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Abstract. We prove the existence of a positive solution for nonlocal problems involving the fractional Laplacian and a critical
growth power nonlinearity when the equation is set in a suitable contractible domain.
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1. Introduction

1.1. Overview

Let Ω be a smooth bounded domain of RN with N � 3. In the celebrated papers [1,5] A. Bahri and
J.M. Coron showed the existence of solutions to the critical problem⎧⎪⎨

⎪⎩
−�u = u(N+2)/(N−2) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

provided that Hm(Ω,Z2) �= {0} for some m ∈ N \ {0}, where Hm(Ω,Z2) denotes the homology of
dimension m of Ω with Z2-coefficients. Their result, in particular, always yields a solution to (1.1) in
R

3 provided that the domain Ω is not contractible, since H1(Ω,Z2) �= {0} or H2(Ω,Z2) �= {0}. This is
achieved via various sofisticated arguments from algebraic topology. The results of [1,5] provide a suf-
ficient but not necessary condition for the existence of solutions: indeed, in [7,8,15], E.N. Dancer, W.Y.
Ding and D. Passaseo showed that problem (1.1) admits nontrivial solutions also in suitable contractible
domains. Let N > 2s, s ∈ (0, 1) and consider the problem⎧⎪⎨

⎪⎩
(−�)su = u(N+2s)/(N−2s) in Ω,

u > 0 in Ω,

u = 0 in R
N \ Ω,

(1.2)
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involving the fractional Laplacian (−�)s . Fractional Sobolev spaces are well known since the beginning
of the last century, especially in the framework of harmonic analysis. On the other hand, recently, after
the seminal paper of Caffarelli and Silvestre [2], a large amount of contributions appeared on problems
which involve the fractional diffusion (−�)s , 0 < s < 1. Due to its nonlocal character, working on
bounded domains imposes to detect an appropriate variational formulation for the problem. We will
consider functions on R

N with u = 0 in R
N \ Ω replacing the usual boundary condition u = 0 on ∂Ω .

More precisely, Ḣ s(RN) denotes the space of functions u ∈ L2N/(N−2s)(RN) such that∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dx dy < ∞.

It is known that Ḣ s(RN) is continuously embedded into L2N/(N−2s)(RN) and it is a Hilbert space, see
e.g. [18]. For any Ω ⊆ R

N we will set

XΩ = {
u ∈ Ḣ s

(
R

N
) : u = 0 in R

N \ Ω
}
, (1.3)

and say that u ∈ XΩ weakly solves (1.2) if∫
RN

(−�)s/2u(−�)s/2ϕ dx =
∫
RN

u(N+2s)/(N−2s)ϕ dx for all ϕ ∈ XΩ. (1.4)

It is natural to expect, as in the local case, that by assuming suitable geometrical or topological conditions
on Ω one can get solutions to (1.2). To the best of our knowledge, the situation is the following:

• if Ω is a star-shaped domain, then (1.2) does not admit solutions (see [10]);
• if there is a point x0 ∈ R

N and radii R2 > R1 > 0 such that{
R1 � |x − x0| � R2

} ⊂ Ω,
{|x − x0| � R1

} �⊂ Ω, (1.5)

then (1.2) admits a solutions provided that R2/R1 is sufficiently large (see [17]).

Concerning nonexistence in star-shaped domains is still unknown if sign-changing solutions for the
critical problem can be ruled out as for the local case (see [16] for some related problems); this is
connected with delicate unique continuation results up to the boundary that are currently unavailable in
this framework. Concerning the existence of solutions under more general assumptions than (1.5), like
when Hm(Ω,Z2) �= {0} for some m ∈ N \ {0}, the result is expected but not available yet.

1.2. Main result

The goal of this paper is to provide a fractional counterpart of the results [7,8,15] on the existence
of solutions in suitable contractible domains of RN . More precisely, our main result is stated next, see
Fig. 1. We will write x = (x ′, xN) ∈ R

N for x ′ ∈ R
N−1, xN ∈ R.

Theorem 1.1. Assume that N � 3 and 0 < s < 1, or N = 2 and 0 < s � 1/2 and let 0 < R0 < R1 <

R2 < R3. Then problem (1.2) admits a solution in any smooth domain Ω ⊆ BR3 \ BR0 satisfying

Ω ∩ {
(0, xN) : xN � 0

} = ∅, (1.6)

Ω ⊃ {
R1 � |x| � R2

} \ {∣∣x ′∣∣ < δ, xN � 0
}

(1.7)

for δ > 0 sufficiently small, depending only on N , s and the Ri’s, i = 0, . . . , 3.
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Fig. 1. Ω contains a spherical shell minus a small cylindrical neighbourhood of its north pole, and must be distant from the
positive xN axis.

We briefly describe the idea of the proof. Since s ∈ ]0, 1[ will be fixed henceforth, we let for brevity

2∗ = 2N

N − 2s
,

which is sometimes denoted in the literature by 2∗
s . We first consider solutions of problem (1.2) as critical

points of the free energy IΩ : XΩ → R

IΩ(u) = 1

2

∫
RN

∣∣(−�)s/2u
∣∣2

dx −
∫
RN

|u|2∗
dx,

where we denote IRN = I for brevity, on the Nehari manifold

N+(Ω) = {
u ∈ XΩ : u � 0, I ′(u)(u) = 0

}
.

We look at critical points near the minimal energy

inf
N+(Ω)

IΩ = inf
N+(RN)

I =: c∞ > 0,

and proceed by contradiction, assuming there is no critical point for IΩ in ]c∞, 2c∞[. Through the regu-
larity Lemma 2.4 and known results we rule out the existence of nonnegative, nontrivial weak solutions
to (1.2) in the half-space. Then we can apply the characterization of Palais–Smale sequences proved in
[14] to get that the (PS)c condition holds for all c ∈ ]c∞, 2c∞[ (cf. Proposition 2.6). The contradiction
will arise through a deformation argument near a minimax level, constructed as follows.

In the whole R
N , the solutions of problem (1.2) are of the form

Uε,z(x) = dN,s

(
ε

ε2 + |x − z|2
)(N−2s)/2

(1.8)

for arbitrary ε > 0, z ∈ R
N , and these solutions minimize I on the Nehari manifold N+(RN). Notice

that, for ε → 0, most of the energy of Uε,z concentrates arbitrarily near z. Letting R = (R1 +R2)/2, this
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enables us to cut-off Uε,z near each z ∈ S
N−1
R = {|z| = R} while keeping the energy almost minimal for

sufficiently small ε  δ > 0 (see Proposition 3.1 for a precise statement). Projecting onto N+(Ω) we
thus obtain for any z ∈ S

N−1
R a function vz ∈ N+(Ω) whose barycenter

β(vz) =
∫
RN

xv2∗
z dx

/ ∫
RN

v2∗
z dx

well defines a map

S
N−1
R � z �→ R

β(vz)

|β(vz)| ∈ S
N−1
R .

Since vz is obtained cutting off Uε,z near z for very small ε, its barycenter is near z and the resulting map
is near the identity (see Lemma 4.2), thus has Brouwer degree 1. Therefore the minimax problem

c = inf
ϕ∈Γ

sup
z∈SN−1

R

IΩ

(
ϕ(z)

)
, Γ =

{
ϕ ∈ C0

(
S

N−1
R ,N+(Ω)

) : deg

(
R

β(ϕ(·))
|β(ϕ(·))| , S

N−1
R

)
�= 0

}

is well defined, and in Lemma 4.3 it is shown that its minimax value is almost minimal, in particular
less than 2c∞. It can be proven that c is also strictly greater than c∞, due to the fact that the whole
half-line {(0, xN) : xN � 0} is a positive distance apart from Ω . Therefore c ∈ ]c∞, 2c∞[ (where the PS
condition holds), and through classical variational methods we find that c is a critical value, reaching the
contradiction.

The most delicate part of the argument is the construction of the cut-offs of Uε,z with almost minimal
energy, and this is where the condition s ∈ ]0, 1/2] when N = 2 arises. While this seems a technical
limitation at first, it really depends on the fact that the Bessel capacity Bs,2 of segments vanishes only
when N −2s � 1 (1 being the Hausdorff dimension of segments). For N � 3, s ∈ ]0, 1[ the capacity of a
segment L vanishes, thus any function can be cut-off near L paying an arbitrary small amount of energy
in the process. This is indeed what has to be done to Uε,z near the segment L = {(0, xN) : xN � 0}
missing from Ω , at least when z ∈ S

N−1
R is near L (e.g. z = (0, R) /∈ Ω). In the case N = 2, which

arises only in the nonlocal case, the “cutting-off almost preserving the energy” procedure for such z’s
fails for s ∈ ]1/2, 1[, having L locally nonzero capacity.

1.3. Plan of the paper

In Section 2 we collect various preliminary results. In Section 3 we derive careful estimates on the
energy of suitable truncations of the Talenti functions (1.8). Finally, in Section 4 we implement the
topological argument using the results of Section 3.

2. Preliminaries

Let for any u ∈ XΩ = {u ∈ Ḣ s(RN) : u ≡ 0 on �Ω}

[u]2
s = C(N, s)

2

∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dx dy =

∫
RN

|ξ |2s
∣∣Fu(ξ)

∣∣2
dξ, (2.1)
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where F is the Fourier transform and

C(N, s) =
(∫

RN

1 − cos(ξ1)

|ξ |N+2s
dξ

)−1

, ξ = (ξ1, . . . , ξN).

Clearly [ ]s is a Hilbert norm on XΩ with associated scalar product

(u, v)s := C(N, s)

2

∫
R2N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dx dy, u, v ∈ Ḣ s

(
R

N
)
.

The s-fractional Laplacian of u ∈ Ḣ s(RN) is the gradient of the functional

Ḣ s
(
R

N
) � u �→ 1

2
[u]2

s

and can be identified, for u ∈ C∞(RN) ∩ Ḣ s(RN) with the function

(−�)su(x) = C(N, s) P.V.
∫
RN

u(x) − u(y)

|x − y|N+2s
dy = C(N, s) lim

ε→0

∫
�Bε(x)

u(x) − u(y)

|x − y|N+2s
dy.

In this regard, notice that due to [12, Proposition 2.12] (see also [12, Definition 2.4])∫
�Bε(·)

u(·) − u(y)

| · −y|N+2s
dy → (−�)su strongly in L1

loc

(
R

N
)

as ε → 0.

We recall now the following proposition.

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality). Let 0 < λ < N , and p > 1, q > 1 satisfy

1

q
+ 1

p
= 1 + λ

N
.

Then for any u ∈ Lq(RN), v ∈ Lp(RN) it holds∫
R2N

|u(x)v(y)|
|x − y|N−λ

dx dy � C‖u‖q‖v‖p

for some constant C = C(N, s, p).

Using the sharp form of the Hardy–Littlewood–Sobolev inequality, in [6] it is proved that the fractional
Sobolev inequality, for s < N

2 ,

S(N, s)‖u‖2
2∗ � [u]2

s ∀u ∈ Ḣ s
(
R

N
)
,

holds with sharp constant

S(N, s) = 22sπs �((N + 2s)/2)

�((N − 2s)/2)

(
�(N/2)

�(N)

)(2s)/N
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and equality holds if and only if

u(x) = c

(
ε

ε2 + |x − z|2
)(N−2s)/2

for any c ∈ R, ε > 0 and z ∈ R
N.

2.1. Nehari manifold

We consider the functional

XΩ � u �→ IΩ(u) = 1

2
[u]2

s − 1

2∗

∫
RN

|u|2∗
dx, IRN = I.

Its critical points are the only solutions of

{
(−�)su = |u|(4s)/(N−2s)u in Ω,

u = 0 in �Ω
(2.2)

and the nontrivial ones belong to the associated Nehari manifold

N (Ω) := {
u ∈ XΩ \ {0} : [u]2

s = ‖u‖2∗
2∗

}
.

Given u ∈ XΩ \ {0} there is exactly one λ > 0 such that λu ∈ N (Ω), which defines the projection
T : XΩ \ {0} → N (Ω) as

T (u) =
( [u]2

s

‖u‖2∗
2∗

)1/(2∗−2)

u.

From the 1-Lipschitzianity of the modulus we infer that [|u|]s � [u]s . Notice, however, that due to the
nonlocality of the norm, for any (properly) sign-changing u ∈ N (Ω), it holds |u| /∈ N (Ω). However,
a straightforward calculation shows that

IΩ

(
T

(|u|)) � IΩ(u) ∀u ∈ N (Ω). (2.3)

The problem

⎧⎪⎨
⎪⎩

(−�)su = u(N+2s)/(N−2s) in Ω,

u = 0 in �Ω,

u � 0, u �= 0,

(2.4)

is equivalent to find critical points of IΩ belonging to

N+(Ω) := {u ∈ XΩ : u � 0} ∩ N (Ω).
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When Ω = R
N , by [4], the nonnegative, nontrivial critical points of I on Ḣ s(RN) are exactly the

functions

Uε,z(x) = dN,s

(
ε

ε2 + |x − z|2
)(N−2s)/2

(2.5)

for a suitable dN,s > 0. Let

c∞ := inf
{
I (u) : u ∈ N+

(
R

N
)}

. (2.6)

Using the fact that [|u|]s � [u]s and considering T (|u|) for any u ∈ N (RN) we get

c∞ = inf
{
I (u) : u ∈ N

(
R

N
)}

, (2.7)

and moreover it holds

c∞ =
(

1

2
− 1

2∗

)
inf

{[
T (v)

]2

s
: v � 0, v �= 0

}

= s

N

(
inf

{ [v]2
s

‖v‖2
2∗

: v � 0, v �= 0

})N/(2s)

= s

N
S(N, s)N/(2s). (2.8)

Moreover, u is a minimizer for (2.6) if and only if u = T (v) for some minimizer of the problem

inf

{ [v]2
s

‖v‖2
2∗

: v � 0, v �= 0

}
,

therefore u = Uε,z for some ε > 0 and z ∈ R
N . Note that this implies

[Uε,z]2
s = ‖Uε,z‖2∗

2∗ = N

s
c∞. (2.9)

We recall now some basic facts about the Nehari manifold setting we will work in.

Proposition 2.2. The following facts hold.

(1) N (Ω) is a C2 Hilbert manifold bounded away from 0.
(2) For any u0 ∈ N (Ω), ∇IΩ(u0) = 0 if and only if ∇N IΩ(u0) = 0 where ∇N IΩ(u0) is the projection

onto TN (u0) of ∇IΩ(u0) and TN (u0) is the tangent space to N (Ω) at u0. In other words u0 ∈
N (Ω) is a critical point of IΩ : XΩ → R if and only if it is critical for IΩ : N (Ω) → R as a
functional on the Hilbert manifold N (Ω).

(3) Given a bounded sequence {un} ⊆ N (Ω), ‖∇N IΩ(un)‖ → 0 if and only if ‖∇IΩ(un)‖ → 0.
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Proof. (1) First observe that (2.9), and the Sobolev inequality ‖u‖2∗ � C[u]s imply that N (Ω) is
bounded away from zero, since

[u]2
s = ‖u‖2∗

2∗ � C2∗[u]2∗
s =⇒ [u]s � C−2∗/(2∗−2).

To prove that N (Ω) is a Hilbert manifold write N (Ω) = {u ∈ XΩ \ {0} : N(u) = 0} where

N(u) = (∇IΩ(u), u
)
s
= [u]2

s − ‖u‖2∗
2∗ .

Clearly N ∈ C2(XΩ) and for any u ∈ N (Ω) it holds

−
(

∇N(u),
u

[u]s
)

s

= 1

[u]s
(
2∗‖u‖2∗

2∗ − 2[u]2
s

) = (
2∗ − 2

)[u]s � ε > 0

being N (Ω) bounded away from 0. Therefore ∇N(u) �= 0 at any point u ∈ N (Ω) which, through the
implicit function theorem, completes the proof of the first assertion.

(2) One implication is trivial, and we will prove the opposite one. Suppose u0 ∈ N (Ω) is such that
∇N IΩ(u0) = 0. By Riesz duality we will consider ∇N IΩ(u0) as a vector belonging to

TN (u0) = (∇N(u0)
)⊥ ⊂ XΩ,

with the norm induced by XΩ . We have that

∇IΩ(u0) = ∇N IΩ(u0) + λ∇N(u0)

for some λ ∈ R, and taking the scalar product with u0 we obtain, similarly as before,

0 = λ
(∇N(u0), u0

)
s
= λ

(
2 − 2∗)[u0]2

s ,

which forces λ = 0 and the claim.
(3) The proof is analogous to the previous one. Since

∇IΩ(un) = ∇N IΩ(un) + λn∇N(un)

and {∇N(un)} is bounded being {un} bounded, it suffices to show that λn → 0. Taking the scalar product
with un we get

|λn|
∣∣(∇N(un), un

)
s

∣∣ � [∇N IΩ(un)
]
s
[un]s

and thus, being N (Ω) bounded away from 0 we obtain

ε|λn| � |λn|
(
2∗ − 2

)[un]2
s = |λn|

∣∣(∇N(un), un

)
s

∣∣ � C
[∇N IΩ(un)

]
s
→ 0.

This concludes the proof. �
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Recall that, given a topological space A, a subspace B ⊆ A is called a strong deformation retract of
A if there exists R ∈ C0([0, 1] × A, A) (a homotopy retraction of A on B) such that

(1) R(0, x) = x for all x ∈ A,
(2) R(t, x) = x for all x ∈ B, t ∈ [0, 1],
(3) R(1, x) ∈ B for all x ∈ A.

Given J : M → R, where M is a C2-Hilbert manifold, we denote by CJ := {J (u) : J ′(u) = 0, u ∈ M}
the set of critical levels. From [3, Lemma 3.2], we get that the following deformation lemma holds true.

Proposition 2.3. Let M be a C2-Hilbert manifold and suppose J ∈ C2(M,R) satisfies (PS)c for any
c ∈ [a, b]. If CJ ∩ [a, b] = ∅, then {u ∈ M : J (u) � a} is a strong deformation retract of {u ∈ M:
J (u) � b}.
2.2. Nonexistence in the half-space

Let us set RN+ = {x ∈ R
N : xN > 0}. We have the following regularity result.

Lemma 2.4. Any weak solution u ∈ X
R

N+ of

{
(−�)su = |u|2∗−2u in R

N
+,

u ≡ 0 in R
N \ RN

+,
(2.10)

is bounded and continuous in R
N .

Proof. The following is a modification of [11, Theorem 3.2]. Let us set γ = (2∗/2)1/2 and |t |k :=
min{|t |, k} for any k > 0. For all r � 2, the mapping t �→ t |t |r−2

k is Lipschitz in R, hence u|u|r−2
k

belongs to X
R

N+ . We test the weak form of (2.10) with u|u|r−2
k , apply the fractional Sobolev inequality

and the elementary inequality (see [11, Lemma 3.1])

(a − b)
(
a|a|r−2

k − b|b|r−2
k

)
� 4(r − 1)

r2

(
a|a|r/2−1

k − b|b|r/2−1
k

)2
,

to obtain

∥∥u|u|r/2−1
k

∥∥2

2∗ � S(N, s)−1
[
u|u|r/2−1

k

]2

s
� Cr2

r − 1

(
u, u|u|r−2

k

)
s
� Cr

∫
RN

|u|2∗ |u|r−2
k dx (2.11)

for some C > 0 independent of r � 2 and k > 0. Letting k → ∞ and noting that r1/r is bounded for
r � 2 gives

‖u‖γ 2r � C

(∫
RN

|u|2∗+r−2 dx

)1/r

, γ 2 = 2∗

2
> 1. (2.12)

Let now r̄ = 2∗ + 1 > 2, fix σ > 0 such that Cr̄σ < 1/2, where C is the last constant appearing in
(2.11) and K0 so large that

(∫
{|u|>K0}

|u|2∗
dx

)1−2/2∗

� σ. (2.13)
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By Hölder inequality and (2.13) we have

∫
RN

|u|2∗ |u|r̄−2
k dx � Kr̄−2

0

∫
|u|�K0

|u|2∗
dx +

∫
{|u|>K0}

|u|2∗ |u|r̄−2
k dx

� Kr̄−2
0 ‖u‖2∗

2∗ +
(∫

RN

(
u2|u|r̄−2

k

)2∗/2
dx

)2/2∗(∫
{{|u|>K0}}

|u|2∗
dx

)1−2/2∗

� C(u) + σ
∥∥u|u|r̄/2−1

k

∥∥2

2∗ .

Recalling that Cr̄σ < 1/2, r̄ = 2∗ + 1, inserting in (2.11), and letting k → ∞ we obtain

‖u‖q̄ � C̃(u), q̄ = 2∗(2∗ + 1)

2
.

Since q̄ > 2∗, we can bootstrap a bound on higher Lp norms through (2.12) starting from the Lq̄ one.
Define the sequence

p0 = q̄, pn+1 = γ 2
(
pn + 2 − 2∗),

which satisfies pn → +∞ (since q̄ is greater than the fixed point of f (x) = γ 2(x + 2 − 2∗)). Now
(2.12) reads

‖u‖pn+1 � C‖u‖γ 2(pn)/(pn+1)
pn

,

which, iterated, gives u ∈ Lpn(RN) for any n � 0. For any p � 2∗ it holds

∫
RN

|u|p dx �
∫

{|u|�1}
|u|2∗

dx +
∫

{|u|�1}
|u|p dx

and since pn → +∞ this implies that u ∈ Lp(RN) for any p � 2∗. To obtain a uniform bound, we use
Hölder’s inequality on the last term in (2.12) with exponent γ r/(r − 1) > 1 to get

∫
RN

|u|r−1|u|2∗−1 dx � ‖u‖r−1
γ r

(∫
RN

|u|((2∗−1)γ r)/(r(γ−1)+1) dx

)1−(r−1)/(γ r)

and thus (2.12) becomes

‖u‖γ 2r � C(u, r)‖u‖1−1/r
γ r , r � 2, γ =

√
2∗

2
> 1,

with

C(u, r) = C1/r

(∫
|u|((2∗−1)γ r)/(r(γ−1)+1) dx

)1/r−(r−1)/(γ r2)

.
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We choose rn = γ n → +∞, letting

tn = (2∗ − 1)γ rn

rn(γ − 1) + 1
↗ p̄ = (2∗ − 1)γ

γ − 1
> 2∗.

By monotone convergence theorem (separately on {|u| � 1} and {|u| > 1}) it holds∫
RN

|u|tn dx →
∫
RN

|u|p̄ dx

which is finite. In particular, C(u, γ n) is bounded for sufficiently large n by a constant C(u) and thus we
obtained

‖u‖γ n+2 � C(u)‖u‖1−1/γ n

γ n+1

for sufficiently large n. By a standard argument this implies that ‖u‖∞ = limn ‖u‖γ n is finite. We now
prove that u ∈ C0(RN). Interior regularity in {xN > 0} follows from the local regularity result [12,
Theorem 5.4], while from [12, Theorem 4.4] we get∣∣u(x)

∣∣ � C
∥∥(−�)su

∥∥∞(xN)s
+ = C‖u‖2∗−1

∞ (xN)s
+ ∀x ∈ R

N
+

(notice that only the boundedness of u and a uniform sphere condition on Ω is used in the proof of [12,
Theorem 4.4]). From this estimate we deduce that u(x) → 0 as x → x0 ∈ {xN = 0}, and thus the
continuity of u in the whole R

N . �

From [10, Corollary 1.6] we immediately obtain the following corollary.

Corollary 2.5. There is no nontrivial nonnegative weak solution u ∈ X
R

N+ of (2.10).

2.3. Global compactness

We will now use the characterization of Palais–Smale sequences for the functional IΩ obtained in [14]
through the profile decomposition of [13], specializing it to nonnegative Palais–Smale sequences in the
manifold N+(Ω). A Palais–Smale sequence for IΩ : N+(Ω) → R at the level c ∈ R is a sequence
{un} ⊂ N+(Ω) such that

IΩ(un) → c, ∇N IΩ(un) → 0.

Moreover, IΩ : N+(Ω) → R is said to satisfy the Palais–Smale condition at level c (briefly, (PS)c) if
every Palais–Smale sequence {un} ⊆ N+(Ω) at level c is relatively compact. We say that c0 is a critical
level for IΩ and write c0 ∈ CIΩ

if there exists u0 ∈ N+(Ω) such that ∇N IΩ(u0) = 0 and IΩ(u0) = c0.

Proposition 2.6. Let Ω be a bounded open subset of RN with smooth boundary. Then

(1) IΩ : N+(Ω) → R satisfies (PS)c at every level c of the form

c �= c0 + mc∞, c0 ∈ CIΩ
∪ {0}, m ∈ N.

(2) IΩ : N (Ω) → R satisfies (PS)c at every level c ∈ ]c∞, 2c∞[.
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Proof. (1) Let {un} ⊆ N+(Ω) be a Palais–Smale sequence at some level c. Proposition 2.2 shows that
{un} is a Palais–Smale sequence for IΩ : XΩ → R. Suppose that {un} is not relatively compact. Then by
[14, Theorem 1.1] there exist u(0) solving problem (2.2) such that un ⇀ u(0) and u(j) �= 0, V (j) ∈ R

N ,
j = 1, . . . , m for some m ∈ N with the following properties:

c = IΩ

(
u(0)

) +
m∑

j=1

IΩ

(
u(j)

)
, (2.14)

for j = 1, . . . , m, u(j) solves (2.2) in Ω(j) := {
x ∈ R

N : V (j) · x > 0
}

and (2.15)

u(j) is a weak limit in Ḣ s
(
R

N
)

of a subsequence of rescaled-translations of un. (2.16)

Clearly u0 ∈ N+(Ω) ∪ {0}. On the other hand, un is nonnegative for any n, and (2.16) implies u(j) � 0
for any j = 1, . . . , m. By rotation invariance and the previous corollary, there are no solutions of (2.4) in
the half space, so that actually V (j) = 0 for all j = 1, . . . , m, i.e. u(j) is a nonnegative, nontrivial, entire
solution of (2.4). Since the latters are only of the form (2.5), we get I (u(j)) = c∞ for all j = 1, . . . , m.
Due to (2.14) we thus obtain

c = IΩ

(
u(0)

) + mc∞, I ′
Ω

(
u(0)

) = 0

contrary to our assumption.
(2) Let {un} be a (PS)c sequence at a level c ∈ ]c∞, 2c∞[, and {u(j)} the corresponding profile de-

composition. Due to [17, Lemma 2.5] any sign-changing solution u(j) of (2.2) in an arbitrary domain Ω

satisfies IΩ(u(j)) � 2c∞. From (2.14) we infer from c < 2c∞ that no u(j) is sign changing, and from
c > c∞ that m = 0. The compactness now follows from [14, Theorem 1.1]. �

3. Estimates

In this section we will construct suitable cutoffs of the generalized Talenti functions (1.8) for any
sufficiently small values of the concentration parameter ε. On one hand we must ensure that the resulting
functions are supported in Ω; on the other, their Rayleigh quotient must be near the original one, as
long as the concentration parameter ε is not too big compared to the thickness parameter δ of the hole
described in Theorem 1.1. In order to estimate the Rayleigh quotient, we first control from above the
nonlocal energy of the cutoffs in Proposition 3.1, then from below their L2∗

norms in Proposition 3.2.
Let R, ρ > 0. Choose ψ ∈ C∞

c (RN) such that

0 � ψ � 1, ψ(x) = 0 if |x| � 2ρ, ψ(x) = 1 if |x| � ρ,

and ω ∈ C∞(RN−1) such that

0 � ω � 1, ω
(
x ′) = 1 if

∣∣x ′∣∣ � 2, ω
(
x ′) = 0 if

∣∣x ′∣∣ � 1.

Finally, for any δ > 0 and z ∈ S
N−1
R , define

ωδ(x) = ω

(
x ′

δ

)
, uδ,ε,z(x) = ωδ(x)ψ(x − z)Uε,z(x). (3.1)
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Proposition 3.1. There exists C1 such that for each ε > δ > 0 sufficiently small and z ∈ S
N−1
R it holds

[uδ,ε,z]2
s �

N

s
c∞ + C1

δN−1−2s

εN−2s
+ o(1), (3.2)

where o(1) → 0 for ε → 0 independently of δ.

Proof. In the following by C we denote a generic constant depending only on ψ , ω, R, ρ and the
numerical data s, N .

We let η(x) = ωδ(x)ψ(x − z) and, being uδ,ε,z = ηUε,z ∈ C∞
c (RN), notice that

[uδ,ε,z]2
s =

∫
RN

(−�)suδ,ε,z(x)uδ,ε,z(x) dx,

therefore,

[uδ,ε,z]2
s = C(N, s)

∫
RN

η(x)Uε,z(x) P.V.
∫
RN

η(x)Uε,z(x) − η(y)Uε,z(y)

|x − y|N+2s
dy dx

= C(N, s)

∫
RN

η2(x)Uε,z(x) P.V.
∫
RN

Uε,z(x) − Uε,z(y)

|x − y|N+2s
dy dx

+ C(N, s)

∫
RN

η(x)Uε,z(x) P.V.
∫
RN

(η(x) − η(y))

|x − y|N+2s
Uε,z(y) dy dx

=
∫
RN

η2Uε,z(−�)sUε,z dx + C

∫
RN

η(x)Uε,z(x) P.V.
∫
RN

η(x) − η(y)

|x − y|N+2s
Uε,z(y) dy dx

= I1 + CI2.

We estimate separately the two integrals. For I1 we have 0 � η � 1 and Uε,z(−�)sUε,z = U 2∗
ε,z, thus

I1 =
∫
RN

U 2∗
ε,zη

2 dx � ‖Uε,z‖2∗
2∗ = N

s
c∞

by (2.9). For I2 notice that

2I2 =
∫
RN

η(x)Uε,z(x) P.V.
∫
RN

η(x) − η(y)

|x − y|N+2s
Uε,z(y) dx dy

+
∫
RN

η(y)Uε,z(y) P.V.
∫
RN

η(y) − η(x)

|x − y|N+2s
Uε,z(x) dx dy

=
∫
R2N

(η(x) − η(y))2

|x − y|N+2s
Uε,z(x)Uε,z(y) dx dy.

Being |ωδ| � 1 and η(x) = ωδ(x)ψ(x − z), we have∣∣η(x) − η(y)
∣∣ � ∣∣ψ(x − z)

∣∣∣∣ωδ(x) − ωδ(y)
∣∣ + ∣∣ωδ(y)

∣∣∣∣ψ(x − z) − ψ(y − z)
∣∣

� ψ(x − z)
∣∣ωδ(x) − ωδ(y)

∣∣ + ∣∣ψ(x − z) − ψ(y − z)
∣∣.
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Therefore, we get, through a translation

I2 �
∫
R2N

(ωδ(x) − ωδ(y))2

|x − y|N+2s
ψ2(x − z)Uε,z(x)Uε,z(y) dx dy

+
∫
R2N

(ψ(x) − ψ(y))2Uε,0(x)Uε,0(y)

|x − y|N+2s
dx dy. (3.3)

To estimate the first term, let h ∈ C∞
c (R) be such that ψ(x ′, xN) � h(xN) � 1, and compute

∫
R2N

(ωδ(x) − ωδ(y))2

|x − y|N+2s
ψ2(x − z)Uε,z(x)Uε,z(y) dx dy

� 1

εN−2s

∫
R2N

(ωδ(x
′) − ωδ(y

′))2

(|x ′ − y ′|2 + |xN − yN |2)(N+2s)/2
h2(xN − zN) dx dy

= 1

εN−2s

∫
R2(N−1)

(ωδ(x
′) − ωδ(y

′))2

|x ′ − y ′|N+2s

∫
R2

h2(xN − zN)

(1 + |xN − yN |2/|x ′ − y ′|2)(N+2s)/2
dxN dyN dx ′ dy ′

= 1

εN−2s

∫
R2(N−1)

(ωδ(x
′) − ωδ(y

′))2

|x ′ − y ′|N−1+2s
dx ′ dy ′

∫
R

h2(xN − zN) dxN

∫
R

1

(1 + t2)(N+2s)/2
dt

� C

εN−2s
δN−1−2s

∫
R2(N−1)

(ω(x ′) − ω(y ′))2

|x ′ − y ′|N−1+2s
dx ′ dy ′ = C

δN−1−2s

εN−2s
. (3.4)

Finally, we estimate the second term in (3.3). Notice that by scaling

∫
R2N

(ψ(x) − ψ(y))2Uε,0(x)Uε,0(y)

|x − y|N+2s
dx dy =

∫
R2N

(ψ(εx) − ψ(εy))2U1,0(x)U1,0(y)

|x − y|N+2s
dx dy

� Lip(ψ)2ε2
∫
R2N

U1,0(x)U1,0(y)

|x − y|N−2+2s
dx dy.

We apply Hardy–Littlewood–Sobolev’s inequality to the last integral with exponents

1

p
+ 1

p
= 1 + 2 − 2s

N
↔ p = 2N

N − 2s + 2

and obtain

∫
R2N

U1,0(x)U1,0(y)

|x − y|N−2+2s
dx dy � C‖U1,0‖2

p
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which is finite as long as p(N − 2s) > N , i.e., N > 2 + 2s. This concludes the proof for N � 4. If
N = 2 or 3 we write

∫
R2N

(ψ(x) − ψ(y))2Uε,0(x)Uε,0(y)

|x − y|N+2s
dx dy

� Lip2(ψ)

∫
B4ρ×B4ρ

Uε,0(x)Uε,0(y)

|x − y|N−2+2s
dx dy + 2

∫
B2ρ×�B4ρ

Uε,0(x)Uε,0(y)

|x − y|N+2s
dx dy = I3 + I4

since if x ∈ B4ρ \ B2ρ and y ∈ �B4ρ , ψ(x) = ψ(y) = 0. The integral I3 can be estimated through the
Hardy–Littlewood–Sobolev inequality with exponent p and q given by

p = N

N − s
∈

]
1,

N

N − 2s

[
, q = N

2 − s
∈ ]

1, 2∗[

(notice that q < 2∗ if and only if N < 4), for which it holds

1

p
+ 1

q
= 1 + 2 − 2s

N
.

We obtain

I3 � C‖χB4ρ
Uε,0‖q

(∫
B4ρ

(
ε

ε2 + |x|2
)(N−2s)/2p

dx

)1/p

� C‖χB4ρ
Uε,0‖2∗

(∫
B4ρ

1

|x|p(N−2s)
dx

)1/p

ε(N−2s)/2 � Cε(N−2s)/2

the integral being finite since p(N − 2s) < N . For I4 we directly have

Uε,0(y) � Cε(N−2s)/2 ∀y ∈ �B4ρ and Uε,0(x) � C

(
ε

|x|2
)(N−2s)/2

∀x ∈ B2ρ

which implies, being |z| = |x − y| � 2ρ for any x ∈ B2ρ , y ∈ �B4ρ ,

I4 � CεN−2s

∫
B2ρ

1

|x|N−2s
dx

∫
{|z|�2ρ}

1

|z|N+2s
dz � CεN−2s . �

Proposition 3.2. There exists C2 > 0 such that for ε > δ > 0 sufficiently small and |z| = R

∫
RN

u2∗
δ,ε,z dx � N

s
c∞ − C2

δN−1

εN
− o(1), (3.5)

where o(1) → 0 for ε → 0 independently of δ.
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Proof. Since by (2.9)

U 2∗
ε,z(x) = d2∗

N,s

(
ε

ε2 + |x − z|2
)N

,

∫
RN

U 2∗
ε,z dx = N

s
c∞,

we have∫
RN

U 2∗
ε,z dx −

∫
RN

u2∗
δ,ε,z dx �

∫
Bρ(z)

U 2∗
ε,z(1 − ωδ) dx +

∫
�Bρ

U 2∗
ε,z dx

� C

εN

∣∣Bρ(z) ∩ {ωδ < 1}∣∣ + CεN

∫
�Bρ(z)

1

|x − z|2N
dx

� C
δN−1

εN
+ CεN.

This concludes the proof. �

Finally, we show how to modify the previous proofs to deal with the borderline case N = 2, s = 1/2.

Lemma 3.3. For any θ ∈ ]0, 1[ there exist Rθ > 1 and a function ηθ ∈ C∞
c (R) such that

ηθ(x) = 1 if |x| � 1, ηθ (x) = 0 in |x| � Rθ, 0 � ηθ � 1 (3.6)

and

[ηθ ]2
1/2 � C

| log θ | . (3.7)

Proof. It follows from the property (see [20, Theorem 2.6.14]) of the Bessel capacity of intervals

B1/2,2
([−θ, θ ]) = inf

{‖u‖2
2 : u � 0, g1/2 ∗ u � 1 on [−θ, θ ]} � C

| log θ | , (3.8)

where g1/2 is the Bessel potential in R (so that F(g1/2)(ξ) = (2π)−1/2(1 + |ξ |2)−1/4). Recall (see [19,
Proposition 4, V.3.5]) that η ∈ H 1/2(R) if and only if η = g1/2 ∗ u for some u ∈ L2(R). The density of
C∞

c (R) in H 1/2(R), the lattice property of the latter and (2.1) imply

inf
{[η]2

1/2 : η ∈ C∞
c (R), η � χ[−θ,θ]

}
= inf

{[η]2
1/2 : η ∈ H 1/2(R), η � 1 on [−θ, θ ]}

= inf

{∫
R

|ξ |∣∣F(η)
∣∣2

dξ : η ∈ H 1/2(R), η � 1 on [−θ, θ ]
}

� inf

{∫
R

(
1 + |ξ |2)1/2∣∣F(η)

∣∣2
dξ : η ∈ H 1/2(R), η � 1 on [−θ, θ ]

}

� C inf
{‖u‖2

2 : g1/2 ∗ u � 1 on [−θ, θ ]} � CB1/2,2
([−θ, θ ]),

which together with (3.8) gives the claim. �



S. Mosconi et al. / Nonlocal critical problems in contractible domains 95

Let us define for any 1 > θ > λ > 0, the function ωθ,λ ∈ C∞(R)

ωθ,λ(x1) = 1 − ηθ

(
x1

λ

)
,

and for ρ, R > 0 and z ∈ S
1
R, x = (x1, x2) ∈ R

2 we define, similarly to the beginning of the section

uθ,λ,ε,z(x) = ωθ,λ(x1)ψ(x − z)Uε,z(x).

Proposition 3.4. Let N = 2, s = 1/2. There exists C1 such that if 1 > ε > θ > λ > 0 and z ∈ S
N−1
R it

holds

[uθ,λ,ε,z]2
s �

N

s
c∞ + C1

| log θ |εN−2s
+ o(1), (3.9)

‖uθ,λ,ε,z‖2∗
2∗ �

N

s
c∞ − C1

λRθ

εN
− o(1), (3.10)

where o(1) → 0 for ε → 0 independently of θ and λ.

Proof. Regarding (3.9) we can repeat the proof of Proposition 3.1. Since the only thing we are changing
is the use of ωθ,λ instead of ωδ, it suffices to focus on the last inequality in (3.4), where in this case
N − 1 + 2s = 2. By scaling

∫
R2

(ωθ,λ(x1) − ωθ,λ(y1))
2

|x1 − y1|2 dx1 dy1 =
∫
R2

(ωθ,1(x1) − ωθ,1(y1))
2

|x1 − y1|2 dx1 dy1 = [ηθ ]2
1/2

and (3.7) gives (3.9). To obtain (3.10), we use scaling and (3.6) to get

∣∣Bρ(z) ∩ {ωθ,λ < 1}∣∣ � CλRθ,

and proceed as in the proof of Proposition 3.2. �

4. Existence

In the following we shall assume that

there is no critical point for IΩ on N+(Ω) at a level c ∈ [c∞, 2c∞], (4.1)

and that Ω ⊆ BR3 \ BR0 . For any u ∈ L2∗
(RN) \ {0} we define its barycenter as

β(u) =
∫
BR3

x|u|2∗
dx∫

RN |u|2∗ dx
.
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Clearly β : L2∗
(RN) \ {0} → R

N is a continuous function w.r.t. the strong topology, and as long as
β(u) �= 0 we can define

β̄(u) = β(u)

|β(u)| .

Lemma 4.1. There exists ε0 = ε0(N, s, R0, R3) > 0 such that for any Ω ⊆ BR3 \ BR0

IΩ(u) � c∞ + ε0, u ∈ N (Ω) =⇒ ∣∣β(u)
∣∣ � R0

2
.

Proof. Suppose not and let A = {x ∈ R
N : R0 < |x| < R3}. Then there exists a sequence {Ωn} such that

Ωn ⊆ A and {un} ⊂ N (Ωn) such that IΩn
(un) � c∞ + 1

n2 and |β(un)| < R0/2. Since N (Ωn) ⊆ N (A),
by Ekeland’s Variational principle [9, Proposition 5.1], we can pick a sequence {vn} ⊆ N (A) such that

[vn − un]s � 1

n
, IA(vn) � c∞ + 1

n
,

[∇N IA(vn)
]
s
� 1

n
,

where the norms are taken in XA as per (1.3). By Proposition 2.2, {vn} is a PS sequence for IA : XA → R

at level c∞, thus by [14, Theorem 1.1] the profile decomposition (2.14)–(2.16) holds true for some
v(0) ∈ XA, v(j) ∈ XΩ(j) , j = 1, . . . , m. Since c∞ is not a critical level, v(0) = 0, and by [17, Lemma 2.5]
no v(j) can be sign-changing. Using also Corollary 2.5 we obtain that m = 1 and v(1) = Uε,z for some
z ∈ R

N , ε > 0. Therefore [14, Theorem 1.1, (1.6)] ensures that there exist εn > 0, zn ∈ A such that

[vn − Uεn,zn
]s → 0 in Ḣ s

(
R

N
)
,

where εn → 0 (since Uε,z /∈ XA). Suppose, without loss of generality, that zn → z ∈ Ā. By scaling and
(2.9)

U 2∗
εn,zn

⇀
N

s
c∞δz as εn → 0,

in the sense of measures. We claim that β(vn) → z ∈ Ā as n → +∞: since it holds ‖vn −Uεn,zn
‖2∗ → 0

by Sobolev embedding, and ‖Uεn,zn
‖2∗

2∗ ≡ N
s
c∞ this follows from∫

BR3

x|vn|2∗
dx =

∫
BR3

x
(|vn|2∗ − U 2∗

εn,zn

)
dx +

∫
BR3

xU 2∗
εn,zn

dx → N

s
c∞z.

However, from ‖un−vn‖2∗ → 0 we deduce |β(vn)−β(un)| → 0 and so, by our assumption, |z| � R0/2,
which is a contradiction with z ∈ Ā. �

Lemma 4.2. Let N � 3 and s ∈ ]0, 1[ or N = 2 and s ∈ ]0, 1
2 ]. For any ε̄ > 0, there exists δ(ε̄, N, s,

R1, R2) > 0 such that to any Ω ⊆ BR3 satisfying (1.7) there corresponds ϕ : SN−1 → N+(Ω) with the
following properties:

IΩ

(
ϕ(x)

)
� c∞ + ε̄ ∀x ∈ S

N−1; (4.2)

0 /∈ β
(
ϕ
(
S

N−1
))

,
∣∣β̄(

ϕ(x)
) − x

∣∣ � 1 ∀x ∈ S
N−1. (4.3)
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Proof. First we set, from (1.6), R = (R1 + R2)/2 and

ρ < min

{
R

10
,
R2 − R1

2

}
.

Consider first the case N − 1 − 2s > 0 (i.e. N � 3 and s ∈ ]0, 1[ or N = 2 and s ∈ ]0, 1/2[). For
z ∈ S

N−1
R the functions uδ,ε,z constructed as per (3.1) belong to XΩ , as soon as Ω satisfies (1.7). Without

loss of generality, we can assume 1  ε > 0 and set

δ = εα for some α >
N − 2s

N − 1 − 2s
>

N

N − 1
> 1.

For such a choice, (3.2) and (3.5) read

[uδ,ε,z]2
s �

N

s
c∞ + o(1), ‖uδ,ε,z‖2∗

2∗ �
N

s
c∞ − o(1) ∀z ∈ S

N−1
R . (4.4)

In the case N = 2, s = 1/2 we instead use Proposition 3.4. First we choose θ = e−ε−α

, α > 1 and then
λ > 0 such that λ = ε1+α/Rθ . Then (3.9) and (3.10) provide (4.4) for uθ,λ,ε,z. Let us call, for δ, θ , λ

depending on ε as before,

uε,z =
{

uδ,ε,z if N − 1 − 2s > 0,

uθ,λ,ε,z if N = 2 and s = 1/2,
δ =

{
εα if N − 1 − 2s > 0,

λθ if N = 2, s = 1/2,

and define, for any x ∈ S
N−1

ϕ(x) = T (uε,Rx) ∈ N+(Ω).

Since

IΩ

(
ϕ(x)

) = s

N

( [uε,Rx]2
s

‖uε,Rx‖2
2∗

)N/(2s)

� s

N

(
(N/s)c∞ + o(1)

((N/s)c∞ − o(1))2/2∗

)N/(2s)

= c∞ + o(1)

we have that (4.2) holds for sufficiently small ε (and thus δ). To prove (4.3) observe that, for any z ∈
S

N−1
R , uε,z is supported in B2ρ(z), therefore its barycenter lies in B2ρ(z), and in particular is nonzero,

being 2ρ < R. Since β(T (uε,z)) = β(uε,z), it holds∣∣β(
ϕ(x)

) − Rx
∣∣ � 2ρ,

which implies∣∣∣∣ β(ϕ(x))

|β(ϕ(x))| − x

∣∣∣∣ �
∣∣∣∣ β(ϕ(x))

|β(ϕ(x))| − β(ϕ(x))

R

∣∣∣∣ +
∣∣∣∣β(ϕ(x))

R
− x

∣∣∣∣
�

∣∣β(
ϕ(x)

)∣∣∣∣∣∣ 1

R
− 1

|β(ϕ(x))|
∣∣∣∣ + 2ρ

R
� (R + 2ρ)

2ρ

R(R − 2ρ)
+ 2ρ

R
< 1

being 10ρ < R. �
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We now define the minimax problem providing the critical level for IΩ . In the following we will
assume that δ is small enough so that Lemma 4.2 holds, and Ω satisfies (1.7) for such a δ.

Let us set

Γ := {
γ ∈ C0

(
S

N−1,N+(Ω)
) : β

(
γ (x)

) �= 0 for all x ∈ S
N−1 and deg

(
β̄ ◦ γ, SN−1

) �= 0
}
.

Observe that ϕ ∈ Γ since (4.3) implies that

H(t, x) = t β̄(ϕ(x)) + (1 − t)x

|t β̄(ϕ(x)) + (1 − t)x|

is a homotopy between β̄ ◦ ϕ and the identity map of SN−1. Thus by the homotopy invariance of the
degree we get deg(β̄ ◦ ϕ, SN−1) = deg(Id, SN−1) = 1. Therefore the minimax problem

c1 := inf
γ∈Γ

sup
x∈SN−1

IΩ

(
γ (x)

)
,

is well defined. Let furthermore

c̄ := inf
{
IΩ(u) : u ∈ N+(Ω), β(u) �= 0, β̄(u) = eN

}
,

where eN = (0, . . . , 0, 1).

Lemma 4.3. Let N � 3 and s ∈ ]0, 1[ or N = 2 and s ∈ ]0, 1
2 ]. For any ε̄ > 0, there exists δ(ε̄, N, s,

R1, R2) > 0 such that to any bounded Ω ⊆ BR3 satisfying (1.6), (1.7), it holds

c∞ < c̄ � c1 � c∞ + ε̄.

Proof. We fix δ > 0 so that Lemma 4.2 holds for ε̄, providing the corresponding ϕ. First observe that
since deg(β̄ ◦ ϕ, SN−1) = 1 �= 0 there is x ∈ S

N−1 such that β̄(ϕ(x)) = eN . Therefore c̄ is well defined
as well. By the same reason, given any γ ∈ Γ , there exists xγ such that β̄(γ (xγ )) = eN , so that

c̄ � inf
γ∈Γ

IΩ

(
γ (xγ )

)
� c1.

Since, as noted before, ϕ ∈ Γ , we have through (4.2)

c1 � sup
x∈SN−1

IΩ

(
ϕ(x)

)
� c∞ + ε̄.

The argument which shows that c∞ < c̄ relies on (1.6) and is analogous to the proof of Lemma 4.1. �

Theorem 4.4. Let N � 3 and s ∈ ]0, 1[ or N = 2 and s ∈ ]0, 1
2 ]. Then there exists δ > 0 such that if

Ω ⊆ BR3 \ BR0 is a smooth open set satisfying (1.6), (1.7), IΩ has a critical point in XΩ at some level
c ∈ ]c∞, 2c∞[.
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Proof. Let ε0 = ε(N, s, R0, R3) ∈ ]0, c∞[ be given in Lemma 4.1 and let δ > 0 be such that Lemmas 4.2
and 4.3 hold for ε̄ = ε0/2. Finally choose a, b ∈ ]c∞, 2c∞[ such that

c∞ < a < c̄ � c1 < b < c∞ + ε0 < 2c∞.

By Proposition 2.6(2), IΩ satisfies (PS)c on N (Ω) for all c ∈ [a, b]. Applying Proposition 2.3, fix a
homotopy retraction R of {u ∈ N (Ω) : IΩ(u) � b} on {u ∈ N (Ω) : IΩ(u) � a} and pick γ̄ ∈ Γ such
that

sup
x∈SN−1

IΩ

(
γ̄ (x)

)
� b.

We claim that

γ̄1 := T
(∣∣R(1, γ̄ )

∣∣) ∈ Γ.

Indeed, for any x ∈ S
N−1, γ̄1(x) ∈ N+(Ω) and (2.3) ensures

I
(
γ̄1(x)

)
� I

(
R

(
1, γ̄ (x)

))
� a < c∞ + ε0.

By Lemma 4.1 it holds β(γ̄1(x)) �= 0 for all x ∈ S
N−1, while we claim

(x, t) �→ H(t, x) := β̄
(
T

(∣∣R(
t, γ̄ (x)

)∣∣))
defines a homotopy in S

N−1 between β̄ ◦ γ̄ and β̄ ◦ γ̄1. Indeed using (2.3), I (R(t, γ̄ (x))) � c∞ +
ε0 and Lemma 4.1 we obtain that β(T (|R(t, γ̄ (x))|)) �= 0 for all (t, x) ∈ [0, 1] × S

N−1, and thus
H is continuous. This ensures that deg(β̄ ◦ γ̄1, S

N−1) = deg(β̄ ◦ γ̄ , SN−1) �= 0. We thus reached a
contradiction, being

c1 = inf
γ∈Γ

sup
x∈SN−1

IΩ

(
γ (x)

)
� sup

x∈SN−1

IΩ

(
γ̄1(x)

)
� a < c1.

This concludes the proof. �
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