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Abstract

We study the symmetry properties of the weak positive solutions to a class of
quasi-linear elliptic problems having a variational structure. On this basis, the
asymptotic behaviour of global solutions of the corresponding parabolic equations
is also investigated. In particular, if the domain is a ball, the elements of the w
limit set are nonnegative radially symmetric solutions of the stationary problem.
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1 Introduction and main results

Let 2 C R™ be a smooth bounded domain and 1 < p < co. The goal of this paper
is to study the asymptotic symmetry properties for a class of global solutions of the
following quasi-linear parabolic problem

up — div(a(w)|VulP2Vu) + L [Vulp = f(u) in (0,00) x Q,

u(0, ) = up(x) in Q, (E)

u(t,z) =0 in (0,00) x 0.

The adoption of the p-Laplacian operator inside the diffusion term arises in various
applications where the standard linear heat operator u; — A is replaced by a non-
linear diffusion with gradient dependent diffusivity. These models have been used
in the theory of non-Newtonian filtration fluids, in turbulent flows in porous media
and in glaciology (cf. [1]). In the following we will assume that a € C2 _(R) and
there exists a positive constant 7 such that a(s) > n > 0 for all s € R* and that
f is a locally lipschitz continuous in [0, 00), which satisfies some additional positiv-
ity conditions. The nontrivial (positive) stationary solutions of the above problem
must be solutions of the following elliptic equation

—div(a(u)|Vul[P~2Vu) + #\Vu\p = f(u) inQ,
u>0 in €, (S)
u=0 on 0f).

This class of problems has been intensively studied with respect to existence, nonex-
istence and multiplicity via non-smooth critical point theory. For a quite recent
survey paper, we refer the interested reader to [32] and to the references therein.
Already in the investigation of the qualitative properties for the pure p-Laplacian
case a = 1, one has to face nontrivial difficulties mainly due to the lack of regularity
of the solutions of problem (S). As known, the maximal regularity of bounded
solutions in the interior of the domain is C1*(Q) (see [11, 34]). Also, since we
are assuming the domain to be smooth, the C1'® regularity assumption up to the
boundary follows by [20]. In some sense, the problem is singular (for 1 < p < 2)
and degenerate (for p > 2) due to the different behaviour of the weight |Vu|P—2.

Definition 1.1 We denote by S,, the set of nontrivial weak C'*(Q) solutions z
of problem (S) which are symmetric and non-decreasing in the z;-direction'. We
denote by R the set of nontrivial weak C1(Q) solutions z of problem () which
are radially symmetric and radially decreasing.

The first result of the paper, regarding the stationary problem, is the following

L As customary we consider the case of a domain which is symmetric with respect to the hyper-
plane {z1 = 0}, and we mean that the solution z is non-decreasing in the z;-direction for z; < 0.
While it is non-increasing for x; > 0.



Asymptotic behaviour of quasi-linear parabolic problems 791

Theorem 1.1 Assume that f is strictly positive in (0,00) and 2 is strictly convex
with respect to a direction, say x1, and symmetric with respect to the hyperplane
{z1 = 0}. Then, a weak C**(Q) solution u of problem (S) belongs to S,,. In
addition, if 0 is a ball, then u belongs to R.

Following also some ideas in [9], the main point in proving the above result is
providing in this framework a suitable summability for the weight |Vu|~!, allowing
to prove that the set of critical points of u has actually zero Lebesgue measure.

Definition 1.2 Given ug € Wol’p(Q) with ug > 0 a.e., we write ug € G, if there
exists a function

u€ C([0,00); Wy P(LRY)), ur € L2([0,00);L3(Q)),  u(0) =ug,  (L.1)

with ||u(t)||W01,p uniformly bounded on [0, 00), solving the problem

/ /utgodxdtJr/ / u)|VulP~2Vu - Vpdrdt
/ / |Vu|pg0da:dt / /f Yodxdt, Ve € CF(Qr),

for any T' > 0, where Q7 = 2 x [0,T] and satisfying the energy inequality

E(u(t)) + /75 /Q |ug (7)|2dedr < E(u(s)), forallt>s>0, (1.2)

where the energy functional is defined as

E(u(t)) = % /Q a(u(®)|Vu(t)|Pdz — /Q Flut)de,  F(s) = /0 " (rydr

As we learn from a (classical) work of Tsustumi [35, Theorems 1 to 4] regarding
the pure p-Laplacian case (see also the works [18, 36]), the requirements (1.1) in
Definition 1.2 are natural. In general, for the weak solutions of (E) to be globally
defined, it is necessary that the initial datum wg is chosen sufficiently small. A
similar consideration can be done for the size of the domain 2, sufficiently small
domains yield global solutions, while large domains may yield to the appearance
of blow-up phenomena. For well-posedness and Holder regularity results for quasi-
linear parabolic equation, we also refer the reader to the books [12, 22]. Finally,
concerning the energy inequality (1.2), of course smooth solutions of (E) will sat-
isfy the energy identity (namely equality in (1.2) in place of the inequality). It is
sufficient to multiply (E) by u; and, then, integrate in space and time. On the
other hand (1.2) is enough for our purposes and it seems implicitly automatically
satisfied by the Galerkin method yielding the existence and regularity of solutions,
see e.g. [35, identity (3.8) and related weak convergences (3.9)-(3.13)].

The second result of the paper is the following:
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Theorem 1.2 Assume that there exists a positive constant p such that

a'(s)s >0, forall s € R with |s| > p, (1.3)
and that there exist two positive constants C1,Cs and o € [1,p* — 1) with p > nQT’_lQ,
such that

|f(s)] < C1+ Csqls|?, for all s € R. (1.4)

Then, the following facts hold.

(a) Assume that f is strictly positive in (0,00) and  is strictly convexr with
respect to a direction, say x1, and symmetric with respect to the hyperplane {x, =
0}. Let ug € G and let u : [0,00) x Q@ — RT be the corresponding solution of (F).
Then, for any diverging sequence (1;) C RT there exists a diverging sequence (t;) C
Rt with t; € [1;,7; + 1] such that

u(t;) = = strongly in Wy (Q) as j — oo,

where either z = 0 or z € Sy, (if @ = B(0, R) with R > 0, then either z = 0 or
z € R) provided that z € L (). In addition, for all pg > 0,

sup |Ju(tj + p) — 2||pa) =0 asj— oo, (1.5)
HE(O,10]

for any q € [1,p*).
(b) Let R > 0 and assume that f € C1([0,00)) with f(0) =0 and

0<(p—1)f(s) < sf'(s), for all s > 0. (1.6)
Furthermore, assume that
H'(s) <0 fors>0, H(s):(n—p)s—HpW, H(0) = 0. (1.7)

Let ug € G and let u : [0,00) x B(0, R) — R be the corresponding solution of

u — Apu = f(u) in (0,00) x B(0, R),
u(0,z) =ug(z)  in B(0,R), (1.8)
u(t,z) =0 in (0,00) x 0B(0, R).

Then, for any diverging sequence (1;) C R there exists a diverging sequence (t;) C
R* with t; € [rj,7; + 1] such that

u(t;) =z strongly in WyP(Q) as j — oo,
where either z = 0 or z is the unique positive solution to the problem

—Apu = f(u) in B(0,R),
u>0 in B(0, R), (1.9)
u=0 on OB(0, R).

In addition, the limit (1.5) holds.
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Remark 1.1 The sign condition (1.3) is often assumed in the current literature on
problem (S) (and in more general frameworks as well) in dealing with both existence
and nonexistence results (see e.g. [5, 32, 2]). We point out that it is, in general,
necessary for the mere Wy?(€2) solutions to (S) to be bounded in L>(Q) (see [15]).

Next, we consider a class of initial data corresponding to global solutions which
enjoy some compactness over, say, the time interval {¢ > 1}.

Definition 1.3 We write ug € A if ug € G and, furthermore, the set
K ={u(t):t>1},

is relatively compact in Wy?(Q). For any initial datum ug € Wy ?(Q), the w-limit
set of ug is defined as

wlug) ={z € WyP(€) : there is (t;) € RT with u(t;) — 2 in Wol’p(Q)},

where u(t) is the solution of (E) corresponding to ug.

The third, and last, result of the paper is the following

Theorem 1.3 Assume that [ is strictly positive in (0,00) with the growth (1.4)
and Q is strictly convex with respect to a direction, say x1, and symmetric with
respect to the hyperplane {x1 = 0}. Then, the following facts hold.

(a) For all ug € A, we have
w(ug) NL®(N) C Sy,

In particular, the L*°-bounded elements of the w-limit set to (E) with Q@ = B(0, R)
are zero or radially symmetric and decreasing solutions of problem (.S).

(b) Assume that f € C'([0,00)) with f(0) = O satisfies assumptions (1.6)
and (1.7). Then, for all ug € A, the w-limit set of problem (1.8) consists of ei-
ther 0 or the unique positive solution to the problem (1.9).

Remark 1.2 Quite often, even in the fully nonlinear parabolic case, global solu-
tions which are uniformly bounded in L are considered (see e.g. [24, Section 3.1]).
In these cases, in our framework, the elements of the w-limit set are automatically
bounded and, in turn, belong to C*%(€Q). Concerning the L>-global boundedness
issue for a class of degenerate operators, such as the p-Laplacian case, we refer the
reader to the work of Lieberman [21], in particular [21, Theorem 2.4], where he
proves that
sup lu(t, x)| < oo,
(t,z)€[0,00) xQ

provided that suitable growth conditions hold on the parabolic operator as well as
on the nonlinearity, which satisfy a typical super-linearity condition, reading as

f(8)s > (ap +a)F(s) —c1, F(s)>s*T™ —¢cy, sER,

for suitable positive constants ag, cg, ¢1 and a.
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Remark 1.3 Assume that ) is a star-shaped domain and consider the problem
with the critical power nonlinearity

—div(a(w)| VulP~2Vu) + “|Tup = w1 in Q,

u >0 in Q, (1.10)
u=20 on 0f).

Assuming the sign condition a’(s) > 0, for all s > 0, it is known that problem (1.10)
does not admit any solution (cf. [26, 13]). In turn, any uniformly bounded global
solution to the problem

uy — div(a(u)|VulP~2Vu) + %\VUV’ =uP "' in (0,00) x Q,
u(0, ) = up(z) in Q,
u(t,z) =0 in (0,00) x 09

must vanish along diverging sequences (t;) C RT, u(t;) — 0 in Wy() as j — oc.

Remark 1.4 Theorems 1.1, 1.2, 1.3 are new already in the non-degenerate case
p = 2 since of the presence of the coefficient a(-), in which case the solutions are
expected to be very regular for ¢t > 0.

We do not investigate here conditions under which one can characterize a class
of initial data which guarantee global solvability with the additional information of
compactness of the trajectory into WOI’p(Q). In the semi-linear case p = 2 with a
power type nonlinearity f(u) = |u|™ tu, m > 1, we refer to [6, 29, 30] for apri-
ori estimates and smoothing properties in C'*(£2) of the solutions for positive times.
About the convergence to nontrivial solutions to the stationary problem along some
suitable diverging time sequence (¢;) C R, we also refer to [16] for a detailed anal-
ysis of the sets of initial data ug € H}(2) yielding to vanishing and non-vanishing
global solutions as well as initial data for which the solutions blow-up in finite time.
In particular it is proved that the stabilization towards nontrivial equilibria is a bor-
derline case, in the sense that the set of initial data corresponding to non-vanishing
global solution is precisely the boundary of the (closed) set of data yielding global
solutions. In conclusion, in general, at least four different type of behaviour may
occur in these problems: blow up in finite time, global vanishing solution, global
non-vanishing solution (converging to equilibria) and finally global solution blowing
up in infinite time (see also [23]). In our general framework, also due to the degener-
ate nature of the problem, this classification seems quite hard to prove, so we focus
on the third case. In the p-Laplacian case a = 1, we refer the reader to [21] for the
study of apriori estimates and convergence to equilibria for global solutions. Our
approach is based on the independent study of the symmetry properties of positive
stationary solutions via a suitable weak comparison principle allowing to apply the
Alexandrov-Serrin moving plane technique in symmetric domains (see also [8, 9, 10]
for similar results in the case a = 1). Then, since the problem clearly admits a
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variational structure and the energy functional & : WO1 P(Q) — R defined by

E(u(t)) = - /Q a(u(t)) | Vu(t)Pd — /

Q

Flu(t))dz, t>0, F(s)= /O F(r)dr,

is decreasing along a smooth solution u(t), the global solutions have to approach
stationary states along suitable diverging sequences (t;) C R*. In pursuing this
target we also make use of some nontrivial compactness result proved in [5] in the
study of the stationary problem. It is known that, in general, it is not possible to
get the convergence result along the whole trajectory, namely as ¢ — oo (see [25])
unless the nonlinearity f is an analytic function (see [19]). For a general survey
paper on the asymptotic symmetry of the solutions to general (not just those with
a Lyapunov functional) nonlinear parabolic problems, we refer to the recent work
of P. Polécik [24] where various different approaches to the study of the problem
are discussed.

Organization of the paper. In Section 2 we study the regularity properties of
the weak positive solutions to (S). In Section 3 we obtain some properties related
to the asymptotic behaviour of solutions to the parabolic problem (F). Finally, in
Section 4 we complete the proof of the main results of the paper.

Notations.

1. |- | is the euclidean norm in R™. B(zo, R) is a ball in R™ of center zy and
radius R.

2. R* (resp. R™) is the set of positive (resp. negative) real values.

3. For p > 1 we denote by LP(R™) the space of measurable functions u such that
Jo, luPdz < co. The norm ([, [uPdz)/P in LP(2) is denoted by || - || r(q)-

4. For s € N, we denote by H*(Q) the Sobolev space of functions u in L?()
having generalized partial derivatives 9%u in L?(2) for all i = 1,...,n and
any 0 < k < s. The first order partial derivatives will also be denoted by u;
in place of 0;u or 0y, u.

. 1, .
5. The norm ([, |ulPdz + [, |[Vu[Pdz)'/? in WP (Q) is denoted by || - ||W01,p(9).
6. We denote by C§° () the set of smooth compactly supported functions in .

7. We denote D*u the Hessian matrix of u and |D?ul? = Y7, |[Vu, %

8. We denote by L(E) the Lebesgue measure of the set £ C R™.
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2 Symmetry for stationary solutions

We consider weak C(£2) solutions to (S). We recall that we shall assume that
(i) f is locally lipschitz continuous in [0, 00);

(ii) For any given 7 > 0, there exists a positive constant K such that f(s)+ Ks? >
0 for some g > p—1 and for any s € [0, 7]. Observe that this implies f(0) > 0

(iii) a € C2,,

(R) and there exists n > 0 such that a(t) > n > 0.

As pointed out in the introduction, if we assume that the solution is bounded,
the C1:® regularity up to the boundary follows by [11, 34, 20]. Also hypothesis (iii)
ensures the applicability of the Hopf boundary lemma (see [27, 28]).

2.1 Gradients summability

In weak form, our problem reads as

1
/a(u)|Vu|p72Vu-V<pdx+};/ a'(u)|VulPodr = / fuw)pdz, Vo e CX(Q).
Q Q Q

(2.1)
Define, as usual, the critical set Z, of u by setting

Zy={z€Q:Vu(z) =0} (2.2)

Note that the importance of critical set Z, is due to the fact that it is exactly the
set where our operator is degenerate. By Hopf Lemma (cf. [27, 28]), it follows that

Z, N0 = 0. (2.3)

We want to point out that, by standard regularity results, u € C2 _(2\ Z,). For
functions p € C(Q2\ Z,), let us consider the test function ¢, = 9,,¢ and denote
also u; = Oz, u, for all i = 1,...,n. With this choice in (2.1), integrating by parts,
we get

/a(u)\Vu|p_2(Vui,V<p)+(p—2)/a(u)|Vu|p_4(Vu7Vul-)(Vngo)dm

Q Q
—|—/Qa’(u)|Vu|p_2(Vu,V<p)uidac (2.4)
s [ value + [ @ Tup e Ve

/f Yuip =0,

that is, in such a way, we have defined the linearized operator L, (u;, ) at a fixed
solution u of (). Then we can write equation (2.4) as

Lu(ui,0) =0, VYo € CF(Q\ Zu). (2.5)
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In the following, we repeatedly use Young’s inequality in this form ab < §a+C(5)b?
for all a,b € R and § > 0. We can now state and prove the following:

Proposition 2.1 Let u € CH*(Q) be a solution to problem (S). Assume that f is

locally lipschitz continuous, a € CE_(R) and there exists a positive constant n such

that a(s) > n >0 for all s € RT. Assume that Q is a bounded and smooth domain
of R™. Then
p—2 12
/ [V |V“ZA dx < C, (2.6)
o\fui=0} ¥ — |7 |ui

where 0 < <1, vy<n—2(y=0ifn=2),1<p< oo and the positive constant
C does not depend on y. In particular, we have

p—2—0 D2 2 N
N\{Vu=0}

ly — x|

for a positive constant C not depending on y.

Proof. For all € > 0, let us define the smooth function G, : R — R by setting

t if |t| > 2e,

2 — 2 ife<t<2e,

2t +2e  if —2e <t < —¢,
0 if |t] <e.

G:(t) = (2.8)

Let us choose E CC Q and a positive function ¢ € C°(Q), such that the support
of 9 is compactly contained in €2, 19 > 0in Q and ¢ = 1 in F. Let us set

Ge(ui(x)) ¥(x)
|ui(z)? |y =z

Pey(T) = (2.9)

where 0 < f < 1,7 <n—2 (y = 0 for n = 2). Since ¢, , vanishes in a neighborhood
of each critical point, it follows that ., € C2(Q\ Z,) and hence we can use it as
a test function in (2.4), getting the following result:
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|ya_(“£|7 lvlsilrﬂ_Q (6w - BGE(?i))wwui\de

+ [ o-2 B (1) - sy v, T
/ 1; VZZTB - (CAE 5%?0>¢U¢(Vu, Vu,)de
/ ) VulP~ QCT E|ﬁ)(v i Vib)da

/ |v P~ 4? (|B)(V’u Vu;)(Vu, Vip)dz

/ —x|V‘v ulP~? CTE(IB)(V , Vip)dz

/ V=2 Z) g, v (e

uil? PEFE
/ )| VulP- ﬁf i)w(Vu,Vui)(Vu,Vm(M))dx
+ [ v 2u S e v (s
# [y v |(1|§)|y—wx|v

*/Q“““)WP_Q‘V“’V“”)G P = [ o

Let us denote each term of the previous equation in a useful way for the sequel,
that is

() [V
aly—2P Jul

Y P s TR0 R
ao= [ (-2 D (G< 0= 8%y (9, V)

e f e <G;<ui>_ﬁwwuxww

Iy—xl” ;| i

) |V ?d; (2.10)

poa el o
A47/ o VUl S (T, Ve
A5:/(p—2) a(v) |Vu|P~ 1Gelw )(Vu Vu;)(Vu, Vip)dz
0 ly — ] |uslP

p2 G( )
o= [ IV e T s
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e = [ a2 (T,

ly — x|

Ge 1
A= [ (0= 2w Fup =+ G (9, V) (V. T
G.(u;) 1
A:/ Vu|P~2u; (Vu, Vg (——))da;
o= [ a @IVl S (T V=)
1 Ge(u) Y
A :/ ~a" (u)|VulPu; dz;
0= ot IV =
_ Gs(ul) 1/J
A = p=2 i
11 / ( )|vu| (vuavu) |ul|,3 |y—x\7 ’
ui) Y
N = /f dx
Iu 7 ly ==
Then we have rearranged the equation as
11
> A;=N. (2.11)
i=1
Notice that, since 0 < 8 < 1, for all £ € R and € > 0 we have
BG:(t) BG:(t)
/ ' _1_
Gt = == 20, lim (Gl - ) =16

From now on, we will denote

~ t
Gg(t):G'E(t)—BGEt( ), for all t € R and € > 0.
From equation (2.11) one has
11
Ay + Ay < A+ [N
=3

We shall distinguish the proof into two cases.
Case I: p > 2. This trivially implies A5 > 0, and hence

11
A1§A1+A2§Z|Ai|+|N|~ (212)
i=3

Case II: 1 < p < 2. By Schwarz inequality, of course, it follows
|VulP~4(Vu, Vuy)? < |VulP~2 |V, 2.
In turn, since 1 < p < 2, this implies

GE(UZ) ¢|Vu\”*4(Vu, Vuz)z

és i VulP2|V i2
(p () 213 L PV T

2 P=DaW o

)

ly — x|
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so that (p — 2)A; < As, yielding

11
4, < j(Al +4z) < Z; | 4] + [N (2.13)

In both cases, in view of (2.12) and (2.13), we want to estimate the terms in the
sum

11

> 1Al + N, (2.14)

=3

Let us start by estimating the terms A; in the sum (2.14). Concerning Az, we have

o' (w)] [Vul[P~?
A §/ G (ui) ||| Vul| Vu; |da

1 |vu| p—1
<o, [ L NP a y
- 3/9 ly— 2" Ju,]P G (w ) |us || Vg | dac

5/ |Vu|p—2 GE(M)WV J2dz + Cs / |Vu| ¢ (uz)dx
[$

<C
= aly =l ful? il P2

Cs6
< 73/11 + K3(9),

where we used that

és(“z)
<
ugp2 =

[V~

where C' is a positive constant independent of £ and Cj5 is a positive constant
independent of y. Moreover recall that 0 < 8 < 1 and that u € C1%(Q). Also

alu G,
i< [ a2 G v v < o,
oly— | |

where
1 |Vu|P=2 |G (u;)
ly — |7 Jui[P=1

|Vl Vel € 2(9),

since |Vu;| is bounded in a neighborhood of the boundary by Hopf Lemma, v—2 < n,
0 < B < 1 and the constant Cj is independent of y. For the same reasons, we also
have

|A5| / | a(u)’y| |;D 2| ‘ E|B)||v valdl‘<C57

Ge(u;
a0l < [ A gup PR ias < i,
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for some positive constants Cs and Cy independent of . Furthermore, for a positive
constant C7 independent of y, we have

|Ge (wi)|
il ®

G, 1
SC7/ a(u)|VulP~ 2| | (|ﬂ)|¢|v z\mdﬂf

2
I T

oly—zr fuil? Jui]
-1 |Ge(ui)] 1
il -y — x|+

el < | atw)vup=2 e |V, ———fda
Q

+C() /Q o)V

2
§C75/Q|y“(“> Vul ™ 1G5 2 1 1r(5)

-7 Jul? |
where we used Young’s inequality, v — 2 < n and 0 < 8 < 1. In a similar fashion,

1
ly — x|

G,
sl < [ o= 2atw)vup - G99,

e( z)

|dx

a(u) |VulP=2
aly—z[ |ul?

< Cgd 0 |Vu;|*dz + Kg(0)

as well as
Ge(
|u

for some positive constants Cg, Cy independent of y. We get an upper bound for
the last terms as well

|A9\</|a )| VulP~ 1] |B 11/J|V z < Cy.

—1‘|"f|

i Gew)]
Al < = | |d" (w)||VulP dr < Cho,
Aol < 5 [ i vup s s < o

with Cjo independent of y and where we have also used the fact that a € C2_(R).
In the same way, it holds

Anl< [ livar1Gbdlgn -

ly — x|

dx

Vulp ¢

o ly— a7 |uglP

1 P2 G,
gcma/ Vel = Gelhd) bGP + ()
Q|y Uy

—ar fuil?

p72 .
§C115/ a(u) |VUIB Ge(u Z)¢\Vui|2dx+K11(5)
n o Jaly =zl ul”

and

ug)|
|N|</|f |u|ﬁ1‘y e < O,
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where the last inequality holds true since f is locally lipschitz continuous and where
C11 and Cn are constants independent of y. Then, by these estimates above and
by equations (2.12), (2.13) and (2.14) we write

S a(u) |VulP~? < i)
A1§D2|Ai\+|N|§85A1+M5/ i |V |2dz + Cs,
pt aly—=" fuil?
(2.15)
where we have set
D:max{l,ﬁ}, S= D%, M= DmaX{C%,C’g,C;;l}

Cg = max {Kg 5 K7(5), Kg((S), Ku((s), 04, C5, Cﬁ, Cg, CN}
Then from equations (2.10) and (2.15) one has

(1—89) / a(w) |VulP? (G;(uz‘) - 5Gi§m)> V| Vu;|?dx

ly =7 Jual?

p—2 .
SMé/Iy Y B wGi%)\VUHZ)derC&

—ar ful?

namely

(1—:55)/Q a(w) |Vl {G’E(ui)— <5+ (1/:455)) Gé“)] 0|V 2dz < Cs.

ly — x| |uil? N
(2.16)
Let us choose ¢ > 0 such that
1-86 >0, (2.17)
1—(6+1&5>>0. '
Therefore, since as € — 0
PN M6 G (u;) . Mé . _

by Fatou’s Lemma we get
p—2 |12
/ [Vl W“’; wdz < C. (2.18)
o\fui=0} 1Y — 27 |uil
To prove (2.7) we choose E CC 2 such that
Z,N(Q\E)=10.

Since u is C? in Q \ E, then we may reduce to prove that that

p—2 12
/ |Vul \VuZ[L de < C.
B\fui=0} [Y — 2|7 |ug

This, and hence the assertion, follows by considering (2.18) with a cut-off function as
above with ¢ € C2°(Q) positive, such that the support of ¢ is compactly contained
inQ,9%>0in Q and ¥ =1 in E. The proof is now complete.
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2.2 Summability of |Vu|™!

We have the following
Theorem 2.1 Let u be a solution of (S) and assume, furthermore, that f(s) >0
for any s > 0. Then, there ezists a positive constant C', independent of y, such that
1 1
o |Vu|P=r [z —y]
where 0 <r<landy<n—2forn>3 (v=01ifn=2)

In particular the critical set Z,, has zero Lebesque measure.

Proof. Let E be aset with E CC Q and (Q\F)NZ, = . Recall that Z,, = {Vu =0}
and Z, N9 = 0, in view of Hopf boundary lemma (see [27]). It is easy to see that,
to prove the result, we may reduce to show that

1 1
/E Pl e dz < C. (2.20)

To achieve this, let us consider the function

dr < C (2.19)

1 1
(IVal+e) @07 e =y ™
where 0 <r < landy<n—2forn >3 (y=0Iif n=2). We also assume that ¢ is

a positive C°(§2) cut-off function such that ¢ =1 in E. Using ¥ as test function
in (9), since f(u) > o for some o > 0 in the support of ¥, we get

U(z) = U, ,(x) = (2.21)

O'/Q \Ildacg/ﬂf(u)\l'dx:/Qa(u)|Vu|p_2(Vu,V\I/)+%a'(u)|Vu|p\IJdac

1 1
< p—2
< [ atw) 921V VIV e e
1
VulP~?|(Vu, V d
+ [ a2V, Y o) e de

1 1
p—2 d
+ /Q a(u)|Vu| ‘(V'Uzy VQO)| (‘vu| + 6)(1)71)7” |1- — y|"/ v

a'(u) 1 1
YulP dx.
w [ (Va1 oo ey * ™

Consequently, we have

1 1
Udr <C VulP~|D? d
JREE UQ' u D ey [y P

+/ [Vl ! dz
o (IVul+ &)@ 17 g —ypr1¥

+/ [Vl ! dz
o (IVul +&)r=Dr |z —y|¥

. / IVul? L
o ([Vul +e)P=Dr |z —y|7 .
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Then, denoting by C;, suitable positive constants independent of y and by Cs a
positive constant depending on d, we obtain

1 1
Udr <C VulP~ Y D?u| - . cod
\/Q I = 1\/9‘ U| I U| (|vu‘+€)(p_1)r+1 |$—y|7 80 X

1 1
o |z —yp*t ol =yl

1
<C VulP~ D%yl - . -pdr + C
<G [, oD (e g+ O (222)
1 1 ’
< 6C . -pd
= / (Vul +e) =D "z —yp ¥
+05/ |V |P=2=(p(r=1)+2=1) 2,12, ~pdr +Cp <
Q |z —y|7

3055/ Vdx + Cs.
Q

Here we have we used that u € C1*(Q2), v < n — 2 and we have exploited the
regularity result of Proposition 2.1. Then, by (2.22), fixing § sufficiently small, such
that 1 — C50 > 0, one concludes

1 1
dz < K 2.23
/Q (\Vu| —5—5)(17*1)7" |1, — yh(ﬁ r < K, ( )

for some positive constant K independent of y. Taking the limit for £ going to zero,

the assertion immediately follows by Fatou’s Lemma.

Proposition 2.1 provides in fact the right summability of the weight p(z) =
|Vu(z)[P~2 in order to obtain a weighted Poincaré inequality. We refer the readers
to [9, Section 3] for further details. For the sake of selfcontainedness, we recall here
the statement

Theorem 2.2 If u € C%(Q) is a solution of (S) with f(s) >0 fors>0,p>2,
then
1ol ag) < o@DVl Lo, for every v € Hy$ (), (2.24)

where p = |VulP™2, Cp(|Q]) — 0 if |2] = 0. In particular (2.24) holds for every
function v € Hég(Q) Moreover if p > 2, ¢ > 2 and v € Wol’q(Q), the same

conclusion holds. In fact, being u € C1*(Q), and p > 2, p = |Du|P~2 is bounded,
so that Wy 4(Q) — Hég(Q)

Recall that, if p € L'(Q), 1 < ¢ < oo, the space H}%(Q) is defined as the
completion of C1(2) (or C*°(9)) under the norm

[0l 20 = llvllLace) + [Vl La,p) (2.25)

where
Vol = [ [Vol'pda.
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We also recall that Hé”g may be equivalently defined as the space of functions
having distributional derivatives represented by a function for which the norm de-
fined in (2.25) is bounded. These two definitions are equivalent if the domain has
piecewise regular boundary (as we are indeed assuming).

2.3 Comparison principles

We now have the following

Proposition 2.2 Let Q be a bounded smooth domain such that C Q. Assume
that u, v are solutions to the problem (S) and assume that u < v on 0. Then there
exists a positive constant 6, depending both on uw and f, such that, assuming

L(Q) <0

then it holds

Proof. We start proving the result when p > 2. Let us recall the weak formulations

/a(u)|Vu|p_2(Vu, V) + M|Vu|”<pda: = / flu)pdx, (2.26)
Q p Q
/a(v)|Vv\P_2(Vv, V) + M|Vv|p<pclﬂv = / f(v)pdz. (2.27)
Q p Q

Then we assume by contradiction that the assertion is false, and consider
(u — )" = max{u — v,0},

that, consequently, is not identically equal to zero. Let us also set QT = supp(u —
v)* N Q. Since by assumption u < v on 9, it follows that (u— )t € Wy P (Q). We
can therefore choose it as admissible test function in (2.26) and (2.27). Whence,
subtracting the two, we get

/Q+ a(u)|VulP~2(Vu, V(u —v)) — a(v)|Vv|P3(Vv, V(u—v)) +

a’(u) Plyu—w x—M vP(u—v)de =
+ [ v de = =P Top(u—v)d (2.28)

- / (F(w) — F@))(u - v) d.
QO+

We can rewrite as follows:
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a(u)((|VulP2Vu — |Vol|P72Vv), V(u —v))) dz

o+

4—/@+ 0))|VolP~*(Vo, V(u — v))dz
Lo, —a wlP(u — v) dz

+/m13(“(“> ()Tl (0~ v)d (229)
a’(v) P \VulP)(u —v)dx

+/Q (IVul? — [Vol?)(u — v)d

+ P
( f))(u—wv)dz.
First of all, since a(u) > n > 0, and using the fact that
(g2 —[g'lPm2e", € = &) = ellel + €)%l = €
for all £,& € R™, it follows that

o / (V] + Vo) 2|V (u — )| da
ot

< / a(w) (VP =2V — [VoP~2Vo, V(u — v)) da
Q+

so that
/ (IVu] + [Vol) 2|V (u — |2dx<0/ )|Vl |V (u — v)d+
—|—C’/ la’ (u) (0)||VulPlu — v| dz +C/ la’ (v)||VulP — [VolP|lu — v| dz+
o |f<u>—f< >Hu_v|zdx
Q+ u—v

(2.30)

Let us now evaluate the terms on right of the above inequality. By the smoothness
of a, the C™® regularity of u, and exploiting Young inequality we get

/ la(u) — a(0)|[VolP~ YV (= v)|dz < c/ lu — o] |V 22V (1 — v)|da <
O+ Q+
gc(;/ (u—v)Qda:—i-(S/ (V] + |[Vo))P 2|V (1 — v)[2 da <
Q+ O+
< @I +0) [ (Vul + Vo=V )
Q+

(2.31)

Here Cj is a constant depending on §, and C,(|Q27|) is the Poincaré constant given
by Theorem 2.2. Note in particular that, since p > 2, we have |Vu|P~2 < (|Vu| +
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|Vu[)P~2. Tt is of course very important the fact that the constant C,(|Q]) goes
to zero, provided that the Lebesgue measure of QT goes to 0. Also we note that,
by the C1® regularity of v, and exploiting the fact that a’ is Lipschitz continuous,
we get

/ (1) — @' (0)|| VP |u — o] der < c/ (u = v)2 do
Q+ Q+
<CCp()) [ (Vul+ Vol 2 V(o) da.
o+
Also, by convexity, we have
|l @vul? = Vol ju ~ o] o
O+
gc/ (V| + Vo)) 2 V(1 — v)|Ju — o] do
Q+
ga/ (|vu|+|W|)p*2|V(u—v)|2da:+c5/ = o2 do
ar ar (2.32)
< (5/ (IVu| + |Vv|)p72|V(u — v)|2 dx
o+
+cacp(|m|)/ (V| + [Vo)P~2V (1 — 0)[2 dz
O+

<@+ CaCr(ID) [ (Vul+ Vel 2 (=) da

Finally, by the Lipschitz continuity of f, it follows
/ |M||u—v|dx§0/ lu —v|? da
Q+ —-v Qt

u

<Cep(@) [ (Val + Vo) 2|9(u o) de
O+
Concluding, exploiting the above estimates, we get

/ (V] + [Vo])P~2|V (u — v)|? da
O+

< (0+Cs Cp(I07])) /m(\VU\ + Vo)V (u = )| de

which gives a contradiction for (6 + Cs Cp(|Q21])) < 1. Therefore, if we consider
0 small fixed, say 0 = i, it then follows that also Cj is fixed. Now, since £(Q) <
0 by assumption, it follows that if 6 is sufficiently small, then we may assume
that Cp(|Q7]) is also small, and that C5s Cp(|Q27|)) < ;. Consequently, it follows
(6 4+ C5Cp(|27])) < & < 1, that leads to the above contradiction, and shows that

actually (v —v)™ = 0 and the thesis. The proof in the case 1 < p < 2 in completely
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analogous, but is based on the classical Poincaré inequality. We give some details
for the reader’s convenience. Exactly as above we get (2.30). This , for 1 < p < 2,
considering the fact that the term (|Vu| + |Vv|)?~2 is bounded below by the fact
that p— 2 < 0 and |Vu|, |Vo| € L=(Q), gives

/ V(= o) do < c/ () — a()]|VolP~1 |V (u — v)|dz+

Q+ Q+

JrC/ la'(u) — a' (v)||VulP|lu — v| dz JrC’/ la' ()]||Vul? — [VolP|lu — v| dz+
Q+ O+

GORFO)
+ [ I - oo <

(u—w)

C/ |u—v||V(u—v)|dx+C/ lu —v|*de <
Qt Qt

) |V(u—v)|2dx—|—05/ lu —v|?dx <
Qt Qt

5 |V(u—v)|2dx+Cng(\Q+\)/ V(u— )P de <
Q+ Qt

(6 + cacp<\sz+|))/ IV (u— o) de

o+

(2.33)

For 0 sufficiently small arguing as above we can assume (§+CsCp(|Q27])) < 1 which
gives (u —v)T = 0 and the thesis.

2.4 The moving plane method
Let us consider a direction, say x1, for example. As customary we set
T,\:{:EER":xlz)\}.
Given x € R™, we define
Ty = (2N —21,Za,...,2y), ux(z)=u(zy),
QA:{xEQ:x1<)\},
a:= wlrelg 7.

Let A be the set of those A\ > @ such that for each p < A none of the conditions (i)
and (ii) occurs, where

(i) The reflection of (2)) w.r.t. T) becomes internally tangent to 9% .
(ii) T is orthogonal to 0.

We have the following
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Proposition 2.3 Let u € C*(Q) be a solution to the problem (S). Then, for any
a < X<A, we have
u(z) < uy(x), Vo € Q. (2.34)

Moreover, for any A with a < A < A we have
u(z) < ux(x), Vo € Oy \ Zua (2.35)
where Z,, x = {x € Q) : Vu(z) = Vuy(z) = 0}. Finally

g—;l(x) >0, Vo € Q. (2.36)
Proof. For a < A < A and X sufficiently close to a, we assume that £(2y) is as
small as we like. We assume in particular that we can exploit the weak maximum
principle in small domains (see Proposition 2.2) in 2. Consequently, since we know
that

u—uy <0, on 082y (2.37)

by construction, by Proposition 2.2 it follows that
U —uy < 0 in Q)\.

We define
A={rA>a:u<uy, forall ¢t € (a,\} (2.38)

Ao = sup Ao. (2.39)

Note that by continuity, we have v < uy,. We have to show that actually A\g = A.
Assume that by contradiction A\g < A and argue as follows. Let A be an open set
such that Z, NQy, C A C Q,,. Note that since |Z,| = 0 (see Theorem 2.1), we can
choice A as small as we like. Note now that by a strong comparison principle [27]
we get

w < Uy, or U= uy,

in any connected component of Qy, \ Z,.
It follows now that

the case u = uy, in some connected component C of 0y, \ Z, is not possible.

The proof of this is completely analogous to the one given in [8] once we have
Proposition 2.2. Consider now a compact set K in 2y, such that |Qy, \ K| is
sufficiently small so that Proposition 2.2 works. By what we proved before, uy, —u
is positive in K \ A which is compact, therefore by continuity we find € > 0 such
that, A9 + € < A and for A < Ay + € we have that [y \ (K \ A)] is still sufficiently
small as before and uy —u > 0 in K \ A. In particular uy —u > 0 on 9(K \ A).
Consequently u < uy on 9(2y \ (K \ A)). By Proposition 2.2 it follows u < uy in
Oy \ (K \ A) and consequently in Q,, which contradicts the assumption Ay < A.
Therefore Ay = A and the thesis is proved. The proof of (2.35) follows by the strong
comparison theorem exploited as above. Finally (2.36) follows by the monotonicity
of the solution that is implicitely in the above arguments.
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Remark 2.1 We notice that, by the assumptions on a(s), the Cauchy problem
7" = a~YP(r) with r(0) = 0, admits a unique global solution r : [0,00) — [0, 00).
alf/(:((;)()v)))
is a solution to our quasi-linear equation. In particular g is positive and continuous
and them the symmetry results for the p-Laplacian equations holds for v, so that
v = v(|z]). In turn, u(z) = r(v(z)) = r(v(|z])) = r o v(|z|), so that u is radially
symmetric as well. This type of argument is no longer valid for coefficients a(z, )
which explicitly depend on x. On the other hand, since various regularity estimates
that we obtained remain valid in this more general non autonomous setting, in the
previous sections we preferred to follow a more direct approach.

Now, if v is a solution to equation —A,v = g(v) with g(v) = , then u = r(v)

3 Properties of the parabolic flow

Let € be a smooth bounded domain in R”, and let @ : R — R be a C! function
such that there exists positive constants C, v and p such that

n<a(s) <C, |d(s)| <C forallseR, (3.1)
a'(s)s >0, forall s € R with |s| > p.

As stated in the introduction, along any given global solution u : RT x Q — R of
problem (F), and setting

F(s) = /05 f(r)dr, seR,

we also consider the energy functional £ defined by

E(u(t) = * /Q a(u(t)) [ Vu(t) Pz — /Q F(u(t))dr,

p

and the related energy inequality (1.2). In particular, the energy functional £ is
non-increasing along solutions. Moreover, by the regularity we assumed on the
global solutions, we have

sup () 1.0 ) < 00, (3.3)
t>0

/000 /Q |ug (7)|*dadr < 0. (3.4)

Next we state a quite useful result.
Lemma 3.1 For all fixed pg > 0, we have

lim  sup |ju(t) —u(t+ p)llLa@) =0, forallge[l,p*).
£=00 1[0, 0]
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If in addition the trajectory {u(t) : t > 1} is relatively compact in Wy'* (), we have

lim sup ||u(t) —u(t+p 1oy = 0,
Jim s () =+ 0l

for all fixed pg > 0.
Proof. Let us first prove that, for all ug > 0, it holds

fm sup [u(t) — u(t + )10y = 0 (35)
£=00 €10, 0]

Given p > 0, for all t > 0 and p € [0, po], from the energy inequality (1.2), we have

t+p t+p
/\u ) —u(t+ p) |dx—/ ‘/ )dT‘dxg/ /|ut(7’)|d7dm
t+p 2
</ pLr(Q / /|ut |d7'dx)

< VLM Q)(E(ult) — Eult + )
1o L™ (2)(E(u(t)) — Eult + o))"/,

Then, since £ is non-increasing and bounded below, the assertion follows by let-
ting ¢ — oo in the previous inequality. Let now ¢ € [1,p*) and assume now by
contradiction that along a diverging sequence of times (¢;), we get
sup lu(t;) — u(t; + p)|[ze) = 0 >0,
HE[O,10]

for some positive constant o and all j large. In particular, there is a sequence

C [0, po] such that |lu(t;) — u(t; + pj)|lLac) > o > 0 for all j large. In light
of (3.3), by Rellich compactness Theorem, up to a subsequence, it follows that
u(t;) = & in LY(Q) as j — oo and u(t; + pj) = & in LI(Q) as j — oo, yielding
€2 — &1llLag) > 0 > 0. In particular §; # &. On the other hand, from (3.5) we
immediately get ||€&2 — &1]|zr = 0, leading to a contradiction. The second part of
the statement has an analogous proof assuming by contradiction that there exists
o > 0 and a diverging sequence of times (¢;) such that

sup[ulty) = ult; + W)y 2 7 > 0,
HE[O,p0]

and then exploiting the relative compactness of {u(t) : t > 1} in Wy ().
On WyP(Q) the functional £ is defined by setting

E(u):% /Q o)Vl — /Q Flu). (3.6)

and it is merely continuous, although its directional derivatives exist along smooth
directions and

&) = [ awVup V- Vo+ o [ aw)vay / fu

We now recall an important compactness result (see e.g. [5, 33])
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Lemma 3.2 Let conditions (3.1) and (3.2) hold. Assume that (up) C WoP(Q) is
a bounded sequence and

1
(wn, ) = / ()| Vunl V- Vo / & (un) | Vun P
Q Q

for every o € C(Q), where (wy,) is strongly convergent in W12 (Q). Then (up)
admits a strongly convergent subsequence in WOI’p(Q),

Lemma 3.3 Let conditions (3.1) and (3.2) hold. Assume that there exist Cy,Cy >
0 such that

[f(s)| < C1+ Cals|, for all s € R, (3.7
for somer € [1,p* —1). Let u : [0,00) x Q@ — R be a global solution to problem (E),
with p > nQ—fQ Then, for every diverging sequence (7;) there exists a diverging

sequence (t;) with t; € [1;,7; + 1] such that
u(t;y) =z in WyP(Q) as j — oo, (3.8)
where either z =0 or z is a solution to problem (S). In addition, it holds

lim  sup |u(t; +u) — zllpa) =0, forallqe[1,p%),
I 1u€gl0, o]

for all fixed po > 0.

Proof. By the definition of solution, for all ¢ € C°(€2) and for a.e. ¢ > 0, we have

/ s (V) pdz + / a(u(t) V() P2 Vult) - Vipda (3.9)
Q Q
+ [ v peds = [ fuo)ods.

p

By means of the summability given by (3.4) it follows that, for every diverging
sequence (7;) C R, there exists a diverging sequence (¢;) with ¢; € [r;,7; + 1],
j > 1, such that

Aj= /Q lug(t;)>dx — 0, as j — oo. (3.10)
Let us now define the sequence (w;) in W1 (Q) by
(wj, 0) = (w}, @) + (wh @),  forall p € WyP(Q),
where we have set
<w}w%=x;ﬂMwa,<wiw>=-:éux%MNM, for all ¢ € Wy (9).
We recall that, under the growth condition (3.7), the map

WP (Q) 3 uws f(u) e W H(Q)
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is completely continuous, and hence, up to a further subsequence, we have
wjl — U, in W_l’p/(Q) as j — oo,

for some € W1 (Q). Turning to the sequence (w3), notice that in view of (3.10),

2n_ by Holder inequality

exploiting the fact that p* > 2 since of the assumption p > B

we get
13 lyy-1.07 ) = sup {| (s, 0)] : 0 € WgP (), ll@llywariy < 1} < CAy,

for some positive constant C. Then w? — 0in WL (Q) as j — oo and, in

conclusion, w; — p in W12 (Q) as j — co. Furthermore, by means of (3.9), we
conclude that

o) = [ alu(t; u(t;)[P~2Vul(t;) - la'Uv u(t;) P
<w],<p>f/Q (u(t)[Vu(ty) P~ Vu(t;) V90+p/ﬂ (u(t;)[Vult)[Pe,  (3.11)

for all ¢ € C2°(Q). We have thus proved that (u(t;)) € W, P () is in the framework
of the compactness Lemma 3.2. In turn, by Lemma 3.2, up to a subsequence
(u(t;)) is strongly convergent to some z in Wy?(Q), as j — co. In particular,
u(tj, ) = z(z) and Vu(t;,z) = Vz(x) for a.e. x € Q, as j — co. Since
la' (u(t;, z))|Vu(ty, z)[Pe(x)] < C|Vu(tj,z)P, forall j>1andz e Q,
and |Vu(tj,z)|P — |Vz(x)[P in L'(Q) as j — oo, we have
lim [ @ (u(t)IVu(t))eds = [ o) T2Peds
by generalized Lebesgue dominated convergence theorem. Also, as
alu(ty, ©))|[Vu(ty, ) P2 Vu(ty, z) = a(2(2))|Vz(2) P72 Va(2),
and )
a(u(t;))|Vu(t;)|P~2Vu(t;) is bounded in LP (),

we have

lim [ a(u(t;))|Vu(t;)|P~2Vu(t;) - Vodz = / a(2)|Vz[P72Vz - Vodz.
Q

j—oo Jq
Finally, since f(u(tj,z)) — f(z(z)) a.e. in Q, as j — oo, we get
lim (w5, ) = lim [ futt)pds = [ f@pds
j—oo j—oo Jo Q
In particular, letting j — oo in formula (3.11), it follows that z is a (possibly zero)
weak solution to problem
I
div(a(2)|VA2V2) + L\ vap — 5), .
p

The last assertion of the statement is just a combination of (3.8) with Lemma 3.1.
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Lemma 3.4 Let ug € A and let u : [0,00) x Q — RT be the corresponding global
solution to problem (E). Then the w-limit set w(ug) only contains positive (possibly
identically zero) solutions of problem (S).

Proof. Let z € w(ug). Therefore, there exists a diverging sequence (¢;) C R* such
that u(t;) converges to z in W, P(Q), as j — oo. Let now ¢ € C2°(Q2) be a given
test function with ||¢||cr < 1. Multiply problem (E) by ¢ and integrate it in space
over 2 and in time over [t;,t; + 0;], where o, € [0, 1] for a fixed o > 0, yielding

tj+0'j tj+0'j
/ / uppdx +/ / a(u)|VulP~2Vu - Vodr (3.12)
t; Q t;
tito; tit+oj
/ / |Vu|p<pdx—/ /f Yda,
t t;

for any j > 1. Now, by virtue of Lemma 3.1, it follows that

’/:+Uj /QUtSDd:C‘ - ‘/Q(u(tj +oj) - “(tj))cpda:‘
< [ lutts + 05) = uiellplds

< Cllulty +05) —u(ty)llLr = o(1), as j— oo.

In particular, recalling that u € C([0, c0), Wol’p(Q, R™)), by applying the mean value
theorem, we find a new diverging sequence (§;) C R™ with &; € [¢;,t; + o] such
that

/ a(u(&)))|\Vu(E) P2 Vu(E,) - Vipdz + - / o (&) VulE))Pode  (3.13)
Q P Ja
- /Q Flu(;))pd + o(1), as j - oo.

In general, the choice of the sequence (£;) may depend upon the particular test
function ¢ that was fixed. On the other hand, taking into account the second part
of the statement of Lemma 3.1, without loss of generality we may assume that &;
is independent of ¢. In fact, denoting by (530-) and (ff) the sequences satisfying the
property above and related to a reference test functions ¢y and to an arbitrary test
function ¢ respectively, and writing,

u({?) — u({f) = 0, where 8; — 0 in Wol’p(Q) as j — oo, (3.14)

where $; is independent of ¢, we get
| [ el )ITuEr 2 u(e) - Voo = [ atule)ITue)P2Vule)) - Vids
= | | (@ IVa(E) P2 Vale)) — alule) DITule) P Vule))) - Vo ds
< [ Jaule)IVule) P2 Vals) = atule) ) ITule)) P2 Vule))de = =
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where w; — 0, as j — oo, by the generalized Lebesgue dominated convergence. In
a similar fashion one can treat the other terms. By the relative compactness of the
trajectory u(t) into Wy *(§2), there exists a subsequence (£}, ), that we rename into
(&;), such that u(¢;) is strongly convergent to some 2 in Wol’p(Q) as j — oo. Then,
letting j — oo in (3.13), the generalized Lebesgue dominated convergence yields

1
/a(2)|Vé|p*2V,€' -Vpdx + 5/ a'(2)|VE|Ppdr = / f(&)pdz, Yo e CF(Q),
Q Q Q

showing that 2 is a solution of problem (S)2. Then, on one hand, we have u(t;) — 2
in W,P(Q) as j — oo and, on the other hand, u(&;) — 2 in W, P(Q) as j — co. In
light of the second part of the statement of Lemma 3.1, we have

2 = Sl < 12 = wt) gy + Nults) — (&) oy + 106E) = 2l

< sup Jlulty) — ult; + )l + o) = of1),
nelo,1]

as j — oo, yielding Z = z and concluding the proof.

Remark 3.1 Forcing the nonlinearity f to be zero for negative values, the sign
condition on a’ usually induces global solutions starting from positive initial data
to remain positive for all times ¢t > 0. In fact, let us definite f : R — R by setting

5 f(s) ifs>0,
= 3.15
/() {0 if s <0, (3.15)
assume that ug > 0 a.e. in ) and, furthermore, that
a'(s) <0, foralls<O0. (3.16)
Then the solutions to the problem
uy — div(a(uw)|VulP~2Vu) + %a’(u)\VuV’ = f(u) in (0,00) x €,
u(0,x) = ugp(x) in £, (3.17)
u(t,z) =0 in (0,00) x 09,

satisfy u(z,t) > 0, for a.e. x € Q and all ¢ > 0. In fact, let us consider the Lipschitz
function @ : R — R being defined by

Q(S):{o if >0,

s ifs<0.

Testing equation (3.17) by Q(u) € W,*(€2) (which is an admissible test by (3.16) in
view of the result of [4] being a'(u)|VuPQ(u) > 0 a.e. in R™) and recalling (3.15),
we get

P=2yy uxla’uu”um
/Q wQu)dz + /Q ()| VuP 2 VavQ(u)ds + /Q ()| VulPQ(u)d

2Notice that we assumed |||l o1 < 1. It is easily seen, anyway, that this assumption may be
dropped via rescaling.
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- [ fuQuds
Notice that it holds
[ =55 [ @uds, [ fwud=o.
as well as

/Qa(u)|Vu|p_2Vu -VQ(u)dx = /

QN{u<0}

= / a' (w)u|VulPdx > 0.
QN{u<0}

/Q2 )dz <0,

which yields the assertion by the definition of () and the assumption that the initial
datum wug is positive, being Q(u(t)) = 0, for all times ¢ > 0.

a(u)|Vul|Pdz > 0,/ a' (u)|VulPQ(u)dz
Q

In turn we conclude that

4 Proofs of the theorems

Finally we can prove the main results.

Proof of Theorem 1.1. Assume that f is strictly positive in (0,00) and € is
strictly convex with respect to a direction, say x1, and symmetric with respect
to the hyperplane {x; = 0}. By Proposition 2.3, since A = 0 in this case, it
follows u(z1,2’) < u(—x1,2") for 1 < 0. In the same way one can prove that
u(zy,2") > u(—x1,2"). Therefore

w(zy,2') = u(—mzq,2'),

that is u belongs to the class S, , since the monotonicity follows by (2.36) in Propo-
sition 2.3. Finally, if  is a ball, by repeating this argument along any direction, it
follows that u belongs to R.

Proof of Theorem 1.2. Part (a) of the assertion follows by combining Theorem 1.1
with Lemma 3.3. According to the notations in the statement of Theorem 1.2, if
z#0and z € Wy? N L=(Q) then by the regularity results of [11, 20, 34] it follows
that z € C1*(Q) and hence the assumptions of Theorem 1.1 are fulfilled. Part (b)
follows by combining Theorem 1.1 with a uniqueness result (of radial solutions) due
to Erbe-Tang [14, Main Theorem, p.355].

Proof of Theorem 1.3. Part (a) of the assertion follows from a combination of
Theorem 1.1 with Lemma 3.4, while part (b) follows by combining Theorem 1.1
with a uniqueness result (of radial solutions) due to Erbe-Tang [14, Main Theorem,
p.355].
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