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Symmetry results for the p.x/-Laplacian equation

Luigi Montoro, Berardino Sciunzi and Marco Squassina

Abstract. We consider the equation �div.jDujp.x/�2Du/ D f .x; u/ and the related Di-
richlet problem. For axially symmetric domains we prove that, under suitable assumptions,
there exist mountain-pass solutions which exhibit partial symmetry. Furthermore, we show
that semi-stable or non-degenerate smooth solutions need to be radially symmetric in the
ball.
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1 Introduction and results

Let � be a smooth bounded domain in RN and p W �! R be a continuous func-
tion with

1 < p� WD inf
�
p � sup

�

p DW pC <1: (1.1)

In the last few years, the interest towards nonlinear elliptic problems of the type

�div.jDujp.x/�2Du/ D f .x; u/; in �, (1.2)

has considerably increased and various results appeared in the literature about ex-
istence and regularity of weak solutions, see e.g. [7, Chapter 13] and the refer-
ences therein. The main goal of our paper is to establish some symmetry results
for positive solutions, provided that the domain � and both functions p.x/ and
x 7! f .x; s/ admit some partial or full symmetry in�. We shall obtain two type of
symmetry results by exploiting two completely different techniques. A first class of
results is obtained through suitable versions of the Mountain-Pass Theorem which
incorporates symmetry features provided that the functional naturally associated
with the problem does increase under polarization [17–20]. In this case we obtain
the existence of nontrivial mountain-pass solutions with some partial symmetry
information if the domain is axially symmetric with respect to a fixed half space
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H with 0 2 @H or if it is invariant under reflection with respect to any half space
H with 0 2 @H . A second class of results is obtained when � is a ball in RN

by exploiting fine regularity estimates for the C 1;˛ solutions, allowing to obtain
a meaningful definition for the first eigenvalue of the linearized operator associ-
ated with (1.2), see [3,6,9,13]. In this case we obtain that any semi-stable solution,
namely the first eigenvalue of a suitably defined linearized operator is nonnegative,
is radially symmetric when f .x; s/ D f0.jxj; s/ and p.x/ D p0.jxj/. Whence, in
some sense, solutions with some minimality property such as being of mountain-
pass type or semi-stable inherit some symmetry from the data of the problem.
We now come to the statement of the main results. In the following we denote
by H � RN a closed affine half space of RN , by �H .x/ the reflected of a point
x 2 RN with respect to @H and by H0 the set of all half spaces H � RN such
that 0 2 @H . The polarization of u by a half spaceH is denoted by uH and �H .�/
denotes the set of all reflected points of �.

Theorem 1.1. Assume that �H .�/ D � for some H 2 H0 and, for all x 2 �

p.�H .x// D p.x/; q.�H .x// D q.x/;

V .�H .x// D V.x/; K.�H .x// D K.x/:
(1.3)

Also, assume that p; q are logarithmic Hölder continuous and q W �! R is a
continuous function with

inf
x2�

.q.x/ � p.x/C 1/ > 0;

inf
x2�

.p�.x/ � q.x/ � 1/ > 0; p�.x/ D
p.x/N

N � p.x/
;

(1.4)

V;K 2 C.�/ with V.x/ � V0 > 0 for all x 2 �. Then there exists a nontrivial
solution u 2 W 1;p.x/

0 .�/ of8̂̂<̂
:̂
�div.jDujp.x/�2Du/C V.x/up.x/�1 D K.x/uq.x/ for x 2 �,

u � 0 for x 2 �,

u D 0 for x 2 @�,

(1.5)

at the mountain-pass level such that uH is also a solution of (1.5) at the same
energy level.

In [1, Lemma 2.5], for the semi-linear case p.x/ D 2 for every x 2 �, the au-
thors introduce a new ingredient, namely that if u; uH are both classical solution
of ��w D f .x;w/ and f satisfies the invariance

f .�H .x/; s/ D f .x; s/; for all x 2 � and s 2 R; (1.6)
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with respect to someH 2H0, then either u.x/ > u.�H .x// for all x 2 Int.H\�/
(resp. u.x/ < u.�H .x// for all x 2 Int.H\�/) or u.x/D u.�H .x// for all x 2�.
On account of Theorem 1.1, it would be interesting to extend these type of results
to more general framework. This is to our knowledge an interesting open problem.
In the framework of Theorem 1.1, we also have the following

Theorem 1.2. Assume that �H .�/ D � for allH 2 H0, and that (1.3)–(1.4) hold.
Then there exists a nontrivial solution u 2 W 1;p.x/

0 .�/ of (1.5) at the mountain-
pass level such that u.x/ D  .jxj; � � x/ for some unit vector � 2 RN and some
 W RC �R! R with  .r; � / nondecreasing for all r � 0.

The statement of Theorem 1.2 could be easily extended, via minor modifica-
tions, to cover the case where the domain is invariant under spherical cap sym-
metrization [19], �� D �, which is equivalent to �H D � for every H 2 H0, in
place of the more stringent assumption �H .�/ D �, for all H 2 H0. It is read-
ily seen that Theorems 1.1 and 1.2 can be extended to cover a more general class
of nonlinearities f .x; s/ in place of K.x/sq.x/ for s � 0. It is sufficient to as-
sume (1.6) a growth condition such as jf .x; s/j � C C C jsjq.x/ for all x 2 �
and s 2 R, f .x; s/ D 0 for s � 0 (in order to guarantee that the solutions are non-
negative), f .x; s/ D o.jsjp.x/�1/ as s ! 0 and an Ambrosetti–Rabinowitz type
condition: there exists � > 0 with inf¹� � p.x/ W x 2 �º > 0 and R > 0 such
that

�F.x; s/ � f .x; s/s for all x 2 � and s � R,

where

F.x; s/ D

Z s

0

f .x; �/d�:

We refer the reader to [5], where the mountain-pass geometry and the Palais–
Smale condition of

'.u/ D

Z
�

jDujp.x/

p.x/
C

Z
�

V.x/

p.x/
jujp.x/ �

Z
�

F.x; u/; u 2 W
1;p.x/
0 .�/;

are handled in this framework. In the second part of the paper we study the radial
symmetry of solutions to (1.2), considering the problem8̂̂<̂

:̂
�div.jDujp.jxj/�2Du/ D f .jxj; u/ in �;

u > 0 in �;

u D 0 on @�;

(1.7)

with f .t; s/ locally Lipschitz continuous in Œ0;1/�Œ0;1/ and positive in Œ0;1/�
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.0;1/. Let us recall that the corresponding linearized operator is given by

Lu.v; '/ WD

Z
�

jDujp.x/�2.Dv;D'/

C

Z
�

.p.x/ � 2/jDujp.x/�4.Du;Dv/.Du;D'/

�

Z
�

@sf .jxj; u/v';

for any v; ' 2 H 1;2
0;� , where the weighted Sobolev space H 1;2

0;� will be suitably
defined in Section 5.2. We will prove some summability properties of jDuj�1 that
will allow us to get a weighted Sobolev type inequality (see Theorem 5.2). This
is the key to recover a complete spectral theory for the linearized operator, carried
out in Section 5.3. Consequently we can give the following

Definition 1.3. We say that a solution u is semi-stable if

�1.Lu; �/ � 0

being �1.Lu; �/ the first eigenvalue of the linearized operator Lu in �. Further-
more, the solution u is said to be non-degenerate if 0 is not an eigenvalue of the
linearized operator Lu in �.

Note that, by the variational characterization of the first eigenvalue, it follows
that equivalently u is semi-stable if and only if Lu.'; '/ � 0 for any ' 2 H 1;2

0;� .
Since the linearized operator arises as second derivative of the energy functional,
it follows that the minima of the energy functional are semi-stable solutions. Also,
if f .t; s/ is decreasing with respect to the s-variable, then it follows that any solu-
tion is semi-stable. Moreover in many cases, depending on p. � /, it is possible to
show that monotone solutions are stable (namely �1.Lu; �/ > 0) solutions, see
e.g. [10]. On the other hand mountain-pass solutions (as the ones previously ob-
tained) generally have Morse index equal to one. That is, the first eigenvalue of the
linearized operator is negative, and the second one is non-negative. This is well
known in the semi-linear case and we refer to [4] for some remarks regarding the
quasi-linear case. We have the following

Theorem 1.4. Let� be a ball or an annulus in RN and u be any C 1;˛.�/ solution
to (1.7), with f .t; s/ locally Lipschitz continuous in Œ0;1/ � Œ0;1/ and positive
in Œ0;1/ � .0;1/. Assume that u is semi-stable. Then u is radially symmetric
provided that p 2 C 1.�/ with p.jxj/ � 2. The same conclusion follows assuming
that the solution u in non-degenerate.
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The symmetry result obtained in Theorem 1.4 holds under very general as-
sumptions on the nonlinearity f , assuming that the solution is Semi-stable or non-
degenerate. In the semi-linear case p.x/ D 2, or more generally in the quasi-linear
case p.x/ D p, in the case of a convex domain (not the annulus), it is possible
to get similar results exploiting the moving plane technique [15] (see also [11]),
without any stability assumption. We refer to [6] and the references therein for a
description of the moving planes procedure in the quasi-linear case. Let us men-
tion here that this technique in general cannot be exploited in our case. In fact
the moving plane technique is based on the invariance of the equation under re-
flections with respect to hyperplanes, which is not true in general in the case of
p.x/-Laplace equations. Let us also point out that our result holds in the case of
solutions which are minima of the associated energy functional (and consequently
semi-stable). We refer to [8] (see Section 3) for previous results in this setting.

2 Recalls on variable exponent Sobolev spaces

We recall here some definitions and basic properties of the variable exponent
Lebesgue–Sobolev spaces Lp.�/.�/, W 1;p.�/.�/ and W 1;p.�/

0 .�/, where � is a
bounded domain in RN . We set

CC.�/ D
°
h 2 C.�/ W min

�

h > 1
±
;

and, for h 2 C.�/, we denote

h� WD min
�

h and hC WD max
�

h:

For p 2 CC.�/, we introduce the variable exponent Lebesgue space

Lp.�/.�/ D

²
u W �! R W u is measurable and

Z
�

ju.x/jp.x/dx < C1

³
;

endowed with the Luxemburg norm

kukp.�/ D inf
²
� > 0 W

Z
�

ˇ̌̌̌
u.x/

�

ˇ̌̌̌p.x/
dx � 1

³
;

which is a separable and reflexive Banach space. If u 2 Lp.�/.�/, the term

�p.�/.u/ WD

Z
�

ju.x/jp.x/dx

is called p. � /-modular of u. We summarize here a few basic properties of these
spaces, the details being found in [7]. If p1; p2 2 CC.�/ such that p1 � p2 in �,
then the embedding Lp2.�/.�/ ,! Lp1.�/.�/ is continuous. For any u 2 Lp.�/.�/
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and v 2 Lp
0.�/.�/, the following Hölder type inequality holds:ˇ̌̌̌Z

�

uvdx

ˇ̌̌̌
�

�
1

p�
C

1

p0�

�
kukp.�/kvkp0.�/:

The norm and p. � /-modular of every u 2 Lp.�/.�/ have the following relation:

min
®
kuk

p�

p.�/
; kuk

pC

p.�/

¯
� �p.�/.u/ � max

®
kuk

p�

p.�/
; kuk

pC

p.�/

¯
:

For p 2 CC.�/, the variable exponent Sobolev space is defined by

W 1;p.�/.�/ D
®
u 2 Lp.�/.�/ W Diu 2 L

p.�/.�/ for i D 1; : : : ; N
¯
;

endowed with the norm

kuk D kukp.�/ C kDukp.�/;

which is a separable and reflexive Banach space. It is important to note that, un-
like the constant exponent case, the smooth functions are in general not dense in
W 1;p.�/.�/. However, as shown in [7], if the exponent variable p 2 CC.�/ is
logarithmic Hölder continuous, see [7], then the smooth functions are dense in
W 1;p.�/.�/. The space W 1;p.�/

0 .�/ is defined as the closure of C10 .�/ under the
norm k � k. Moreover, the p.�/-Poincaré inequality kukp.�/ � CkDukp.�/ holds for
all u 2 W 1;p.�/

0 .�/, where C depends on p, j�j, diam.�/ and N , see [7, Theo-
rem 4.3]. Therefore,

kuk1;p.�/ D kDukp.�/

is an equivalent norm in W 1;p.�/
0 .�/ and W 1;p.�/

0 .�/ is a separable and reflexive
Banach space. Finally, note that when s 2 CC.�/ and inf�.p�.x/ � s.x// > 0,
where p�.x/ D Np.x/=ŒN � p.x/� if p.x/ < N and p�.x/ D1 if p.x/ � N ,
the embedding W 1;p.�/

0 .�/ ,! Ls.�/.�/ is compact.

Notation. Generic fixed numerical constants will be denoted by C (with subscript
in some case), and will be allowed to vary within a single line or formula.

3 Proof of Theorem 1.1

Problem (1.5) is naturally associated with the functional ' W W 1;p.x/
0 .�/! R

'.u/ D

Z
�

jDujp.x/

p.x/
C

Z
�

V.x/

p.x/
jujp.x/ �

Z
�

K.x/

q.x/C 1
juCjq.x/C1: (3.1)
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It is readily seen that ' is of class C 1 and its critical points correspond to nonneg-
ative weak solutions to (1.5), namely we haveZ

�

jDujp.x/�2Du �D� C

Z
�

V.x/up.x/�1� D

Z
�

K.x/uq.x/�;

for all � 2 W 1;p.x/
0 .�/. For the reader’s convenience, we recall that the polar-

ization of a measurable function u W RN ! R by a polarizer H is the function
uH W RN ! R defined by

uH .x/ WD

´
max¹u.x/; u.�H .x//º if x 2 H;
min¹u.x/; u.�H .x//º if x 2 RN nH .

The polarization �H � RN of a set � � RN is defined as the unique set which
satisfies ��H D .��/

H , where � denotes the characteristic function. The polar-
ization uH of a function u defined on � � RN is the restriction to �H of the po-
larization of the extension Qu W RN ! R of u by zero outside �. For a domain �,
the set �H .�/ denotes the set of all reflected points of�. In particular, ifH 2 H0

and � is invariant under reflection with respect to @H , namely �H .�/ D �, then
uH W �! R writes down as

uH .x/ D

´
max¹u.x/; u.�H .x//º if x 2 H \�;
min¹u.x/; u.�H .x//º if x 2 .RN nH/ \�.

(3.2)

3.1 Some preliminary results

In [18], Squassina and Van Schaftingen recently proved the following

Lemma 3.1. Let .X; k � k/ be a Banach space,M be a metric space andM0 �M .
Let us also consider �0 � C.M0; X/ and define the set

� D ¹ 2 C.M;X/ W  jM0 2 �0º:

If ' 2 C 1.X;R/ satisfies

c D inf
2�

sup
t2M

'..t// > sup
02�0

sup
t2M0

'.0.t// D a;

‰ 2 C.X;X/ and
' ı‰ � '; ‰.�/ � �;

then for every � 2 �0; c�a
2
Œ, ı > 0 and  2 � such that

sup
M

' ı  � c C �;
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there exist elements u; v;w 2 X such that

(a.1) c � 2� � '.u/ � c C 2�,

(a.2) c � 2� � '.v/ � c C 2�,

(b.1) ku � wk � 3ı,

(b.2) distX .w; .M// � ı,

(b.3) kv �‰.w/k � 2ı,

(c.1) k'0.u/k < 8�=ı,

(c.1) k'0.v/k < 8�=ı.

We now prove the following

Lemma 3.2. Assume that �H .�/ D � with respect to some half space H 2 H0

and that p W �! .1;C1/ and � W �! RC are continuous functions such that

p.�H .x// D p.x/; �.�H .x// D �.x/; for all x 2 �. (3.3)

Then Z
�

�.x/jDuH jp.x/ D

Z
�

�.x/jDujp.x/; for all u 2 W 1;p.x/
0 .�/.

Similarly Z
�

�.x/juH jp.x/ D

Z
�

�.x/jujp.x/; for all u 2 Lp.x/.�/.

Proof. If u 2 W 1;p.x/
0 .�/ and H 2 H0, it follows that uH 2 W 1;p.x/

0 .�/. To
prove this, it is sufficient to argue as in the beginning of the proof of [16, Propo-
sition 2.3] for the case � D RN and then recall that by definition uH D . Qu/H j�
and . Qu/H jRN n� D 0, being �H .�/ D �. Setting

v.x/ WD u.�H .x// and w.x/ WD uH .�H .x//;

it follows that v;w belong to W 1;p.x/
0 .�/ and

DuH .x/ D

´
Du.x/ if x 2 ¹u > vº \H \�;
Dv.x/ if x 2 ¹u � vº \H \�;

Dw.x/ D

´
Dv.x/ if x 2 ¹u > vº \H \�;
Du.x/ if x 2 ¹u � vº \H \�;

(3.4)

and, for x 2 H \�, we have

uH .x/ D v.x/C .u.x/ � v.x//C and w.x/ D u.x/ � .u.x/ � v.x//C:
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Writing down �H as �H .x/ D x0CRx, where R is an orthogonal linear transfor-
mation (symmetric, as reflection), taking into account that jdetRj D 1 and the for-
mula jDv.x/j D jD.u.�H .x///j D jR.Du.�H .x///j D j.Du/.�H .x//j (and the
analogous formula for jDw.x/j D j.DuH /.�H .x//j) recalling (3.3), (3.4) and
that

� \ .RN nH/ D �H .� \H/;

we haveZ
�

�.x/jDujp.x/ D

Z
H\�

�.x/jDujp.x/ C

Z
H\�

�.x/j.Du/.�H .x//j
p.x/

D

Z
H\�

�.x/jDujp.x/ C

Z
H\�

�.x/jDvjp.x/

D

Z
¹u>vº\H\�

�.x/jDujp.x/ C

Z
¹u>vº\H\�

�.x/jDvjp.x/

C

Z
¹u�vº\H\�

�.x/jDvjp.x/

C

Z
¹u�vº\H\�

�.x/jDujp.x/

D

Z
H\�

�.x/jDuH jp.x/ C

Z
H\�

�.x/jDwjp.x/

D

Z
�

�.x/jDuH jp.x/:

This concludes the proof.

We can now prove the following

Lemma 3.3. Assume that �H .�/ D � with respect to some H 2 H0 and that
p W �! .1;C1/ is a continuous functions such that

p.�H .x// D p.x/; for all x 2 �. (3.5)

Then the map

‰ W W
1;p.x/
0 .�/! W

1;p.x/
0 .�/; u 7! uH ;

is well defined and continuous.

Proof. Let .uj / � W
1;p.x/
0 .�/ be a sequence which strongly converges to some

u0 2 W
1;p.x/
0 .�/. Observe that, for every fixed � > 0, by applying Lemma 3.2
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with �.x/ WD ��p.x/ we haveZ
�

�
jDuHj j

�

�p.x/
D

Z
�

�
jDuj j

�

�p.x/
; for all j � 1. (3.6)

Then, by the arbitrariness of � and the definition on k � kLp.x/ , there holds

sup
j�1

kDuHj kLp.x/ D sup
j�1

kDuj kLp.x/ < C1:

Since .uHj / is bounded in the reflexive space W 1;p.x/
0 .�/, up to a subsequence,

there exists w 2 W 1;p.x/
0 .�/ such that .uHj / converges weakly to w as j ! 1.

Observe now that, since the polarization is contractive for Lm.�/-spaces (pre-
cisely, see [19, Proposition 2.3], case of totally invariant domains) and since the
injection i W Lp.x/.�/! Lp�.�/ is continuous, for all j � 1

kuHj � u
H
0 kLp� .�/ � kuj � u0kLp� .�/

� Ckuj � u0kLp.x/.�/ � Ckuj � u0kW 1;p.x/
0 .�/

;

where in the last inequality we used Poincaré inequality. Hence uHj converges to
uH0 strongly in Lp�.�/. Hence w D uH0 . In conclusion

uHj * uH0 in W 1;p.x/
0 .�/ as j !1;

and
lim
j!1

kDuHj kLp.x/.�/ D kDu
H
0 kLp.x/.�/:

AsW 1;p.x/
0 .�/ is uniformly convex (see, for instance, [7, Theorem 8.1.6, p. 243]),

we can finally conclude that uHj ! uH0 as j !1 in W 1;p.x/
0 .�/.

3.2 Proof of Theorem 1.1 concluded

With the above results, apply Lemma 3.1 by taking

X WD W
1;p.x/
0 .�/; M WD Œ0; 1�; M0 WD ¹0; 1º; �0 D ¹0; �º (3.7)

with � � 0 a fixed function with �H D � and '.�/ < 0 (for an explicit construction
of a function � satisfying these conditions, see [5, bottom of p. 613]) and hence

� D
®
 2 C.Œ0; 1�;W

1;p.x/
0 .�// W .0/ D 0; .1/ D �º:
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It is readily seen that the functional ' introduced in (3.1) is C 1 smooth. Further-
more,

c D inf
2�

sup
t2Œ0;1�

'..t// > 0 D max¹'.0/; '.�/º D sup
02¹0;�º

sup
t2¹0;1º

'.0.t// D a;

where the first inequality (namely the mountain-pass geometry of ') can be proved
by arguing exactly as in [5, pp. 612–613]. In light of Lemma 3.3 the polarization
map is continuous. Also by using Lemma 3.2 with the choices �.x/ D p.x/�1,
�.x/ D V.x/

p.x/
and �.x/ D V.x/

q.x/C1
respectively (notice that, on account of (1.3)

any of these choices of � remain invariant under reflection with respect to @H ),
we have

'.uH / D

Z
�

jDuH jp.x/

p.x/
C

Z
�

V.x/

p.x/
juH jp.x/ �

Z
�

K.x/

q.x/C 1
j.uC/H jq.x/C1

D

Z
�

jDujp.x/

p.x/
C

Z
�

V.x/

p.x/
jujp.x/ �

Z
�

K.x/

q.x/C 1
j.uC/jq.x/C1 D '.u/

for every u 2 W 1;p.x/
0 .�/. Finally, ‰.�/ � � since for every  2 � it follows,

again in view of Lemma 3.3, that H 2 C.Œ0; 1�;W 1;p.x/
0 .�// and

H .0/ D ..0//H D 0H D 0 and H .1/ D ..1//H D �H D �:

By the definition of c we can find a sequence of curves .j / � � such that

sup
t2Œ0;1�

'.j .Œ0; 1�// � c C 1=j
2:

Apply now Lemma 3.1 with ıj D 1=j , "j D 1=j 2 and and obtain three sequences
.uj /, .vj / and .wj / in W 1;p.x/

0 .�/ with

lim
j
'.uj / D lim

j
'.vj / D c; lim

j
'0.uj / D lim

j
'0.vj / D 0

and
lim
j
kuj � wj kW 1;p.x/

0 .�/
D 0; lim

j
kvj � w

H
j kW 1;p.x/

0 .�/
D 0:

Since ' satisfies the Palais–Smale condition (to this regard, we refer the reader to
[5, pp. 614–615], our functional is included in the framework covered therein), up
to a subsequence, .uj / converges to some u 2 W 1;p.x/

0 .�/. Hence, the sequence
.wj / also converges to u. By continuity of the polarization, .vj / converges to uH .
The conclusion follows since ' is of class C 1.
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4 Proof of Theorem 1.2

We recall a definition from [19]. Let X and V be two Banach spaces and let S be
a subset of X . We consider two maps � W S ! V , u 7! u� (symmetrization map)
and h W S �H0 ! S , .u;H/ 7! uH (polarization map), where H0 is a path-con-
nected topological space. We assume:

(i) X is continuously embedded in V ,

(ii) h is a continuous mapping,

(iii) for each u 2 S andH 2H0 it holds .u�/H D .uH /� D u� and uHH D uH ,

(iv) there exists a sequence .Hm/ in H0 such that, for u 2 S , uH1���Hm converges
to u� in V ,

(v) for every u; v 2 S and H 2 H0 it holds kuH � vHkV � ku � vkV .

We recall the main result of [19].

Lemma 4.1. Let X and V be two Banach spaces, S � X , � and H0 satisfying
the requirements of the abstract symmetrization framework. Let ' W X ! R be a
C 1 functional. Let M be a metric space and let M0 be a closed subset of M and
�0 � C.M0; X/. Let us define

� D
®
 2 C.M;X/ W  jM0 2 �0

¯
:

Assume that

C1 > c D inf
2�

sup
�2M

'..�// > sup
02�0

sup
�2M0

'.0.�// D a;

and that
8H 2 H0; 8u 2 S W '.uH / � '.u/:

Then, for every " 2 .0; .c � a/=2/, every ı > 0 and  2 � such that

sup
�2M

'..�// � c C "; .M/ � S;  j
H0
M0
2 �0 for some H0 2 H0;

there exists u 2 X such that

c � 2" � '.u/ � c C 2"; kd'.u/k � 8"=ı; ku � u�kV � Kı;

being K a constant depending upon the embedding i W X ! V .

Lemma 4.2. Assume that �H .�/ D � for allH 2 H0 and that (1.3) holds for any
H 2 H0. Then the choice X WD S D W 1;p.x/

0 .�/ and V WD Lp�.�/ endowed
with the natural norms is compatible with abstract symmetrization framework.
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Proof. Since� is invariant under reflection with respect to allH 2 H0, it follows
that � is invariant under cap symmetrization [19]. Of course X is continuously
embedded into V . Let us now prove that h.u;H/ WD uH is a continuous mapping
from X �H0 to X . Here H0 is meant to be endowed with the metric d introduced
in [20, Definition 2.35], which makes H0 a separable metric space. Let .uj ;Hj /
be a sequence in X �H0 which converges to .u0;H0/. As for identity (3.6), for
every � > 0

Z
�

�
jDu

Hj
j j

�

�p.x/
D

Z
�

�
jDuj j

�

�p.x/
; for all j � 1.

Then, it follows that .uHjj / remains bounded inX and, up to a subsequence, it con-
verges to some function w weakly inX (and strongly in V by the compact embed-
ding theorem). In particular, .uHjj / converges to w in Lp�.�/. On the other hand,
if .#m/ � C1c .�/ is a sequence converging to u0 strongly inLp�.�/ asm!1,
for every j;m � 1, we have

ku
Hj
j � u

H0
0 kLp� .�/ � ku

Hj
j � u

Hj
0 kLp� .�/ C ku

Hj
0 � u

H0
0 kLp� .�/

� kuj � u0kLp� .�/ C ku
Hj
0 � #

Hj
m kLp� .�/

C k#
Hj
m � #H0m kLp� .�/ C k#

H0
m � u

H0
0 kLp� .�/

� Ckuj � u0kLp.x/.�/ C 2k#m � u0kLp� .�/

C k#
Hj
m � #H0m kLp� .�/:

Letting j ! 1 at m fixed first and then finally m ! 1, it follows that .uHjj /

converges to uH00 in Lp�.�/. We also used the fact that for a fixed compactly
supported function # , it holds that #Hj converges to #H0 uniformly on � for
j !1. By uniqueness, w D uH00 . In conclusion

u
Hj
j * u

H0
0 ; as j !1; and lim

j!1
kDu

Hj
j kLp.x/.�/ D kDu

H0
0 kLp.x/.�/:

Then, since as already remarked W 1;p.x/
0 .�/ is uniformly convex, we can con-

clude that
u
Hj
j ! u

H0
0 as j !1,

concluding the proof of the continuity of h. Also, for all u 2 X , u belongs to
Lp�.�/ and, in light of [19, Theorem 2.1], there exists a sequence .Hj / � H0

such that, for all u 2 L�.�/, kuH1���Hj � u�kLp� ! 0. The contractivity of uH

is the space Lp�.�/ is a standard fact.
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4.1 Proof of Theorem 1.2 concluded

On account of Lemma 4.2, it is sufficient to argue as for the proof of Theorem 1.1.
Applying Lemma 4.1 with the choices (3.7), and with ıj D 1=j and "j D 1=j 2,
we find .uj / � W

1;p.x/
0 .�/ such that '.uj /! c and '0.uj /! 0 as j !1 and

kuj � u
�
j kLp� .�/ ! 0 as j !1. Since, as already pointed out in the proof of

Theorem 1.1, ' satisfies the Palais–Smale condition, it follows that, up to a subse-
quence, .uj / converges to some u 2 W 1;p.x/

0 .�/. Hence '.u/ D c and '0.u/ D 0.
Finally, since

ku � u�kLp� .�/ � ku � uj kLp� .�/ C kuj � u
�
j kLp� .�/ C ku

�
� u�j kLp� .�/

� 2Cku � uj kLp.x/.�/ C kuj � u
�
j kLp� .�/;

taking into account Poincaré inequality, letting j !1, yields u D u�. This con-
cludes the proof.

5 Proof of Theorem 1.4

We consider C 1;˛ solutions to problem (1.7). Obviously problem (1.7) has to be
understood in weak sense, that is u 2 W 1;p.�/

0 .�/ is a weak solution to (1.7) ifZ
�

jDujp.x/�2.Du;D'/ D

Z
�

f .jxj; u/'; for all ' 2 C 1c .�/: (5.1)

Throughout this section we shall always assume the assumptions of Theorem 1.4.

5.1 A summability result

We have the following

Lemma 5.1. Let u 2 C 1;˛.�/ be a positive solution to (1.7). ThenZ
�

1

jDuj.p.x/�1/r jx � yj
� C;

where C is a positive constant independent of y, 0 � r < 1,  < N � 2 if N � 3
and  D 0 if N D 2. In particular it follows that the critical set

Zu D ¹x 2 � W jDu.x/j D 0º

has zero Lebesgue measure.

Proof. We consider, for y 2 RN , the test function

 ".x/ D ."C jDuj
.p.x/�1/r/�1�."C jx � yj/� ;
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where � is a positive smooth cut-off function with supt.�/ D �0 such that � D 1
on Q�0 � �0 and Q�0 �� � is such that .� n Q�0/ \Zu D ;. In fact, we recall
that, in light of the Hopf Boundary Lemma of [21], we have Zu \ @� D ;. Note
that  " is a good test function since it belongs to W 1;2.�/ by the summability
properties of the solutions proved in [2] and thus it can be plugged into (5.1) by
density arguments.

Again by the Hopf Boundary Lemma, to achieve the conclusion, it is enough to
show that Z

Q�0

1

jDuj.p.x/�1/r jx � yj
� C ; (5.2)

for Q�0 �� �. Moreover, without loss of generality, we can reduce to consider the
case

max
x2 N�0

p.x/ � 2

p.x/ � 1
� r < 1: (5.3)

In fact, once (5.2) holds for C 1;˛ solutions, the same estimation easily follows for
r 0 < r . We put  " as test function in (1.7) and since f .jxj; u/ � � for some � > 0
in the support of  ", we get

�

Z
�0

�

."C jDuj.p.x/�1/r/ ."C jx � yj/

�

Z
�0

f .jxj; u/ "

�

Z
�0

jDujp.x/�2j.Du;D "/j

�

Z
�0

.p.x/ � 1/r
jDujp.x/�2

."C jDuj.p.x/�1/r/2
jDuj.p.x/�1/r

1

."C jx � yj/
�kD2uk

C

Z
�0

r j log jDujj
jDujp.x/�2

."C jDuj.p.x/�1/r/2

� jDuj.p.x/�1/rC1
1

."C jx � yj/
�jDpj

C

Z
�0

jDujp.x/�2

."C jDuj.p.x/�1/r/

jDuj jD�j

."C jx � yj/

C

Z
�0


jDujp.x/�2

."C jDuj.p.x/�1/r/

�jDuj

."C jx � yj/.C1/
:

Since the critical set Zu is the zero level set of jDuj.p.x/�1/r , by Stampacchia’s
theorem the gradient of jDuj.p.x/�1/r vanishes a.e. in Zu. In the above calcula-
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tions we consequently agree that the term log jDuj make sense outside Zu, while
in Zu the distributional derivatives of jDuj.p.x/�1/r are zero.

Taking into account that

jlog t j � Cı C t
ı
C t�ı ; t > 0;

for all ı > 0 and some Cı > 0, we have

�

Z
�0

�

."C jDuj.p.x/�1/r/."C jx � yj/

�

Z
�0

.p.x/ � 1/r
jDujp.x/�2

."C jDuj.p.x/�1/r/2
jDuj.p.x/�1/r

1

."C jx � yj/
�kD2uk

C C

Z
�0

jDujp.x/�1

."C jDuj.p.x/�1/r/

1

."C jx � yj/

C C

Z
�0

jDujp.x/�1Cı

."C jDuj.p.x/�1/r/

1

."C jx � yj/

C C

Z
�0

jDujp.x/�1�ı

."C jDuj.p.x/�1/r/

1

."C jx � yj/

C C

Z
�0

jDujp.x/�1

."C jDuj.p.x/�1/r/

1

."C jx � yj/C1
C C; (5.4)

where ı was fixed small depending on the size of p�. Since u 2 C 1;˛ and  <
N � 2, from (5.4) we get

�

Z
�0

�

."C jDuj.p.x/�1/r/."C jx � yj/

� C

Z
�0

jDuj.p.x/�2/C.p.x/�1/r

."C jDuj.p.x/�1/r/2

�kD2uk

."C jx � yj/
C C:

If ˇ 2 C. N�0/ is such that

ˇ.x/ D 1 � .p.x/ � 1/.1 � r/;

with 0 � ˇ.x/ < 1 by virtue of (5.3), by writing

jDuj.p.x/�2/C.p.x/�1/r

."C jDuj.p.x/�1/r/2

�kD2uk

."C jx � yj/

D

�
jDuj

3r.p.x/�1/
2

."C jDuj.p.x/�1/r/2

�1=2

."C jx � yj/=2

��
�1=2jDuj

p.x/�2�ˇ.x/
2 kD2uk

."C jx � yj/=2

�
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and using a weighted Young inequality, we finally obtain

�

Z
�0

�

."C jDuj.p.x/�1/r/."C jx � yj/

� ı0
Z
�0

�

."C jDuj.p.x/�1/r/."C jx � yj/

C
C

ı0

Z
�0

jDujp.x/�2�ˇ.x/kD2uk2
1

."C jx � yj/
C C:

Repeating step by step the proof of [2, Lemma 3.1] (adding jx � yj� in all for-
mulas), we end-up withZ

�0

jDujp.x/�2�ˇ.x/kD2uk2

jx � yj
� C:

Hence, choosing ı0 < � we have the desired conclusion letting "! 0C and re-
calling that � D 1 on Q�0.

5.2 A weighted Sobolev inequality

Given a solution u to problem (1.7), for p.x/ � 2 we set

�.x/ D jDu.x/jp.x/�2; x 2 �;

and define the Hilbert space H 1;2
� .�/ as the completion of C1.�/ with respect

to the norm
kvk2

H
1;2
�

D

Z
�

v2 C

Z
�

�.x/jDvj2:

Since the domain � is smooth, equivalently, H 1;2
� is composed by the functions v

which have distributional derivative with finite norm. The spaceH 1;2
0;� is defined as

the completion of C10 .�/ with respect to the norm k � k
H
1;2
�

and it is a reflexive
Hilbert space.

Moreover let � 2 C.�/ be such that 0 < �� � �C � 1 and let us define the
function

V�Œg; U �.x/ WD

Z
U

g.y/

jx � yjN.1��.x//
dy: (5.5)

By [14, Theorem 3.1] it follows that, for any 1 � q.x/ � 1; with

1

m.x/
�

1

q.x/
� �.x/

it follows
kV�Œg;��.x/kq.�/ � ‚kgkm.�/; (5.6)

for some positive constant ‚ and for any g 2 Lm.�/.�/.
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We can now prove the following

Theorem 5.2. Let p.x/ � 2 for all x 2 � and set

Nt WD inf
x2�

p.x/ � 1

p.x/ � 2
r;

where r > 0 is such thatZ
�

1

�t.x/jx � yj
� C./;

max
x2�

p.x/ � 2

p.x/ � 1
� r < 1; t.x/ WD

p.x/ � 1

p.x/ � 2
r;

(5.7)

with N � 2Nt <  < N � 2 if N � 3 and  D 0 if N D 2. Then, for any function
w 2 H

1;2
0;� .�/, we have

kwkq.�/ � C

�Z
�

�jDwj2
� 1
2

; (5.8)

for some positive constant C and any 1 � q. � / < 2�.Nt /, where

1

2�.Nt /
D
1

2
�
1

N
C
1

Nt

�
1

2
�



2N

�
: (5.9)

Furthermore the embedding of H 1;2
0;� .�/ into Lq.�/.�/ is compact.

Proof. We can assume that w 2 C 1c .�/. Hence standard potential estimates (see
[12, Lemma 7.14]) give

jw.x/j � C

Z
�

jDw.y/j

jx � yjN�1
dy;

where C is a constant depending on the dimension N . Then

jw.x/j � C

Z
�

jDw.y/j

jx � yjN�1
dy

� C

Z
�

1

�
1
2 jx � yj



2Nt

jDw.y/j�
1
2

jx � yjN�1�


2Nt

dy

� C

�Z
�

1

� Nt jx � yj
dy

� 1
2Nt
�Z

�

�
jDw.y/j�

1
2

�.2Nt/0
jx � yj.N�1�



2Nt
/.2Nt/0

dy

� 1
.2Nt/0

;

where in the last inequality we used Hölder’s inequality with 1
2Nt
C

1
.2Nt/0
D 1. Note
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that, by the definition of Nt and by (5.7), it follows thatZ
�

1

� Nt jx � yj
� C:

Hence

jw.x/j � C

�Z
�

�
jDw.y/j�

1
2

�.2Nt/0
jx � yj.N�1�



2Nt
/.2Nt/0

dy

� 1
.2Nt/0

: (5.10)

We point out that �
jDwj�

1
2

�.2Nt/0
2 L

2
.2Nt/0 .�/: (5.11)

From (5.10), by using equation (5.5) with � D 1� 1
N
.N �1� 

2Nt
/.2Nt /0, we obtain

jw.x/j � C
�
V�

h�
jDw.y/j�

1
2

�.2Nt/0
; �
i
.x/
� 1
.2Nt/0

:

Since  > N � 2Nt , we also haveN Nt � 2N C 2Nt C  > 0 and � > 0. We shall use
now estimate (5.6) (see [14, Theorem 3.1]) with 1

m
D .2Nt /0=2, see (5.11). Let us

now fix an arbitrary Qq. � / > 1 such that 1=m � 1= Qq.�/ � �, which is possible since
1=m � � < 1, as follows by N Nt � 2N C 2Nt C  > 0. Therefore, we have

kw.x/k Qq.�/.2Nt/0 � C
�V�h�jDw.y/j� 12 �.2Nt/0 ; �i.x/� 1

.2Nt/0

Qq.�/.2Nt/0

� C
V�h�jDw.y/j� 12 �.2Nt/0 ; �i.x/ 1

.2Nt/0

Qq.�/
: (5.12)

From (5.12), by (5.6) we get

kwk Qq.�/.2Nt/0 � C

�Z
�

�jDwj2
� 1
2

;

that gives (5.8) and (5.9) with q.x/ D Qq.x/.2Nt /0, and consequently for any q. � / as
in the statement of the theorem.

Finally the compactness of the embedding follows arguing exactly as in [3].

5.3 The eigenvalue problem

Let us consider the linearized operator

Lu.v; '/ WD

Z
�

jDujp.x/�2.Dv;D'/

C

Z
�

.p.x/ � 2/jDujp.x/�4.Du;Dv/.Du;D'/

�

Z
�

@sf .jxj; u/v';
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for any v; ' 2 H 1;2
0;� . We also define k � kAu to be the norm arising from the scalar

product

hv; 'i WD

Z
�

jDujp.x/�2.Dv;D'/

C

Z
�

.p.x/ � 2/jDujp.x/�4.Du;Dv/.Du;D'/;

that is a norm equivalent to kvk
H
1;2
0;�

D
� R
� �jDvj

2
� 1
2 .

Since @sf .jxj; u/ 2 L1.�/, the first eigenvalue �1.u/ of the linearized oper-
ator is well defined by

�1.u/ D inf
�2H

1;2
0;� n¹0º

Ru.�/; Ru.�/ D
k�k2Au �

R
� @sf .jxj; u/�

2R
� �

2
:

Consider now a minimizing sequence �n 2 H
1;2
0;� ,

R
� �

2
n D 1, with Ru.�n/ con-

verging to �1.u/ as n!1. Since @sf .jxj; u/ 2 L1.�/, we have that the se-
quence .k�nkAu/ remains bounded. Therefore, up to a subsequence, we get that
�n * �1 weakly in H 1;2

0;� and therefore �n ! �1 strongly in L2.�/ (by combin-
ing Lemma 5.1 and Theorem 5.2). Now, the term

R
� @sf .jxj; u/�

2 is continu-
ous in L2.�/ and k � kAu is weakly lower semi-continuous in H 1;2

0;� . Therefore,
�1 2 H

1;2
0;� is such that

R
� �

2
1 D 1 and Ru.�1/ � �1.u/. Hence, �1.u/ is attained

at �1. It is now standard to show that �1 solvesLu.�1; '/ D
R
� �1.u/�1' for any

' 2 H
1;2
0;� . Arguing now exactly as in [3, p. 299], we get that every minimizer is of

fixed sign and the first eigenspace is one-dimensional.

Remark 5.3. Following [4] it is now possible to develop a complete spectral theory
for the linearized operator, showing that it has an increasing discrete sequence of
eigenvalues with finite dimensional eigenspaces.

5.4 Proof of Theorem 1.4 completed

Let us write the solution u D u.r; �/ in polar coordinates, where r D jxj and � D
.�1; : : : ; �n�1/ are the n � 1 angular variables. Assume first that u is semi-stable
according to Definition 1.3. If u was not radial, then u�i 6D 0 and u�i changes
sign, for some i 2 ¹1; : : : ; n � 1º. Notice now that, since we are considering C 1

solutions, it is clear from the proof that [2, Lemma 3.1] can be stated with ˇ � 0

and " D 0. In particular, we getZ
�

jDujp.x/�2jDu�i j
2
� C

Z
�

jDujp.x/�2kD2uk2 � C;
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and by the boundary conditions we obtain u�i 2 H
1;2
0;� . It is now easy to see that,

since p.x/ is radially symmetric, it follows, differentiating the equation in (1.7)
with respect to �i , that

Lu.u�i ; '/ D 0; for all ' 2 H 1;2
0;� : (5.13)

In particular, u�i is an eigenfunction of the linearized operator corresponding to
the 0 eigenvalue. By the semi-stability assumption on u, this implies that u�i is the
first eigenfunction of Lu and consequently (see Section 5.3) it should have con-
stant sign in �. This contradiction shows that u is radially symmetric. If else we
assume that u is non-degenerate, the conclusion follows in the same way, noticing
that 0 is not an eigenvalue and therefore (5.13) implies that u�i D 0.

Acknowledgments. The authors wish to thank Professor Petteri Harjulehto and
Dr. Michela Eleuteri for providing the useful bibliographic reference [14].
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