. in RN . Proceeding as in
[15, Theorem 2.4] we find that u admits a l.s.c. representative, which to ease the notation we will identify
with u. Then, the set {x ∈ Ω : u(x) = 0} is closed in Ω . By the weak Harnack inequality [16, Theorem 5.2],
(see also [8, Lemma 4.1]), it holds

inf
BR/4

u ≥ σ


−

BR\BR/2

up−1 dx

 1
p−1

, ∀BR ⊆ Ω

which implies that {x ∈ Ω : u(x) = 0} is open in Ω . Suppose u ̸= 0, and let Ω = ∪j∈J Ωj where Ωj are the
connected components of Ω . It follows from the previous discussion that for each j ∈ J , either u is strictly
positive everywhere in Ωj or it vanishes identically. Since u ̸= 0, there is a connected component, say, Ω1
such that u > 0 in Ω1. Suppose now by contradiction that there exists another connected component, say,
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Ω2, such that u ≡ 0 in Ω2, and let ϕ ∈ C∞c (Ω2), ϕ ≥ 0, ϕ ̸= 0. Testing (2.6) with ϕ we get

0 ≤


R2N

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))
|x− y|N+ps dx dy = −2


Ω2

ϕ(x)

Ωc2

up−1(y)
|x− y|N+ps dy dx < 0,

since u > 0 in Ω1 ⊆ Ωc2 . �

Remark 2.4. A similar statement is provided in [3, Theorem A.1] with a different proof. Notice that, contrary
to the local case s = 1, connectedness of Ω is not required. This is a typical feature of nonlocal problems,
which was first outlined in [5].

2.3. Concentration-compactness

We now prove a concentration-compactness lemma which was first stated without proof by P.L. Lions
in [19, Remark I.6]. We say that a sequence of functions {fn}n ⊆ L1(RN ) converges tightly to a Borel regular
measure dµ if

∀ϕ ∈ Cb(RN ),


RN
ϕfn dx→


RN

ϕdµ,

where Cb(RN ) is the Banach space of bounded continuous functions on RN . Notice that this convergence
is stronger than the usual weak convergence of measures as linear functionals on the separable space
C0(RN ): indeed boundedness of {|fn|1} does not suffice to the sequential compactness with respect to
tight convergence. Nevertheless, we will still denote by with the symbol ∗⇀ the notion of tight convergence.
Prokhorov theorem ensures that bounded sequences {fn}n are relatively sequentially compact if and only if
the sequence is tight in the sense that

∀ε > 0 ∃A ⊆ RN : sup
n


Ac
|fn| dx < ε.

Theorem 2.5. Let {un} be a bounded sequence in W s,p0 (Ω). Then, up to a subsequence, there exists
u ∈ W s,p0 (Ω), two Borel regular measures µ and ν,Λ denumerable, xj ∈ Ω , νj ≥ 0, µj ≥ 0 with νj + µj > 0
j ∈ Λ, such that

un → u weakly in W s,p0 (Ω) and strongly in Lp(Ω),

|Dsun|p
∗
⇀ dµ, |un|p

∗ ∗
⇀ dν (2.7)

dµ ≥ |Dsu|p +

j∈Λ

µjδxj , µj := µ({xj}), (2.8)

dν = |u|p
∗

+

j∈Λ

νjδxj , νj := ν({xj}), (2.9)

µj ≥ Sν
p
p∗

j . (2.10)

We will need the following lemma.

Lemma 2.6. Let N > ps. For any u ∈ Lp∗(RN ) it holds

lim
δ↓0

δN

Bc
δ

|u|p

|x|N+ps dx = 0.

Proof. If u ∈ L∞(RN ), the assertion immediately follows, since a direct computation yields

δN

Bc
δ

|u|p

|x|N+ps dx ≤ C|u|
p
∞δ
N−sp.
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In the general case, let {uk} ⊂ C∞c (RN ) be such that uk → u in Lp
∗(RN ) as k → ∞. By using Hölder

inequality, for any δ > 0 and k ∈ N, we obtain

δN

Bc
δ

|u|p

|x|N+ps dx ≤ Cδ
N


Bc
δ

|uk − u|p

|x|N+ps dx+ CδN

Bc
δ

|uk|p

|x|N+ps dx

≤ C|uk − u|pp∗ + CδN

Bc
δ

|uk|p

|x|N+ps dx.

Since any uk is bounded, letting δ → 0 yields

lim sup
δ→0

δN

Bc
δ

|u|p

|x|N+ps dx ≤ C|uk − u|
p
p∗ .

Finally, letting k →∞ concludes the proof. �

Now we proceed proving Theorem 2.5

Proof. Since Ω is bounded and un ≡ 0 in Ωc, the sequence {|un|p
∗} is tight, ensuring the existence of ν (and

clearly supp(ν) ⊆ Ω). To prove the tightness of {|Dsun|p}, let U be open and bounded such that U ⊃ Ω .
If dist(U c,Ω) =: θ > 0, then for any x ∈ U c and y ∈ Ω it holds |x− y| ≥ Cθ|x|, and thus

|Dsun|p(x) =

Ω

|un(y)|p

|x− y|N+ps dy ≤ C
[un]ps,p
|x|N+ps , for a.e. x ∈ U c.

The latter inequality readily implies tightness of {|Dsun|} and thus (2.7) is proved. We come to the proof
of (2.8)–(2.10). We shall follow the proof of [19, Lemma I.1], by supposing first that u ≡ 0. From Sobolev’s
inequality and (2.1), we have, for any ϕ ∈ C∞c (RN ),

S|unϕ|
p
p∗
p∗ ≤ [unϕ]ps,p ≤ (1 + θ)


RN
|Dsun|p|ϕ|p dx+ Cθ


RN
|Dsϕ|p|un|p dx. (2.11)

Letting n→ +∞ and using that un → 0 in Lp(RN ) and |Dsϕ|p ∈ L∞(RN ), we obtain

S


RN
|ϕ|p

∗
dν

 p
p∗

≤ (1 + θ)


RN
|ϕ|p dµ.

Letting θ ↓ 0 proves (2.8) and (2.9), due to [19, Lemma I.2]. Finally, the previous inequality easily implies,
for any j ∈ Λ

S

ν(Bδ(xj))

 p
p∗ ≤ (1 + θ)µ(B2δ(xj)), (2.12)

which provides (2.10) taking the limit for θ ↓ 0 and then δ ↓ 0. To prove the case u ̸= 0, one can proceed as
in [19] to obtain (2.9). Concerning (2.8), we first claim that dµ ≥ |Dsu|p. Indeed, for any ϕ ∈ C∞c (RN ), ϕ ≥ 0,
the functional

v →


RN
|Dsv|pϕdx

is convex and continuous, therefore un ⇀ u in W s,p0 (Ω) implies
RN

ϕdµ = lim
n→∞


RN
|Dsun|pϕdx ≥


RN
|Dsu|pϕdx, for any ϕ ∈ C∞c (RN ), ϕ ≥ 0.

On the other hand (2.12) implies µ({xj}) > 0 whenever ν({xj}) > 0. Then (2.8) follows. We come to (2.10).
We take the limit for n→ +∞ in (2.11) to obtain

S


RN
|ϕ|p

∗
dν

 p
p∗

≤ (1 + θ)


RN
|ϕ|p dµ+ Cθ


RN
|Dsϕ|p|u|p dx.
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Now we fix xj , and for any δ > 0, let ϕδ ∈ C∞c (B2δ(xj)) satisfy

0 ≤ ϕδ, ϕ⌊Bδ = 1, |ϕδ|∞ ≤ 1, |∇ϕδ|∞ ≤ C/δ. (2.13)

We claim the following:

∀u ∈ Lp
∗
(RN ), lim

δ↓0


R2N
|u|p|Dsϕδ|p dx = 0. (2.14)

Without loss of generality, suppose xj = 0. Let A = (B2δ ×B2δ) ∪ (Bδ ×Bc2δ) ∪ (Bc2δ ×Bδ) and notice that
on R2N \A it holds |ϕδ(x)− ϕδ(y)| = 0. Then on each of the three pieces forming A we proceed as follows.
Since |ϕδ(x)− ϕδ(y)| ≤ Cδ−1|x− y|, on B2δ ×B2δ we have

B2δ×B2δ

|u(y)|p|ϕδ(x)− ϕδ(y)|p

|x− y|N+ps dx dy ≤

B2δ×B4δ

|u(y)|pC
pδ−p|z|p

|z|N+ps dy dz

≤ C

δps


B2δ

|u|p
∗
dy
 p
p∗ |B2δ|1−

p
p∗ = C


B2δ

|u|p
∗
dy
 p
p∗

which vanishes as δ ↓ 0. On Bc2δ ×Bδ, the triangle inequality implies that |x− y| ≥ |x|/2 and thus, as δ ↓ 0,
Bc2δ×Bδ

|u(y)|p|ϕδ(x)− ϕδ(y)|p

|x− y|N+ps dx dy ≤ C


Bc2δ×Bδ

|u(y)|p 1
|x|N+ps dx dy

≤ C

Bδ

|u|p
∗
dy
 p
p∗ |Bδ|1−

p
p∗

1
δps

= o(1).

Finally on Bδ ×Bc2δ it holds |x− y| ≥ |y|/2 and thus
Bδ×Bc2δ

|u(y)|p|ϕδ(x)− ϕδ(y)|p

|x− y|N+ps dx dy ≤ CδN

Bc2δ

|u(y)|p

|y|N+ps dy

which vanishes as δ ↓ 0 by the previous lemma, and this proves (2.14). Now if ϕδ = 1 in Bδ we obtain

S

ν(Bδ)

 p
p∗ ≤ (1 + θ)µ(B2δ) + Cθo(1)

which gives (2.10) taking δ ↓ 0 and then θ ↓ 0. �

3. Limiting behavior for ε→ 0

The next result provides lower bounds for the masses µj and νj given by the Concentration-Compactness
theorem.

Lemma 3.1. Let uε solve (1.1), and νj , µj be as in (2.8)–(2.9). Then, for any j ∈ Λ,

µj ≥ S
N
sp , νj ≥ S

N
sp . (3.1)

Proof. Suppose again that xj = 0 and choose ϕδ ∈ C∞c (B2δ) as in formula (2.13). Testing the equation with
ϕδuε, we get

0 =


R2N

(uε(x)− uε(y))p−1(ϕδ(x)uε(x)− ϕδ(y)uε(y))
|x− y|N+ps dx dy −


RN

up
∗−ε
ε ϕδ dx

≥


RN
|Dsuε|pϕδ dx−


RN
|uε|p

∗
ϕδ dx

1− ε
p∗ |B2δ(xj)|

ε
p∗

+


R2N

(uε(x)− uε(y))p−1uε(y)(ϕδ(x)− ϕδ(y))
|x− y|N+ps dx dy. (3.2)
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Moreover, by Hölder’s inequality, we get
R2N

(uε(x)− uε(y))p−1uε(y)(ϕδ(x)− ϕδ(y))
|x− y|N+ps dx dy

 ≤ [uε]p−1
s,p


RN
|Dsϕδ|p|uε|p dy

 1
p

.

Notice that |Dsϕδ|p ∈ L∞(RN ), since
RN

|ϕδ(x)− ϕδ(y)|p

|x− y|N+ps dy ≤ C

δp


RN

min{1, |x− y|p}
|x− y|N+ps dy ≤ C

δp
.

Up to subsequences we can suppose that uε → u ∈ Lp(Ω) as ε→ 0 and, thus,

lim
ε→0


R2N

(uε(x)− uε(y))p−1uε(y)(ϕδ(x)− ϕδ(y))
|x− y|N+ps dx dy

 ≤ C
RN
|Dsϕδ|p|u|p dy

 1
p

.

Taking the limit for ε→ 0 in (3.2) we therefore obtained
RN

ϕδ dµ ≤


RN
ϕδ dν + C


RN
|Dsϕδ|p|u|p dy

 1
p (3.3)

or, by (2.14), 
RN

ϕδ dµ ≤


RN
ϕδ dν + o(1),

with o(1)→ 0 as δ ↓ 0. This implies νj ≥ µj , which, coupled together with (2.10), gives (3.1). �

Remark 3.2. From Lemma 3.1, the concentration points for ν coincide with those for µ and, being ν of finite
mass, the concentration set is finite, say C := {x1, . . . , xM}, for some M ∈ N.

Let now V be an optimizer for the Sobolev constant S which solves (1.1) with ε = 0. For δ > 0, we define
the functions

Vδ(x) := 1
δ(N−sp)/p V


|x|
δ


,

and consider

mδ := Vδ(1)
Vδ(1)− Vδ(θ)

, Gδ(t) :=


0, 0 ≤ t ≤ Vδ(θ),
mδ (t− Vδ(θ)), Vδ(θ) ≤ t ≤ Vδ(1),
t, t ≥ Vδ(1).

where θ > 1 is a suitable constant introduced in [20] and the radially symmetric function

vδ(r) = Gδ(Vδ(r)) =

Vδ(r), r ≤ 1,
0, r ≥ θ.

We have the following estimates.

Lemma 3.3. There exists a constant C = C(N, p, s) > 0 such that

[vδ]ps,p ≤ S
N
ps + Cδ

N−ps
p−1 ,

RN
vp
∗−ε
δ dx ≥


RN

Vδ(x)p
∗−εdx− Cδ(p∗−ε) N−ps

p(p−1)

for any δ ≤ 1/2 and ε < N/(N − sp).

Proof. The first inequality was proved in [20]. Concerning the second inequality, we have
RN

vp
∗−ε
δ dx ≥


B1

Vδ(x)p
∗−εdx =


RN

Vδ(x)p
∗−εdx−


Bc1

Vδ(x)p
∗−εdx.
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By virtue of [4, Theorem 1.1], we have
Bc1

Vδ(x)p
∗−εdx = δ

N−sp
p ε


Bc1/δ

V (x)p
∗−εdx

≤ Cδ
N−sp
p ε


Bc1/δ

1
|y|

N−sp
p−1 (p∗−ε)

dy ≤ Cδ
(N−sp)(p∗−ε)

p(p−1) ,

which concludes the proof. �

Theorem 3.4. Let {un}n be a sequence of ground state solutions to (1.1) for some εn ↓ 0. Then

lim
n
Iεn(un) = s

N
SN/ps.

Proof. By testing the equation by un and using Hölder and Sobolev inequality we get

[un]ps,p ≥ S
p∗−εn
p∗−p−εn |Ω |−

εnp
(p∗−p−εn)p∗

Therefore, we have

Iεn(un) =


1
p
− 1
p∗ − εn


[un]ps,p ≥


1
p
− 1
p∗ − εn


S

p∗−εn
p∗−p−εn |Ω |−

εnp
(p∗−p−εn)p∗ ,

yielding

lim
n
Iεn(un) ≥

s

N
S
N
ps .

To prove the opposite inequality, suppose without loss of generality that B̄θ ⊆ Ω . Since limt→+∞ Iεn(tvδ) =
−∞, by the definition of the mountain pass level it holds

Iεn(un) ≤ sup
t>0

Iεn(tvδ) =
1
p
− 1
p∗ − εn

 [vδ]s,p
|vδ|p∗−εn

p p∗−εn
p∗−p−εn

.

Using the previous lemma we thus obtain

lim
n
Iεn(un) ≤

s

N
lim
n


S
N
ps + Cδ

N−ps
p−1

 p∗−εn
p∗−p−εn

|Vδ|p
∗−εn
p∗−εn − Cδ

(p∗−εn) N−ps
p(p−1)

 p
p∗−p−εn

.

Now by dominated convergence, we get

lim
n
|Vδ|p

∗−εn
p∗−εn = |Vδ|p

∗

p∗ = S
N
ps

and therefore

lim
n
Iεn(un) ≤

s

N

(S
N
ps + Cδ

N−ps
p−1

 p∗
p∗−p

(S
N
ps − Cδ

N
p−1 )

p
p∗−p

≤ s

N
S
N
ps (1 + Cδ

N−ps
p−1 )

for some universal constant C = C(N, p, s). Letting δ → 0 proves the claim. �

Proof of Theorem 1.1. The proof follows from (3.1) and Theorem 3.4 exactly as in [13], providing us with
x̄ ∈ Ω satisfying both conditions. �

As a direct application we have the following multiplicity result on annular domains.

Theorem 3.5. Let Ω = BR \ Br for some R > r > 0. Then for q < p∗ sufficiently near p∗ there is a
continuum of positive solutions to 

(−∆p)su = uq in Ω ,
u = 0 in Ωc.
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Proof. Suppose not. Then there is a sequence εn ↓ 0 such that there is only a denumerable set of positive
solutions to (1.1) for any n. Let q = p∗ − εn and {un}n be a nonnegative ground state for (1.1), which by
the Strong Maximum Principle is strictly positive in Ω . Then, by virtue of Theorem 1.1, there exists a point
x̄ ∈ Ω such that, up to a subsequence, |un|p

∗ ∗
⇀ S

N
ps δx̄. For sufficiently large n it thus holds

RN
|un|p

∗
dx <

3
2S

N
ps ,


Br(x̄)

|un|p
∗
dx >

3
4S

N
ps .

For any such εn → 0, the solution un eventually cannot be radial since otherwise also the integral on Br(−x̄)
(disjoint from Br(x̄) as |x̄| ≥ r) would be greater than 3SN/ps/4, thus yielding

3
2S

N
ps >


RN
|un|p

∗
dx ≥


Br(x̄)

|un|p
∗
dx+


Br(−x̄)

|un|p
∗
dx >

3
2S

N
ps ,

for sufficiently large n = n0 ∈ N. The map

R ∈ SON →W s,p0 (Ω) ∋ un0 ◦R

is therefore a continuous, non-constant map, all of whose image is made of positive solutions to (1.1). This
gives the contradiction. �

Lemma 3.6. Let Ω be a bounded domain and {un}n be a sequence of ground state solutions to (1.1) for εn ↓ 0
such that Iεn(un) is bounded and Theorem 2.5 holds, with u being its weak limit. Then if u ̸= 0,

RN
|Dsu|p dx ≥ S

N
ps ,


RN
|u|p

∗
dx ≥ S

N
ps . (3.4)

Proof. Let C = {x1, . . . , xM} be the concentration set, and let ϕδ be the cut-off functions as introduced in
(2.13). Define, for any δ > 0 small enough, the function

ψδ(x) :=
M
i=1

ϕδ(x− xi).

Proceeding as in Lemma 3.1, testing (1.1) with (1− ψδ)un and letting n→∞, we obtain

0 ≥


RN
(1− ψδ) dµ−


RN

(1− ψδ) dν − o(1), with o(1)→ 0 as δ ↓ 0. (3.5)

Since ψδ = 1 on
M
i=1 Bδ(xi) and ψδ = 0 on

M
i=1 B

c
2δ(xi), we get

lim
δ↓0


RN

(1− ψδ) dν = ν(RN \ C ), lim
δ↓0


RN

(1− ψδ) dµ = µ(RN \ C ),

yielding in turn, by formulas (3.5) and (2.8),
RN
|u|p

∗
dx = ν(RN \ C ) ≥ µ(RN \ C ) ≥


RN
|Dsu|p dx.

Using also Sobolev’s inequality we deduce (3.4) as long as u ̸= 0. �

Proof of Theorem 1.2. By Lemma 2.2 we can suppose that un ≥ 0, for sufficiently small εn > 0. Let µ, ν be
given in Theorem 2.5 and let C = {x1, . . . , xM} be their concentration set. If u ̸= 0, by the previous lemma
and (3.1), we have

c = lim
ε→0


1
p
− 1
p∗ − ε


[un]ps,p = s

N
µ(RN ) ≥ s

N


RN
|Dsu|p dx+ s

N

M
i=1

µj ≥
s

N
(M + 1)S

N
ps . (3.6)
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Therefore M = 0 by assumption (1.3). To prove that u weakly solves
(−∆p)su = up

∗−1 in Ω ,
u = 0 in Ωc,

(3.7)

it suffices to show that, up to subsequences, fn := up
∗−1−εn
n weakly converges to f := up

∗−1 in Lp
∗′(RN ).

By compactness in Lp(Ω) we can assume that un → u pointwise a.e. in RN so that fn → f pointwise a.e.
in RN . Moreover 

RN
|fn|

p∗
p∗−1 dx =


Ω

u
p∗−εn p∗

p∗−1
n dx

≤


Ω

|un|p
∗
dx

1− εn
p∗−1

|Ω |
εn
p∗−1 ,

so that fn ⇀ f in Lp
∗′(RN ) as n → ∞. It follows that u ∈ W s,p0 (Ω) weakly solves (3.7) in Ω . We finally

prove that un → u strongly in W s,p0 (Ω). By Hölder’s inequality it holds
RN

up
∗

n dx ≥


RN
up
∗−εn
n dx

 p∗
p∗−εn

|Ω |−
εn

p∗−εn ,

and thus, up to subsequences

[u]ps,p = |u|p
∗

p∗ = ν(RN ) = lim
n
|un|p

∗

p∗ ≥ lim
n
|un|p

∗

p∗−εn |Ω |
− εn
p∗−εn = lim

n
[un]

p p∗
p∗−εn
s,p = lim

n
[un]ps,p.

Being W s,p0 (Ω) uniformly convex, the claim follows. Suppose on the other hand that u = 0. From formula
(2.9) we get dν =

M
j=1 νjδxj and we know that dµ ≥

M
j=1 µjδxj . On the other hand formula (3.3), which

holds for arbitrary ϕ ∈ C∞c (RN ) with ϕ ≥ 0, implies dν ≥ dµ. Therefore supp(µ) ⊆ supp(ν) = C , which
yields dµ =

M
j=1 µjδxj . Thus (3.6) forces M = 1 and c = s

N µ1, where µ1 > 0. �

4. The case p = 2

Given Ω ⊆ RN , we let in this section δ(x) = dist(x,Ωc). We will prove the following

Theorem 4.1. Let Ω be a bounded C1,1 domain. There exists a constant d = d(Ω) > 0 such that any weak
solution of 

(−∆)su = f(u) in Ω ,
u = 0 in Ωc,

(4.1)

with f ∈ Liploc(R) such that

0 ≤ f(t) ≤ C(1 + |t|p
∗
), r → f(rN−2st)

rN+2s is non-increasing for any t ≥ 0 (4.2)

satisfies for any x0 ∈ ∂Ω , with exterior normal ν

ξ1 < ξ2 ≤ 2d⇒ u(x0 − ξ1ν) ≤ |1 + 2d|N−2su(x0 − ξ2ν). (4.3)

Remark 4.2. Notice that u ≥ 0 a.e. in Ω , and by the strong maximum principle, u > 0 in Ω or u ≡ 0.
Regarding the hypothesis (4.2), consider the homogeneous case f(t) = tq−1, N > 2s. Then the monotonicity
property required in (4.2) is satisfied if and only if q ≤ 2∗. Finally, it is worth noting that the proof actually
only requires that ∂Ω satisfy a uniform exterior sphere condition, so that (4.3) actually holds, e.g., in convex
domains.
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The main point of the theorem is that the constant d is geometric and independent on the nonlinearity, as
long as (4.2) holds. Let us now show how (4.3) implies that the ground states uε cannot concentrate on ∂Ω .
To the best of our knowledge this argument is new.

Proof of Theorem 1.3. Let d > 0 be given in the previous theorem, so small that

Π (x) := Argmin{|x− y| : y ∈ ∂Ω}, x ∈ Nt,

is well defined and C1,1, where Nt := {x ∈ Ω : δ(x) ≤ t} for any 0 ≤ t ≤ 2d. Then, denoting by νz the
exterior normal to ∂Ω at z, the map

(z, ξ) ∈ ∂Ω × [0, 2d]→ Φ(z, ξ) := z − ξνz ∈ N2d,

is a bi-Lipschitz homeomorphism, with

|detDΦ|∞ + |detDΦ−1|∞ ≤ L = L(Ω). (4.4)

Suppose by contradiction that x̄ ∈ ∂Ω , where x̄ is the concentration point given by Theorem 1.1. Then for
any small θ > 0 to be defined later, there exists a sufficiently large n ∈ N such that

Nd

|un|2
∗
dx ≥ S

N
2s /2,


N2d\Nd

|un|2
∗
dx < θ.

Using the change of variables given by Φ, the bound (4.4) and (4.3), we have
Nd

|un|2
∗
dx ≤ L


∂Ω×[0,d]

|un|2
∗
(z − ξνz) dz dξ

≤ |1 + 2d|2NL

∂Ω×[d,2d]

|un|2
∗
(z − ξνz) dz dξ

≤ |1 + 2d|2NL2

N2d\Nd

|un|2
∗
dx.

So that, choosing θ|1 + 2d|2NL2 < S N2s /2, we get a contradiction. �

Proof of Theorem 4.1. The proof relies on the moving plane method, performed after suitable Kelvin
transforms through externally tangent balls. First of all, being Ω a C1,1 bounded domain, there exists
r > 0 such that at any point x0 ∈ ∂Ω there exists an open ball Br of radius r with

Br ⊆ Ωc, ∂Br ∩ ∂Ω = {x0}.

We can scale problem (4.1) in r−1Ω and suppose that r = 1. Henceforth, we will denote by B(z) a ball of
radius 1 and center z. Given a function u ∈ W s,p0 (Ω) and a ball B(z) ⊆ Ωc such that ∂B(z) ∩ ∂Ω = {x0},
the Kelvin transform of u through B(z) is given by

u∗(x) = 1
|x− z|N−2su


z + x− z
|x− z|2


.

The map Iz(x) := z + (x − z)/|x − z|2 brings Ω to Ωz := Iz(Ω) ⊆ B(z). Furthermore, the function
u∗ ∈W s,p0 (Ωz) satisfies

(−∆)su∗(x) = 1
|x− z|N+2s (−∆)su(Iz(x)).

Given an externally tangent ball B(z), the Kelvin transform thus brings any solution u of (4.1) to a solution
v := u∗ in Ωz ⊆ B(z) of 

(−∆)sv = g(x, v) in Ωz,
v = 0 in Ωcz ,
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where z ̸∈ Ωz and the nonlinearity

g(x, t) := g(|x− z|, t) = f(|x− z|N−2st)
|x− z|N+2s

satisfies the following properties:

(1) g is Caratheodory, locally Lipschitz in the second variable and C1 in the first;
(2) g(r, t) is non-increasing in the first variable.

From any x0 ∈ ∂Ω , we will now construct the exterior tangent ball B(z), z = z(x0) as above, and apply the
moving plane method to Ωz. Without loss of generality we now suppose z = 0, calling Ω0 = Ω . Let νx0 be
the interior normal to B(z) at x0 = ∂ Ω ∩ ∂B and observe that

infΩ x · νx0 = x0 · ν = −1,

due to our normalization. For any λ > −1 we letΩνλ = Ω ∩ {x · ν < λ}, xνλ = Rνλ(x) := x+ 2(λ− x · ν)ν,

the latter being the reflection of x through the hyperplane {x · ν = λ}. By the regularity of ∂ Ω , there is
ε > 0 such that for all λ ∈] − 1,−1 + ε], Rνλ(Ωνλ ) ⊆ Ω (cf. [12, Theorem 5.7]). Moreover, by compactness,
this ε > 0 can be chosen independently of the particular x0 from which the construction started. Moreover,
if ε < 1, it holds

|xνλ| ≤ |x| for any λ ∈]− 1,−1 + ε], x ∈ Ωνλ .
Therefore, being r → g(r, t) non-increasing for any t ≥ 0,

g(x, t) ≤ g(xνλ, t), for any λ ∈]− 1,−1 + ε], x ∈ Ωνλ , t ≥ 0.

The moving plane method as per [2, Proposition 4.4] can be applied, giving that

s → v(x0 + sν) is increasing for s ∈ [0, ε].

Recalling the definition of v and ν = z − x0, we obtain

s → 1
|1− s|N−2su


x0 − ν

s

1− s


is increasing for s ∈ [0, ε],

or, for ξ = s/(1− s),

ξ → |1 + ξ|N−2su(x0 − ξν) is increasing for ξ ∈

0, ε

1− ε


.

Since Ω is C1,1, there is d̄ ∈]0, 1[ such that Π (x) = Argmin{|x− y| : y ∈ ∂Ω} is well defined and C1,1. We
define d with 2d < min{d̄, ε} < ε/(1− ε) so that the previous monotonicity gives

ξ1 ≤ d < ξ2 ≤ 2d⇒ u(x0 − ξ1ν) ≤ |1 + ξ2|N−2s

|1 + ξ1|N−2su(x0 − ξ2ν) ≤ |1 + 2d|N−2su(x0 − ξ2ν),

concluding the proof. �

Proof of Theorem 1.4. Rescaling the problem if necessary we can reduce to Ω = Br2/r1 \B1. Let R = r2/r1
and let, for ε > 0 sufficiently small,

ūε = r
2s

2∗−2−ε
1 uε(r1x)
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Fig. 1. The optimal cap after inversion through the inner sphere.

be the nonnegative solution to 
(−∆)sūε = ū2∗−1−ε

ε in Ω ,
ūε = 0 in Ωc.

Using the minimizing property (2.4) and scaling, it is readily checked that ūε is a ground state solution of
the previous problem, for any ε > 0. We proceed by contradiction and suppose that |ūε|2

∗
⇀ S N2s δx0 for

some 1 < |x0| < 2/(1 + R−1), letting M = 2/(1 + R−1). We omit for the time being the dependence on ε

and call ūε = u. The ball B1 is externally tangent to Ω and we can perform the Kelvin transform through
B1, obtaining a solution to (−∆)sv = v2∗−1−ε

|x|ε(N−2s) in IΩ ,

v = 0 in IΩc.

Notice that IΩ = B1 \ B1/R =: Ω . Elementary geometric considerations (see Fig. 1) show that given any
unit vector ν, a(ν) = −1 and

1
R

+ 2(1− |λ|) < 1⇒ Rνλ(Ωνλ ) ⊆ Ω .
The previous condition actually gives the so called “optimal cap” (which in this case coincides with the
maximal one), i.e.

Rνλ(Ωνλ ) ⊆ Ω ⇔ −1 < λ < −1 +R−1

2 = −M−1,

and the moving planes method ensures that

s → v((s− 1)ν) is increasing for 0 ≤ s ≤ 1−M−1.

In terms of u we therefore have, for any x0 such that |x0| = 1 and for ν = −x0, t = 1/(1− s),

t → tN−2su(tx0) is increasing for 1 ≤ t ≤M.

Now if |x̄| < M − 2θ with θ > 0, the previous monotonicity ensures that

ūε(tx0) < rN−2s

tN−2s ūε(rx0) ≤MN−2sūε(rx0), ∀1 ≤ t ≤M − θ ≤ r ≤M,

and thus

S
N
2s = lim

ε↓0


BM−θ\B1

ū2∗
ε dx ≤ CθMN+2s lim

ε↓0


BM\BM−θ

ū2∗
ε dx = 0,
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Fig. 2. The optimal cap after inversion through the outer sphere.

giving a contradiction. Similarly one can proceed if |x̄| > M + 2θ: using this time Kelvin transform through
an exterior unit ball of radius one (see Fig. 2), we obtain for any unit vector x0

t → (t+ 1)N−2su((R− t)x0) is increasing for 0 ≤ t ≤M,

and integrating ū2∗
ε over BR \BM+θ and BM+θ \BM gives the desired contradiction. �
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vol. 36, Birkhäuser Boston, Inc., Boston, 1999.
[11] M. Flucher, A. Garroni, S. Müller, Concentration of low energy extremals: Identification of concentration points, Calc.

Var. Partial Differential Equations 14 (2002) 483–516.
[12] L.E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, in: Cambridge Tracts in

Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000.
[13] J. Garcia Azorero, I. Peral Alonso, On limits of solutions of elliptic problems with nearly critical exponent, Comm. Partial

Differential Equations 17 (1992) 2113–2126.
[14] Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent,
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