
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder University Centre
Volume 40, 2012, 371–379

FINDING CRITICAL POINTS
WHOSE POLARIZATION IS ALSO A CRITICAL POINT

Marco Squassina — Jean Van Schaftingen

Abstract. We show that near any given minimizing sequence of paths for

the mountain pass lemma, there exists a critical point whose polarization is
also a critical point. This is motivated by the fact that if any polarization

of a critical point is also a critical point and the Euler–Lagrange equation

is a second-order semi-linear elliptic problem, T. Bartsch, T. Weth and
M. Willem (J. Anal. Math., 2005) have proved that the critical point is

axially symmetric.

1. Introduction

If u: Ω → R solves the semi-linear elliptic problem

(1.1)

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

one is interested in determining whether u inherits some symmetry of the domain
Ω ⊂ RN and of the nonlinearity f . For example if Ω and f are invariant under
rotations, is u also invariant? Of course, when u is the only solution of (1.1), the
answer is positive. By observing the eigenfunctions of the Laplacian, one can
see that this is not always the case. B. Gidas, W.-M. Ni and L. Nirenberg have
proved that if Ω is a ball, f is independent of x and Lipschitz-continuous and u
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is positive, then u is radially symmetric [9]. The main tool in the proof is the
maximum principle for second order elliptic operators. One can try to replace
the essential positivity assumption by some other assumption. O. Lopes has
proved that if the solution u is a minimizer under a constraint, if Ω is bounded
and smooth and f is smooth enough, then u is radially symmetric [12]. His proof
relies on a unique continuation principle.

Another family of methods is based on the symmetrization by rearrange-
ment. The first idea is to associate to any nonnegative measurable function
u: Ω → R its Schwarz symmetrization u∗ which is a radial function such that
the corresponding sub-level sets have the same measure as those of u; under this
transformations, the L2-norm of the gradient decreases [14], [11]. In particular,
it is possible to show that many functionals of the calculus of variations decrease
under symmetrization, and therefore that if u is a solution of some variational
problem, then u∗ is also a solution. However this does not imply that u itself is
symmetric. One way to show that u is symmetric is to study the equality cases
of symmetrization inequalities [4]; this approach is however limited by some
stringent assumptions to apply the results.

In order to study partial symmetry, T. Bartsch, T. Weth and M. Willem,
have introduced a nice method which mixes a variational argument with the
maximum principle [2] (see also [22]). Given a closed half-space H ⊂ RN , define
σH to be the reflection with respect to ∂H. If σH(Ω) = Ω, define for u: Ω → R
its polarization uH : Ω → R by

uH =

{
max{u, u ◦ σH} on H,

min{u, u ◦ σH} on RN \H.

Now assume that u is a minimizer of some functional. Then, if the functional
does not increase under polarization with respect to H, it follows that uH is
a minimizer too. Since symmetrization can be approximated by rearrangement
[3] (see also [21]), this is stronger than requiring that the functional does not
increase under symmetrization. The new ingredient that T. Bartsch, T. Weth
and M. Willem introduce is that if Ω is a ball and uH is also a solution for every
half-space H such that σH(Ω) = Ω, then u is axially symmetric. The method
applies to minimizers under constraints and in particular to least energy solutions
and least energy nodal solutions of semi-linear equations [2, Theorem 3.2].

It would be nice to extend such results to critical points that are not mini-
mizers under a constraint. One way to construct such critical points is to rely
on the Mountain Pass lemma of A. Ambrosetti and P. Rabinowitz [1]. Given
a functional ϕ ∈ C1(H1

0 (Ω)) such that 0 is a local minimum of ϕ, set

Γ = {γ ∈ C([0, 1],H1
0 (Ω)) : γ(0) = 0 and ϕ(γ(1)) < 0},
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and
c = inf

γ∈Γ
sup

t∈[0,1]

ϕ(γ(t)).

Assume also that ϕ satisfies the Palais-Smale condition, that is, if (un)n∈N is
a sequence in H1

0 (Ω) such that (ϕ(un))n∈N converges and ϕ′(un) → 0 as n →∞
in H−1(Ω), then (un)n∈N converges, up to a subsequence. Then there exists
u ∈ H1

0 (Ω) such that ϕ′(u) = 0 and ϕ(u) = c. If, in addition, Ω is a ball and
for every closed half-space H ⊂ RN such that σH(Ω) = Ω and u ∈ H1

0 (Ω),
ϕ(uH) ≤ ϕ(u), then there exists u ∈ H1

0 (Ω) such that ϕ′(u) = 0, ϕ(u) = c and
u is axially symmetric [19].

In general, it is not difficult to prescribe symmetry to solutions. The remark-
able feature of this result is that u is a critical point at a critical level without any
symmetry constraint. This result was extended to critical levels defined with the
Krasnosel’skĭı genus [20] and to non-smooth critical point theory [15] (see also
[16], [17]). We would like to know when all the solutions obtained by the Moun-
tain Pass lemma are symmetric. To this regard, we recall that the Mountain
Pass value c often coincides with the least energy value and for instance, in [5],
for a quite general class of autonomous functionals, the authors have recently
proved that any least energy solution is radially symmetric and with fixed sign.
We also point out that symmetry results under assumptions on the Morse index
and somewhat restrictive assumptions on the nonlinearity have been obtained
in [13], [10]. Going back to the minimax principle, we would like to apply the
method of T. Bartsch, T. Weth and M. Willem. The crucial step is to prove that
if u is a critical point of ϕ then uH is also a critical point of ϕ. We could not
prove this and we also think that this should not be true in general. However,
we have something that we think to be the best result in that direction.

To state our result, recall that the critical points u of the Mountain Pass
lemma can be localized as follows: if (γn)n∈N is a sequence of paths in Γ such
that

(1.2) lim
n→∞

sup
t∈[0,1]

ϕ(γn(t)) = c,

then, up to a subsequence,

(1.3) lim
n→∞

dist H1(u, γn([0, 1])) = 0.

If ϕ does not increase under polarizations with respect to a fixed half-space H,
based upon a new abstract minimax principle (Proposition 2.1), we prove that
for any sequence (γn)n∈N satisfying (1.2), there exists a critical point u of ϕ with
ϕ(u) = c such that, up to a subsequence, (1.3) holds and, in addition, uH is also
a critical point of ϕ at the same level c (Proposition 3.1). This provides some kind
of symmetry information of u with respect to H, see e.g. [2, Theorem 2.6] for the
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special situation regarding problem (1.1). One can expect that in many cases,
there is at most one critical point u such that dist H1(u, γn([0, 1])) → 0 as n →∞
and ϕ(u) = c. In such a case we would have the desired property. Unfortunately,
in general, the uniqueness of critical points at the level c and near a family of
paths seems quite difficult to establish. The result obtained also extends to
continuous functionals in the framework of the non-smooth critical point theory
of [8], [7], by exploiting a suitable quantitative deformation theorem [6].

The paper is organized as follows. In Section 2, we prove a new quantitative
abstract Minimax Principle. In Section 3, we apply this result in the specific
case of the Mountain Pass lemma and the polarization.

2. Shadowing minimax principle

In this section we shall prove the following variant of the minimax principle
in which two almost critical points related by a function Ψ are found at once.

Proposition 2.1. Let (X, ‖ · ‖) be a Banach space, M be a metric space
and M0 ⊂ M . Let also consider Γ0 ⊂ C(M0, X) and define the set

Γ = {γ ∈ C(M,X) : γ|M0 ∈ Γ0}

If ϕ ∈ C1(X, R) satisfies

c = inf
γ∈Γ

sup
t∈M

ϕ(γ(t)) > sup
γ0∈Γ0

sup
t∈M0

ϕ(γ0(t)) = a,

Ψ ∈ C(X, X) and ϕ ◦Ψ ≤ ϕ, Ψ(Γ) ⊂ Γ, then for every ε ∈ ]0, (c− a)/2[, δ > 0
and γ ∈ Γ such that

sup
M

ϕ ◦ γ ≤ c + ε,

there exist elements u, v, w ∈ X such that

(a.1) c− 2ε ≤ ϕ(u) ≤ c + 2ε,
(a.2) c− 2ε ≤ ϕ(v) ≤ c + 2ε,
(b.1) ‖u− w‖ ≤ 3δ,
(b.2) dist X(w, γ(M)) ≤ δ,
(b.3) ‖v −Ψ(w)‖ ≤ 2δ,
(c.1) ‖ϕ′(u)‖X′ < 8ε/δ,
(c.2) ‖ϕ′(v)‖X′ < 8ε/δ.

The proof relies on the following quantitative deformation lemma of M. Wil-
lem [23, Lemma 2.3].

Proposition 2.2. Let (X, ‖ · ‖) be a Banach space, ϕ ∈ C1(X), S ⊆ X,
c ∈ R, ε > 0 and δ > 0. Assume that for every u ∈ ϕ−1([c − 2ε, c + 2ε]) such
that B2δ(u) ∩ S 6= ∅ it holds

‖ϕ′(u)‖X′ ≥ 8ε

δ
.
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Then there exists a homeomorphism η:X → X such that ϕ ◦ η ≤ ϕ and

(a) η(u) = u if ϕ(u) 6∈ [c− 2ε, c + 2ε] or B2δ(u) ∩ S = ∅;
(b) if u ∈ S and ϕ(u) ≤ c + ε, then ϕ(η(u)) ≤ c− ε;
(c) for every u ∈ X it holds ‖η(u)− u‖ ≤ δ.

Proof of Proposition 2.1. Let γ ∈ Γ, c > a, ε ∈ ]0, (c− a)/2[ and δ > 0
be as in the statement of Proposition 2.1. Aiming to apply the quantitative
deformation lemma, we set

S := {w ∈ γ(M) : for every u ∈ B2δ(w) ∩ ϕ−1([c− 2ε, c + 2ε]),

one has ‖ϕ′(u)‖X′ ≥ 8ε/δ}.

In turn, since S fulfills the assumption of Proposition 2.2, we get a continuous
function η:X → X such that ϕ◦η ≤ ϕ which satisfies properties (a)–(c). Setting

γ̃ := η ◦ γ ∈ Γ,

observe that, by virtue of (b), if t ∈ M and ϕ(γ̃(t)) > c−ε, then γ(t) 6∈ S, namely
there exists u ∈ B2δ(γ(t)) such that c−2ε ≤ ϕ(u) ≤ c+2ε and ‖ϕ′(u)‖X′ < 8ε/δ.
If we now set

γ̂ := Ψ ◦ γ̃ ∈ Γ,

we claim that we can find elements v ∈ X and t ∈ M with the following proper-
ties: c−2ε ≤ ϕ(v) ≤ c+2ε, ‖v−γ̂(t)‖ ≤ 2δ, ϕ(γ̂(t)) > c−ε and ‖ϕ′(v)‖X′ < 8ε/δ.
In fact, if this was not the case, the assumption of Proposition 2.2 would be ful-
filled with the choice S := γ̂(M)∩ϕ−1([c−ε/2, c+ε]). We then get a deformation
η̂:X → X such that ϕ ◦ η̂ ≤ ϕ which satisfies properties (a)–(c). Given now an
arbitrary element τ ∈ M , either we have ϕ(γ̂(τ)) < c− ε/2 or

c− ε/2 ≤ ϕ(γ̂(τ)) = ϕ(Ψ(γ̃(τ))) ≤ ϕ(γ̃(τ)) ≤ ϕ(γ(τ)) ≤ c + ε.

In any case, by (b) and since η̂ ◦ γ̂ ∈ Γ (by (a)), as ϕ ◦ γ̂|M0 = ϕ ◦Ψ ◦ η ◦ γ|M0 ≤
ϕ ◦ γ|M0 ≤ a < c− 2ε),

c ≤ sup
M

ϕ(η̂ ◦ γ̂) ≤ c− ε/2,

yielding a contradiction and proving the claim.
Setting w := γ̃(t) ∈ X, since ϕ(γ̃(t)) ≥ ϕ(Ψ(w)) > c − ε, by the first part

of the proof there exists an element u ∈ X with the required properties (a.1)
and (c.1). Furthermore, being u ∈ B2δ(γ(t)) and recalling (c), we get

‖u− w‖ ≤ ‖u− γ(t)‖+ ‖η(γ(t))− γ(t)‖ ≤ 2δ + δ,

proving (b.1). Analogously, inequalities (b.2) and (b.3) follow. �

Remark 2.3. The minimax principle stated in Proposition 2.1 for C1 smooth
functionals continues to hold for continuous functionals in the framework of the
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non-smooth critical point theory developed in [8], [7] by J.N. Corvellec, M. De-
giovanni and M. Marzocchi, where the quantity ‖ϕ′(u)‖ is replaced by the no-
tion of weak slope |dϕ|(u) ∈ [0,+∞] (see [8, Definition 2.1]). Precisely, the
statement of Proposition 2.1 in the continuous case remains the same except
the fact that the inequalities ‖ϕ′(u)‖X′ < 8ε/δ and ‖ϕ′(v)‖X′ < 8ε/δ are re-
placed by |dϕ|(u) < 8ε/δ and |dϕ|(v) < 8ε/δ, respectively. In [6, Theorem 2.3]
J.N. Corvellec derived a quantitative deformation lemma being the natural non-
smooth counterpart of Proposition 2.2. Then, setting

A := {w ∈ γ(M) : for every u ∈ B2δ(w) ∩ ϕ−1([c− 2ε, c + 2ε])

one has |dϕ|(u) ≥ 8ε/δ}.

By applying [6, Theorem 2.3] to the set A (or slightly modifying the argument
if A is not closed in X) the same conclusion in the first part of the proof of
Proposition 2.1 is obtained. In a similar fashion, also the second part of the
proof can be proved reusing [6, Theorem 2.3].

For applications of non-smooth critical point theory to various classes of
quasi-linear elliptic PDEs, we refer the interested reader to the monograph [18].
In the recent work [15] a symmetric minimax theorem is obtained for a class of
lower semi-continuous functionals of the form ϕ(u) =

∫
Ω

j(u, |Du|)−
∫
Ω

G(|x|, u).

3. Application to the Mountain Pass lemma

We will now apply the result of the previous section in order to prove the
result announced in the introduction.

Proposition 3.1. Assume that ϕ ∈ C1(H1
0 (Ω)), 0 is a strict local minimum

of ϕ which is not a global minimum and define

Γ = {γ ∈ C([0, 1],H1
0 (Ω)) : γ(0) = 0 and ϕ(γ(1)) < 0}

and

c = inf
γ∈Γ

sup
t∈[0,1]

ϕ(γ(t)).

Assume that ϕ satisfies the Palais–Smale condition. Let H be a closed half-
space with σH(Ω) = Ω and for every u ∈ H1

0 (Ω), ϕ(uH) ≤ ϕ(u). If (γn)n∈N is
a sequence in Γ such that

lim sup
n→∞

sup
t∈[0,1]

ϕ(γn([0, 1])) ≤ c.

then there exists u ∈ H1
0 (Ω) such that ϕ(u) = ϕ(uH) = c, ϕ′(u) = ϕ′(uH) = 0

and

lim inf
n→∞

dist H1(u, γn([0, 1])) = 0.
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Proof. Notice that the map Ψ:H1
0 (Ω) → H1

0 (Ω) defined by Ψ(u) := uH is
continuous by [19, Proposition 2.5], [20, Corollary 2.40]. By assumption, we have
ϕ ◦ Ψ ≤ ϕ and Ψ(γ) ∈ Γ, for all γ ∈ Γ, where Ψ(γ)(t) := Ψ(γ(t)) for t ∈ [0, 1].
Without loss of generality, we can assume that

sup
t∈[0,1]

ϕ(γn([0, 1])) ≤ c +
1
n2

.

Apply now Proposition 2.1 with the choice M := [0, 1], M0 := {0, 1}, δ = δn :=
1/n, ε = εn := 1/n2 and

Γ0 := {γ0 ∈ C({0, 1},H1
0 (Ω)) : γ0(0) = 0 and ϕ(γ0(1)) < 0}.

One then obtains three sequences (un)n∈N, (vn)n∈N and (wn)n∈N in H1
0 (Ω) such

that

lim
n→∞

ϕ(un) = lim
n→∞

ϕ(vn) = c, lim
n→∞

ϕ′(un) = lim
n→∞

ϕ′(vn) = 0,

lim
n→∞

‖un − wn‖H1 = lim
n→∞

dist H1(wn, γn([0, 1])) = lim
n→∞

‖vn − wH
n ‖H1 = 0.

Since ϕ satisfies the Palais–Smale condition, up to a subsequence, (un)n∈N con-
verges to some u ∈ H1

0 (Ω). Hence, the sequence (wn)n∈N also converges to u.
By continuity of the polarization, (vn)n∈N converges to uH . The rest follow by
the fact that ϕ is C1(H1

0 (Ω)). �

Remark 3.2. As pointed out in Remark 2.3, the shadowing minimax prin-
ciple in Proposition 2.1 extends to the case of continuous functionals in the
framework of the non-smooth critical point theory of [8], [7] replacing ‖ϕ′(u)‖
by the weak slope |dϕ|(u) [8, Definition 2.1]. In this setting, the Palais–Smale
condition has to be read as follows: if (un)n∈N is a sequence in H1

0 (Ω) such that
(ϕ(un))n∈N converges and |dϕ|(un) → 0 as n → ∞, then (un)n∈N converges
strongly, up to a subsequence, to some u in H1

0 (Ω). Therefore, taking into ac-
count that ϕ is continuous and the map H1

0 (Ω) 3 u 7→ |dϕ|(u) ∈ [0,+∞] is
in turn lower semi-continuous [8, Proposition 2.6], Proposition 3.1 holds true for
continuous functionals, with essentially the same proof, by replacing the con-
clusion that ϕ′(u) = 0 and ϕ′(uH) = 0 with |dϕ|(u) = 0 and |dϕ|(uH) = 0,
respectively. For many continuous functionals of the Calculus of Variations this
implies [18] that u and uH are distributional solutions of the associated Euler–
Lagrange equation.

Remark 3.3. Up to slight modifications, Proposition 3.1 holds also when the
assumption that the closed half-space H is axially symmetric, that is σH(Ω) = Ω,
is replaced by the more general assumption that 0 ∈ H and σH(Ω) = Ω, deno-
ting σH(Ω) the polarized domain of Ω, namely the unique domain satisfying
χσH(Ω) = (χΩ)H . If for instance 0 6∈ ∂H, then σH(B1(0)) 6= B1(0) but instead
σH(B1(0)) = B1(0).
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