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1. Introduction

The study of energy functionals of the form
- / H(z, [Vu(@))dz, Hzt) = +a@)t?, ¢>p>1, a() >0, (L1)
Q

where the integrand H switches between two different elliptic behaviors has been
intensively studied since the late eighties. This class of energies was introduced
by Zhikov to provide models of strongly anisotropic materials,see e.g., [19-21] or
the monograph [22]. Also, the integrals of (1.1) settle in the framework of the so-
called functionals with non-standard growth conditions, according to a terminology
introduced by Marcellini [9, 14, 15]. In [22], energies of the form (1.1) are used in
the context of homogenization and elasticity and a(-) drives the geometry of a
composite of two different materials with hardening powers p and gq.

1750023-1


http://dx.doi.org/10.1142/S0219199717500237

K. Perera € M. Squassina

Significant progresses were recently achieved by Mingione et al. in the frame-
work of regularity theory for minimizers of (1.1), see e.g., [1-3,6,7]. More recently,
in [5], a complete study on the existence and properties of a sequence of variational
eigenvalues related to ‘H including a Weyl type estimate for their growth has been
performed. The purpose of this paper is to investigate the existence of solutions to
the double phase problem

{—div(VupQVu +a(z)|Vul|i=2Vu) = f(z,u) in Q, (1.2)

u=0 on 02,

where Q C RY is a bounded domain with Lipschitz boundary, N > 2, 1 < p <
q<N,

1 —
T4 + N 2 — [0, 00) is Lipschitz continuous, (1.3)
p

and f is a Carathéodory function on € x R satisfying the growth condition
If(z,t)| <C(t|""t +1) foraa zcQandalltecR, (1.4)

for some 1 < r < p* and C' > 0, being p* = Np/(N — p) the critical Sobolev
exponent of Wy P(Q). Assuming that f(z,0) = 0, problem (1.2) has the trivial
solution u(x) = 0 and we study the critical groups of the associated variational
functional at 0, obtaining a nontrivial solution using Morse theory. In the absence
of a direct sum decomposition, we use a cohomological local splitting to get an
estimate of the critical groups.

Our main result is for the g-superlinear case for the problem

—div(|VuP~2Vu + a(z)|Vu|1=2Vu)
= MNulP72u + |u|""2u+ h(z,u) in Q (P)
u=0 on 0f,

where A € R is a parameter, ¢ < r < p* and h is a Carathéodory function on Q x R
satisfying

|h(x,t)] < CtP~r + ]t 1), for a.a. z € Q and all t € R, (1.5)

for some p < o < p < r and C > 0. The notion of weak solution for problem (P) is
formulated in a suitable Orlicz Sobolev space W, () that will be introduced in
Sec. 2.

Let (Ax) C RT be the sequence of (variational) eigenvalues of the p-Laplacian
operator defined via cohomological index, cf. formula (2.13). Let us set

t T
G(z,t) = u + H(z,t), =€, teR,
being H(z,t) = fot h(z,T)dr. The following is the main result of the paper.
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Theorem 1.1. Assume that conditions (1.3) and (1.5) hold. Then problem (P)
has a nontrivial weak solution u & W&’H(Q) in each of these cases:

(1) A& {A}rz1s
(2) for some § >0, G(z,t) <0 for a.a. x € Q and |t| < J;
(3) G(z,t) > c|t]® for a.a. x € Q and allt € R for some s € (p,q) and ¢ > 0.

To our knowledge this is the first existence result for double-phase problems (1.2)
in the framework of Morse theory and it is obtained by analyzing the critical groups
HY(®° N U, ®° N U\{0}) of the associated energy functional & at zero, q € N.

2. Preliminaries and Proof

2.1. Variational setting

The Musielak-Orlicz space L’ (Q) associated with the function
H:Qx[0,00) = [0,00), (z,t)+— tP+ a(x)t?

consists of all measurable functions u : 0 — R with the H-modular

pr(u) = /QH(x, |u])dz < oo,

endowed with the Luxemburg norm

llull2 = inf{’y >0: pH<%> < 1} ]

The space L*() is a uniformly convex, and hence reflexive, Banach space. Denot-
ing by |||, the norm in LP(Q) and by LZ(Q) the space of all measurable functions
u : ) — R with the seminorm

1/q
qa = (/ a(ac)|u|qu) < 00,
Q

we have the continuous embeddings
L9(Q) — L™(Q) — LP(2) N LL(%),

see [5, Proposition 2.15(i), (iv), (v)]. Since py(u/|lul[7) = 1 whenever u # 0, we
have

[

min{|[ulfy, ull3,} < lullp + lulld o < max{]lullfy, [ullf}, YueL™(Q). (2.1)

The related Sobolev space W1 (Q) consists of all functions u in L™(Q) with |Vu| €
L™(£2), normed by

[l = [l + [Vl

where ||[Vullz = |||Vu||/+. The completion of C§°(Q) in WLH(Q) is denoted by
Wy () and it can be equivalently renormed by

Jull == IVull
via a Poincaré-type inequality, cf. [5, Proposition 2.18(iv)], under assumption (1.3).

The spaces W17(Q) and W, () are uniformly convex, and hence reflexive,
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Banach spaces. The Sobolev embedding W™ (Q) < L"(Q) is compact since r < p*,
cf. [5, Proposition 2.15(iii)]. We have

min{||ull?, [[ul|?} < ||Vullh + [|VullZ, < max{[ull?, [[ul|}, Vue Wy (),
(2.2)

by virtue of (2.1). A weak solution of problem (1.2) is a function u € Wol’H(Q)
satisfying
/(|Vu|p72 + a(x)|Vul|!™?)Vu - Vodr = / flz,uyvde, Yove Wy Q).
Q Q
Weak solutions coincide with critical points of the functional

@(u):/ﬂ[ wupp + 22 )|v 9 Fo ,u)] do, ue WE(Q),

where F(z,t) fo x, s)ds, by the following proposition.

Proposition 2.1 (C! energy). Assume that (1.4) holds. Then ® is of class C*
with

(@ (u),v) = / [(IVulP~2 + a(z)|Vu|T ) Vu - Vo — f(z,u)v]de, (2.3)
Q
for every u,v € Wy ().

Proof. In view of the embeddings mentioned above, (2.3) is clear. To see that &’
is continuous, suppose that u; — u in Wy'"(Q). For all v € W, () with [|v]| =1,
by the Holder inequality,

(@' (uj) — @ (), 0)] < [[[[Vuy [P~ Vuuj — [Vl =2Vl [l [ Vol
+ (@)Y 12V — [Vul? "Vl Vol
+ 11 (2, ug) = @ w)lle o]l

where s’ = s/(s — 1) is the Hélder conjugate of s. Since L*(Q) — LP(2) N L4(£2)
and W&’H(Q) — L"(Q), Vu; — Vuin LP(Q)NLL(N), uj — win L7(Q), and || V||,
[Vvl4.a and |[v]|, are uniformly bounded, the assertion follows from the dominated
convergence theorem and (1.4). m|

2.2. Palais—Smale condition
The operator A : W, '"'(Q) — (W} "{(Q))’ defined by
(A(u),v) := /[(|Vu\p_2 + a(z)|Vu|T ) Vu - Voldz,  u,v e W H(Q),
Q

where (W, "(Q)) is the dual space of W, 7' (Q), has the following important
property.
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Proposition 2.2. Ifu; — u in Wy (Q) and A(uj)(u; —u) — 0, then uj — u in
Wo ().

Proof. Noting that

(A(w),v) < [VulZ=H Vol + |V

gfalHVqu,a Yu,v € WOI’H(Q)
by the Holder inequality, and the equality holds when u = v, we have
0 < (IVuyll= = IVulls=) (IVullp — [ Vullp)

g0 = [Vullg.a)

+(IVugllgs! = 1V
< (Au;) — A(u),uj —u) =0,

4 ) IV

so that ||Vu;ll, — [Vullp, and ||Vujllg.a — [|Vullge. Then Vu; — Vu in LP(Q) N
L2(Q) by uniform convexity, and hence the conclusion follows from (2.2). O

Recall that the functional ® satisfies the Palais—Smale compactness condition
at the level ¢ € R, or (PS), for short, if every sequence (u;) € Wy '™ () such that
®(u;j) — cand @' (u;) — 0, called a (PS). sequence, has a convergent subsequence.
We say that ® satisfies the (PS) condition if it satisfies the (PS). condition for all
¢ € R. When verifying these conditions, it suffices to show that (u;) is bounded by
the following proposition.

Proposition 2.3 (Bounded Palais—Smale condition). Fuvery bounded sequence
(uj) C W&’H(Q) such that ®'(u;) — 0 has a convergent subsequence.

Proof. Since (u;) is bounded, a renamed subsequence converges to some u weakly
in Wol’H(Q) and strongly in L"(§2). Then

(A(ug), uj —u) = (P (uy), uj — u) + /Q f(@,u;)(uj — u)dz — 0

since

< Cllusl37H + Dy — ull,

' [ 1)~ s

by (1.4) and the Holder inequality, so the conclusion follows from Proposition 2.2.
O

2.3. Regularity estimates

For f € L™(Q) with m > 1, solutions of
/(|Vu|’"_2 + a(2)|Vul|""?)Vu - Vodz = / f@)vdx Vove W&’H(Q) (2.4)
Q Q

enjoy the natural L™-estimates given in the following proposition.
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Proposition 2.4. Let f € L™(),1 < m < oo and let u € Wy (Q) satisfy (2.4).
Then

lull, < ClIfII®Y, (2.5)
where we have set
N(p—1)m
1 -
N <m<
r =
0, m > —

and C = C(N,Q,p,m) > 0.

Proof. For k,a > 0 and ¢ € R, set ¢, = max{—Fk, min{¢,k}} and consider the
nondecreasing function g(t) = t¢ (with the agreement a® := |a|*!a, for a € R).
Testing equation (2.4) with the g(u) € Wy """ (92) provides the inequality

IVG@)|I? < /Q f(@)g(u)da

where

t 1/p
G(t) = 1) /Pds — X P ylatp=D/p R
)= [ (e /ras = S e

Using the Sobolev inequality on the left and the Hoélder inequality on the right now
gives

a+p—1 o
[l PP < Ol - (2.6)
If 1 <m < N/p, take

_(=Dp* Np-1)(m-1)

>0,
pm’ — p* N —pm
so that
(a+p-1p*
— = —am' =:r.
p

Then 7 = N(p — 1)m/(N — pm) and (2.6) gives [[ug||E""" < C|lf||mlluslt’™, so
[ugl» < C|| £l @

Letting k — oo gives (2.5) for this case. If N/p < m < oo, arguing as in [5, Sec. 3.2]
gives

Julloo < C|lf||L @Y. (2.7)

This concludes the proof. O
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2.4. Critical groups at zero

In this subsection, we consider the problem

{—div(|Vup_2Vu + a(z)|Vul|T?Vu) = Nu|P~2u + g(x,u) in Q, (2.8)

u=20 on 01,
where A € R is a parameter and ¢ is a Carathéodory function on Q x R satisfying
lg(z, )| < C(Jt|""* +[t|]°') for a.a. z € Qand all t € R (2.9)

for some p < o < r < p* and C > 0. Problem (2.8) has the trivial solution u = 0,
and we study the critical groups at 0 of the associated functional

() :/ [lwuv) + U Gue — X - Gle ) |de, we Wi @),
QlLP q p

where G(z,t) fo x,8)ds. Let us recall that the critical groups of ® at 0 are
given by

CU®,0):= HY(®°NU,®°NU\{0}), ¢€N, (2.10)

where ®° = {u € W, " () : ®(u) < 0}, U is any neighborhood of 0, and H denotes
Alexander—Spanier cohomology with Zs-coefficients. They are independent of U
by the excision property of the cohomology groups. They are also invariant under
homotopies that preserve the isolatedness of the critical point by the following
proposition (see Chang and Ghoussoub [4] or Corvellec and Hantoute [8]).

Proposition 2.5 (Homotopical invariance). Let ®,,7 € [0,1] be a family of
C'-functionals on a Banach space W such that 0 is a critical point of each ®.. If
there is a closed neighborhood U of 0 such that

(1) each @, satisfies the (PS) condition over U,
(2) U contains no other critical point of any P,
(3) the map [0,1] — CY(U,R), T+ &, is continuous,

then C(®g,0) ~ C1(P1,0) for all q.

First we show that the critical groups of ® at 0 depend only on the values of
g(x,t) for small |¢].

Lemma 2.6. Let 6 > 0 and let ¥ : R — [—=4, 0] be a smooth nondecreasing function
such that

It)=—0 fort< =5, 9{t)=t for—0/2<t<§/2, Y({t)=0 fort>3.
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Let us set
&)= | [ VP + ”|v = 2l — Gl o) dr, we W),
Q

If 0 is an isolated critical point of ®, then it is also an isolated critical point of @4
and

CUP,0) =~ CUP1,0), forallq.

Proof. We apply Proposition 2.5 to the family of functionals, for u € Wol’H(Q)
and 7 € [0, 1],

— l ulP @ uq_éup_ X —T)u + TV (u T
<I>T(u).—/9[plvl+ g vul' = 2l = Gz, (1= r)ut d(w)) | d

in a ball B.(0) = {u € W™ (Q) : |Ju|]| < e} for & > 0 small, after noting that &, =
®. Proposition 2.3 implies that each @, satisfies the Palais—Smale condition over
the ball B.(0) and it is readily seen that the map [0,1] > 7 +— @, € C1(B.(0),R)
is continuous, so it only remains to show that for sufficiently small ¢ > 0, B.(0)
contains no critical point of any ®, other than 0. Suppose u; — 0 in Wol’H(Q),
@7 (uj) =0,7; € [0,1] and u; # 0. Then u; is a weak solution to

—div(|Vu,; [P72Vu; + a(x)|Vu; |72 Vu,) = Auj[P~%u; + gj(z,uj)  in Q,
u; =0 on 042,

where we have set

gi(x,t) = (1 = 75 + 79'(t))g(x, (1 — 75)t + 7;9(¢)).
Since (1 — )t + 7;9(t) =t for [t| < 6/2 and |(1 — 1)t + 7;0(t)| < |t| + 0 < 3[t| for
[t| > 6/2, the growth estimate (2.9) implies that, for some C' > 0 independent of j,
gj(z, )] < C([t|" ' +1]t|7!) foraa. z€QandallteR.

Then u; € L>(Q) (cf. [5, Sec. 3.2]) with L>°-bound independent of j. Since u; — 0
in WyP(Q), it follows ||u;|l¢ — 0 for any £ > 1, as j — oo. By Proposition 2.4,
applied with the choice

Fi(@) = Nu; ()P 2u;(x) + gj(z,u (), jEN, z€Q,

we get ||uj]|oc — 0 since for a fixed mg > N/p we have, for j — oo,

/ |f |m0de‘ < CHu]Hmo p—1) +C||uj||mo(r71) +CH ]Hmo o-1) | 0.

mo(p—1) mo(r—1) mo(oc—1)

For sufficiently large j we thus have |uj(z)| < §/2 for a.e. € Q and, hence,
®'(u;) = @ (u;) = 0, contradicting the assumption that 0 is an isolated critical
point of ®. O

In the absence of a direct sum decomposition, the main technical tool to get
an estimate of the critical groups is the notion of cohomological local splitting
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introduced in Perera, Agarwal and O’Regan [18], which is a variant of the homo-
logical linking of Perera [17] (see [13]). The following slightly different form of this
notion was given in Degiovanni, Lancelotti, and Perera [11].

Definition 2.7. We say that a C'-functional ® on a Banach space W has a coho-
mological local splitting near 0 in dimension k& > 1 if there are symmetric cones
Wi C W with W, N W_ = {0} and p > 0 such that

iAW) = (W {0}) = &
and
®(u) > ®(0) Yue B,NW4, O(u) <®(0) Yue B,NnW_, (2.11)
where i denotes the Zy-cohomological index and B, = {u € W : |lu|| < p}.

We recall the definition of the cohomological index (see Fadell and Rabinowitz
[12]). For a symmetric subset M of W\ {0}, let M = M/Zy be the quotient space
of M with each v and —u identified, let f : M — RP be the classifying map of M,

and let f*: H*(RP*) — H*(M) be the induced homomorphism of the Alexander—
Spanier cohomology rings. Then the cohomological index of M is defined by

{sup{m >1:fr(wn ) #£0}, M#0,

) —
(M) 0, M0,

where w € H'(RP™) is the generator of the polynomial ring H*(RP*) = Zs[w].
For example, the classifying map of the unit sphere S™~! in R™, m > 1 is the
inclusion RP™ ™' ¢ RP, which induces isomorphisms on H? for ¢ < m — 1, so
i(S™ 1) =m.

Proposition 2.8 ([11, Proposition 2.1]). Assume that 0 is an isolated critical
point of ® and that ® has a cohomological local splitting near 0 in dimension k.
Then it holds C*(®,0) # 0.

In order to give sufficient conditions for ® to have a cohomological local split-
ting near 0, and hence a nontrivial critical group by Proposition 2.8, consider the
asymptotic eigenvalue problem

—Apu = AuP7%u  in Q,
2.12
{u =0 on S ( )
Let
I(u):/ [Vu|Pdz, J(u)z/ lulPdz, ue W,P(Q),
Q Q
and set
1 1
U(u) = — = P(Q) : I(u) = 1}
(u) T we M={ueWyt(Q): I(u) =1}
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Then eigenvalues of problem (2.12) coincide with critical values of ¥. Let F denote
the class of symmetric subsets of M, and set

Ap = inf_ sup ¥ > 1. 2.1
k1= nf sup (w), k= (2.13)
i(M)>k

Then 0 < A\ < Ay < A3 <--- /4 o0 is a sequence of eigenvalues of (2.12) and
Mo < A1 = i({u e M T(u) < Ag})
=ifue M :U(u) < Agp1}) =k (2.14)
(see [18, Propositions 3.52 and 3.53]). The main result of this subsection is the
following theorem.

Theorem 2.9 (Critical groups at 0). Assume that g satisfies (2.9) and 0 is an
isolated critical point of ®.
(1) C°(®,0) ~ Zy and C4(P®,0) =0 for ¢ > 1 in the following cases:
(a) A< Ay
(b) A= X1 and, for some 6 > 0, G(x,t) <0 for a.a. x € Q and [t| < 0.
(2) C*(®,0) # 0 in the following cases:
(a) /\k <A< )\k+1§
(b) Ak < A= Apg1 and, for some § >0, G(z,t) <0 for a.a. x € Q and |t| < d;
(¢) Mg = A < A1 and G(z,t) > ¢|t|® for a.a. x € Q and all t € R for some
s € (p,q) and ¢ > 0.

Proof. We have
D(u) = ! u) — AN (u)] + _a(x) Vul! — G(z,u) |dx
(u) [T(u) — AT (u)] /[ P | \ G(z,u) . (2.15)

By (2.9) and the Sobolev embedding, we have
/ G(z,u)dz = o([Vull}), as [[Vul, — 0, (2.16)
Q
and in view of Lemma 2.6, without loss of generality, we may assume that the sign
conditions on G in (1)(b) and (2)(b) hold for every ¢ € R.

(1) We show that 0 is a local minimizer of ®. Since ¥(u) > Ay for all u € M,we
have

I(u) > MJ(u), Yue WP Q). (2.17)
(a) By (2.15)—(2.17), we get

1 A

2> 3 (1= 35 +o0)) Iull, a5 [Vl 0,
P A1

where Ay = max{\,0}. So ®(u) > 0 for all u € B, for sufficiently small

p >0 Dby (2.2).
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(b) By (2.15) and (2.17),we get
®(u) > —/ G(z,u)dz >0, Yue W, ().
Q

We show that ® has a cohomological local splitting near 0 in dimension k
and then apply Proposition 2.8. In light of [10, Theorem 2.3], the set {u €
WoP(Q) : I(u) < \J(u)} contains a symmetric cone W_ with i(W_\{0}) = k
and {u € W_ : |Jul|, = 1} is bounded in C*(£2), so that, in particular, we have
the inequality

/ @wuqu < Cllult, YueW., (2.18)
Q

for some C' > 0. Since W, " (Q) is embedded in W, () as a dense linear
subspace, the inclusion

{u e Wol’H(Q) CT(u) < Mep1J(w)} € {ue WyP() : I(u) < AaJ(u)}
is a homotopy equivalence by Palais (cf. [16, Theorem 17]), so
i(fu € Wy ™(Q) : 1(u) < Aes1J (uw)})
= i({u e Wy (Q) : I(u) < AerrJ(w)}) = k
by virtue of (2.14). We take now
Wi = {u € WET(Q) : () > Aeyr J(w)}.
It only remains to show that (2.11) holds for sufficiently small p > 0.

(a) For uw € W, we obtain

1 A
P(u) > — (1 - +0(1)> [Vullf, as |[Vull, — 0
D Akt1

by virtue of (2.15) and (2.16). So ®(u) > 0 for all v € B, N Wy for
sufficiently small p > 0 by (2.2). For u € W_,
0 <~ (5 = 1+ o) IVul} s [Tl —0
by (2.15), (2.16), and (2.18) since ¢ > p. So ®(u) <0 for all u € B,NW_
for small p > 0 by (2.2).
(b) For u € W, we have

O(u) > —/QG(x,u)dx >0

by (2.15), and ®(u) < 0 for all uw € B, N W_ for small p > 0 as in (a).
(c) We have ®(u) > 0 for all u € B, N W, for sufficiently small p > 0 as in (i).
Foruw e W_,

el

B(u) < Clullg - T
for some C' > 0 by (2.15), (2.18), and since s > p. Since s < ¢, then
®(u) <0 for all w € B, N W_ for sufficiently small p > 0 by (2.2). m|
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2.5. Nontrivial solutions
In this subsection we obtain a nontrivial solution of the problem
—div(|VuP=2Vu + a(z)|Vul|?=2Vu) = Nu|P~2u + |u|""2u + h(z,u) in Q
{u =0 on 01,
(2.19)

where A € R is a parameter, r € (¢,p*), and h is a Carathéodory function on {2 x R
satisfying

\h(z,t)] < C(t|P~  +[t]°"") foraa. z€Qandallt € R (2.20)

for some p < 0 < p < r and C' > 0. First we verify that the associated functional

1 A 1
B(u) = / {—wuv) + 42 G = A~ Ly - H(ac,u)} de, weWEHQ),
QLP q p r

where H(z,t) = fot

q®(u) — (@ (u), u) = (2% - 1) /Q(|vu|1’ — NuP)dz + (1 - %) /Q lu|"d

+/Q(h(x,u)u — qH(z,u))dx. (2.21)

h(z, s)ds, satisfies the (PS) condition. We note that

Lemma 2.10 (Palais—Smale condition). Every sequence (u;) C Wol’H(Q) such
that (D(u;)) is bounded and ®'(uj) — 0 has a convergent subsequence.

Proof. It suffices to show that (u;) is bounded by Proposition 2.3. Since p < ¢ < r
and o < p < r, it follows from (2.21), (2.20) and the Holder and Young’s inequalities
that ||lu;|; < C + o(||u,||) for some C' > 0. Then

1 A 1
i+ “2 w0l as = o)+ [ [ St + Higl + Hw,p)|as
QlLP q QlP r

< C o),

which together with (2.2) gives the desired conclusion. O

Next we study the structure of the sublevel sets of ® at infinity.
Lemma 2.11. There exists a < 0 such that the sublevel set
P = {u e W(Q) : d(u) < o}

is contractible in itself.

Proof. Since p < ¢ < r and 0 < p < r, it follows from (2.21), (2.20), and the
Young’s inequality that (®'(u),u) — ¢®(u) is bounded from above, so for a < 0
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with |«| sufficiently large,
(@' (u),u) <0, Yued*. (2.22)
For u € WolH(Q)\ {0}, taking into account that ®(tu) — —oo as t — 400, set
t(u) =inf {t > 1: ®(tu) < o},

and note that the function u — t(u) is continuous by (2.22) and the implicit function
theorem. Then the map u — t(u)u is a retraction of Wy " (Q)\ {0} onto ®*, and
the conclusion follows since the former is contractible in itself. O

2.6. Proof of Theorem 1.1

We are now ready to prove the main result. Let (A;) be the sequence of eigenvalues
of problem (2.12) defined in (2.13). Suppose that 0 is the only critical point of ®.
Taking U = W™ (Q) in (2.10), we have

CU®,0) = HI(®°, d°\{0}).

Let @ < 0 be as in Lemma 2.11. Since ® has no other critical points and satisfies
the (PS) condition by Lemma 2.10, ®° is a deformation retract of Wy ™ (Q) and &
is a deformation retract of ®°\ {0} by the second deformation lemma. So

C(®,0) ~ HY(Wy " (),9%) =0 VgeN,

since ® is contractible in itself, contradicting Theorem 2.9 in each of the cases

(1)-(3).
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