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Abstract: We investigate the issue of uniqueness of the limit flow for a relevant class of quasi-linear parabolic
equations defined on the whole space. More precisely, we shall investigate conditions which guarantee that
the global solutions decay at infinity uniformly in time and their entire trajectory approaches a single steady
state as time goes to infinity. Finally, we obtain a characterization of solutions which blow up, vanish or
converge to a stationary state for initial data of the form Ao while A > 0 crosses a bifurcation value Ag.
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1 Introduction and main results

1.1 Overview

In the last decades, a considerable attention has been devoted to the study of solutions to the quasi-linear
Schrédinger equation
iug + Au+udu? —u+ ulP'u=0 inRY x (0, 00). (1.1)

In fact, this equation arises in superfluid film equations in plasma physics, see [5, 6], and it is also a more
accurate model in a many physical phenomena compared with the classical semi-linear Schrédinger equation
it + Au — u + |ulP~1u = 0. In particular, local well-posedness, regularity, existence and properties of ground
states as well as stability of standing wave solutions were investigated, see e.g., [8] and the references therein.
The problem raised the attention also in the framework of non-smooth critical point theory, since the func-
tional associated with the standing wave solutions of (1.1), i.e.,
U 1 J(l +2u?)|Vul? dx + 1 J u? dx - . J luP*1 dx,
2 2 p+1
RV RV RV

is merely lower semi-continuous on the Sobolev space H*(IRV) and it turns out that it is differentiable only
along bounded directions. Hence on H'(R"), the existence of critical points required the development of new
tools and ideas, see e.g., [19, 22, 30].

In this paper, motivated by the results obtained in [9, 10] for a class of semi-linear parabolic equations,
we aim to investigate the asymptotic behavior for the quasi-linear parabolic problem

ur — Au—uAu? +u = uP'u  inRY x (0, 00), (1.2)

u(x, 0) = upg(x) in RV, (1.3)
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whose corresponding stationary problem is
“Au-ulv? +u=uP'u inRY, (1.4)

ux) -0 as |x| — oo.

More precisely, we deal with the problem of uniqueness of the limit of bounded trajectories of (1.2)—(1.3).
Since the problem is invariant under translations, even knowing that (1.4) admits a unique solution up
to translations in general does not prevent from having different positively diverging sequences {t;}nen,
{Tntnen, such that {u(-, ty)en and {u(-, 7,)}nen converge to different solutions to (1.4). As proved by
L. Simon in a celebrated paper [29] (see also [16]), in the case of variational parabolic problems such as
us + &'(u, Vu) = 0 where the associated Lagrangian &(s, ) depends analytically on its variables (s, £), then
it is always the case that the full flow u(t) converges to a stationary solution of &'(u, Vu) = 0 and oscillatory
behavior is thus ruled out. The argument is essentially based upon the Lojasiewicz inequality [20] and a
series of additional estimates. On the other hand for (1.2), the assumptions of [29] are not fulfilled due to the
presence of the non-analytical nonlinearity u — |u[P~'u, unless p is an odd integer. In general, without the
analyticity assumption, the w-limit set corresponding to a suitable sub-manifold of initial data is a continuum
of H' which is homeomorphic to the sphere, see [24, 25]. However, equation (1.4) has been object of various
investigations for what concerns uniqueness and non-degeneracy of solutions. By working on the linearized
operator £ around a stationary solution w, namely

Ld=—(1+2wH)AP — 4wVw -V — (4wAw + 2|Vw|*)p + ¢ — plwP 1, (1.5)

and by exploiting the non-degeneracy [2, 28] of the positive radial solutions to (1.4), i.e.

ow ow
Ker(L) = span{a—xl, ceey E},

inspired by the ideas of [9] where the semi-linear case is considered, we will be able to prove that, in fact, the
flow of (1.2)-(1.3) enjoys uniqueness. As to similar results for semi-linear parabolic problems, see [7, 10, 11]
and references therein. Throughout the paper we shall assume that

3N +2
N-2
We will deal with classical solutions u € C([0, To), CZ(RN)) n C1((0, To), C(RM)) to (1.2)-(1.3), whose local
existence and additional properties will be established in Section 2. The uniqueness of positive solutions of
(1.4) has been investigated in [3, 15], while the non-degeneracy of the unique positive solution has been also
obtained in [1, 2, 28]. We also note that the unique positive solution w of (1.4) is radially symmetric with
respect to a point xo € RY and decays exponentially at infinity. For a good source of references for the issue
of long term behavior of semi-linear parabolic equations, we refer the reader to [12].

3<p< ifN>3, 3<p<oifN=1,2.

1.2 Main results

The following are the main results of the paper.

Theorem 1.1 (Decaying solutions). Let N > 2 andletug € Cg"(]RN) be non-negative and radially non-increasing.
Let u be the corresponding solution to (1.2)-(1.3) and assume that it is globally defined. Then u is positive,
bounded, radially decreasing and
lim supu(x, t) = 0. (1.6)
[x]—>e0 >0
Theorem 1.2 (Uniqueness of limit). Let N > 1 and let u be a non-negative, bounded, globally defined solution
to (1.2)—(1.3) which satisfies (1.6). Then either u(x, t) — 0 uniformly in RN as t — oo or there is a positive
solution w of (1.4) such that u(x, t) — w(x) uniformly in RN. In addition,
K
tlin«;lo Jllu( S t+8)—w(- )IIf{l(RN) ds=0 foreveryK > 0. (1.7)
0
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Theorem 1.3 (Bifurcation). Let N > 2 and let g € C8°(1RN ) be non-negative, radially non-increasing and not
identically equal to zero. If p = 3, assume furthermore that

1
[ (#31vpol? - Z1po*) dx <o.

RN

Then there exists Ay > 0 such that the solution u to (1.2)—(1.3) with ug = A@q satisfies the following:
(i) IfA < Ao then u(x, t) goes to zero as t — oo uniformly in RV,

(i) IfA = Ao then u(x, t) converges to a positive solution w of (1.4) uniformly in RY.

(iii) If A > Ag then u(x, t) blows up in finite time.

Remark 1.4. Here we collect some remarks on the main results.

(i) In Theorem 1.2, we do not need any symmetric assumptions on the solution. However by the result
in [23], we can show that our global solution is asymptotically symmetric, that is, it has a common center
of symmetry for the elements of the w-limit. See [7, 21] for related results.

(ii) To prove the uniform decay condition (1.6) in Theorem 1.1, we have to assume that uy is radially non-
increasing. This assumption is used to obtain a universal bound near infinity, see Remark 2.14. We
believe that this is technical, but we do not know how to remove it at present.

(iii) By arecent result in [1], the non-degeneracy of the positive radial solution to (1.4) holds evenif1 < p < 3.
On the other hand, the condition p > 3 appears in various situations, especially in the proof of Theo-
rem 1.1. Although the nonlinear term |u|P~'u is superlinear even when 1 < p < 3, problem (1.2) has a
sublinear structure due to the term uAu?, causing our arguments to completely fail.

(iv) In the proof of Theorem 1.1, we also require that N > 2. This is to construct a suitable supersolution, see
Remark 2.16.

As we will see in Section 2, our problem is uniformly parabolic, yielding that basic tools (energy estimate,
Schauder estimate, comparison principle, etc.) are available. Especially some proofs work in the spirit of
those of [9] for semi-linear problems. However quite often the semi-linear techniques fail to work, especially
in the construction of suitable subsolutions (see e.g. Lemma 2.13). To compare the dynamical behavior of
solutions for our quasi-linear parabolic problem with that for the corresponding semi-linear one, for x > 0,
we consider the problem

U — Au—kubu? +u = [ulP'u  inRY x (0, o), L.8)
u(x,0) = Apo(x) in RN '
and the corresponding semi-linear parabolic problem
ur—Au+u=ufu inRYx(0,c0), (1.9)
u(x,0) = Apo(x) in RN. '
The stationary problem associated with (1.9) is given by
—Aw+w=wPwinRY, w(x) - 0as|x| - co. (1.10)

It is well known that problem (1.10) has a unique positive solution for 1 < p < (N +2)/(N - 2)if N > 3 and
1<p<ooif N=1,2. Now let Ag(x) > O be a constant obtained by applying Theorem 1.3 to (1.8). When
3<p<(N+2)/(N-2),both Ag(x) and Ao(0) are defined and

Ap(0) < Ag(x) forall x > O. (1.112)

In fact, we claim that Ag(kp) < Ag(x1) for all kg < k1. Defining I, by

1 2 2.2 1 J P+l
I(u) = 5 J ((1 + 2xu?)|Vul® +u”) dx PE [ulP** dx,
RY RY

it follows that if I, (u) > O for all u € C3°(RN) then Iy, (u) > 0 for all u € C(RY). Thus by Lemmas 2.17
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and 2.18 and by the definition of Ay(x), the claim follows. Inequality (1.11) shows that there exist initial
values ug such that the corresponding solution to (1.8) is globally defined, but that of the semi-linear prob-
lem (1.9) blows up in finite time. In other words, the quasi-linear term uAu? prevents the blow-up of solu-
tions. This kind of stabilizing effects has been observed for the quasi-linear Schrédinger equation (1.1), see
e.g., [6, 8].

Plan of the paper. In Section 2, we state several preparatory results. In Section 2.1, we establish the lo-
cal existence of classical solutions of (1.2) and give qualitative properties of classical solutions. Section 2.2
concerns with stability estimates for global solutions. We prove uniform estimates of global solutions in Sec-
tion 2.3. We state technical results about uniqueness of limits in Section 2.4. In Section 3, we will prove the
main results of the paper.

Notations. Forany p € [1, co) and a domain U ¢ RY, the space LP(U) is endowed with the norm
1
Il = ( [ 1u? dx)".
U

The standard inner product in L?(U) is denoted by (-, - )12 The Sobolev space H!(U) is endowed with the
standard norm

1
Il = ( [ (74P + ) dx)".

U
The higher order spaces H™(U) are endowed with the standard norm. The space C¥((0, T), H™(U)) denotes
the functions with k-time derivatives which belong to H™(U). When U = RN, we may write | - | am@yy = |l

The symbols ou/ox;, 0%u/ 0x;0x; and u; denote, respectively, the first and second order space derivatives
and the time derivative of u. For a non-negative integer m, the set of all partial derivatives of order m is de-
noted by D™u. The space of compactly supported smooth functions is denoted by C8°(IRN ). The notation
span{ws, ..., wi} denotes the vector space generated by the vectors {w1, ..., wix}. We denote by Q(u) the
w-limit set of u, namely the set

Qu) :={we HYRY) : u(-, t,) — wuniformly in RN as n — oo for some t, — 00}.

The symbol B(xo, R) denotes a ball in RY of center xo and with radius R. The complement of a measurable
set E ¢ RY will be denoted by E°.

2 Preparatory results

2.1 Local existence and basic properties

In this subsection, we prove the local existence of classical solutions of (1.2)—(1.3) and provide also some
qualitative properties. First we observe that (1.2) can be written as L(u) = O where

ou ou )
— Uy,

L) = (1 +2u?)Au + 2ulVul? - u + [ulP~Yu — ug =: F<u, —
aX,’ aXian

where we have set

N N
F(u, pi, 1ij) = Z (1 +2u?)8yrij + 2u szz —u+ufPtu.
=1 i-1

Then one has (;’Tfj = (1 + 2u?)6;j and hence

or(, ou o
=1 orij > ox;’ 0X;0X;

)6 = (@ + 209187 > 141
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for all £ e RN\ {0} and u € R. This implies that F is uniformly elliptic and the nonlinear operator L is
(strongly) parabolic with respect to any u. We also note that L can be written by the divergence form
L(u) = divA(u, Vu) + B(u, Vu) — uy,
A(u,p) = (1+2u®)p, B(u,p)=—(1+2[p/")u+u’ " u. 2.1)

Then we have the following result on the local existence of classical solutions whose proof is based on a
modified Galerkin method as in [31].

Lemma 2.1 (Local existence). Let ug € CSO(IRN). Then there exist To = To(up) € (0, co] and a unique classical
solution u(x, t) of (1.2)—(1.3) satisfying

sup |D*u(-, O)llpeomny <00 for |kl <2, (2.2)
te(0,To)
u(x,t) - 0as|x| — oo foreacht € (0, Tp). (2.3)

Proof. Since the operator L is strongly parabolic, for any ug € CSO(]RN ), there exist a (small) positive number
To = To(up) and a unique solution u(x, t) of (1.2)—(1.3) satisfying

u € C([0, To), H™(RN)) n C1((0, To), H™"2(RN)) for any m € N with m > g +2

by using a suitable approximation and applying the energy estimate, see [31, Proposition 7.5]. Then by the
Sobolev embedding H™(RV) — C2(R¥) and H™2(RY) — C(RN) for m > ¥ + 2, u is a classical solution of
(1.2)-(1.3). Moreover, by the Sobolev and Morrey inequalities, (2.2) and (2.3) also hold. O

From (2.1), we can also obtain the local existence of classical solutions by applying the Schauder estimate, see
[17, Theorem 8.1, p. 495]. We note that Ty is not the maximal existence lifespan, but the local solution u(x, t)
can be extended beyond T as long as sup|lu(-, t)l¢c2(rv) is bounded. Next we prepare the following compar-
ison principle for later use. For this statement, we refer the reader to [26, Section 7, Theorem 12, p. 187].

Lemma 2.2 (Comparison principle). Let U be a bounded domain in RN and T > 0. Suppose that u is a solution
of L(u) = f(x, t) in U x (0, T] satisfying the initial boundary conditions

u(x,t) = g1(x,t) onoUx (0, T),

u(x, 0) = g2(x) in U.

Assume that z(x, t) and Z(x, t) satisfy the inequalities

L(Z) < f(x,t) < L(2) inU x (0, TJ,
z(x,t) < g1(x,t) < Z(x,t) onoUx(0,T),
z(x,0) < g2(x) < Z(x, 0) in U.

If L is parabolic with respect to the functions Qu + (1 — 0)z and Ou + (1 — 6)Z for any 6 € [0, 1], then it follows
that
z(x,t) <ulx, t) < Z(x,t) inUx (0, T].

We recall that z and Z are called a subsolution and a supersolution of L(u) = f respectively. By applying
Lemma 2.2, we provide some qualitative properties for solutions of (1.2)-(1.3).

Lemma 2.3 (Radially decreasing flows). Suppose that ug € Cg"(]RN ) is non-negative and not identically zero.
Then the corresponding solution u is positive for all x € RN and t € (0, To). Moreover, if ug(x) = uo(|x|) and
ué(r) <O forallr > 0, then u(x, t) is also radial and u,(r, t) < O forallr > 0 and t € (0, Tp).

Proof. Firstsince z = 0 is a subsolution of L(u) = 0, it follows by Lemma 2.2 that u > 0. Moreover, from (2.1)
we can see that the structural assumptions for quasi-linear parabolic equations in [32] are fulfilled. Then we
can use the time-dependent Harnack inequality for L(u) = 0, see [32, Theorem 1.1]. Thus we have u > 0. Next
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we suppose that ug is radial. Then by the local uniqueness and the rotation invariance of problem (1.2), it
follows that u is radially symmetric. Let us assume that ug(r) < 0 for all r > 0. We show that u, < 0. To this
end, we follow an idea in [27, Section 52.5]. Now we differentiate (1.2) with respect to r and write u’ = u, for
simplicity. Then by a direct calculation, one has

N-1
r

up— (1 +2u?)u'" - <8uu’ +

(4(N—1) , N-1
r r2

1+ Zuz))u”

(1+2u?) +2W? + puPt - 1)u' =0.

We put ¢(r, t) = u,(r, t)e X for K > 0. Then ¢ satisfies the following parabolic problem:

L(p) := (1 +2u®)¢" +ap’ + bdp — ¢p¢ =0, (2.4)
a(r,t) =8uu' + — (1 +2u?),
b(r, t) = wuu' - Nr_z ! (1+2u?)+2W)? +puPt-1-K.

Moreover, choosing sufficiently large K > 0, we may assume that b(r, t) < 0 in (0, co) x (0, Tp). Hereafter we
write Q = (0, 00) x (0, Tp) for simplicity. Next we suppose that

sup ¢(r, t) > 0.
Q

Then we can take 1
M := —sup¢(r,t) >0
2 q

and put ®(r, t) = ¢(r, t) — M. We observe that (0, t) = u,(0, t)e X — M = M for every t € (0, To). Moreover,
@(r,t) » -Masr — oo foreach t € (0, To). In fact, since |Vu(-, t)l|gn-1(rv) < co forany m > % + 2, it follows
by the Morrey embedding theorem that [Vu(x, t)] — 0 as |x| — oo and hence

lim ®(r, t) = lim u,(r, e X - M = -M.
r—00 r—00
Now since

sup ®(0,t) = lim sup @(r,t) =-M,
t€(0,To) "0 te(0,To)

there exist (rg, r1) ¢ (0, 0o) such that ®(r, t) < 0 forr € (0, rg) U (r,00)and t € (0, Ty), and
D(rg, t) = O(r1,t) =0 fort e (0, Ty). (2.5)
Moreover, by the definition of ® and from u{)(r) < 0, it follows that
@(r,0) = p(r,0) =M = u,(r,0) ~-M = u((r) ~-M < 0 forr e (ro, r1). (2.6)
Finally, from (2.4), the fact ® = ¢ — M and b < 0, we also have
L(®) = L(¢) ~-bM = -bM > 0 in (ro, 1) % (0, To). (2.7)

Since the operator L is parabolic, we can apply the comparison principle. Thus from (2.5)-(2.7), it follows
that @ is a subsolution of L(u) = 0 and hence @ < 0 in (0, co) x (0, To). On the other hand by the definition
of M, one has

sup @©(r, t) =sup ¢p(r,t) - M =M > 0.
Q Q
This is a contradiction. Thus sup, ¢ < 0 and hence u,(r, t) = eKlgp(r,t) <Oforallr > 0and t € (0, Tp). This

completes the radial non-increase of u as required. Finally, the radial decrease of u follows by the Hopflemma,
see [26, Theorem 6, p. 174]. O
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2.2 Energy stabilization

In this subsection, we prove several stability estimates. Let u(x, t) be a non-negative bounded, globally
defined solution of (1.2)—(1.3) satisfying (1.6) and denote by Q(u) the w-limit set of u. We also suppose that
[Vu(-, t)lleoryy is uniformly bounded. We define the functional

I(u) := 1 J (1 +2u?)|Vul?® + u?) dx - 1 J uP*1 dx.
2 p+1
RY RV

Notice that I is well-defined on the set of functions u € H*(RY) such that u> € HY(RY) from 3 < p < 32 via
the Sobolev embedding (cf. [8]). Moreover, we have the following result.

Lemma 2.4 (Energy identity). There holds

%I(u(-,t)) =— J ug(x, t)% dx.
]RN
Proof. 1t is possible to prove that I is differentiable along smooth bounded directions. By the proof of
Lemma 2.1, we know that u € C*((0, Tp), H™2(RY)) for any m > N/2 + 2. Since H™2(RN) < L®(RN) for
m > N/2 + 2, it follows that u € C1((0, To), L°°(RN)) and hence I is differentiable with respect to t at u along
the smooth direction u¢. By a direct computation and from (1.2), we have

d
El(u(ut)) =T'(u(-, ) (ue(-, 1) = - J uf (x, t) dx. O
IRN
Lemma 2.4 implies that I is decreasing in t and hence I is a Lyapunov function associated with problem

(1.2)-(1.3).

Lemma 2.5 (Flow stabilization). Forevery K > O we have

lim sup [lu(-, t+71)-u(-, Hl2wy =0,

{00 7¢[0,K]

lim sup [[u(-, t+71)—u(-, Dlc@wyy = 0.

{00 7¢[0,K]
In particular, if u(-, t;) — w uniformly in RN then u(-, t, + pn) — w in C'(RN) for any bounded sequence
{Pntnen c RY.

Proof. We fix 7 € [0, K]. For every t > 0 we have

t+1

J u(-, t+71)—u(-, > dx = “J ut(-,s)ds|2dx
RN RV 1
t+1

srj j lue(-, ) ds dx
Nt

t+1

=T j J lue(-, s)I> dx ds = T(I(t) - I(t + 1)).

RN

~

Since I(t) is non-increasing and bounded from below, it has finite limit as t — co, which yields the assertion.
For the second claim, since {u(-, t), t > 1} is relatively compact in C!(R") (see the argument in the proof of
Lemma 2.20), one can argue as in [21, Lemma 3.1]. O

By Lemma 2.5, we have the following basic result.

Lemma 2.6 (w-limit structure). The set Q(u) is either {0} or consists of positive solutions of (1.4).
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Proof. Forevery ¢ € C(RY) and 7 > 0, we have

th+T th+T th+T

J Jut(pdxds+ j JVu-V(pdxds+2 j Ju(pruIzdxds
th RN th RN th RN
th+T th+T th+T
+2 J jquu-prdxds+ J Ju(pdxds: J jup(pdxds.
th RN th RN th RN

For some &, € [ty, t, + 7] this yields

J (u(x, th +T) = u(x, tn))P(0) dx + J Vu(x, &) - Vo(x) dx

RN RN
+2 j u(x, £)(OIVUx, &) dx +2 j W2 (X, E)VU(X, &) - V() dx
RN RN
+ J u(x, &)e(x) dx = J uP (x, &) (x) dx.
]RN IRN

Since u(-, ty) — w uniformly in RV, by virtue of Lemma 2.5 it follows that u(-, t, + ) — w in LZ(RV) and
u(-, &) — win CY(RN), which yields

J Vw -V dx + 2 J w|Vw|? dx + 2 J w2Vw - Vo dx + J we dx = J wP @ dx

RN RN RN RN RY
for every ¢ € C8°(]RN ), namely w is a non-negative solution of (1.4). O
Lemma 2.7 (Energy bounds). The following properties hold:
(i) There exists C > 0 such that

sup J (1 + 2Ju(x, 1) IVulx, 1% + lu(x, H]?) dx < C.
t>0

(i) Ifw € Q(u) thenw € HY(RN). Moreover,

sup (Iwlg:wyy + [WlLeo(wr)) < 00.
weQ(u)

Proof. We prove (i). Since I is decreasing in ¢, it follows that for t > 0, we have

1 1
5 J (1 +2u?)|Vul? + u?) dx - —l J [ulP*! dx < I(uo).
RV L

Moreover, for every R > 0, one has

1 1
— J lulP*! dx <
p+1 p+

( sup |u(x, P! j lul? dx + J luP*t dx.
IXI>R, £>0
RV B<(0,R) B(O,R)

Finally, from (1.6), taking R large enough, we have

L1
sup |u(x, )P~ < =,
p+1 ( [X|=R, t>0 ) 4

which yields
sup j (1 + 2lulx, £)1)IVulx, t)|* + lu(x, t)]?) dx < 4M|B(0, R)| + 4I(uo),
t>0
N
where we have set M = ||u||€;1(IRNX[O’OO)).
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We prove (ii). Suppose that
lu(-, tn) = w()lreo@yy — O for some t, — oo.

Then from (i), it follows that {u( -, t,,)} is bounded in H (RN). Thus, up to a subsequence, we have u(-, t,) — W
in HY(RY) and u(-, t,) — W a.e. in R" for some w € H*(RY). Since u(-, t,) converges to w uniformly, it fol-
lows that w = W, which implies that w € H'(RY). By the boundedness of u(x, t) in H*(RY) and L>°(RY), the
last assertion of (ii) follows. O

Lemma 2.8 (Lipschitzianity controls). Let O < t; < t,. Then there exists C > O independent of t, and t, such
that the following properties hold:
@ Nu(-, 62) = w2y < e“CDNul-, t1) = w2 @y,

ot _
(11) -[tlz ||u( ) S) - W( ‘ )"iII(IRN) dS < CeC(tz tl)”u( T tl) - W( : )ll%Z(RN)'
Proof. (i) The proofis based on the standard energy estimate. We put ¢p(x, t) = u(x, t) - w(x). From (1.2), (1.4)
and by the mean value theorem, one has

Be — (1 +2u?)Ap — 2wV (U + W) - Vb — 2(u + W)Awe — 2|Vul’p + p — p(ku+ (1 - )W)’ "p=0  (2.8)

for some k € (0, 1). Multiplying (2.8) by ¢ and integrating it over R, we get

%%Mqﬁ"%z - J (1 +2u)PAP + 2wV (u + w) - Vo + 2(u + w)p>Aw + 2¢p%|Vul?) dx
]RN
+ J ¢>dx-p J (xu+ (1 -w) ' ¢p2dx =0.
RN RN

Using the integration by parts, we have

- J (1 +2u?)pA¢ dx = J (1 +2u?)|Vo|? + 4ugpVu - Vo dx,

RN RV
- J 2(u +w)p>Aw dx = J 20°Vw - V(u +w) + 4(u + w)pVw - Vb dx.
RV RN

Thus one has

1
E%qunfz + j {(1+2u2)[VpP + 4ugpVu - Ve - 2wV (u +w) - Vb
]RN
+2¢2VW - V(U + W) + 4(u + w)pVw - Ve — 2¢)2|Vu|2} dx
+ J ¢*dx-p J (ku+ (1 - k)w)y’ ' p? dx = 0.
RV RV
Since u, w, Vu and Vw are bounded, we obtain
19
2 ot
Thus by the Young inequality, it follows that

Ipl7. + 117 < CldlzIVPlz + ClplT.

0
EII¢(-,t)IIfz +1p(-, Ol < Cllp(-, B)lI7.. (2.9)

Now let {(t) := |¢(+, t)lI7,. Then one has {' () < C{(t). By the Gronwall inequality, {(t,) < e“2~1){(¢;) follows
and hence the claim holds.
(ii) Integrating (2.9) over [t1, t>], one has
t, ty
[16C 9 ds <9 e, + € 19 )13, ds.

tl tl
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Thus from (i), we get
t

1 _
[1ec 9l ds < (1+ 55)e? g 91 =

ty

Lemma 2.9 (Further stability estimates). Let K > 1 be arbitrarily given and {t,}nen be a sequence such that
th = ocoasn — co. If [[u(-, ty) = w(-)llLowyy — 0 as n — oo then the following properties hold:

s . K
@) limpoeo fo lluC-, s+ ta) = W)l gy, ds = O,
(ii) limpocollu(-, t + tn) = w()llzeo®rxio,x) = O-

Proof. (i) Arguing as in the proof of Lemma 2.7 (ii), we may assume that u(-, t,) — w in H'(RY). Moreover,
by the uniform decay condition (1.6), one can show that sup,.; u(x, t,) decays exponentially at infinity, see
Lemma 2.15. Thus by the exponential decay of w and the embedding H!(RN) < L2 _(RN), it follows that

loc

Tim [u(-, ta) = W()llp2n) = 0. (2.10)

Next applying Lemma 2.8 (ii) with ¢; = t,, and t, = t,, + K, one has

th+K
lu(-, s) = w()lIZ ds < Ce“Mu(-, ta) - w()IIZ..

tn

Thus by (2.10), the claim holds.
(ii) We argue as in [17, Theorem 2.5, p. 18]. Let ¢ (x, t) = u(x, t + t,) — w(x) and define

L(¢n) = (1 + 2u®)Adpy + 2WV(U + W) - Vo + a(X) P — (),
a(x) = 2(u +w)Aw + 2|Vul?> = 1 + p(xu + (1 - )w)’ .
Then from (2.8), it follows that L(¢p,) = 0. We put
lull oo wixpo,x]) + IVUllLeomix[o, k) = M, lalleomyy = A, lPpn(-, 0)llLeowryy = B. (2.11)

Fore > 0,R > 0and c > 0, we define
Z(x, t) = Pn(x, t)e" A+t _p _ %(x2 +ct), |x|<R, tel0,K].
Then by a direct calculation, one has
(L-A-€)Z=BA+e-ak)+ %(c +(A+e—a()+ct)—2(1 +2u?) — 4wV(u +w) - VX) = F(x, t).

From (2.11) and the boundedness of u, w, Vu, Vw, we can choose a large c independent of ¢, R and n € N so
that F > 0. Moreover, from (2.11), we also have

M
Z(x,t) = ppe A9 _B_ M- ﬁct <0 on|x|=R, te][0,K],
M,
Z(x,0) = ¢n(x, 0)—B—ﬁx <0 for |x| < R.
Thus by applying the comparison principle to L — A — &, we obtain Z < 0 for |x| < Rand t € [0, K]. Defining
- ne-@ot g Mo 2.
z(x, t) = ¢pn(x, t)e + +ﬁ(x +ct)
for the same ¢ > 0, one can see that
(L-A-€)z=f<0, z>0on|x|=R, te[0,K], z(x,0)=>0for|x| <R.

Thus by the comparison principle, we get z > 0 and hence

M
lpn(x, £)] < e(A”)t(B + ﬁ(x2 + Ct)) for |x| <R, t € [0, K].
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Since c is independent of € and R, we can take R — oo, € — 0 to obtain
Ipn(-, Ollzeomoxo, )y < Be™ = eAXlpn(-, O)llzeomry.-
Then by the assumption [, (-, 0)[ze = [u(-, tn) — w(- )|l — O, it follows that
lpn(-, OllLeomixio,x)) = O asn — oco. O

Lemma 2.10 (Further stability estimates). Let K > 1. Then there exists C = C(K) > 0 with

K

K
[l 74 6= WO gy s < € 5 40 = WE gy s
0 0

foranyt>O0andTt € [0, K].

Proof. Although the proof proceeds as in [10, Proposition 4.2], we will sketch it for the sake of completeness.
By the mean value theorem and Schwarz inequality, there is s¢ € [0, K] with

lu(-, t +so) —w(-)lz2 < u(-, t +so) — w(- )l
t+K t+K

<C [0, 9 - wOlp as < ¢ [ -5~ wi i ds)’.

t
Thus by applying Lemma 2.8 (ii) with t; = t + sg and t; = t + sg + 2K, it follows that

t+so+2K
(-, 8) = w3 ds < CeFllu(-, £+ s0) — w7
t+So
t+K

< CeCK j lu(-, s) - w2, ds.
t

Let T € [0, K]. Since

[t+T1,t+T7+K]C[t,t+2K] Cc[t,t+K]U][t+Sq,t+so+2K],

we obtain
t+7+K t+K
| s~ we ol ds < e ce®) [ ut- o) - wlR ds. 0
t+1 t

Lemma 2.11. Let {zn}new € RYN be a sequence with |z,| < 1 for all n € N. Then there exists C > 0 independent
of n € N such that the following properties hold:

@) Iw(-+2n) - w(-) = VW(-) - Znllgrwy) < Clzal%,

(i) Iw(:+zn) - w()llm @y < Clznl.

Proof. (i) By the Taylor expansion, one has

o’w

aXiaX]' (X " KnZn)

N
WO+ 20) = W00 = VW) - 2l < Clznl? Y |
ij=1

2w

axia—ijxk also decays

for some k,, € (0, 1). From (1.4) and by the exponential decay of w, we can show that
exponentially at infinity for all i, j, k = 1, ..., N. Thus, we get

N
IW(+2a) = w(-) = VW () - zals < Clznl? Y |5 (-+ Knzn)
ij=1

0w
< Clznl?.
0X;0X; H
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(ii) We differentiate (1.4) with respect to x;. Then multiplying by and integrating on RY yields

J{(1+2w )|V—| (a;‘:) |VW|2+8W§—V VS—)‘Z+(§Z> —pwp‘l(g—)‘::)z}dx=0.

RN
Then by the Schwarz inequality, Young inequality and from the boundedness of w and Vw, we get
J|v | dx < cj] | dx < ClwlZ,. (2.12)
RY RN
Thus from (i), inequality (2.12) and |z,| < 1, it follows that

W+ zn) = w()llgr < Iw(-+2zp) —w(-) = VW(-) - Zpllg + IVW(-) - zpllm

< Clznl? + Clzal < Clznl. O

2.3 Decay estimates

In this subsection, we show uniform estimates for global solutions of (1.2)—(1.3). Our goal of this subsection
is to prove the following proposition.

Proposition 2.12 (Uniform decay). Let u(x, t) be a non-negative, radially non-increasing and globally defined
solution of (1.2)-(1.3). Then the following properties hold:

() supgolul-, Olleomyy < 0o,

(ii) limjy—co SUPgsg U(X, t) = 0

The proof of Proposition 2.12 consists of several lemmas. First, we prove that u is uniformly bounded near
infinity.

Lemma 2.13 (Universal bound near infinity). Let u(x, t) be a non-negative globally defined solution of problem
(1.2)—(1.3) and assume that u is radially non-increasing with respect to the origin. Then for any

1<>(p;r1)‘ﬁ

there exists Rk > O such that
u(x,t) <K forall|x|>Rgandt > 0. (2.13)

Proof. Suppose by contradiction that the claim fails. Then we find Ko > ((p + 1)/2)Y/®~1 such that for all
R > 0, wehave u(xg, tg) > Ko for some [xg| > R and tg > 0. For simplicity, we write [xg| = R. Since u is radially
non-increasing, it follows that

u(x, tg) > Ko forall x € B(0, R). (2.14)

We claim that u(x, t) must blow up in finite time. We define a functional Iy by

+1
B(0O,R) B(0O,R)

1 1
Ir(u) := 5 J ((1+ 2u?)|Vul? + uz)dx_ p_ j [uP+! dx.

First, for sufficiently large R > 1, we show that there exists a function vy € CS"(IRN ) such that
Ir(vg) <0, vg < Koin B(0O,R), vg=0o0noB(0,R). (2.15)

To this end, let
1
)7 < ¢ <Ko (2.16)

(p +1
2
be arbitrarily given and choose vy € CSO(]RN )sothat O < vp(x) < {forallx € RY, we have

vrR(x)={for|x| <R-1, vr(x)=0for|x|>R, |Vvr(x)|<CC.
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Then we have

e N ¢
Ir(vg) < ( 5 (1+2vR)+7—p+1)dx+|B(O,R—1)|(?_p+1)

{R-1<|x|<R}

N Ny 2 2 2 N 2 gt
RY-(R-1 B(0,1 1 R-1)"|B(O, D|| = - .
< (RY = R - 1")CIBO, DIE(1+¢H) + R - DMIBO DI(% - 2—)
By (2.16), it follows that {?/2 — {P*1/(p + 1) < 0 and hence Iz(vg) — —oco as R — co. Thus, by taking a large
R > 1, we obtain Ir(vg) < 0. Moreover, by the construction, we also have vi < Ky in B(0, R) and vg = 0 on
0B(0, R). Finally, since R > R, we can replace R by R. Next we consider the following auxiliary problem:

Ve = (1+2v>)Av + 2v|Vv]? = v+ VP in B(O, R) x [tg, 00), (2.17)
v=0 on 0B(0, R) x [tg, 00),
V(X, tr) = V(x) in B(0, R).

We claim that v(x, t) blows up in finite time in a similar argument as [14]. Indeed by a direct calculation, we
have £I5(v(-, 1)) < Ofor t > tg. Next from (2.17), we obtain

0/1 2 _ 2 2 2 p+1
a(E J vA(x, t)dx) = J ((1 +4vA)|VV|* +ve —=vPH) dx
B(O,R) B(0,R)
4 r-3
— AT~ . _ p+1 AT~ ~ p+1
= —41R(v( ,t))+(1 p+1) J VP dx > 4IR(VR)+p+1 j vP* dx.
B(0,R) B(0,R)

By the Holder inequality, we also have

p+1

IB(0, R)l‘%( J v? dx) 7 < J VP gx.
B(O,R) B(O,R)
Thus from I3(vR) < 0 and p > 3, we obtain

p+l

( j vz(x,t)dx)zc( J vz(x,t)dx)2 forall t > tg.

B(0,R) B(0,R)

9
ot

This implies that v(x, t) blows up in finite time. Now from (2.14) and (2.15), one has
L(v) = 0in B(0, R) x [tg, c0), Vv <uondB(0,R)x [tg,0), V(-,tr)<u(-,tg)inB(0,R).

Then by Lemma 2.2, it follows that u(x, t) > v(x, t) for all x € B(0, R) and t > tg. Thus u(x, t) must blow up
in finite time, contradicting the assumption that u(x, t) is globally defined. O

Remark 2.14. Lemma 2.13 is the only part where the radial non-increase of u(x, t) is needed. We can remove
this assumption if we could show that
max u(x,t)< inf u(x,t) forte [0, T]andlargeR > O.
x€0B(0,R+2) x€B(0,R)

This type of estimates were obtained for porous medium equations, see [4, Proposition 2.1]. However, we do
not know whether this estimate holds true for our quasi-linear parabolic problem.

Once we have the uniform boundedness near infinity, we can get the decay estimate at infinity.

Lemma 2.15 (Exponential decays). Suppose N > 2 and let u(x, t) be a non-negative global solution of problem
(1.2)-(1.3) which satisfies the uniform boundedness property (2.13). Then there exist § > 0, C > 0 and Ry > 0
such that

sup |D*u(x, t)| < Ce 9™ forall |x| > Ry and |k| < 2.
t>0
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Proof. By standard linear parabolic estimates, it suffices to consider the case k = 0. Let w be a positive
solution of (1.4). Then w is radially decreasing and decays exponentially at infinity. Moreover, we claim that
w(0) > ((p + 1)/2)/®=D, Indeed, w satisfies the Pohdzaev identity

Wp+1 WZ

p+1_7>dx'

N-2

0< j(1+2w2)|Vw|2 dx = J’ (

RN RN

For the proof, see [8, Lemma 3.1]. If the claim fails then w(x) < ((p + 1)/2)Y/®-D for all x € RN \ {0} by the
monotonicity of w, which implies
Wp+1 W2
J ( - —) dx <0,

p+1 2
]RN

which is impossible. Now applying Lemma 2.13 with

1\7%
(p; )”1 < K < w(0),
there exists Rg = R(K) such that
u(x,t) <K for|x|>Rpandt > 0. (2.18)
Moreover, choosing Ry larger if necessary, we may assume supp(uo) < B(0, Rp). Next, we put
Z(x,t) := Z(x) = w(|x] - Rp) for|x|>Rgandt > 0.

Then there exists g9 > 0 such that Z(x) > K for Rg < |x| < R + €9. From (2.18), we get

L(Z)y<0 for Ro<|x|<Rgp+é&pandt >0,
Z>u for |x]=Ro,Rp+&pandt >0,
Z(-,0)>ug for Ry <|x| £ Rg + &p.

Thus by Lemma 2.2, we obtain u(x, t) < U(x) for Rp < |x|] < Ro + €0 and t > 0. Applying the comparison prin-
ciple again, we have u(x, t) < U(x) for all |x| > Ro and t > 0. O

Remark 2.16. In the proof of Lemma 2.15, our construction of a supersolution Z fails when N = 1. In fact, in
this case, we claim that

p+1yia
)
To see this, we multiply w' by the one-dimensional version of equation (1.4), i.e.,

mm:(

1+ 2wHw" + 2w(w')? —w + wP = 0.
Integrating it over [0, r], since w'(0) = 0, we have

1(1 +2wWA(N))(wW' (n)? + wrrn) _ w2 (r) = wr0) w’(0) forr > 0.
2 p+1 2 p+1 2

Passing to a limit r — oo, the claim is proved. Since there is no gap between w(0) and ((p + 1)/2)Y/®?-1, we
cannot apply Lemma 2.13 for N = 1. But if we could replace ((p + 1)/2)/®~1 by 1 in Lemma 2.13, we could
construct a decaying supersolution Z in the same way. More precisely, instead of (2.13), let us assume that
for any K > 1, there exists Rg > 0 such that

u(x,t) <K forall |x| >Rgandt > 0.

Then the same conclusion as Lemma 2.15 holds. On the other hand, replacing ((p + 1)/2)Y/®-D by 1, our
construction of a blow-up subsolution v in the proof of Lemma 2.13 fails. Thus we need another argument
when N = 1. We also remark that a construction of blowing up subsolutions for semi-linear problems as in [9]
does not work for our problem.
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Lemma 2.17 (Global existence and energy sign I). Let u be a global solution of (1.2)—(1.3). ThenI(u(-,t)) >0
foreveryt > 0.

Proof. We use the concavity method as in [18]. It suffices to show that if I(u(-, to)) < O for some to > 0, then
u(x, t) must blow up in finite time. To this end, suppose by contradiction that I(u(-, tp)) < 0 but u is globally
defined. First multiplying (1.2) by u and integrating it over RV, one has

J uuy dx + J (1 + 4u®)|Vul? + u?)dx - J lulP*t dx = 0.

RN RN RN
Thus by the definition of I(u), it follows that

p_; ! J (IVul® +u?)dx + (p - 3) J W |Vul? dx = (p + DI(u) + j uu, dx.

RN RN RN

We put

M(t) :=

t

1

> [ 9 g ds.
to

Then one has M'(t) = %llu( - t)||%2. Moreover, by Lemma 2.4 and from p > 3, we also have

M'(t) = J uue dx = —(p + DI(u(-, 1) + J (IVul? + u?) dx + (p - 3) J u?|\vu|? dx
]RN ]RN ]RN
>—(p+DIu(-,ty)) >0 fortz=ty.

p-1
2

This implies that M'(t) — oo and M(t) — oo as t — oco. Next by Lemma 2.4, it follows that

t

Jllut(',s)llfz ds = I(u(-, to)) — I(u(-, t)) < =I(u(-, t)),
to

which implies that
t

M"(t) 2 —(p + DI(u(-, t)) > (p + 1) Jllut( -, )7 ds.
to
Thus we get

t

MOM'" (b) > 1%1([||u<-,s)niz ds)(jtuut(',s)uiz ds)
to

to

t
2
> P ; ! (J u(x, S)up(x, s) dx ds) - p%l(M’(t) ~ M (t))2.

to

Since M'(t) — oo as t — oo, there exists a > 0 and ¢; > t, such that
MOM"(t) = 1+ a)M'(t)> fort > ty.

This shows that M~%(t) is concave on [t;, co), contradicting to M~*(t) — 0 as t — co. Thus, the assertion
holds. O

Finally, we show the following lemma.

Lemma 2.18 (Global existence and energy sign Il). LetO < T < co. Let u be a non-negative solution of problem
(1.2)-(1.3) and assume that I(u(-, t)) = 0 forall t € (0, L). Then then there exists C > O such that

sup flu(-, )o@y < C.
te(0,L)
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Proof. Suppose that there exists a sequence {t,}nen € (0, L) converging to L such that
My = u(-, tp)llpo@myy — oo.
We derive a contradiction by using a blow-up type argument. Let {x}nen C RY be such that
M
7” < u(xy, ty) < My

and consider the sequence

v(y‘r)-——lu<x +—y th + )

n\)s = n = In — .

Mn M::TS Mﬁ 1

Then by a direct calculation, one has
aVn 1 2 1 . N p-1
— = —Avp +vAv ——_vn+v’,§ in RY x (-M), "ty,0].
o My oMt

Passing to a subsequence and using a diagonal argument as in [13], we have

vy — v in CRI(RY x (~c0, 0)),

where v is a non-negative solution of the following parabolic problem:
v _ vAV2 +vP in RY x (-0, 0].
ot
Now we claim that v; = 0. To this end, we observe that by Lemma 2.4 we have
to
J J lue(x, )% dx dt < I(u(-, 0)) - I(u(-, to)) for any to > 0.
0 RV

Since I(u(-, t)) > O forall t > 0, we have

0 0
0 2 1 T 2

j J Evn(y,‘r)| dydt = — J Hut<xn+%,tn+ p_1)| dydrt

—00 RN M" —CO RN Mn MY!

(N-2)p-3N-2 @ (N-2)p-3N-2
<M, ’ J J e, O dxde <My T I(u(-,0)).
0 RN
Since p < B3N + 2)/(N - 2) and M,, — oo, it follows that v; = 0. Now since v; = 0, we have that v is a nontriv-
ial, non-negative bounded solution of the following nonlinear elliptic problem:

—vAVZ =v? inRN, (2.19)

If 3 <p < (3N +2)/(N - 2), it follows that v = 0 by applying the Liouville theorem to v2. This contradicts to
the fact v(0) > 1/2. On the other hand if p = 3, it follows that v? is a nontrivial bounded eigenfunction of —A
in RN associated with the eigenvalue 1. But this is impossible. Thus in both cases, we obtain a contradiction
and hence the proof is complete. O

Remark 2.19. We note that in the proof of Lemma 2.18, we need the assumption 3 < p to obtain the non-
existence of nontrivial, non-negative bounded solutions of (2.19). We also observe that if we adopt the scaling
1 y T
Va(Y, T) i= —U(Xn + —, th + ——
M, ( :Tl M )

as in [9], then we obtain the following rescaled problem:

ov 1 . -1
a—T" = Avp + M2vpAv: - an +v2 inRY x (M2 ¢t,, 0].

n

Hence this scaling does not work in our case due to the term M2v,Av2.

Now we can see that Proposition 2.12 follows from Lemmas 2.3, 2.15, 2.17 and 2.18.

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/22/17 9:37 AM



DE GRUYTER M. Squassina and T. Watanabe, Uniqueness of limit flow for quasi-linear parabolic equations =— 259

2.4 Some technical results

In this subsection, we prepare some technical lemmas to prove Theorem 1.2. First we shall need the following
result.

Lemma 2.20 (w-limit). Let u be a non-negative, bounded and globally defined solution of (1.2)—(1.3) satisfy-
ing the uniform decay condition (1.6). Then {u(-, t,)} has a uniformly convergent subsequence in RN for any
sequence {ty}nen With t, — co. In particular, the w-limit set Q(u) is well-defined. Furthermore, the set {u(-, t,)}
is relatively compact in C1(RV).

Proof. We know that [[u(-, )|l o(ry) is uniformly bounded. Moreover, by assumption (1.6), we can show that
the function sup;. |DXu(x, t)| decays exponentially for |k| < 2 (cf. the proof of Lemma 2.15). Applying the
Schauder estimate, we also have the uniform boundedness of |[Vu(-, t)|lzeo(ry). Let {tn}nen be a sequence
such that t, — oco. Then by (i) of Lemma 2.7, it follows that |u(-, t,)|g < C. Passing to a subsequence, we
may assume that u(-, t,) — win H' (RM) for some w € HY(RY). Then arguing as in Lemma 2.6, one can see
that either w = O or w is a positive solution of (1.4). In particular, w decays exponentially at infinity. Arguing
as for the proof of (i) of Lemma 2.9, we have |[u(-, t,) - w(-)|z2 — 0. Let U be any bounded domain. Then
applying higher order regularity theory, we get

luC-, ta) = w()llEmw) < Clul-, tn) = w()lw)

forany V cc U and m > % + 1. By the Sobolev embedding H™(V) — C°(V), passing to a subsequence, we
have that u(-, t,) — w uniformly on V. Since U is arbitrary and u(x, t,) decays uniformly at infinity, it fol-
lows that u(-, ty) — w(-) uniformly in RV, Finally, since m > % + 1, we have the continuous embedding
H" (RY) — Cl_(RY). Together with the uniform exponential decay of |D*(u(-, ty))| for |k| < 2, passing to
a subsequence if necessary, it follows that u(-, t,) — win C!(RN). This completes the proof. O

To finish the proof of Theorem 1.2, we have to prove (1.7) and show that the limit w € Q(u) is independent
of the choice of the sequence {t,,}. To this end, we put

[NTE

T
100 i= ([IuC o540 =W+ Yy ds)
0

where w is a fixed element in the w-limit set Q(u). First we state the following proposition whose proof will
be given later.

Proposition 2.21. There exist M > 0 and T > 1 such that the following properties hold: For every sequence
{(Vns tn)hnew € RN x R* satisfying [yl < 1, tn — oo and

T
NO/n: tn) = (J"W-’s +ta) = W(-+yn)lF ds)” =0,
0

there exist a subsequence {(yn;, tn;)} and {zj} C RN such that 1zj| < Mn(yy;, tn;) and

1
rl(Zni + ynl" tni + T) < EU(J’n,», tn,«)-
By Proposition 2.21, we obtain the following corollary.

Corollary 2.22 (Uniform stability). There exist M > 0, T > 1, ty, > 0 and no > 0 such that the following prop-
erty hold: For every (y,t) € RN x R, satisfying |y| < 1, t > to and n(y, t) < no, there exists z € RY such that
|z| < Mn(y, t) and

1
’I(Z+y,t+ T) < 5”1()/, t)'

Proof. LetM > 0, T > 1be the constants provided in Proposition 2.21. We assume by contradiction that Corol-
lary 2.22 does not hold. Then there exists {(yn, tx)}nenw € RY x R, such that NWnstn) = 0, lynl <1, £ — 00
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and 1
Nz +yn, th + 1) > E"I()’n: tn)

for all z € RN with |z| < Mn(yn, tn). This contradicts Proposition 2.21. O

Lemma 2.23. Let M > 0, T > 1 and ty, > O be constants provided by Corollary 2.22. Then there exists i} > O such
that the following property hold: For every k € N and t* > t, with n(0, t*) < 7, there exists {xi}f.‘:1 c RN such
that |xi| < Mn(x1 +---+ xi-1, t* + (i—-1)T) and

n(xy +-++xp, t* +kT) < %n(xl +oot Xpe1, (K= 1)T).

Here we put xo = 0.

Proof. If M >0, T > 1, to > 0 and 19 > O denote the constants by Corollary 2.22, we define

n:= %min{qo, ﬁ}

and claim that for each k € N, there exists x; € RN such that

n(xy +--+xp, t* +kT) < %n(xl ot X1, U+ (k= 1)T),
Ixil < Mp(x1 + -+ + X1, t* + (k= 1)T), (2.20)
[x1 +---+xx] €1,
nlxy+-+xi, t* +kT) < 7.

This will be proved by an induction argument. Suppose that n(0, t*) < 7. Then, applying Corollary 2.22 with
y :=0and t := t*, there exists z =: x; € RN such that

| —

|x1] < Mn(0, t*) < Mf < and n(x;,t"+7T)< %n(O, t*) < 1.

4

This implies that (2.20) holds for k = 1. Next we assume that (2.20) holds for k € IN. Using Corollary 2.22 with
yi=X1 +---+xgand t := t* + kT, there exists xy,1 € RN such that |[xp.1]| < Mn(x1 + -+ xi, t* + kT) and

1
N(xy + -+ X+ Xpa1, 7+ (k+ DT) < En(Xl +oeet Xp, tF + KT). (2.21)
To finish the inductive step, it suffices to show that
X1+ +xk+Xip1l €1 and  g(xg +- 4 Xg + Xper, E + (K + DT) < 7.

Now by the induction hypothesis, it follows that
k+1 k+1
Z |xi| < M Z nxy +-+xi-1, "+ (- 1)T),
i=2 i=2

nxy+- -+ xio1, "+ (- DT) < =n(xg + -+ X2, t" + (I = 2)T) < %U(O, t*) (2.22)

N[ =

forevery 2 <i < k + 1. Thus one has

X1+ -+ + Xi + Xie1] < 2Mn(0, t*) < 2M7 <

N~

Finally, from (2.20) and (2.21), we also have
N(xy + -+ X+ Xpa1, t* + (k+ D)T) < %f].

Thus by induction, Lemma 2.23 holds. O
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Lemma 2.24. Let T > 1, ty > 0 and no > O be constants in Corollary 2.22 and Lemma 2.23. Then there exists
C > 0 such that the following properties hold. For every k € N and t* > to with (0, t*) < 7, it follows that

n(0, t* + kT) < Cn(0, t*).

Proof. LetM >0,T > 1,to > 0,7 > Oand {xl-}g‘:1 c RV beasin Lemma 2.23. Then by the triangular inequality
and (ii) of Lemma 2.11, one has

[n0x1 + -+ +xp, t* + kT) = (0, t* + kT)|
T 1 T 1
<|(nucs e v kD werxa e xR ds) - ([uc, s+ £+ kD - we )l ds)’
0

0
T

< (JIIW(-+X1 +oe ) w2 dS)j
0

k k
<CT Y Il < CTEM Y n(xy +-+ +Xiog, £ + (i = D).
i=1 i=1

Thus from (2.22), we obtain
L k
n(0,t" +kT) < (1+ CT2M) Y n(xy + -+ X1, t* + (i - D)T)
i=1

< 2(1+ CTZM)n(0, t*).

Taking C = 2(1 + CT2 M), the claim holds. O

We shall now prove Proposition 2.21. Let T > 1 be a constant which will be chosen later and suppose that a
sequence {(Vn, tn)lnen € RN x R, satisfies |y,| < 1, t, — oo and

NI

T
M0/ ta) = ([IuC 154 60) = W 4 Yy ds)” 0.
0

Then passing to a subsequence, we may assume that y, — yo as n — oco. Moreover, since t, — coas n — oo,
we may also assume that u(-, t,) — W uniformly for some w € Q(u). Thus for any K > 1, we have by (ii) of
Lemma 2.9 that

Tim (-, £+ t) = W()llLogrsgo,k) = O-
On the other hand, it follows that w(- + y,) — w(- + yo) in HX(RY). Thus from n(yy, tn) — 0,

T

dim [IuC s+ 60) = WC-+ y0) gy ds = O. (2.23)
0

This implies that w(-) = w(- + yo) and hence
Jim fuC-, £+ tn) = w(- + yo)llLo@yx(o,x)) = O- (2.24)

Moreover, by Lemma 2.20, we know that {u(-, t + t,)} is relatively compact in C'(RY). Thus by the uniform
convergence of u(-, t + t,) — w(- + yp), one also has

Jm [IVu(-, t + tn) = Vw(- + yo)llzeomvxfo,k)) = O- (2.25)
Hereafter, we write for simplicity

Nn = NWns tr),  Un(X, ) :=ulx, t+ty), wp(x):=wx+yn), WwoX):=w(X+Yo).

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/22/17 9:37 AM



262 —— M. Squassina and T. Watanabe, Uniqueness of limit flow for quasi-linear parabolic equations DE GRUYTER

We also note that up to translation, wy is radially symmetric with respect to yo. Now we set

b, ) 1= Un(X, ) — Wn(x)

n

Since

1 T
jnqb(-,s)u%p ds < jnqbn(-,s)nf,l ds=1,
1 0

we have ||¢n (-, Tp)llg < 2 forsome {1,,} C [%, 1] by the mean value theorem. Thus, passing to a subsequence,
we may assume that

1
Tn — To € [5, 1] and  ¢n(-, ) = o in H'(RY) (2.26)
for some ¢ € H'(RY). Moreover, by the compact embedding H. (RV) — L2 (RN), we have

$n(-,Tn) = Poin L} (RY) and [ollrzmy) < 2.

Lemma 2.25. Let K > 1 be given. Then there exists C > 0 such that

K
sup J||¢n(-,s)||§,1(w) ds < C.

nelN
0

Proof. By applying (ii) of Lemma 2.8 with t; = 7, + t, and t, = K + t,;, one has

K
J||¢n( © Sz ds < Ce*CT™ (-, To)lIF

Tn

Since 7y, € [3, 1] and |pn( -, Tn)llr2wy) < 2, we get
K
[1nc- o)1 as < c,
Tn

where C > 0 is independent of n € IN. Since IOT||¢H( ., s)llf{1 ds = 1, we also have

T T

jnqbn(-,s)u%,l ds < [uqbn(-,s)um ds=1. O

0 0

Lemma 2.26 (Convergence to the linearized problem). Let K > 1 be arbitrarily given. Then there exists a sub-
sequence of {¢,}, still denoted by {¢y}, such that ¢, — ¢ in L*([0, K), H? (RM)). Furthermore, we have that
¢ € C((0, 00), L2(RM)) and that ¢ satisfies the following linear parabolic problem:

{ ¢+ Lop=0 in RN x (0, 00), (2.27)

$(x, To) = po(x) inRN.
Here L is the linearized operator around wg, which is defined by
Lo = —(1+ 2wl)Ad — 4woVwo - Vb — (4wodwg + 2|Vwo|?)d + ¢ — pwh " .

Proof. The weak convergence of ¢, follows by Lemma 2.25. We show that the weak limit ¢ satisfies (2.27).
Now from (1.2) and (1.4) and by the definition of ¢,,, one has

(Pn)e — Apn + Pn — N (unBu - waAwd) — i (uh — wh) = 0. (2.28)
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Fix ¢ € CgO(IRN x [0, K]). Multiplying (2.28) by ¢ and integrating over [1,,, K] x RV, we get

K
1 1

I J ( ~ Pnpt + V- VP + Pnp — n—(unAufl ~ wpAw2)g — n—(uﬁ - wﬁ)<p) dx ds
n n

Tn RN
= J Gn(x, TR)P(x, Ty) dx.
]RN

Now from the integration by parts, it follows that

—nl I (unAu — wpAw2)g dx = 2 I (UnV(Un + Wn) - Vi + [VWy|>n) e dx
" RN RN
+2 J ((Un + Wn)PnViy + W2V ,) - Vo dx. (2.29)
]RN

Moreover, by the mean value theorem, we also have

- nl J- (uiz) - Wﬁ)‘P dx =-p j (xcqun + (1 - Kn)Wn)p_1¢n§0 dx (2.30)

n
RY RN

for some k;, € (0, 1). Thus, we obtain

K 4
J j(-qbngot + Lopn - @) dxds - j $o()p(x, To) dx = Y I, (2.31)
To RN RN i=1

where we have set

Tn

I == j J {—¢>n<pt +Vn -V + Pn + 2((Un + Wn)PnVin + WiVy) - Vo

To RN

+2(UnV(Up + Wy) - Vo + [VWn|> Pn)@ — p(Knttn + (1 - K,,)w,,)p&(pn(p} dx ds,

I = j (Bnlt, T)@(X, Tn) — Po(0)P(x, T0)) dX,
]RN
K

]Igl = j J p((Knun +(1- Kn)Wn)IF1 - W871)¢n(P dxds,

To RN
K

I :=- J J {2¢n((un + Wn)Vity — 2woVWo) - Vo + 2(W2 — wg)qu,, Vo

To RN

+20(UnV(un + wp) — 2woVwop) - Vo + 2(|Vwy|? - |VW0|2)¢n§0} dxds.

Now by virtue of Lemma 2.25, as n — oo one has

Tn

1< C [ [ (1gul(edl + o1+ 190D + Vl(190] +19)) dxds

To RN
Tn 1 Tn 1
<c( [ [ Go 19+ 1voP)dxds) (| [ (9l +1ga?) dxds)’
To RN To RN

K
1
1 5 1
< Clta = ol ( [Igu(- . ) ds)" < Clra ol — .
0

2

Moreover, since ¢n(-, Tn) — ¢o in L .

(RM), we also have |I%| — 0 as n — co. Next from (2.24) and by the
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uniform convergence of w, to wy, it follows that

tim (sup [wh! = (icaltn + (1 = k) wa)"[) = O,
]

N=COARN[0,K

Thus by Lemma 2.25, one has |]I§| — 0. Similarly by the uniform convergences of Vu, — Vwg, Vw,, — Vwg
and from (2.23), we also have |Ij| — 0. Letting n — co in (2.31), we obtain

K
j J (@@t + Lo - @) dxds - j Po(X)e(x, 7o) dx = 0.
To RN RN

This implies that ¢ is a weak solution of (2.27). Then by the linear parabolic theory, it follows that ¢ is
a classical solution and ¢ € C((0, 00), L*>(RN)). O

Lemma 2.27. Let O0,(x, t) := ¢pn(x, t) — Pp(x, t). Then the following facts hold:
(i) LetK > 1. Then there exist n, = n1(K) € N and a positive constant C independent of n € N and K such that

K
Sup {104+ ) g ds < C.

n=n;

(ii) For any € > 0O, there exist T > 1 and n, = ny(T,) € N such that

2T,
sup. [ 163 )1 s ds < &

nzn;
e

Proof. (i) Let R > 0 be given. First, we claim that

lim sup ||9n(',t)||Lz

Mm% te[1,,K]

(B(O,R)) =0. (2.32)

Now from (2.27) and (2.28), one has
1 1
(0, — N0, + 0, — E(unAufl —wpAw?) - E(uﬁ -wh)
+ 2WiAD + 4woVwo - Vo + 4woAwod + 2[Vwol* ¢ +pwg_1¢ =0. (2.33)

Leté e CS"(]RN ) be a cut-off function satisfying ¢ = 1 on B(0, R). We multiply (2.33) by £?0, and integrate it
over RV, Then, from (2.29), (2.30) and the integration by parts, we get

5
J (%a%(gzeﬁ) + (14 2W3)|VO,|?E% + 0787 + 260, VO, - V£) dx=-) 17, (2.34)
i=1

RN

where we have set

I7 := J QQunV(un + wp) - Vo — 4woVwo - V) €20, dx,
RN

I} := j (2IVWnl?Pn — 2|VWo |? )20, dx,
]RN

15 := J (2(un + Wn)PnViy — 4wodVwo) - V(£26,) dx,
IRN

I = j (2(W2 = W2)E2V ey - YOy + 2(W2V by — WAV ) - V(E2)6y) dX,

RN
11? = j p(Wg_ld) — (KnUp + (1 - Kn)Wn)p_l‘pn)fz 0, dx.
RN
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Now by the Schwarz and the Young inequalities, it follows that

2 J £0,V6, - VE dx > —% I VO 2182 dx - 2 j 16,121V E1 dx.
RN RN RN

Next by the Schwarz inequality, one has
|HT| < 2flunV(un + Wn)"LOO(IRNx[O,K])"{VGn (22116012
+ 2[[unV(un + wn) = 2WoVWoll oo wnxo,x7) 1§V Pl L2 11§02 -

Similarly we have

3] < 201VWal? = [VWo I 1€0nllz2 Ipnllzz + 21VWo7o 1860nllZ,
|12 < 20| (un + Wn) Vil — 2WoVWo o | P ll12 1€V Ol 2

+ 4] (Un + Wn) Vil — 2WoVWo Lo €05 ll12 [ pn VE] 12

+ 4 lwoVwol o 10,112 1EV Oyl + 8llwoVWollLeo 1€0n 1210, VE] L2,
IG1 < 2wy = WEllo IEVPIL21EV0nL2 + 2wy — Wl |EV6,]I7,

+ 4IW2 ~ Wil IVl 12 10x VL2 + AIWnlZ e IEVOnllz2 102 VEN 12,
2| < pliwh ™" = (knttn + (1 = Kn)Wn)? Lo lpnll L2 1€6nllz2 + Plwollle, 160n]12..

Next applying (i) of Lemma 2.8 with t; = T, + t, and t, = t + t,, we get
(-, Ol < e“C™pu(-, Th)llzz < Ce™® fort € [, K]

and hence [|0,(-, t)|;2 < C. Thus from (2.34), the uniform decays of u,, wy, Vu,, Vw, and by the Young
inequality, we obtain

0
18012, + j(|ven|2 + 1012182 dx
IRN
< CIEOI2 + CIORVEI + 2IW2 — W2l | EVOI2, + CIOVEI L2 + By,

where C and h,, are positive constants with h, — 0. Now let € > 0. We choose ¢ so that

&
ClOnVEl7, + ClOrVEL2 < Csup|VEI(1+ V4] < 5.
R

Next we take a large ng € IN so that

£
and hy < 5 for n > ng.

N|

2[lw3 - Wil <
Then we obtain
0 2 2
allé'en(-,t)lle < CIé0n (-, D7, +&. (2.35)

Let {n(t) := [|€0n(-, t)Iliz. From (2.35), it follows that (], < C{, + . Thus by the Gronwall inequality, one has

t
{n(t) < ST (1) + et I ge S ds < eCK((n(Tn) + %) for t € [tp, K].

Tn

Since ¢n (-, Tn) = P(-, To) in L (RN), we have {(5) = [€0,(+, Tn)l7, — O. Thus,

) €
lim sup( sup ]Hen(',t)"LZ(B(O,R)) < EeCK.

n—oo ‘te[r,,K
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Since ¢ is arbitrarily, (2.32) holds. Next we show that LK 16 (-, $)IIZ, @ 45 < C. To this end, we multiply
(2.33) by 6, and integrate it over RY. Then arguing as above, one has

10 5 X , i \
J (Ea(ﬂn) + (1 +2wg)|VOy|~ + 16| )dx __ Z I,
R i=1
where we have set
Vi := J (2QunV(up + wp) - Voo — 4woVwo - V)0, dx,
RN
J5 = J (2(un + Wp)Pn Vi, — 4wodVwo) - VO, dx,
IRN
s J (2IVWnl® pn — 2[Vwol|* $)6n + 2(wy — W5) Ve - VOy dx,
IRN
IIZ[ = J P(Wg‘l(l) — (Kpun + (1 - Kn)w")p_1¢n)9n dx.
RN

Now, we fix § > 0 arbitrarily. By the Young inequality, it follows that

il<2 J [unV(un + wp)llOn|VOn| + [unV(un + wn) — 2woVwollV||6x| dx

RN

1
< gIIVGnIIfz +C J [unV(un +Wn)I10n]* dX + 8164117, + CsllunV(un + Wn) — 2WoVWoll7w [ V12,
RN
1 2 2 2
< g"ven"Lz + C sup |un(x, 0)| 16n]° dx + C 16| dx
IxI=R

B¢(0,R) B(0,R)

+ 5||9n||fz + CsllunV(un + wy) — 2woVwol e ||V¢||]%2-
From (1.6), there exists Rg > 0 such that

C sup |up(x,t)| <6

IX|=Rs
foralln e Nand ¢t € [1, K]. Thus we obtain

1 ~
il < gIIVGnIIfz +266nl7. + Cs J |0n]? dx + Cshn,
B(0,R5)

where Cs is a positive constant independent of n € N and K, and h,, is a positive constant satisfying h, — 0
as n — oo. Estimating J3, J§, J similarly, we have

0 1 N
18l + 1601 < (5 + 1wE ~ whllm )I90a12, + 5810413, + Cs [ 16ul? dx+ Con
B(0,Rs)

Now we choose § = 1/10. Taking n € IN larger if necessary, we have ||w$l - wé|| Lo < 1/4. Then we obtain

0 .
&Hen( SOl +10n(-, Ol < Cs J |0n(x, 1)I* dx + Csh. (2.36)
B(0,Rs)

Integrating (2.36) over [T, K], we get

K K
ﬁmmm@%amummﬁajj 100(x, 5)[2 dx ds + Cshn(K - ).
Tn Tn B(O,Rs)
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From (2.32) and h,, — 0, there exists n; = n;(K) € N such that

K
c5J I 10,0 s)2dxds <2 and Cshy(K-1,)<2  fornznj.
Tn B(0,Rs)

Moreover, from [, (-, Tn)lz2 < 2, (-, To)llz2 < 2 and by the continuity of ¢, we also have

supllOn( -, T < (Ipn(-> Tz + 1D(-, Ta) = §(-, Tz + (-, To)12) < 36.

n=np

Since T, < 1, we obtain
K

sup j"@n(us)llﬁ1 ds <40 fornzxny.

n>n;

This completes the proof of (i).
(ii) We fix € > O arbitrarily and let T > 1. First we observe from (i) that

T
JIIG,,(-,S)IIE,1 ds < C forn > ny(T).
1

Thus by the mean value theorem, there exists s, € [1, T] such that [|0,(-, sn)||§2 < % Next we integrate
(2.36) over [sy, 2T]. Then from 7,, < 1 < s, < T, it follows that

2T 2T 2T

juen(-,s)ufp ds < jnen(-,s)ufp dss||9n(-,sn>||§z+CJ j 10,2 dx ds
T Sn Sn B(0,Rs)
—~ 2T
<= +cj J 10,12 dx ds + Chy(2T — sp).
Tn B(O,R5)

Now we choose T, > 1 so that % < £. Next by formula (2.32) and the fact that h, — 0, we can take a large
n, = ny(T¢) € N so that

2T,
C j J 10,12 dx ds < g and Chn,(2T: - sy) < ; forn > n,.
Tn B(0,Rs)
Then it follows that
2T,

sup [ 16a(-, )} ds <&

n=n;
and hence the proof is complete. O

Now we consider the following eigenvalue problem:
Lo =up, Pel?>RY)and(x) — 0as |x| — co.

Then the first eigenvalue y; is negative. We denote by 1, the associated eigenfunction with |1 [2myy = 1.
Moreover, we know that the second eigenvalue u, is zero and the corresponding eigenspace is spanned by
{M}f" , (see [1], Remark 4.10). Let 7¢ € [%, 1] be as in (2.26) and decompose

oXi i=

N
Po(x) = p(x, T0) = Coe ™Y1 () + ). Ci%(x) +6(x, o), (2.37)
i=1 t

where Co, C; € Rand ¥, %—‘;’f, 6 are mutually orthogonal in L2(RN). Finally, we set

- it N aWO
B(x, t) := p(x, t) - Coe ™1 (x) - ) Cig (0. (2.38)
i=1 t
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Then by direct calculations, one can see that 0 satisfies
0+ Lo8=0 inRY x (0, c0). (2.39)

Moreover, by the definition of 6, we also have

y - )
[ 8C rowrax= [ o105 dx=0 fori-1,....N. (2.40)
RN RV i
In the next result, we shall use the crucial information of non-degeneracy of stationary solutions.

—-aT

Lemma 2.28 (Non-degeneracy and stability). There exist a > 0 and T > O such that e™*T < 1 and

2T
Illé( - s)llf{l(]RN) ds<e T forall T>T.
T

Proof. First we claim that
- ~ aW() .
[ oc.opiax=[6c.052dx=0 fori=1,....Nandt>o. (2.41)
RY RY X

To this end, we put n(t) := .[IRN (-, )1 dx. Then from (2.39), one has

n'(t) = (B, Y1)z = ~(L00, Y1)z = —(0, Lo1)rz = —u1(B, Y1)12 = —pan.

Thus from (2.40), it follows that n(t) = n(to)e (-7 = 0 for all t > 7. We can prove the second equality in
a similar way. Next we define

. ow .
M= lnf{(ﬁoll), Yz s e HHRY), 19l = 1, @, 1)1z = (Y, a—X?)Lz =0fori=1,.. -,N}
1
and suppose that i > 0 for the present. Then from (2.39) and (2.41), we get
% J 02(-, t)dx = -2(Lo0, 0)1> < —2j J 6%(-,t)dx (2.42)
RV RV
and hence
I B2(-, ) dx < e 2HET0) I 9%(-,1o)dx fort > 7o (2.43)
RV RN

Now let T > 1 be a constant which will be chosen later and take T > T arbitrarily. Integrating (2.42) over
[T, 2T], one has

2T
I 02(-,2T) dx + 2 J(Loé, 9).: ds = I 82(-, T) dx.
RN T RN

Moreover, by the Young inequality, we also have

(£00, 0);2 = J (1 +2wd)IVOI? + 8woBVw, - VO + 267 |Vwy | + 62 —pwg_léz) dx

RN
> j (IVBI? + 52 — 8woB]|Vwo||V8| — pwh " 8?) dx
]RN
> % J VO + 6% dx — J (pwg_1 +32w3|Vwo|?)8?% dx (2.44)
RN RN

[\

1 . _
EIIG(-,t)Ipr - C||9(',l‘)||fz-
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Thus from (2.43), we obtain

2T 2T
[16¢ 5113 ds < ¢ [0, 92, s+ 10c-, D,
T T

2T

2o 17 2 [ ,-2m 2o 1 2 20T

<Ce ”T°||9(',To)||sz€ K ds + e HT|0(-, To)l.e”H
T

Kp)

2 ha 2 -2uT 2 ha 2 -2uT
< —eHY0(-, To)l.e” M + e HTNB(-, To)ll e H

Q=

< Ce T forall T>T,

where C > 0 is independent of T and T. Putting « := i > 0 and taking T > 1 larger so that Ce T < 1, the
claim holds. We now show that ji > 0. By the definition of i and u, = 0, it follows that ji > 0. Suppose by
contradiction that ji = 0. Then there exists {i,,} ¢ HY(RV) such that lYnlzz =1, W, Y1)12 = (Pn, %—‘:{’?)Lz =0
fori=1,...,Nand (Lon, Pn)2 — 0asn — oco.Since (LoPn, Yn)2 — O0and [P,z = 1, one can show that
[l is bounded. Thus passing to a subsequence, we may assume that (¥, — ¥ in H'(R") and ), — ¢ in
L} (RY) for some i € H(RN). Moreover, arguing as in (2.44), we have

1 _
5"’7’#1"]211 < (LOEbn, l,[)n)LZ + J (pr ! + 32W(2)|VW0|2)!I)31 dx. (2.45)
]RN

Since wq decays exponentially at infinity and [|1,[|;2 = 1, there exists R > O such that

_ 1
J (pwg Ly 32W(2)|VW0|2)II)31 dx < 7
B°(0,R)

Thus from (2.45), we get
1
75 C J P2 dx + on(1).
B(O,R)

This implies that z]z # 0. Moreover, by the Fatou lemma, the weak convergence of ,, — l]), the strong conver-
gence in LIZOC(IRN ) and by the exponential decay of wg, one can show that

- o - -0
(Cob, P2 <0, Bype =($,52) =0 fori=1,...,N.

Since j1 = 0, it follows by the definition of j that (Lo, ¥);> = 0. By the Lagrange multiplier rule, using ¥, 1
and 0w,/dx; as test functions, one can prove that £, = 0, which contradicts Ker(Lo) = span{%—‘f(’?}. Thus
i1 > 0 and the proof is complete. O

Lemma 2.29. It follows that Cy = 0 and hence there holds
N
ow ~
P, )= Y Ci5(0) +0(x, t).
5 o

Proof. First we observe by Lemma 2.4 that
Iu)(t+ty) —I(u)(t+7) <0 forany O < T < ty. (2.46)

Let to > 1 be given. From (2.24), (2.25) and uniform exponential decay of sup,. |D¥u(-, t)| for |k| < 1, one
has
I(u)(t + t,) — I(wg) asn — oo on |1, ty].

Thus integrating (2.46) over [1, to] and passing to a limit as n — oo, we get

to
j (I(w)(s + ) — I(wp))ds = 0 forany ty > 1. (2.47)
1

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/22/17 9:37 AM



270 —— M. Squassina and T. Watanabe, Uniqueness of limit flow for quasi-linear parabolic equations DE GRUYTER

Next since U = Wy + n¢n, I'(wy) = 0 and I(wg) = I(wy,), by Taylor expansion, we have

to

2
(I(Wn + rlnd)n) - I(Wn)) ds = % j <I”(Wn + Knnn¢n)¢n, ¢n> ds

1

to
[ (s + ) - 1owo) ds -
1

=

to to

2 2
= % j <I”(W0)¢’m ¢)n> ds + % j <(I"(Wn) - I’,(Wo))¢n, ¢n> ds
1 1
) fo
+ % j <(I”(Wn +Knrl"¢n)_I’,(Wn))¢n’¢n>d5 (248)

1

for some kp, € (0, 1). Now from wy, + knn¢n = knn + (1 — Ky)Wp, one has

<(I”(Wn + Knln®Pn) - I”(Wn))(pn, (;bn)
- J {2¢%(|V(Knun + (1= k)Wn)I2 = [YWal?) + 21Vl ((knttn + (1 — kn)wp)* — w2)
RN
+8PnVpn - ((Kntn + (1 = kn)Wn)V(Kkntn + (1 - Kn)Wn) — W VWwp)

= P (nttn + (1 = k)Wl = Jwn P71} dx.
Since u, and w, converge to wo in L®(RY x [1, t]) by (2.24) and (2.25), it follows that
<(I"(Wn + Knﬂnqbn) - I”(Wn))(l)ny ¢n> < 0(1)"¢n( i) t)lllzp(]RN)-

Thus by Lemma 2.25, there exists ng = no(tg) € IN such that for n > ng, we have

to

J ((I" (Wn + KnMnPn) = T (Wn))pn, Pn) ds < 1. (2.49)
1

Similarly for n > ny, one gets
to

J (" W) = I" (W0)) s ) ds < 1. (2.50)

1
Next since 8,, = ¢p,, — ¢, it follows that

to

to
J (I" (o), pn) ds = j (1" wo)p, ) + 2(1" (Wo) b, ) + (I (W0)Bn, O ) ds.
1

1
By (i) of Lemma 2.27, there exists n; = ni(tg) € N such that for n > n;, we have

t() tO

J (I" (W0)Bn, 6) ds = j j {1+ 2W2)1V0,12 + 8w, Vo - VB, -+ 262Vwo[? + 6% — pwh 62 dx dis

1 1Ry
to
< ¢ [10n(- o)1} ds < €, (2.51)
1
t() tO
J (I'"(wo)¢p, O ds = J I {(1 + 2W3)\Vep - VO, + 4wopVw - VO,
1 1RV

+4wo0,VWo - Vo + 20, |Vwo|* + PO, — pwg_lqben} dx ds
to tO

< c([1ec. o ds)i(juen(»s)n},l ds)% <C, (2.52)
1 1

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/22/17 9:37 AM



DE GRUYTER M. Squassina and T. Watanabe, Uniqueness of limit flow for quasi-linear parabolic equations =— 271

where C is independent of n € N and t,. Finally, from (2.38), it follows that
to to

J (I"(wo)g, $) ds = (I" (wo)y1, Y1) J(Co)ze’z“ls ds
1 1

to

+2 [ coems (1" twoypn, Z ¢ ° 1 0) ds

1
r c; 2o ‘)WO R A
J< (W)(z i ),l; la—xi+ > S.
Noticing that (I" (wo)¥1, - ) = (Lo1, )12 = u1(P1, - )12, we have

(om0, ) = (222, ), <o,

and by the fact that ¢4, %—‘1’? are orthogonal in L2, we have

t() 2 to B to B B
J (I'"(wo)p, ) ds = —%(e’zl‘“O —e2M1) 4 21, Co I e MS(hy, O)r2 ds + J (I"(w0)0,0)ds.  (2.53)
1 1 1
Next by the Schwarz inequality, one has
to

to
2)1Co J eM35(hq, B)2 ds < 2|pq|[Cole™™ 1 |12 Jllé(-,s)lle ds
1 1

to

1
< 2{p1]ICol toe*l‘lff’(j||é(-,s)||§lds)z.
1

Let T > 0 be as in Lemma 2.28 and suppose ¢T < to < (¢ + 1)T for some ¢ € N U {0}. Then,

to T ¢ kDT
(16 3 ds < [16C oG ds+ Y [ 1 ) ds
1 1 k=1 5%
T T ot
< 180 ) ds + 3 e < [1Bc, sy ds + S
1 k=1 1
Thus there exists L > 0 independent of ¢, such that
to
2111 Co j e M5y, B ds < L|Colvige M. (2.54)
1
Similarly one has
to
J (I"(w)0,0) ds < L. (2.55)

1
From (2.48)-(2.55), we obtain
¢ 2 (c 2 (Co)?
I(u)(s + tn) — I(wo)) ds < My 2041+ p2my L|Co|\Ege Hato — 2297 g=2mto
2 2
1

for n > max{nop, n1}. Now suppose by contradiction that Cy # 0. Then since u; < 0, one has

(C o) (Co)?
2

2+2C+ L+ L e 2M1 4 [|Coltoe H1lo - e~ 2Hilb  _oo  asty — oo.

This contradicts to (2.47). Thus it follows that Co = 0 and hence the proof is complete. O
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Proof of Proposition 2.21 concluded. Let Cq, ..., Cy be as defined in equation (2.37) and let T > 0, « > 0 be
as in Lemma 2.28. We put C = (C1, ..., Cy) and z, := n,C € RY. Since nn — 0, we may assume |z,| < 1. By

Lemma 2.29, the orthogonality of %V)‘(’O, 0(-, 7o) in L2(RY) and from lgollz2 < 2, one has

2 -
4 ol = \|Z cl— +8(-, 10|, = IC2IVWolZ, +18C-, To) I,

Since |[Vwyllr2 = [[VW| 2, it follows that
2

ICls ———=
Vwlz2
and hence |z,| < Mn,. Next by the definitions of ¢, 6, and from Lemma 2.29, we get

UX, t+ty) = WX+ Yn + 2Zn) = MnPn(X, £) + WX +yn) = WX + Y + 2Zn)
= NnOn(x, £) + nn¢>(x B+ WX +yn) - WX +Yn+2zn)
ow
= Nnbn(x, t) + z nnCla—(X) + MO, £) + WX + V) = WX + Y + Zn)
i=1
= NnOn(X, £) + NnOn(x, £) + (VWo(X) - Zn + W(X + V) = W(X + Yn + Zn))
= MnOn(X, ) + MO (X, ) + (VWX + V) - Zn + WX + V) = WX + Y + Zn))

+ (Ywo(X) = VW(X + ¥n)) - Zn
By Lemma 2.11 (i), one has
IW(- + Yn + Zn) = W(- +Yn) = VW(- + Yn) - Zullj < Clznl®.
Moreover, since
W(-+yn) = W(- +Yy0) = wo(-) in C*(RY),
we also have
I(YWo(-) = VW(- +¥n)) - Zullfn = 0(1)]zn /.

Thus by the triangular inequality, we obtain

2T
2+ Zn ta + T) = jnu(‘,s +tn) =W+ yn + zn)2 ds
T
2T
< n%(j(16||en(~,s)n§1 +1618(-, )I:) ds + CT(1zal + 0(1))).
T

By Lemma 2.27 (ii), there exist T > 1 and n, = n,(T) € N such that

2T
1 1
Iuen(-,s)nﬁp ds<—— and CT(za+0(1)) <= forns ny.
256 8
T
Taking T > 1 large if necessary, we may assume T > T and e~7 < ﬁ Then by Lemma 2.28, we have
2T
[16c, 13 ds <
PoTH 256"
T
Thus we obtain 1
712()/n +Zp, th+ T) < Zrlz(}/n,tn)- O

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/22/17 9:37 AM



DE GRUYTER M. Squassina and T. Watanabe, Uniqueness of limit flow for quasi-linear parabolic equations =— 273

3 Proof of the main results

In this section, we will prove the main results of the paper.

3.1 Proof of Theorem 1.1

Let ug € CSO(IRN ) be non-negative, radially non-increasing and not identically zero. Then, by means of
Lemma 2.3, we know that

ux,t) >0, ux,t)=v(xl,t), ve(x|,t)<0 foranyx e RY and ¢ € (0, Trax)-

If u is globally defined, we have that Tmax = co. Then by Proposition 2.12, we learn that u is uniformly
bounded in space and time, and it satisfies the decay condition (1.6). O

3.2 Proof of Theorem 1.2

Let w € Q(u). Then there exists a diverging sequence {¢,}nen such that u(-, t,) — w(-) uniformly in RN as
n—oo.Let T>1,n9 >0, ty >0 be as in Lemma 2.24 and fix € > 0. Then by (i) of Lemma 2.9, there exists
no € N such that for t,, > o, we have

T 1
N0, tny) = (juu(-,s ) = WOl gy ds) < minfno, e},
0

Thus from Lemma 2.24, one has
n(0, tn, + kT) < Ce forevery k € N. (3.1)

Let t > t,, be given. Then it follows that t,, + kT <t < ty, + (k+ 1)T for some k € N. Thus we can write
t = tn, + kT + T with 7 € [0, T]. Then by Lemma 2.10 and from (3.1), there exists C > 0 independent of ¢ such
that

n(0, t) = n(0, ty, + kT + 7) < Cn(0, ty, + kT) < Ce. (3.2)

Now let K > 0 be arbitrary. Then £T < K < (£ + 1)T for some ¢ € N. Then from (3.2), we have

K e+1)T )
[l s+ 0-wOR ds< [ uC s+ 0-wel ds = Ym0, e4D) < €+ C2e.
0 0 j=0

This implies that (1.7) holds. Finally, we show that the limit w € Q(u) is independent of the choice of the
sequence {tn}nen. Indeed suppose that there exists another sequence {f,}nen such that u(-, ;) — W uni-
formly for some w € Q(u). Then by the previous argument, one has

K
jllu(-,s +6) —W( )2, ds < (€ +1)CPe.
0

This implies that w = w and hence the proof is complete. O

3.3 Proof of Theorem 1.3

Let ¢ € CS"(]RN ) be a function which is non-negative, radially non-increasing and not-identically equal to
zero. For A > 0, we denote by u, the solution of (1.2)—(1.3) with the initial condition uy = A@o. Then two
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cases may occur, either u, blows up in finite time or it is globally defined. In the second case, u, is positive,
radially decreasing and satisfies the uniform decay condition (1.6) by Lemma 2.3 and Theorem 1.1. Thus by
Theorem 1.2, u, converges to O or a positive solution of (1.4) uniformly in RY. Now we define

A :={A € (0, o) : uy blows up in finite time},

B :={A € (0, 00) : uy converges to a positive solution of (1.4) uniformly in RY 1,

€ :={A € (0, 00) : uy converges to zero uniformly in R"}.
One can see that A, B, Careintervalsand A u B U € = (0, co). The proof of Theorem 1.3 consists of four steps.

Step 1: A is open. Using standard parabolic estimates, one can prove that, for fixed to > 0, the mapping
A - I(u/l( ) tO))

is continuous. On the other hand, it follows from Lemmas 2.17 and 2.18 that u, blows up in finite time if and
only if there is to > 0 such that I(u,(-, tg)) < 0. These facts imply that A is open.

Step 2: C is open and not empty. We observe that any constant less than 1 is a supersolution of (1.2). More-
over, as we have observed in the proof of Lemma 2.15, any positive solutions of (1.4) have maximum values
strictly larger than 1. Finally, for fixed t > 0, u,(-, t) is continuous with respect to A uniformly in x € RY. From
these facts, one can show that € is open and not empty.

Step 3: A is not empty. We choose R > 0 so that supp ¢o ¢ B(0, R). Then, taking into account Lemma 2.17,
it suffices to show that I(A¢() < O for large A > 0. It follows that

AZ 2 2 4 2 2 /‘p+1 p+1
1090 =5 | (Voo +gfyax+a* [ p3ivpolax- = | lpol ax
B(0,R) B(0,R) B(O,R)

Ifp>3,orp=3and
1
[ #3vgol? - 710l dx <o,
IRN
then we have I(Apy) — —co as A — co. Thus we have I(A¢@g) < O for large A > 0 and A is not empty.
Now since (0, 0o) is connected, it follows that B is not empty.

Step 4: B consists of a single point Ay. Suppose by contradiction that the set B has at least two elements
Ao < A1. We claim that (Ag, A1) ¢ A. Now let A € (Ap, A1) be arbitrarily given. First we show that

lim I(ua(-, t)) <O, (3.3)
t—T)

where T) > 0 is the maximal existence time for u,. To this end, we suppose by contradiction that I(uy(-, t)) >0
forallt € (0, Ta]. Then by Lemmas 2.17 and 2.18, u, is globally defined. Moreover, since u,, (-, 0) < ux(-,0),
we have u,, (x, t) <ua(x, t) forall x € RN and ¢ > 0 by the comparison principle. Finally, since u (6 1) — w(x)
as t — oo, it follows that A € B and hence u,(x, t) — w(x) as t — oo by the radial symmetry of u; and the
uniqueness of positive radial solution of (1.4). Next we put ¢ = uj — uy,. Then from (1.2), one has

0=+ L +2(ui - wH)AP + (4wAw — 2(up + up,)Aup, )P
+2(IVual? = VW) + (4wVw — 2up, V(up + up,)) - Vo (3.4)
+p(wWP™ — (kup + (1 - K)u;lo)p_l)qb,
where k € (0, 1) and £ is the linearized operator which is defined in (1.5). Let u; < 0 be the first eigenvalue

of £ and 1 be the corresponding eigenfunction. Multiplying 11 by (3.4) and integrating it over RV, one can
obtain as in the proof of Lemma 2.26 that

% I P dx — (u1 + () J ¢, dx>0 forallt >0,

RN RN

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/22/17 9:37 AM



DE GRUYTER M. Squassina and T. Watanabe, Uniqueness of limit flow for quasi-linear parabolic equations =— 275

where £(t) — 0as t — co. Since u; < 0, it follows that LRN ¢(-, 1 dx — oo as t — co. But this contradicts
to (-, t) — 0ast — oo. Thus inequality (3.3) holds. Now from (3.3) and by the continuity of I(u, (-, t)) with
respect to t, we have I(u,(-, t)) < O for t sufficiently close to T). Then one can show that u,(x, t) blows up
in finite time and hence A € A. Since A € (Ag, A1) is arbitrarily, we obtain (Ag, A1) ¢ A as claimed. Next for
A € (Ao, A1), we have up(x, t) < up, (x, t) forall x € RY and t > 0 by the comparison principle. Since A € A and
A1 € B, it follows that u, (-, t) — w as t — co but uy blows up in finite time. This is a contradiction and
hence the set B consists of a single point Ag. Finally, by steps 1-4, it follows that A = (Ag, 00), B = {Ao} and
€ = (0, Ap). This completes the proof. O
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