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Abstract. By using a suitable topological argument based on cohomological

linking and by exploiting a Trudinger–Moser inequality in fractional spaces
recently obtained, we prove existence of multiple solutions for a problem in-

volving the nonlinear fractional laplacian and a related critical exponential
nonlinearity. This extends the literature for the N -Laplacian operator.

1. Introduction.

1.1. Overview. Let Ω be a bounded domain in RN with N ≥ 2 and with Lipschitz
boundary ∂Ω. We denote by ωN−1 the measure of the unit sphere in RN and
N ′ = N/(N − 1). Since the time when the Trudinger-Moser inequality was first
proved (cf. [7, 23,27])

sup
u∈W 1,N

0 (Ω), ‖∇u‖N≤1

ˆ
Ω

eαN |u|N
′

dx < +∞, αN = Nω
1/(N−1)
N−1 ,

existence and multiplicity of solutions for various nonlinear problems with exponen-
tial nonlinearity were investigated. For instance, Adimurthi [1] proved the existence
of a positive solution to the quasi-linear elliptic problem{

−∆Nu = λ |u|N−2 u e |u|
N′

in Ω

u = 0 on ∂Ω,
(1)

where ∆Nu := div(|∇u|N−2∇u) is the N -Laplacian operator for 0 < λ < λ1(N),
being λ1(N) > 0 the first eigenvalue of ∆N with Dirichlet boundary conditions, see
also [10]. The case N = 2 was investigated in [8, 9], where the existence of a non-
trivial solution was found for λ ≥ λ1. Recently, in [28] it was proved that problem
(1) admits a nontrivial weak solution whenever λ > 0 is not an eigenvalue of −∆N

in Ω with Dirichlet boundary conditions. In addition in [28] a bifurcation result
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for higher (nonlinear) eigenvalues (which are suitably defined via the cohomological
index) is also obtained, yielding in turn multiplicity results.

The issue of Trudinger-Moser type embeddings for fractional spaces is rather
delicate and only quite recently, Parini and Ruf [25] (see also the refinement obtained
in [17]) provided a partial result in the Sobolev-Slobodeckij space

W
s,N/s
0 (Ω), s ∈ (0, 1), N ≥ 1,

defined as the completion of C∞0 (Ω) for the norm

‖u‖ = [u]s,N/s :=
(ˆ

R2N

|u(x)− u(y)|N/s

|x− y|2N
dxdy

)s/N
.

We also refer the reader to [18,19,21,24] for results in a different functional frame-
work, namely the Bessel potential spaces Hs,p. In fact, they proved that the supre-
mum αN,s(Ω) of α ≥ 0 with

sup
u∈W s,N/s

0 (Ω), [u]s,N/s≤1

ˆ
Ω

eα |u|
N/(N−s)

dx < +∞, (2)

is positive and finite. Furthermore, they proved the existence of α∗N,s(Ω) ≥ αN,s(Ω)

such that the supremum in (2) is +∞ for α > α∗N,s(Ω). On the other hand it still
remains unknown whether

αN,s(Ω) = α∗N,s(Ω).

The case N = 1 and s = 1/2 was earlier considered in [16] (see also [14]), where the
authors study the existence of weak solutions to the problem

−Cs
2

ˆ
R

u(x+ y) + u(x− y)− 2u(x)

|y|1+2s
dy = f(u), u ∈W 1/2,2

0 (−1, 1),

where Cs > 0 is a suitable normalization constant. We also mention [11, 12] for
other investigations in the one dimensional case on the whole space R, facing the
problem of the lack of compactness. In particular in [12], the existence of ground
state solutions for the problem

−Cs
2

ˆ
R

u(x+ y) + u(x− y)− 2u(x)

|y|1+2s
dy + u = f(u), u ∈W 1/2,2

0 (R),

was proved, where f is a Trudinger-Moser critical growth nonlinearity.
To the authors’ knowledge, in the framework of the Sobolev-Slobodeckij spaces

W
s,N/s
0 (Ω), fractional counterparts of the local quasilinear N -Laplacian problem

(1) were not previously tackled in the literature. This is precisely the goal of this
manuscript.

1.2. The main result. Let N ≥ 1 and s ∈ (0, 1). In the following, the standard
norm for the Lp space will always be denoted by | · |p. For λ > 0, we consider the
quasilinear problem{

(−∆)sN/s u = λ |u|(N−2s)/s u e |u|
N/(N−s)

in Ω

u = 0 in RN \ Ω,
(3)

where (−∆)sN/s is the nonlinear nonlocal operator defined on smooth functions by

(−∆)sN/s u(x) := 2 lim
ε↘0

ˆ
RN\Bε(x)

|u(x)− u(y)|(N−2s)/s (u(x)− u(y))

|x− y|2N
dy, x ∈ RN .
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We refer the interested reader to [22] and the references therein for an overview
on recent progresses on existence, nonexistence and regularity results for equations
involving the fractional p-laplacian operator (−∆)sp, p > 1. The standard sequence
of eigenvalues for (−∆)sN/s via the Krasnoselskii genus does not furnish enough

information on the structure of sublevels and thus the eigenvalues will be introduced
via the cohomological index. We consider critical values of the functional

Ψ(u) :=
1

|u|N/sN/s

, u ∈M, M :=
{
u ∈W s,N/s

0 (Ω) : ‖u‖ = 1
}
.

Let F be the class of symmetric sets of M, i(M) the Z2-cohomological index of a
M ⊂ F and set

λk := inf
M∈F
i(M)≥k

sup
u∈M

Ψ(u), k ≥ 1, (λk → +∞)

Consider also the positive constant

µN,s(Ω) := αN,s(Ω)(N−s)/N
(

N

sL(Ω)

)s/N
,

being L the Lebesgue measure in RN . The following is our main result

Theorem 1.1. Assume that λk ≤ λ < λk+1 = · · · = λk+m < λk+m+1 for some
k,m ≥ 1 and

λ+ µN,s(Ω)λ(N−s)/N > λk+1,

then problem (3) has m distinct pairs of nontrivial solutions ±uλj , j = 1, . . . ,m

such that uλj → 0 as λ↗ λk+1. In particular, if

λk ≤ λ < λk+1 < λ+ µN,s(Ω)λ(N−s)/N

for some k ≥ 1, then problem (3) has a nontrivial solution.

This result, which follows from the results in Section 5, is nontrivial since the
classical linking arguments of [8, 9] cannot be used in the quasi-linear setting. In-
stead the abstract machinery developed in [28] will be applied. We also would like
to stress that, since the Trudinger-Moser embedding (2) still holds with nonoptimal
exponent (contrary to the local case), it is not clear how to prove Brezis-Nirenberg
type results, namely that problem (3) admits a nontrivial weak solution whenever
λ > 0 is not an eigenvalue of (−∆)sN/s.

2. Preliminaries. As anticipated in the introduction, we work in the fractional

Sobolev space W
s,N/s
0 (Ω), defined as the completion of C∞0 (Ω) with respect to the

Gagliardo seminorm

[u]s,N/s =

(ˆ
R2N

|u(x)− u(y)|N/s

|x− y|2N
dxdy

)s/N
.

Furthermore, since ∂Ω is assumed to be Lipschitz, we have (cf. [5, Proposition B.1])

W
s,N/s
0 (Ω) =

{
u ∈ LN/s(RN ) : [u]s,N/s <∞, u = 0 a.e. in RN \ Ω

}
.
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A function u ∈W s,N/s
0 (Ω) is a weak solution of problem (3) if

ˆ
R2N

|u(x)− u(y)|(N−2s)/s (u(x)− u(y)) (v(x)− v(y))

|x− y|2N
dxdy

= λ

ˆ
Ω

|u|(N−2s)/s u e |u|
N/(N−s)

v dx, ∀v ∈W s,N/s
0 (Ω).

As proved in [15, Proposition 2.12], a weak solution turns into a poinwise solution

if u ∈ C1,γ
loc for some γ ∈ (0, 1) sufficiently close to 1. The integral on the right-hand

side is well-defined in view of [25, Proposition 3.2] and the Hölder inequality. Weak
solutions coincide with critical points of the C1 functional

Φ(u) =
s

N

ˆ
R2N

|u(x)− u(y)|N/s

|x− y|2N
dxdy − λ

ˆ
Ω

F (u) dx, u ∈W s,N/s
0 (Ω),

where F (t) =
´ t

0
f(τ) dτ and f(t) = |t|(N−2s)/s t e |t|

N/(N−s)

.

We recall that W
s,N/s
0 (Ω) is uniformly convex, and hence reflexive. Indeed, for

u ∈W s,N/s
0 (Ω), let

ũ(x, y) :=
u(x)− u(y)

|x− y|2s
, (x, y) ∈ R2N .

Then the mapping u 7→ ũ is a linear isometry from W
s,N/s
0 (Ω) to LN/s(R2N ), so

the uniform convexity of LN/s(R2N ) gives the conclusion.

We also have the following Brézis-Lieb lemma in W
s,N/s
0 (Ω).

Lemma 2.1. If (uj) is bounded in W
s,N/s
0 (Ω) and converges to u a.e. in Ω, then

‖uj‖N/s − ‖uj − u‖N/s → ‖u‖N/s.

Proof. Let

ũj(x, y) =
uj(x)− uj(y)

|x− y|2s
, ũ(x, y) =

u(x)− u(y)

|x− y|2s
,

and note that (ũj) is bounded in LN/s(R2N ) and converges to ũ a.e. in R2N . Hence

|ũj |N/sN/s − |ũj − ũ|
N/s
N/s → |ũ|

N/s
N/s

by the Brézis-Lieb lemma [6], where |·|N/s denotes the norm in LN/s(R2N ), namely

the conclusion.

It was shown [25, Theorem 1.1] that the supremum αN,s(Ω) of all α ≥ 0 such
that

sup

{ˆ
Ω

eα |u|
N/(N−s)

dx : u ∈W s,N/s
0 (Ω), [u]s,N/s ≤ 1

}
< +∞

satisfies 0 < αN,s(Ω) <∞. The main result of this section is the following theorem,
which is due to P.L. Lions [20] in the local case s = 1.

Theorem 2.2. If (uj) is a sequence in W
s,N/s
0 (Ω) with ‖uj‖ = 1 for all j ∈ N and

converging a.e. to a nonzero function u, then

sup
j∈N

ˆ
Ω

eα |uj |N/(N−s)

dx < +∞

for all α < αN,s(Ω)/(1− ‖u‖N/s)s/(N−s).
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Proof. We have

|uj |N/(N−s) ≤ (|u|+ |uj − u|)N/(N−s) ≤ (p |u|)N/(N−s) + (q |uj − u|)N/(N−s),

where 1/p+ 1/q = 1. Then

ˆ
Ω

eα |uj |N/(N−s)

dx ≤
(ˆ

Ω

eα p̃ |u|
N/(N−s)

dx

)1/p(ˆ
Ω

eα q̃ |uj−u|N/(N−s)

dx

)1/q

by the Hölder inequality, where p̃ = p(2N−s)/(N−s) and q̃ = q(2N−s)/(N−s). The first
integral on the right-hand side is finite, and the second integral equalsˆ

Ω

eα q̃ ‖uj−u‖N/(N−s) |vj |N/(N−s)

dx,

where vj = (uj − u)/ ‖uj − u‖. By Lemma 2.1, ‖uj − u‖N/(N−s) → (1 −
‖u‖N/s)s/(N−s). Taking q > 1 sufficiently close to 1, let

α q̃ (1− ‖u‖N/s)s/(N−s) < β < αN,s(Ω).

Then α q̃ ‖uj − u‖N/(N−s) ≤ β and hence the last integral is less than or equal toˆ
Ω

e β |vj |
N/(N−s)

dx,

for all sufficiently large j, which is bounded since β < αN,s(Ω) and ‖vj‖ = 1.

We close this preliminary section with a technical lemma.

Lemma 2.3. For all t ∈ R,

1. F (t) ≤ N − s
N

tf(t)

|t|N/(N−s)
,

2. F (t) ≤ F (1) +
s (N − s)

N2
tf(t),

3.
s

N
tf(t)− F (t) ≥ s2

N2
|t|N

2/s(N−s), in particular, tf(t) ≥ N

s
F (t),

4. F (t) ≤ s

N
|t|N/s + |t|N2/s(N−s) e |t|

N/(N−s)

,

5. F (t) ≥ s

N
|t|N/s +

s (N − s)
N2

|t|N
2/s(N−s).

Proof. Since f is odd, and hence F is even,

F (t) =

ˆ |t|
0

f(τ) dτ =

ˆ |t|
0

τ (N−s)/s e τ
N/(N−s)

dτ.

1. Integrating by parts,

F (t)

=
N − s
N

|t|N/s−N/(N−s) e |t|
N/(N−s)

− N − 2s

s

ˆ |t|
0

τN/s−N/(N−s)−1 e τ
N/(N−s)

dτ

≤N − s
N

|t|N/s e |t|N/(N−s)

|t|N/(N−s)

=
N − s
N

tf(t)

|t|N/(N−s)
.
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2. For |t| ≤ 1, F (t) ≤ F (1). For |t| > 1, F (t) = F (1) +

ˆ |t|
1

f(τ) dτ . Integrating

by parts,ˆ |t|
1

f(τ) dτ

=
s

N
|t|N/s e |t|

N/(N−s)

− se

N
− s

N − s

ˆ |t|
1

τ (N−s)/s+N/(N−s) e τ
N/(N−s)

dτ

≤ s

N
tf(t)− s

N − s

ˆ |t|
1

f(τ) dτ,

and hence

ˆ |t|
1

f(τ) dτ ≤ s (N − s)
N2

tf(t).

3. integrating by parts,

F (t) =
s

N
|t|N/s e |t|

N/(N−s)

− s

N − s

ˆ |t|
0

τN/s+N/(N−s)−1 e τ
N/(N−s)

dτ

≤ s

N
tf(t)− s

N − s

ˆ |t|
0

τN
2/s(N−s)−1 dτ

=
s

N
tf(t)− s2

N2
|t|N

2/s(N−s).

4. Since eτ ≤ 1 + τeτ for all τ ≥ 0,

F (t) ≤
ˆ |t|

0

τ (N−s)/s
(

1 + τN/(N−s) e τ
N/(N−s)

)
dτ

≤
ˆ |t|

0

τ (N−s)/s dτ +

ˆ |t|
0

|t|(N−s)/s+N/(N−s) e |t|
N/(N−s)

dτ

=
s

N
|t|N/s + |t|N

2/s(N−s) e |t|
N/(N−s)

.

5. Since eτ ≥ 1 + τ for all τ ≥ 0,

F (t) ≥
ˆ |t|

0

τ (N−s)/s
(

1 + τN/(N−s)
)
dτ

=
s

N
|t|N/s +

s (N − s)
N2

|t|N
2/s(N−s).

This concludes the proof.

3. Palais-Smale condition. Recall that Φ satisfies the (PS)c condition if every

sequence (uj) in W
s,N/s
0 (Ω) such that Φ(uj) → c and Φ′(uj) → 0, called a (PS)c

sequence, has a convergent subsequence. The main result of this section is the
following theorem.

Theorem 3.1. Φ satisfies the (PS)c condition for all c <
s

N
αN,s(Ω)(N−s)/s.

First we prove a lemma.

Lemma 3.2. If uj converges to u weakly in W
s,N/s
0 (Ω) and a.e. in Ω, and

sup
j∈N

ˆ
Ω

uj f(uj) dx <∞, (4)
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then ˆ
Ω

F (uj) dx→
ˆ

Ω

F (u) dx.

Proof. For any M > 0, writeˆ
Ω

F (uj) dx =

ˆ
{|uj |<M}

F (uj) dx+

ˆ
{|uj |≥M}

F (uj) dx.

By Lemma 2.3, 1 and (4), we haveˆ
{|uj |≥M}

F (uj) dx ≤
N − s

NMN/(N−s)

ˆ
Ω

uj f(uj) dx = O
(

1

MN/(N−s)

)
, as M →∞.

Hence ˆ
Ω

F (uj) dx =

ˆ
{|uj |<M}

F (uj) dx+O
(

1

MN/(N−s)

)
,

and the desired conclusion follows by letting j →∞ first and then M →∞.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let (uj) be a (PS)c sequence. Then

Φ(uj) =
s

N
‖uj‖N/s − λ

ˆ
Ω

F (uj) dx = c+ o(1) (5)

and

Φ′(uj)uj = ‖uj‖N/s − λ
ˆ

Ω

uj f(uj) dx = o(‖uj‖). (6)

Since s/N > s (N − s)/N2, it follows from Lemma 2.3 2, (5) and (6) that (uj) is

bounded in W
s,N/s
0 (Ω). Hence a renamed subsequence converges to some u weakly

in W
s,N/s
0 (Ω), strongly in Lp(Ω) for all p ∈ [1,∞), and a.e. in Ω. Moreover,

sup
j∈N

ˆ
Ω

uj f(uj) dx <∞

by (6), and hence ˆ
Ω

F (uj) dx→
ˆ

Ω

F (u) dx (7)

by virtue of Lemma 3.2. By Lemma 2.3 3, (5), and (6),

λs2

N2

ˆ
Ω

|uj |N
2/s(N−s) dx ≤ λ

ˆ
Ω

[
s

N
uj f(uj)− F (uj)

]
dx = c+ o(1),

so

c ≥ λs2

N2

ˆ
Ω

|u|N
2/s(N−s) dx ≥ 0.

If c = 0, then u = 0 and hence

ˆ
Ω

F (uj) dx→ 0 by (7), so ‖uj‖ → 0 by (5).

Now suppose that 0 < c < (s/N)αN,s(Ω)(N−s)/s. We claim that the weak limit
u is nonzero. Suppose u = 0. Thenˆ

Ω

F (uj) dx→ 0 (8)

by (7) and hence

‖uj‖ →
(
Nc

s

)s/N
< αN,s(Ω)(N−s)/N
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by (5). Let (Nc/s)s/(N−s) < α < αN,s(Ω). Then ‖uj‖ ≤ α(N−s)/N for all j ≥ j0
for some j0. Let 1 < q < αN,s(Ω)/α. By the Hölder inequality,

ˆ
Ω

uj f(uj) dx ≤
(ˆ

Ω

|uj |Np/s dx
)1/p(ˆ

Ω

e q |uj |N/(N−s)

dx

)1/q

,

where 1/p + 1/q = 1. The first integral on the right-hand side converges to zero
since u = 0, while the second integral is bounded for j ≥ j0 since q |uj |N/(N−s) =

q α |ũj |N/(N−s) with q α < αN,s(Ω) and ũj = uj/α
(N−s)/N satisfies ‖ũj‖ ≤ 1, soˆ

Ω

uj f(uj) dx→ 0.

Then uj → 0 by (6), and hence c = 0 by (5) and (8), a contradiction. So u is
nonzero.

Since Φ′(uj)→ 0,
ˆ
R2N

|uj(x)− uj(y)|(N−2s)/s (uj(x)− uj(y)) (v(x)− v(y))
|x− y|2N dxdy − λ

ˆ
Ω

f(uj) v dx→ 0

for all v ∈W s,N/s
0 (Ω). For v ∈ C∞0 (Ω), an argument similar to that in the proof of

Lemma 3.2 using the estimate∣∣∣∣∣
ˆ
{|uj |≥M}

f(uj) v dx

∣∣∣∣∣ ≤ sup |v|
M

ˆ
Ω

uj f(uj) dx = O
(

1

M

)
shows that

ˆ
Ω

f(uj) v dx→
ˆ

Ω

f(u) v dx, so

ˆ
R2N

|u(x)− u(y)|(N−2s)/s (u(x)− u(y)) (v(x)− v(y))

|x− y|2N
dxdy = λ

ˆ
Ω

f(u) v dx.

Then this holds for all v ∈W s,N/s
0 (Ω) by density, and taking v = u gives

‖u‖N/s = λ

ˆ
Ω

u f(u) dx. (9)

Next we claim that ˆ
Ω

uj f(uj) dx→
ˆ

Ω

u f(u) dx. (10)

We have

uj f(uj) = |uj |N/s e |uj |N/(N−s)

= |uj |N/s e ‖uj‖N/(N−s) |ũj |N/(N−s)

, (11)

where ũj = uj/ ‖uj‖. By (5) and (7),

‖uj‖ →
[
N

s
(c+ λβ)

]s/N
,

where β =

ˆ
Ω

F (u) dx, so ũj converges a.e. to ũ = u/ [(N/s) (c+ λβ)]
s/N

. Then

‖uj‖N/(N−s) (1− ‖ũ‖N/s)s/(N−s) →
[
N

s
(c+ λβ)− ‖u‖N/s

]s/(N−s)

≤
(
Nc

s

)s/(N−s)

since

‖u‖N/s ≥ λN

s

ˆ
Ω

F (u) dx =
λNβ

s
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by (9) and Lemma 2.3 3. Let(
Nc

s

)s/(N−s)
(1− ‖ũ‖N/s)s/(N−s)

< α− 2ε < α <
αN,s(Ω)

(1− ‖ũ‖N/s)s/(N−s)
.

Then ‖uj‖N/(N−s) ≤ α− 2ε for all j ≥ j0 for some j0, and

sup
j∈N

ˆ
Ω

eα |ũj |N/(N−s)

dx <∞ (12)

by Theorem 2.2. For M > 0 and j ≥ j0, (11) then givesˆ
{|uj |≥M}

uj f(uj) dx

≤
ˆ
{|uj |≥M}

|uj |N/s e (α−2ε) |ũj |N/(N−s)

dx

≤
(

max
t≥0

tN/s e−ε t
N/(N−s)

)
‖uj‖N/s e−ε (M/‖uj‖)N/(N−s)

ˆ
Ω

eα |ũj |N/(N−s)

dx.

The last expression goes to zero as M → ∞ uniformly in j since ‖uj‖ is bounded
and (12) holds, so (10) now follows as in the proof of Lemma 3.2. By (6), (10), and
(9),

‖uj‖N/s → λ

ˆ
Ω

u f(u) dx = ‖u‖N/s

and hence ‖uj‖ → ‖u‖, so uj → u by the uniform convexity of W
s,N/s
0 (Ω).

4. Eigenvalue problem. The asymptotic problem associated with (3) as u goes
to zero is the eigenvalue problem{

(−∆)sN/s u = λ |u|(N−2s)/s u in Ω

u = 0 in RN \ Ω.
(13)

The weak formulation of this problem can be written as the operator equation

A(u) = λB(u), (14)

where A and B are the nonlinear operators from W
s,N/s
0 (Ω) to its dual

W−s,N/(N−s)(Ω) defined by setting

〈A(u), v〉 :=

ˆ
R2N

|u(x)− u(y)|(N−2s)/s (u(x)− u(y)) (v(x)− v(y))

|x− y|2N
dxdy,

〈B(u), v〉 :=

ˆ
Ω

|u|(N−2s)/s uv dx, u, v ∈W s,N/s
0 (Ω),

respectively. The operators A and B are homogeneous of degree (N − s)/s, odd,
and satisfy

〈A(u), v〉 ≤ ‖u‖(N−s)/s ‖v‖ , 〈A(u), u〉 = ‖u‖N/s ,

〈B(u), u〉 = |u|N/sN/s , ∀u, v ∈W s,N/s
0 (Ω).

Since W
s,N/s
0 (Ω) is uniformly convex, then A is of type (S), i.e. every sequence

(uj) in W
s,N/s
0 (Ω) such that uj ⇀ u and 〈A(uj), uj − u〉 → 0 as j → ∞ has a
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subsequence that converges strongly to u (see e.g. [26, Proposition 1.3]). Moreover,
B is a compact operator since the embedding

W
s,N/s
0 (Ω) ↪→ LN/s(Ω),

is compact. Hence, problem (14) falls into the abstract framework considered in [26,
Ch. 4] and we can construct an increasing and unbounded sequence of eigenvalues
as follows.

Eigenvalues of problem (13) coincide with critical values of the functional

Ψ(u) =
1

|u|N/sN/s

, u ∈M =
{
u ∈W s,N/s

0 (Ω) : ‖u‖ = 1
}
.

Let F denote the class of symmetric subsets ofM, let i(M) denote the Z2-cohomo-
logical index of M ∈ F (see Fadell and Rabinowitz [13]), and set

λk := inf
M∈F
i(M)≥k

sup
u∈M

Ψ(u), k ≥ 1.

Then

λ1 = inf
u∈M

Ψ(u) > 0

is the smallest eigenvalue and λk ↗∞ is a sequence of eigenvalues (see [26, Propo-
sition 3.52]). Moreover, denoting by

Ψa := {u ∈M : Ψ(u) ≤ a} , Ψa := {u ∈M : Ψ(u) ≥ a}

the sub- and superlevel sets of Ψ, respectively, we have

i(Ψλk) = i(M\Ψλk+1
) = k (15)

whenever λk < λk+1 (see [26, Proposition 3.53]). The main result of this section is
the following.

Theorem 4.1. If λk < λk+1, then the sublevel set Ψλk contains a compact sym-
metric subset of index k.

First a couple of lemmas.

Lemma 4.2. The operator A is strictly monotone, i.e.,

〈A(u)−A(v), u− v〉 > 0

for all u 6= v in W
s,N/s
0 (Ω).

Proof. By [26, Lemma 6.3], it suffices to show that

〈A(u), v〉 ≤ ‖u‖(N−s)/s ‖v‖ , ∀u, v ∈W s,N/s
0 (Ω)

and the equality holds if and only if αu = βv for some α, β ≥ 0, not both zero. We
have

〈A(u), v〉 ≤
ˆ
R2N

|u(x)− u(y)|(N−s)/s |v(x)− v(y)|
|x− y|2N

dxdy ≤ ‖u‖(N−s)/s ‖v‖

by the Hölder inequality. Clearly, equality holds throughout if αu = βv for some

α, β ≥ 0, not both zero. Conversely, if 〈A(u), v〉 = ‖u‖(N−s)/s ‖v‖, equality holds
in both inequalities. The equality in the second inequality gives

α |u(x)− u(y)| = β |v(x)− v(y)| a.e. in R2N
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for some α, β ≥ 0, not both zero, and then the equality in the first inequality gives

α (u(x)− u(y)) = β (v(x)− v(y)) a.e. in R2N .

Since u and v vanish a.e. in RN \ Ω, it follows that αu = βv a.e. in Ω.

Lemma 4.3. For each w ∈ LN/s(Ω), the problem{
(−∆)sN/s u = |w|(N−2s)/s w in Ω

u = 0 in RN \ Ω
(16)

has a unique weak solution u ∈W s,N/s
0 (Ω). Moreover, the map

J : LN/s(Ω)→W
s,N/s
0 (Ω), w 7→ u

is continuous, homogeneous of degree (N − s)/s, and satisfies

‖J(w)‖
|J(w)|N/s

≤
‖w‖
|w|N/s

(17)

for all w 6= 0 in LN/s(Ω).

Proof. The existence follows from a standard minimization argument and the unique-
ness from Lemma 4.2. Clearly, J is homogeneous of degree (N − s)/s. To see that
it is continuous, let wj → w in LN/s(Ω) and let uj = J(wj), so

〈A(uj), v〉 =

ˆ
Ω

|wj |(N−2s)/s wjv dx ∀v ∈W s,N/s
0 (Ω). (18)

Testing with v = uj gives

‖uj‖N/s =

ˆ
Ω

|wj |(N−2s)/s wjuj dx ≤ |wj |(N−s)/sN/s |uj |N/s

by the Hölder inequality, which together with the imbedding W
s,N/s
0 (Ω) ↪→ LN/s(Ω)

shows that (uj) is bounded. Therefore, a renamed subsequence of (uj) converges

to some u weakly, strongly in LN/s(Ω) and a.e. in Ω. Then u is a weak solution of
problem (16) as in the proof of Theorem 3.1, so u = J(w). Testing (18) with uj −u
gives

〈A(uj), uj − u〉 =

ˆ
Ω

|wj |(N−2s)/s wj (uj − u) dx→ 0,

so uj → u for a further subsequence since the operator A is of type (S). Finally,
testing

〈A(u), v〉 =

ˆ
Ω

|w|(N−2s)/s wv dx

with v = u,w and using the Hölder inequality gives

‖u‖N/s ≤ |w|(N−s)/sN/s |u|N/s , |w|N/sN/s ≤ ‖u‖
(N−s)/s ‖w‖ ,

from which (17) follows.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let

π(u) =
u

‖u‖
, π̃(u) =

u

|u|N/s
, u ∈W s,N/s

0 (Ω) \ {0}
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be the radial projections onto M and

M̃ =
{
u ∈W s,N/s

0 (Ω) : |u|N/s = 1
}
,

respectively, let i be the imbedding W
s,N/s
0 (Ω) ↪→ LN/s(Ω), let J be the map defined

in Lemma 4.3, and let ϕ : Ψλk →M be the composition of the maps

Ψλk
π̃−−−−→ M̃ i−−−−→ LN/s(Ω) \ {0} J−−−−→ W

s,N/s
0 (Ω) \ {0} π−−−−→ M.

Since i is compact,

i(π̃(Ψλk)) =
{
u ∈ M̃ : ‖u‖N/s ≤ λk

}
is compact in LN/s(Ω), and hence K0 = ϕ(Ψλk) is compact in W

s,N/s
0 (Ω). Since

ϕ is an odd continuous map, i(K0) ≥ i(Ψλk). For u ∈ Ψλk , ϕ(u) = J(u)/ ‖J(u)‖
since J is homogeneous, so

Ψ(ϕ(u)) =
‖J(u)‖N/s

|J(u)|N/sN/s

≤
‖u‖N/s

|u|N/sN/s

= Ψ(u) ≤ λk

by (17), and hence K0 ⊂ Ψλk . Then i(K0) ≤ i(Ψλk) by the monotonicity of the
index, so i(K0) = i(Ψλk) = k by (15).

5. Bifurcation and multiplicity. In this section we prove the following bifurca-
tion and multiplicity results for problem (3), in which the constant

µN,s(Ω) = αN,s(Ω)(N−s)/N
(

N

sL(Ω)

)s/N
plays an important role, where L denotes the Lebesgue measure in RN .

Theorem 5.1. If

λ < λ1 < λ+ µN,s(Ω)λ(N−s)/N ,

then problem (3) has a pair of nontrivial solutions ±uλ such that uλ → 0 as λ↗ λ1.

Theorem 5.2. If λk ≤ λ < λk+1 = · · · = λk+m < λk+m+1 for some k,m ≥ 1 and

λ+ µN,s(Ω)λ(N−s)/N > λk+1, (19)

then problem (3) has m distinct pairs of nontrivial solutions ±uλj , j = 1, . . . ,m

such that uλj → 0 as λ↗ λk+1.

In particular, we have the following existence result.

Corollary 1. If

λk ≤ λ < λk+1 < λ+ µN,s(Ω)λ(N−s)/N

for some k ≥ 1, then problem (3) has a nontrivial solution.

Remark 1. Since λ ≥ λk in Theorem 5.2, (19) holds if

λ > λk+1 − µN,s(Ω)λ
(N−s)/N
k ,

or if

λ >

(
λk+1 − λk
µN,s(Ω)

)N/(N−s)
.
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We only give the proof of Theorem 5.2. The proof of Theorem 5.1 is similar and
simpler. The proof will be based on an abstract critical point theorem proved in
Yang and Perera [28] that generalizes Bartolo et al. [3, Theorem 2.4].

Let Φ be an even C1-functional on a Banach space W . Let A∗ denote the class of
symmetric subsets of W , let r > 0, let Sr = {u ∈W : ‖u‖ = r}, let 0 < b ≤ ∞, and
let Γ denote the group of odd homeomorphisms of W that are the identity outside
Φ−1(0, b). The pseudo-index of M ∈ A∗ related to i, Sr, and Γ is defined by

i∗(M) = min
γ∈Γ

i(γ(M) ∩ Sr)

(see Benci [4]).

Theorem 5.3 ( [28, Theorem 2.4]). Let K0 and B0 be symmetric subsets of M =
{u ∈W : ‖u‖ = 1} such that K0 is compact, B0 is closed, and

i(K0) ≥ k +m, i(M\B0) ≤ k

for some k ≥ 0 and m ≥ 1. Assume that there exists R > r such that

sup Φ(K) ≤ 0 < inf Φ(B), sup Φ(X) < b,

where K = {Ru : u ∈ K0}, B = {ru : u ∈ B0}, and X = {tu : u ∈ K, 0 ≤ t ≤ 1}.
For j = k + 1, . . . , k +m, let

A∗j = {M ∈ A∗ : M is compact and i∗(M) ≥ j}

and set

c∗j := inf
M∈A∗j

max
u∈M

Φ(u).

Then

inf Φ(B) ≤ c∗k+1 ≤ · · · ≤ c∗k+m ≤ sup Φ(X),

in particular, 0 < c∗j < b. If, in addition, Φ satisfies the (PS)c condition for all
c ∈ (0, b), then each c∗j is a critical value of Φ and there are m distinct pairs of
associated critical points.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. In view of Theorem 3.1, we apply Theorem 5.3 with

b :=
s

N
αN,s(Ω)(N−s)/s.

By Theorem 4.1, the sublevel set Ψλk+m has a compact symmetric subset K0 with

i(K0) = k +m.

We take B0 := Ψλk+1
, so that

i(M\B0) = k

by (15). Let R > r > 0 and let K, B, and X be as in Theorem 5.3. By Lemma 2.3
4,

Φ(u) ≥ s

N

(
‖u‖N/s − λ

ˆ
Ω

|u|N/s dx
)
− λ
ˆ

Ω

|u|N
2/s(N−s) e |u|

N/(N−s)

dx,
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so for u ∈ Ψλk+1
,

Φ(ru) ≥ srN/s

N

(
1− λ

Ψ(u)

)
− λrN

2/s(N−s)
ˆ

Ω

|u|N
2/s(N−s) e r

N/(N−s) |u|N/(N−s)

dx

≥ rN/s
[
s

N

(
1− λ

λk+1

)

− λrN/(N−s)
(ˆ

Ω

|u|2N
2/s(N−s) dx

)1/2(ˆ
Ω

e 2rN/(N−s) |u|N/(N−s)

dx

)1/2
]
.

The first integral in the last expression is bounded since W
s,N/s
0 (Ω) ↪→

L2N2/s(N−s)(Ω), and the second integral is also bounded if 2rN/(N−s) < αN,s(Ω).
Since λ < λk+1, it follows that inf Φ(B) > 0 if r is sufficiently small. By Lemma
2.3 5 and the Hölder inequality,

Φ(u) ≤ s

N
‖u‖N/s − λs (N − s)

N2

ˆ
Ω

|u|N
2/s(N−s) dx

≤ s

N
‖u‖N/s − λs (N − s)

N2 L(Ω)s/(N−s)

(ˆ
Ω

|u|N/s dx
)N/(N−s)

,

so for u ∈ K0 ⊂ Ψλk+1 ,

Φ(Ru) ≤ sRN/s

N
− λs (N − s)RN2/s(N−s)

N2 L(Ω)s/(N−s) Ψ(u)N/(N−s)

≤ −sR
N/s

N

(
λ (N − s)RN/(N−s)

λ
N/(N−s)
k+1 N L(Ω)s/(N−s)

− 1

)
.

It follows that Φ ≤ 0 on K if R is sufficiently large. By Lemma 2.3 5 and the Hölder
inequality,

Φ(u) ≤ s

N
‖u‖N/s − λ

ˆ
Ω

[
s

N
|u|N/s +

s (N − s)
N2

|u|N
2/s(N−s)

]
dx

≤ s

N

(
‖u‖N/s − λ

ˆ
Ω

|u|N/s dx
)
− λs (N − s)
N2 L(Ω)s/(N−s)

(ˆ
Ω

|u|N/s dx
)N/(N−s)

,

so for u ∈ X,

Φ(u) ≤ (λk+1 − λ) s

N

ˆ
Ω

|u|N/s dx− λs (N − s)
N2 L(Ω)s/(N−s)

(ˆ
Ω

|u|N/s dx
)N/(N−s)

≤ sup
ρ≥0

[
(λk+1 − λ) sρ

N
− λs (N − s) ρN/(N−s)

N2 L(Ω)s/(N−s)

]

=
(λk+1 − λ)N/s s2 L(Ω)

λ(N−s)/sN2
.

So

sup Φ(X) ≤ (λk+1 − λ)N/s s2 L(Ω)

λ(N−s)/sN2
<

s

N
αN,s(Ω)(N−s)/s



PROBLEMS WITH FRACTIONAL TRUDINGER-MOSER NONLINEARITY 575

by (19). Thus, problem (3) has m distinct pairs of nontrivial solutions ±uλj , j =
1, . . . ,m such that

0 < Φ(uλj ) ≤ (λk+1 − λ)N/s s2 L(Ω)

λ(N−s)/sN2
(20)

by Theorem 5.3. To prove that uλj → 0 as λ ↗ λk+1, it suffices to show that for
every sequence νn ↗ λk+1, a subsequence of vn := uνnj converges to zero. We have

Φ(vn) =
s

N
‖vn‖N/s − νn

ˆ
Ω

F (vn) dx→ 0 (21)

by (20) and

Φ′(vn) vn = ‖vn‖N/s − νn
ˆ

Ω

vn f(vn) dx = 0. (22)

Since s/N > s (N − s)/N2, it follows from Lemma 2.3 2, (21), and (22) that (vn) is

bounded in W
s,N/s
0 (Ω). Hence a renamed subsequence converges to some v weakly

in W
s,N/s
0 (Ω), strongly in Lp(Ω) for all p ∈ [1,∞), and a.e. in Ω. By Lemma 2.3 3,

(21), and (22),

s2

N2

ˆ
Ω

|vn|N
2/s(N−s) dx ≤

ˆ
Ω

[
s

N
vn f(vn)− F (vn)

]
dx =

Φ(vn)

νn
≤ Φ(vn)

λk
→ 0,

so ˆ
Ω

|v|N
2/s(N−s) dx = 0

and hence v = 0. Since
´

Ω
vn f(vn) dx is bounded by (22), thenˆ

Ω

F (vn) dx→ 0,

by Lemma 3.2, so ‖vn‖ → 0 by (21).
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