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1 Introduction

In this work, we study the multiplicity of solutions to the following fractional elliptic system:
2
(=0)5u = Aul92u + ——— u|* 2ulv/f inQ,
a+p

2
D)5V = ulvi 2y + a—5|u|“|v|ﬁ-2v nQ.

+B
u=v=0 inR"\ Q,

(1.1)

where Q is a smooth bounded set in R", n > ps with s € (0, 1), A, u > 0 are two parameters, 1 < g < p and

a>1,B>1satisfy a+ f = pi, where p; = nfﬁs is the fractional critical Sobolev exponent, and (-A)j, is the

fractional p-Laplacian operator, defined on smooth functions as

lu(y) = u()P-%(u(y) - u(x)) d
b= ypeps

— S = i
(-Djuco = 21im |
R™\Be(x)

y, xeR"

This definition is consistent, up to a normalization constant depending on n and s, with the linear fractional
Laplacian (-A)® for thecasep = 2. If weseta = B, a + B =1, A = pand u = v, then system (1.1) reduces to the

following fractional equation with concave-convex nonlinearities:
(=D)Su=AlulT?u+[ul"?u inQ,
{ P (1.2)

u:0 in]Rn\Q’

where 1 < g < pandp < r < p}.In[14] Goyal and Sreenadh studied the existence and multiplicity of nonneg-
ative solutions to the nonlocal problem (1.2) for subcritical concave-convex nonlinearities. For the fractional
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p-Laplacian, consider the following general problem:

(-D)pu =f(x,u) inQ,
u=0 inR"\ Q.

So far various results have been obtained for these kind of problems. Lindgren and Lindqvist [19] considered
the eigenvalue problem associated with (-A);, and obtained some properties of the first and of higher (varia-
tional) eigenvalues. Some results about the existence of solutions have been considered in [13, 18, 21], see
also the references therein. Let us also mention [22] where, by using variational methods and topological
degree theory, Pucci, Xiang and Zhang proved multiplicity results for fractional p-Kirchhoff equations.

On the other hand, the fractional problems for p = 2 have been investigated by many researchers, see,
for example, [2, 6, 23] for the critical case and [11] for the fractional Kirchhoff type problem. In particular,
Brandle et al. [3] studied the fractional Laplacian equation involving a concave-convex nonlinearity in the
subcritical case. The existence and multiplicity of solutions for system (1.1), when s = 1, were considered by
many authors, see [16, 17, 24] and references therein. In particular, Hsu [16] obtained multiple solutions for
the following critical elliptic system:

2a
-Apu = Au|T%u + lu
a+p

1“2ylv|® inQ,

2B
“Apv = ulv|T v+ 2w vF2v  inQ,
pV = UV +a+ﬁ|u| vl
u=v=0 onaQ,

whereg < panda > 1,8 > 1satisfya + 8 = %. For system (1.1) with p = 2, we mention [10, 15]. Moreover,
Giacomoni, Mishra and Sreenadh [12] showed the existence of multiple solutions for critical growth fractional
elliptic systems with exponential nonlinearity by analyzing the fibering maps.

However, as far as we know, there are a few results on the case p # 2 with concave-convex critical non-
linearities. Recently, Chen and Deng [7] studied system (1.1) with a subcritical concave-convex type nonlin-
earity, i.e., when a + 8 < p;. Motivated by the above results, in the present paper, we are interested in the
multiplicity of solutions for the critical fractional p-Laplacian system (1.1), i.e., when

a+f=p;.

We denote by W5P(Q) the usual fractional Sobolev space endowed with the norm

1
_ p P
[u(x) — uy)| dxdy)”.
|X_y|n+ps

nﬂwwm):uumwm+( j
QxQ

Set Q := R2"\ (CQ x CQ) with CQ = R"\ Q. We define

[u(x) — u(y)IP

X := Ju: R" - Rmeasurable, u|g € [P(Q)and | ———=—
IX _ y|n+ps

dxdy<oo}.

The space X is endowed with the norm

ju(x) - u(y)P ’
lullx := ”u"LP(Q) + (! W dx dy .

—X
The space X is defined as X := {u € X : u = 0 on CQ} or, equivalently, as C°(Q) and, forany p > 1,itisa
uniformly convex Banach space endowed with the norm

e\
nmuoz(JWEQQ—EQQdedy). (1.3)
Q

b - yIrops
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Since u = 0 in R"\ Q, the integral in (1.3) can be extended to all R". The embedding X, — L"(Q) is contin-
uous for any r € [1, pZ] and compact for r € [1, p}). We set E := X x Xo, with the norm

[v(x) - v(y)lP

1
lu() —u)IP g
—dXdy+JWdXdy .
Q

b=y

1 VI = (lully, + VIS )P = ( J
Q

For convenience, we define

_ -2 _ _
A, ¢) :=j|u(x) u(y)P~*(u(x) - u(y) (@) - () dx dy. (1.4)
|x — y|mtps
Q
Definition 1.1. We say that (u, v) € E is a weak solution of problem (1.1) if
A, @) + A(v, P) = J()llulq‘zuqﬁ + ulv|92v) dx + azfﬁ jlul“‘zulvlﬂcl) dx + az_fﬁ Jlul”‘lvlﬁ‘zwp dx
Q Q Q

forall (¢, ) € E.

In the sequel we omit the term weak when referring to solutions which satisfy Definition 1.1. Let s € (0, 1),
p > 1and let Q be a bounded domain of R". The next theorem is our main result.

Theorem 1.2. Assume that

ifp=2, -1
p’s<n< O;)S fp qu<p, a+p= i (1.5)
75 ifp<?2, n-ps n-ps

Then there exists a positive constant A, = A, (p, q, S, n, |Q|) such that for A, u satisfying
L L
0 < AP +ura < A,,

system (1.1) admits at least two nontrivial solutions.

For the critical case, since the embedding X, «— LPs (R") fails to be compact, the energy functional does not
satisfy the Palais—Smale condition globally, but that holds true when the energy level falls inside a suitable
range related to the best fractional critical Sobolev constant S, namely,
I]RZYI Ju)-uy)P dx dy

|X,y|n+ps

S:= inf = (1.6)

ueXo\io} (jQIu(x)|n%s dx) ™

For the critical fractional case with p # 2, the main difficulty is the lack of an explicit formula for minimizers
of S, which is very often a key tool to handle the estimates leading to the compactness range of the functional.

It was conjectured that, up to a multiplicative constant, all minimizers are of the form U("’eXO ), with

Ux)=(1+ |X|%)_%, x e R".

This conjecture was proved in [8] for p = 2, but for p # 2, itis not even known if these functions are minimizers
of S. On the other hand, as in [20], we can overcome this difficulty by the optimal asymptotic behavior of
minimizers, which was recently obtained in [4]. This will allow us to prove Lemma 4.10, related to the Palais—
Smale condition. That is the only point where the restriction (1.6) on p, g, n comes into play. On the other
hand, we point out that, as detected in [20], n = p%s corresponds to the critical dimension for the nonlocal
Brézis—Nirenberg problem.

This paper is organized as follows. In Section 2, we give some notations and preliminaries for the Nehari
manifold and fibering maps. In Section 3, we show that the (PS). condition holds for J; j, with c in certain
interval. In Sections 4 and 5, we complete the proof of Theorem 1.2.
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2 The Fibering Properties

In this section, we give some notations and preliminaries for the Nehari manifold and the analysis of the
fibering maps. Being a weak solution (u, v) € E is equivalent to being a critical point of the following C!
functional on E:

1 ul) —um)P 1(Ivx)-viy)lP 1 p o, 2 J B
Jau(u, v) '_pj X~y s dxdy+pj Xy s dx dy qI(AIuI + ulvl?) dx _a+B [u|®|v|P dx.
Q Q Q Q
By a direct calculation, we have that J3 , € C 1(E, R) and
e V), (@) = Al )+ AW, )~ (Al 2ug + VT2 v) dx
Q
_ 2a a-2 B _ ZB J ay, 12
a+ﬁj|u| v dx - 22 [lul v p dx
Q Q

for any (¢, ) € E. We will study critical points of the functional ), on E. Consider the Nehari manifold
Naw ={, v) € EN{(0, 00} = (J ,(u, V), (4, v)) = O}.
Then (u, v) € Ny, if and only if (u, v) + (0, 0) and
It )17 = [l + pivi®) -+ 2 [lufvi? .

Q Q

The Nehari manifold Ny, is closely linked to the behavior of a function of the form ¢, : t — Jy ,(tu, tv) for
t > 0, defined by

tP pthq 7 g 2t0+P apif g
Pur(t) = it t) = 1w,V _Ei( ul? + plv]9) x—miw i dx.

Such maps are known as fibering maps and were introduced by Drabek and Pohozaev in [9].

Lemma 2.1 (Fibering Map). Let (u, v) € E \ {(0, 0)}. Then (tu, tv) € Ny, if and only if @, ,(t) = O.

Proof. The result is a consequence of the fact that <p{1,v(t) = (]/'W(tu, tv), (u,v)). O
We note that
Pln® = 7 VP = 67 [l 4 pav1®) dx - 26787 [y dx 2.1)
Q Q
and

@it =@-DP 2w, V[P - (g-1)t72 J(A|u|‘1 +ulvl?) dx - 2(a + B - 1)teP2 Jlul”‘lvlﬁ dx.
Q Q

By Lemma 2.1, (u, v) € Ny, if and only if (p{l’v(l) = 0. Hence, for (u, v) € Ny, (2.1) yields

0" (1) = (p - DI VIP - (q-1) J(Alulq vl dx - 2(a+ - 1) j|u|“|v|ﬁ dx

Q Q
—2(p-(@+p) j|u|“|v|ﬁ dx+(p - q) j(/uuw + ulvl9) dx
Q Q
=@ -lu,MIP -2((a+p)-q) quI“IVIﬂ dx
Q
= (0 (a+ P VIP + (@+B) - q) j(/uur? + ulvl9) dx. 2.2)
Q
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Thus, it is natural to split Ny, into three parts corresponding to local minima, local maxima and points of
inflection of ¢, namely,

NLI ={(u,v) e Ny = @, (1) > 0},
Ni’” ={(u,v) e Ny : (pﬂ,v(l) < 0},
Ny = v) € Ny = gy, (1) = O}

We will prove the existence of solutions of problem (1.1) by investigating the existence of minimizers of the
functional Jj ;, on N . Although N, , is a subset of E, we can see that the local minimizers on the Nehari
manifold N, are usually critical points of J, . We have the following lemma.

Lemma 2.2 (Natural Constraint). Suppose that (uo, vo) is a local minimizer of the functional Jp,,, on Ny, and
that (ug, vo) ¢ Nﬁiy. Then (uo, vo) is a critical point of Jp,y.

Proof. The proof is a standard corollary of the lagrange multiplier rule, where the constraint is

Q) = I, VP - jwuw + plvl9) dx - 2 j|u|“|v|ﬁ dx,
Q Q
after observing that, for (u, v) € Ny,

Q. v), (0, v) = plu, IP - g j(Mulq + uvI9) dx - 2(a + B) j|u|“|v|ﬁ dx

Q Q
- DIwWIP-(q-1) j(/uuw £ ulvl?) dx - 2(a+ - 1) j|u|“|v|ﬁ dx
Q Q
=@y, ,(1) #0,
by the assumption that (u, v) ¢ Ng’y. O

In order to understand the Nehari manifold and the fibering maps, we consider ¥, : R* — R defined by

i) = P, P - 60D [ Al + vl dx.
Q
By simple computations, we have the following results.

Lemma 2.3 (Properties of ¥, ,). Let (u, v) € E\ {(0, 0)}. Then ¥,,,, satisfies the following properties:
(@) Yuv(t) has a unigue critical point at

(@+B-q) [, Al + plv|9) dx);:lq o
(a+B - pliu, v)|IP ’

(b) Wy, (t)is strictly increasing on (0, tmax (U, v)) and strictly decreasing on (tmax(u, v), +00),
(©) lim—o+ Wy, (t) = —0o and lim;_, 0o Wy v (t) = 0.

tmax(U, V) := (

Lemma 2.4 (Characterization of Niu). We have (tu, tv) € N}’u if and only if ¥, ,(t) > 0.

Proof. Itis clear that for t > O, (tu, tv) € Ny, if and only if

W, (0 =2 j|u|“|v|ﬂ dx. 2.3)
Q
Moreover,

(0 = (p - (a+ PP, V)P - (q - (a+p))ti-@h1 j(/uuw + plv|9) dx,
Q
and if (tu, tv) € Ny, then
B () = (0 = ), (D). (2.4)
Hence, (tu, tv) € Nj{’y (resp. N;’y) if and only if W], ,(t) > O (resp. < 0). O
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Lemma 2.5 (Elements of Niy). Let us set

p

_ P-4q )aﬁ (a+B q Mq)w L
M (2(0{+ﬁ—q) a+p- p|Q| S, (2.5)

with S being the best constant for the Sobolev embedding of X, into LPs (R™). If (u, v) € E \ {(0, 0)}, then for any
A, u satisfying

P _p_
0 < A% + pia < Ay,
there exist unique ty, t, > O such that ty < tymax(u, v) < t, and
(tyu, t1v) € N/’{,y, (tau, trv) € NX’H

Moreover,
Jau(tiu, t1v) = inf Jo,(tu, tv),  Jau(tau, tav) = sup Jau(tu, tv).
0<t<tmax t>0

Proof. As folul"‘ [vI® dx > 0, we know that (2.3) has no solution if and only if A and u satisfy the condition

2 j|u|“|v|ﬁ dx > Wy (tmax(tt, V).
Q

By Lemma 2.3, we have

Wy (tmax(U, V) = [(a +B- q)p <a+/3) ) (a iy q)q (M)] IQ(Mulq +H|V|q)dx)%:1ﬁ)

P @)
atp-p a+p-p I, VI =7
P
_ p-q (a+ﬁ g\ b ( fQ(A|u|q+H|V|q)dX) ”
Ca+B-qla+B-p

By Holder’s inequality and the definition of S, we find

j(iuuw + ulvI) dx < SF1QI W (AT + 5 9) 5 I, V9.
Q

Then, sinceq < p < a + = p;, we have

pP-q (a+/3 a\ 52 (S50 (A +ur) 7, V)Ilq]

Wy (tmax (U, v)) 2
u,v{lmax a+Bf-q\a+B-p I ,V)||p(qp(*qﬁ>)
_ p—-q 24 +ﬁ q ‘Hﬁ) _7 af q p- (a+/}) "
_a+ﬂ—q(a+ﬂ p) [SP|Q=r] > (/\”+H”) ||(u v)||%th. (2.6)

On the other hand, using Young’s inequality and the definition of S, we have

2 Jlul“lvlﬁ dx <2 -2 JIul“*ﬁ axs P J|v|“+ﬁ dx ) <25 [, v)[<*.
a+/3Q a+/3Q

For any A, y satisfying 0 < AP+ ;u%q < A1, with Aq given in (2.5), we have
a+ — — p(atf) a+ a+ —(a+
2575 < P4 (‘“B N C T R I e 2.7)
a+f-q\a+B-p
Thus, from (2.6) and (2.7), if A, u satisfy 0 < =" yﬁ < A1, we have

0<2 jlul”‘lvlﬁ dx < 257 (u, V]**

Q p—(a+p)

— ﬁ_ p-q
_afﬂ?q(z:ﬁ—z) [S

< \yu,v(tmax(u’ V).
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‘Pu,v(t) (Pu,v(t)

: t
0 tmax (U, v) t 0 ty t

Figure 1. The graphs of W, , and ¢,y .

Then, there exist unique t; > 0 and t, > 0, with t; < tmax(u, v) < t, such that

Wy (t) = Wuo(ts) = 2 j|u|‘*|v|ﬁ dx, ¥ ,(t)>0, W.,(t)<0.
Q

In turn, (2.1) and (2.3) give that ¢, ,(t1) = @, ,(t2) = 0. By (2.4), we have that ¢,/ ,(t1) > 0 and ¢/ ,(t2) < 0.
These facts imply that ¢, has a local minimum at ¢; and a local maximum at ¢, such that (t1u, t;v) € N/{’ y
and (tru, thv) € N/iu' Since @y, (t) = Ja,u(tu, tv), we have Jp ,(tou, tav) = Ja u(tu, tv) = Ja u(t1u, t1v) for each
t € [ty, tr] and Jp u(t1u, t1v) < Jau(tu, tv) foreach t € [0, t1]. Thus,

Iau(tiu, tiv) = inf Jy(tu, tv), Jau(tau, t2v) = supJa u(tu, tv).
O<t<tmax t>0

The graphs of ¥, , and ¢,,,, can be seen in Figure 1. O

3 The Palais—Smale Condition

In this section, we show that the functional J; , satisfies the (PS). condition.

Definition 3.1. Let c € R, let E be a Banach space and let J3 , € CY(E, R). We say that {(u, vi)}ken is a (PS)¢
sequencein E for Jj , if Jp , (uk, vi) = ¢ + o(1) and]ﬁ’y(uk, vk) = o(1) strongly in E* as k — co. We say that J, ,,
satisfies the (PS). condition if any (PS). sequence {(u, Vi)}ken for /3, in E admits a convergent subsequence.

Lemma 3.2 (Boundedness of (PS). Sequences). If {(ux, vi)}kew C Eisa (PS). sequence for J y, thenit follows
that {(uy, vi)}ken is bounded in E.

Proof. If {(ux, vi)} c Eis a (PS). sequence for J ,, then we have

]}(,y(uk, Vi) — C, ],'W(uk, vk) - 0 inE*ask — oo.

That is,
1 D 1 q q 2 ayy,, 1B
L vl ——j(/uuu + ulvid )dx——j|uk| valf dx = ¢ + 0(1), (3.1)
p q a+p
Q Q
s viOIP j(/uuuq £ ulvid9) dx - 2 j|uk|“|vk|ﬁ dx = or(l(u. vol)  as k — co. (3.2)
Q Q
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We shall show that (ug, vi) is bounded in E by contradiction. Assume that ||(ux, vx)| — oo, and set

U - Vi

Uy = ———, Vpi= —————.
Il (g, violl” Il (e, viol

Then ||(itx, V)|l = 1. There is a subsequence, still denoted by (ity, Vx), with (i, Vx) — (i, ¥) € E and
U — i, Vp—v inL"(R"Y), g — i, Vp—7v ae. inR",

foranyl<r<p; = n"f, 5+ Then, the Dominated Convergence Theorem yields

jmmm4+ywmﬁdx_»ﬁMaw+ywwuu as k — co. (3.3)
Q Q

Moreover, from (3.1) and (3.2), we find that (iix, V) satisfy

2II(uk, Vk)ll“*ﬁ P

Alarl? + plvel?) dx - i |*[vil? dx = ox(1),

1 . Uk, vi)|4 P
L e, v - MJ
p q

Q
@, ViIP = ke, violl 4> J(/\Iuqu + Ukl ) dx - 2ll(u, vi)l<+FP JI itk 7k P dx = ox(1).
Q Q

From the above two equalities and (3.3), we obtain

TRY, P:IM+—M q—pJA~q 5 19 1
Nl @, Vil Qs o Il (s violl Q( [Gx|? + plvgl?) dx + ok (1)
a+pB- - -
= PP Dy, vt [ + i) dx + (1),
g(a+p-p)
Q
Since 1 < g < p and |[(uk, vi)| — oo, we get ||(itk, Vk)|IP — O, which contradicts ||(itx, V)| = 1. O

Lemma 3.3 (Uniform Lower Bound). If {(ux, vk)}ken is a (PS)¢ sequence for Jp,, with (ug, vi) — (u, v)inE, then
J /’W(u, v) = 0, and there exists a positive constant Cy depending on p, q, s, n, S and |Q| such that

Jiu(u, v) = ~Co(A7T + ura), (3.4)

where we have set

= pvs
p qMK)ps@ NN pq (3.5)

pqps (p p)p q
with S being the best constant for the Sobolev embedding of X, into LPs (R").
Proof. Assume that {(uy, vx)} C Eis a (PS). sequence for J, , with (ux, vk) — (u, v) in E. That is,
],'\’y(uk, vk) =0(1) stronglyin E* as k — oo.

Let (¢, ) € E. Then we have

T i vio = T3, (s v), (@, ) = Aluk, @) — A, @) + A(vi, ) = A(v, )
= el = i) dx =g [ (vl v = 172 dx
Q Q

2a _ -
- g [ Qv < i) ax
Q

ZB a B-2 apy,1B-2
a+ﬁj(|uk| Vil 2vic - Vv dx,
Q
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where A is defined in (1.4). We claim that, from (uy, vi) — (u, v) in E, we have
liFA(uk, o) = A(u, ¢), liPA(vk, Y) =A(v, ) forany ¢, Y € Xpas k — oo.

In fact, the sequences

{ |ug (x) = ug (V)P (Ur(x) - ur(y)) } { V() = Vi) P2 (vi(x) = vi(y)) }
ke]N’ kelN

n+ps n+ps

x—yl»" x—yl v
are bounded in L?' (R") and by the pointwise converge uy — u and vy — v, we have

[ur(x) = urkIP~2 (Ui (x) —u(y)) '@ |ux) — u(y)P=2ux) - uly))

mips wps
lx -yl [x—-yl 7
and ,
V() = vi@)IP2(vik(x) = vi(y)) L' ®™)  [v(x) = v(y)IP72(v(x) - v(y))
n+ps n+ps .
-yl ¥ -yl
Since

W);(ﬁ(g) e LP(R"), W);lr{i,(g) e LP(R),
Ix =yl Ix -yl

the claim follows. The sequences uy and vy are bounded in Xy, and then in L?s (Q). Then uy — uand vy — v

weakly in L?s (R"). Furthermore, we obtain

L7 (Q)

_ _ S L7 _
gl ug (w7 2u,  |vilT v —— V|72,

_atB a+p

_ L atp-1 Q) 2 ) L atB-1 Q) )
[ukl 2 uglvilP ——— | 2ulvif,  Juel*vilF2ve ——= [ul®|v[P-2v.

Since ¢, Y € Xo c L9(Q) n L**A(Q), it follows that, as k — oo,

j(luqu’zuk " ?u)p dx — 0, J(Ivqu’zvk T2y )y dx — O,
Q Q

and
j(|uk|“*2uk|vk|ﬁ ~ ul*2ulvlF)p dx — 0, j(|uk|“|vk|ﬁ*2w< ~ JulvF-2v)p dx — 0.
Q Q

Hence,
Ty vio =Ty, (w, v), (@, %)) — 0 forall (¢, P) € E,

which yields J A’u(u, v) = 0. In particular, we get

T v), (u,v)) =0,

ie.,
2 [ulivi dx = 1w, P - Al + vt dx
Q Q
Then
1 1 1 1
(= — — p_ (- _ q q
It v) = (5 =~ NP = (2 = =) [ @t + uivit dx
Q
_S po(1_1 J 44 ylvid
L IP = (2= 22 ) | @l + vl dx, (3.6)
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By Hélder’s inequality, the Sobolev embedding, (1.6) and Young’s inequality, we have
B g q q
J(A|u|q+y|v|q)dxs 1Q] »s S7% (Allully, + plviy,)
Q q a *
ps/1 1—1]; q ps/1 1 N\-117p B4 a
Po(c ) i, )([B2(s-0) ] Ter s )
<[qn(q ps) %o qn(q ps)
ps/l 1\-175 g \([pPS/1 1\1775 52
(B2 g ) (B (o - o2) | TerE s7hy)
qn(q ps) %o qn(q ps) K
s(l 1Nt p P\ L BAR 4y
<G pr) (i + V) + CAZT + 7y
1

1
q Dps

-1 -
: ) 1@ IP + T + %), G.7)

with

- “171-F  mi- et - Y _g\pg  Pei-a)
C= quf(l _ i*) 1] "|Q|pT;‘qS‘g)” ‘ M<Pi q):: q|Q|§;p<p—Z>5‘ﬁ,
p gniq ps b bs —p
Then (3.4) follows from (3.6) and (3.7) with Co = % - I%)E‘. O

Let us set
[l (u, v)IIP

| (3.8)
RO} ([ jujalv]f dx)=

Sa,p =
We have the following result which provides a connection between S, g and S. The proof essentially follows
by the line of arguments used in [1] but, for the sake of self-containedness, we include it.
Lemma 3.4 (Sq g versus S). We have
Sap = [(5)%+(§)7]5 (3.9)
’, B a

Proof. Let {wn}tnenw € Xo be a minimization sequence for S. Let s, t > 0 be chosen later and consider the se-
quences un := Swy and vy := twy in Xo. By the definition of S, g, we have

lwn()-wn (V)P
SP 4 P Jpon eyt dx dy

z ——— = Sap- (3.10)
(s«tB)y s (jQ|wn|ps dx) ¥
Observe that
L (f)% s (E)‘%
2 T\t t ’
(seth)rs
Let us consider the function g: R* — R* defined by
pB —pa

g(x) :=xP5 + x5,

Then we have

sP + tP s
(satﬁ)ﬂ% ) g(?)’

1
and the function g achieves its minimum at point x = (%)T’ with minimum value

a

ming(X)=(%)p€‘ +(§)7

XeR*

Choosing s, t in (3.10) such that § = (%)5 and letting n — oo yields

[(%)IZ*(é);;]SZSa,ﬁ- (3.11)
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On the other hand, let {(un, vn)}nen € E \ {(0, 0)} be a minimizing sequence for Sy g. Set z,, := spv, fors, >0
with jﬂ|un|1’§ dx = | olznl?* dx. Then Young’s inequality implies

J’lun|alzn|ﬂ dx < a Jlunl‘“ﬁ dx + ﬁ J|zn|a+ﬁ dx = J|2n|a+ﬂ dx = J'un|a+ﬁ dx.
a+p a+pf
Q Q Q Q Q
Then we have

B

_ 14 _ 14 o 20O)—un (V)P W)=V (V)P
I}Rzn [un 00 -un )| dx dy+ f]Rz" vn(X)=va(¥)I dx dy ) sp B(J-]RZH [un (X)—un(y)l dx dy + '[Rzn [V ) =va (I dxdy)

|X,y|n+ps |X7y|"+p5 |X,y|n+ps |X,y|n+ps
b P
([ lunl®vnlf dx)= ([ lunl®znlf dx)=
4 (0)-t1y )P 200020 )P
L g Jron S dxdy 2 &P [ren “gne— dxdy
Z Sn

P +Sn n b
(Jolunl? dx)=7 (Jolznla*B dx) 7
> g(sn)S

5+ (&) )s

In the last inequality, passing to the limit as n — co, we obtain

(57 + (D) Js=sen 12

Thus, (3.9) follows from (3.11) and (3.12). O

Lemma 3.5 (Palais-Smale Range). The functional ]y satisfies the (PS). condition with c satisfying

Sap

5 )IE _ Co(}ll’%‘l +yp%q), (3.13)

2s (
—00<C<Coo=—
n
where Cy is the positive constant defined in (3.5).

Proof. Let {(ux, vi)}ken be a (PS). sequence of Jj , in E. Then

1 1
l—jll(uk,vk)llp " J(/Iluqu + plviel?) dx - lugl®|vilP dx = ¢ + ox(1), (3.14)

Q

3
ps
Q
It vOl? = [ el + vl dx = 2 [l vl dx = ox(1). (3.15)
Q Q
We know, by Lemma 3.2, that {(uy, vVk)}ken is bounded in E. Then, up to a subsequence, (uk, vk) — (u, v) in
E and, by Lemma 3.3, we have that (u, v) is a critical point of J3 .
Next we show that (uy, vi) converges strongly to (u, v) as k — oo in E. Since uy — uand vy — vin L'(R"),
we obtain
J(/\Iuqu T vl dx — J(}llulq + a9 dx ask — co.
Q Q

Moreover, by variants of the Brezis-Lieb Lemma, we can easily get (cf. [5, Lemma 2.2])

i, VIOIP = l(uk — u, vic = WIP + [(u, v)IP + 0x(1) (3.16)
and
j|uk|“|vk|/3 dx = Jluk —ul% vy — vIP dx + J|u|“|v|ﬁ dx + ox(1). (3.17)
Q Q Q

Taking (3.16) and (3.17) into (3.14) and (3.15), we find that

1 2
Ell(uk -u,vi - V)[IP - PH Jluk —ul*lvic = vIF dx = c = T u(u, v) + 0k(1) (3.18)

S
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and
I(uk - u, vie = V)IP = 2 Iluk —ul%lvi - vIP dx + ox(1).
Q

Hence, we may assume that
luk —u, v =P - m, 2 jluk —ul*lvi-vifdx > m ask — co. (3.19)
Q

If m = 0, we are done. Suppose m > 0. Then, from (3.19) and the definition of S, g in (3.8), we have

m Pr . a B 1’% .
Sa,ﬁ(—) S =Sep lim | |lug —ul®lvi-viPdx | < lim |(ux - u, vic - V)P = m,
2 k—oo k—o00
Q
which yields m > 2( %)E From (3.18), we obtain
Cc= %m + au(u, v).

By Lemma 3.3 and for m > 2(5‘3"Z )7, we find

n

ez 25(%2)" - co o),

which is impossible for

Sa,p\p
—oo<c<$< ;’ﬂ)p —CO(}LP%J +w,’%q)' O

4 Existence of Solutions

We start with some lemmas.
Lemma 4.1 (N} is Empty). Let A, u be such that 0 < AP + uia < Ay, where A, is as in (2.5). Then Ny, =0

Proof. From the proof of Lemma 2.5, we have that there exist exactly two numbers ¢, > t; > O such that
@, (t1) = @5, ,(t2) = 0. Furthermore, ¢/ ,(t1) > 0 > @/, (t2). If, by contradiction, (u, v) € TNO,H, then we have
that ¢, ,(1) = 0 with @,/ ,(1) = 0. Then, either £; = 1 or ¢, = 1. In turn, either ¢,/ (1) >0 or ¢,/ (1) <O,
a contradiction. O

Lemma 4.2 (Coercivity). The functional ]y, is coercive and bounded from below on Ny , forallA > 0 and p > 0.

Proof. Let A > 0 and u > 0 and pick (u, v) € Ny ;. Then, we have

1 1 1 1

(= - —— p_(_ _ q q

Tt = (5 = g s vIP = ( a+ﬁ)j(/1|u| + plvI®) dx
Q

1 1 1 1 g _ efaqa _ p p__p=aq
R pP_ (- __— S » at - - q

> (5= g VP = (5 = g)S 71017 @7 + i) T hw, e,

which yields the assertion. O

By Lemmas 4.1 and 4.2, for any A, u satisfying 0 < AP+ yx%q < A1, we have
Nau = Nj{,y U N;,y,
and ]y, is coercive and bounded from below on Nj{ u and N/iu' Therefore, we may define

. £
Chpi= j1{r}1‘f Jaus Chp = 12f Jau-
SH Au

Of course, by Lemma 4.2, we have ¢, ,, cf{ u > 0. The following result is valid.
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Lemma 4.3 (c/’lr u < 0 and oy u> 0). Let A1 be as in (2.5). Then the following facts hold:

i) 1'f0<)l174+wq<A1,thenc/1” <0
(ii) if0<)lM +;u”1 <( )ﬁ f1A1,thenc/1 >doforsomedo:do()l,y,p,q,n,s, |Q]) > 0.

Proof. Let us prove (i). Let (u, v) € N7 . Then we have ¢!/ (1) > 0, which combined with (2.2) yields
A,y (pu,v

b-q
S S — u,v)p>Ju“vﬂdx.
s@ s pog @I >
Q
Therefore,
1 1 1 1
(= - = b - —— a8
) = (= 2 i P+ 2( 2 “ﬁ)iw IvIF dx
1 Iy (1__1 ﬁ] »
G- G aparg gl
r-q)(a+B-p)
= = ", V)P <0.
pa@+f) II( I|
Therefore, ¢y, < y < 0 follows from the definitions of c;,, and ct i
Let us now come to (ii). Let (u, v) € N"y Then, we have ¢, (1) < 0, which combined with (2.2) yields
p-q p J a8
—l(u, VI < | u|*|v|® dx.
2(a+ﬁ—q)"( )| Q| 1“Ivl

By Young’s inequality and the definition of S, we obtain

jlul“lvlﬁ dx< % JIuI“*ﬁ dx+ P J|v|“+ﬂ dx < S~ 1w, )8
a+p a+p
Q Q Q
Thus,

- TP o
100 V1> (55 ) 7.

Moreover, by Holder’s inequality and the definition of S, we find
a+f— -
j(/uuw +ulvI) dx < STFIQIT A7 + ) 7, v
0

Therefore, if 0 < AP +yp%i < (%)PZI A1, then we have
1 1 1 g wba o p b P
Tt ) = 1w, I (- )N P = (o = g )S I 7 ) |
1 b Jwbe-a ] o wbg o p p pg
q ap-p b _ (= _ —1 s £ Ay )
TR [( oy )(2(a+ﬁ q)) S parpp) (q a+ﬁ)s P1Q| @ (AP + pra) ]
>dy > 0. O

4.1 The First Solution

We now prove the existence of a first solution (u1, v1) to (1.1). First, we need some preliminary results.

Lemma 4.4 (Curves into Ny,,). Let A1 be as in (2.5) and assume that 0 < A +w%ﬂ < Ay. Then, for any
z =(u,v) € Ny, there exists € > 0 and a differentiable map &: B(0, €) c E — R*, with &(0) = 1, such that
¢(w)(z - w) e Ny, and

PAW, w1) + PAW, w2) = K u(z, w) - 2 [, (@ul*2uw, VP + Blul*|vIF-2vw,) dx

® - DI, VIP - 2(a+B - q) [, lul*ulf dx

(£'0), w) = - (4.1)

forall w = (w1, w,) € E, where

Kyu(z, w) = q j(/llul"‘zuan + uIv|?vw,) dx.
Q
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Proof. For z = (u, v) € Ny, define a function F;: R* x E — R by

F;(§, w) = (J} ,(§(z - w)), §(z - w))

= & (A - w1, u - w1) + AV - w3,V - 1)) - &7 J(Alu-w1|q+ﬂ|v‘w2|q)d"
Q
—2€“+ﬁjlu—w1|“|v—wzlﬁdx, §eR", wek.
Q

Then F,(1,0) = (]/’Ly(z), z) = 0 and, by Lemma 4.1, we have

F.(1, (0,0)) = pli(u, [P - qj(/uuw +ulvi?) dx - 2(a+ ) j|u|“|v|ﬁ dx
Q Q

d
az
= (0 - QI VIP - 2(a+ B - q) j|u|a|u|ﬁ dx 40.

Q

By the Implicit Function Theorem, there exist € > 0 and a C' map ¢: B(0,€) c E — R*, with é(0) = 1, such
that

PAW, w1) + PAY, 2) - Kiu(z, w) = 2 [ (@lul*2uw; [VIF + Blul*IvIF-2vw,) dx
®-DIu, VP -2(a+p-q) ngul"‘lulﬁ dx

and F,(é(w), w) = 0 for all w € B(0, €), which is equivalent to

(¢'(0), w) = -

T G@)(z - ), §(w)(z-w)) =0 forallw e B(0, e),
ie., f(w)(z - w) € Npp. O

Lemma 4.5 (Curves into N y) Let A1 be asin (2.5) and assume 0 < A+ yn 7 < Nq. Then, foreachz € Nj w
there existe > 0 and a dzjferentlable map £ : B(0,€) c E — R*,with&(0) = 1, such that ¢ (w)(z — w) € N*’
and

PAW, w1) + PAWV, w2) = Ky u(z, w) - 2 [ (@lul*2uw1 VP + Blul*|vIF-2vw,) dx

—\/ 0), _ _
(&7 (0), @) (0 - DI, VIP - 2(a+ B - @) [, uloulf dx

forevery w € B(0, €).

Proof. Arguing as in the proof of Lemma 4.4, there exist € > 0 and a differentiable map £~ : B(0,€) c E —» R*
such that £7(0) = 1, £~ (w)(z — w) € Ny, for all w € B(0, €) and satisfying (4.1). Since

(1) = (p - Ol VI - 2(a+ - q) j|u|“|v|ﬁ dx <0,
Q

by continuity, we have
OY o).t @w-wn(D) = @ = DIE (@)U - w1), E (@) - w)|F
-2((a+p)-q) jlf‘(w)(u - W) (@) - wy)lf dx < 0
Q
for € sufficiently small, which implies ¢~ (w)(z — w) € N/{ . O
Proposition 4 6 ((PS), ,-Sequences). The following facts hold:

i) Ifo< /117 7+ yppq <A1, then there exists a (PS)c, ,-sequence {(uk, vi)} ¢ Nx Pfor]A e
(i) If0 < AP+ yv 1< ( )P 4 \q, then there exists a (PS)C— -sequence {(uyx, vi)} ¢ N for],\,y.

Proof. (i) By Ekeland’s Variational Principle, there exists a minimizing sequence {(ux, vk)} ¢ Ny, such that

1 1
JauWies Vi) < €+ 25 Tau(tio vi) <Jap(wi, w2) + 2w, w2) = (i, vidll (4.2)
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for each (w1, wy) € Ny . Taking k large and using ¢, , < 0, we have

1 1 1 1 CAu

(= _ p_(Z_ q q . .

it v = (5 = g Wk V0P = (¢ = o) [ st vt dx < 55 (4.3)
Q
This yields
q(a+p) J' q q _a,  eba _ p o pg

- Q| «F (Ap- - vl .

2a+Bq) M <Q(/1Iuk| +pulvid®) dx < STP|Q P (A=a + pv=a) 7 [ (uk, vidll (4.4)

Consequently, (ug, vk) # 0 and, by combining it with (4.3) and (4.4), and using Holder’s inequality, we have

__qa+p)
2(a+p-q)
pla+B-q)
g(a+pB-p)
Now we prove that ||]j1’y(uk, Vi)llg-1 — 0 as k — oo. Fix k € IN. By applying Lemma 4.4 to zx = (ux, vk),

we obtain a function & : B(0, €x) — R*, for some €y > 0, such that i (h)(zx — h) € Ny ;. Take 0 < p < €. Let
w € Ewith w # 0 and put h* = 2%, We set hy = &(h*)(zix — h*). Then h, € Ny, and from (4.2) we have

vl

1

g _wpqg  p R
CA,ySp|Q| ap (Ap-a +ura)r ] s

N vill > [

1
a+p— — P—a
luks vill < [ SH|Q| ™ (AP +uf%q)"7q]” " (4.5)

Tauty) = Tau@n) = Iy - 2
By the Mean Value Theorem, we get
U u(2105 hp = zic) + o(lhy — zill) = —%Ilhp =zl
Thus, we have
(],'W(Zk), ~h*) + (§k(h*) - 1)(],'1,}1(Zk), zk—h*) > _%”hp = zill + o(lhy — zil).
Whence, from the fact that &x(h*)(zx — h*) € Ny, it follows that
—p<]§1,,,(2k), ﬁ> + (&) = D} (20 = T (ho)s 2k = h™) = _%"hp = zill + o(llhp — zkl).

Hence, we get

w

1
(ine0: ) < g5lhe 24l +

o(llhp —zil) ~ (&(h*)-1) ,, ) .
pp Kb &k . Jh @) =T (), 2k = h*). (4.6)

Since

Ihp = zicll < pI&k(h™)] + [§(h™) = 1llzil  and  lim 3 1€, O,

p—0

[&(h*) -1
p
for k € N fixed, if p — 0 in (4.6), then, by virtue of (4.5), we can choose C > 0 independent of p such that
w C
I (z ,—>5—1+ HOIE
(Jhut@n), i) = £+ 15O
Thus, we are done if supyenll¢; ,'<(0)|| g+ < 00. By (4.1), (4.5) and Holder’s inequality, we have

, Cilhll
0), h)| <
1{§x(0) |(p = Dl (ur, viOlIlP = 2(a + B - q) fo'““av"lﬁ dx|

for some C; > 0. We only need to prove that

® - Dl vl? - 2(a+ - q) j|uk|“|vk|ﬂ dx
Q

>Cy

for some C, > 0 and k large. By contradiction, suppose that there exists a subsequence {(uy, vi)}kenw With

® - DI, vilP = 2(a + - q) Jlukl“lvklp dx = o0r(1). (4.7)
Q
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By (4.7) and the fact that (uy, vk) € Ny y, we have

e, vl? = 2ELZD [yl de o),
a -

Ik, viollP = a+p-q J(/lluqu + plvil?) dx + ok (1).
a+p-p

By Young’s inequality, it follows that

a+p
j|uk|“|vk|ﬁ dx < S~ g, viol 6.
Q

By this and (4.8), we get

1

P-4 STﬁ)i” + or(1).

2(a+B-q)
Moreover, from (4.9) and by Holder’s inequality, we obtain

I vidll = (

— a+p— —
Wi vl < 2B 29101557 s A7 1 755 ke, Vil + 0k(L).
+B-p
Thus,
— a+p— L 1
Ik voll < (EB =9 541015 )77 (0 4 o) + 0x().
a+f-p

From (4.10) and (4.11), and for k large enough, we get

— B — atp-q \ — -2 a+
AP 4 pra > (&)“M(mm afﬁq) St i = A,

2(a+B-q)

which contradicts 0 < Azf%q + ;u%q < A1. Therefore,

a+B-p

=l o

Tl it Vi), Wl w) <

This proves (i). By Lemma 4.5, using the same arguments, we can get (ii).

Here is the main result of the section.

DE GRUYTER

(4.8)

(4.9)

(4.10)

(4.11)

Proposition 4.7 (Existence of the First Solution). Let A; beasin(2.5). Assumethat 0 < = yz%q < Nq.Then

there exists (uy, vy) € N;[’ y with the following properties:
() Japui,vi) =cap=c3, <0,
(ii) (uq, v1) is a solution of problem (1.1).

Proof. By Proposition 4.6 (i), there exists a bounded minimizing sequence {(u, vi)} ¢ Ny, such that

Hm Jau(ui, vi) = cap< ¢y, <0, Jy (Ui, vi) = 0k(1) inE”.
k—o00 ’ 2

Then there exists (uy, v1) € E such that, up to a subsequence, uy — ui, vk — v1 in Xg as well as uy — u; and
vk — vy strongly in L"(Q) for any 1 < r < p*. Then, the Dominated Convergence Theorem yields

I(Aluqu + ulvil?) dx — J(Alullq +ulv1|9) dx ask — co.

Q Q

It is easy to get that (u1, v1) is a weak solution of (1.1), cf. Lemma 3.3. Now, since (ux, vr) € Ny, we have

_atp-p p_ath-4q q a
Tau(ui, vi) = @) I (uge, violl 2@+ p) (J;(Alukl + ulvel?) dx
_atp-gq q a
> 2@ p) J(MUH + pulvl?) dx.
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Then, from ¢y, < 0, we get

q@+p)

Janusie e i x> - 2ELe, 0.

Q

Therefore, (u1, v1) € Ny, is a nontrivial solution of (1.1).
Next, we show that (uk, vk) — (u1, v1) strongly in E and Jj,,(u1, v1) = ¢ e In fact, since (u1, v1) € Ny,
in light of Fatou’s lemma, we get

Cap < Jau(ug, vy)

_a +B-p _a +B-q
= @i p) (g, vi)IP G !(/\Iullq + ulv4l9) dx

<lim mf( P e (L % iwumq £ Hlvel®) dx)

= liminf Jp , (ug, vi) = cap-
k—o00
This implies that J ,(u1, v1) = ¢, and [[(ug, vi)IP — [I(u1, v1)|IP. We also have
Il(uk = uz, vic = vIP = i, violl? = l(ug, vo)IP + ox(1).

Therefore (ug, vk) — (u1, v1) strongly in E. We claim that (uy, v1) € N}ly, which yields ¢y, = c;y. Assume,
by contradiction, that (uy, vq) € Ny r By Lemma 2.5, there exist unique t, > t; > 0 such that

(tiur, tva) €Ny (faun, tave) €Ny

In particular, we have t; < t, = 1. Since
2
dt?

there exists t* € (f1, 1] such that J ,(t1uq, t1v1) < Jau(t*us, t*vy). Then

d
Eh,y(tﬂh, t1v1) =0, —=Jau(tiug, tivy) >0,

Crap < u(tiug, tivy) < Jppu(tug, t°ve) < Jau(ug, vi) = cap,

which is a contradiction. Hence, (u1, v1) € N} p O

4.2 The Second Solution

We next establish the existence of a minimum for J, H|N’,‘ Let S be as in (1.6). From [4], we know that for
1<p<oo,se(0,1), n> ps, there exists a minimizer for S, and for every minimizer U, there exist xo € R"
and a constant sign monotone function u: R — R such that U(x) = u(|x — xo|). In the following, we shall fix
a radially symmetric nonnegative decreasing minimizer U = U(r) for S. Multiplying U by a positive constant
if necessary, we may assume that

(-0)3U =UP"" inR" (4.12)

For any € > 0, we note that the function

Uelx) = —= U(m)

€r €
is also a minimizer for S satisfying (4.12). In [4], the following asymptotic estimates for U were provided.

Lemma 4.8 (Optimal Decay). There exist c1, c, > 0 and 6 > 1 such that forallr > 1,

1 o U(Gr) 1
<U(@r) < =55, =
oy <V <5 oy <7
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Assume, without loss of generality, that 0 € Q. For e, § > 0, let
0 if 0 <t < Uc(66),
8e,s(t) = 1m 5(t - Ue(96)) if Ue(06) < t < Ue(9),
t+ Ue(6)(m -1) ift> Uc(6),

Ue(5)

Med = Te(8) - Ue(06)°

and
t 0 if 0 <t < Uc(66),
Ges(t) = [ 8L,5(MFdr = {mes(t~ Uel86)) i UL(68) < t < Ue(5),
0 t if t > Uc(6).

The functions g¢,s and G¢ s are nondecreasing and absolutely continuous. Consider the radially symmetric
nonincreasing function

Ue,5(1) = Ge,5(Ue(1)), (4.13)
which satisfies
| Ue(n) ifr<s,
s =00 e s 06,

We have the following estimates for u, s, which were proved in [20, Lemma 2.7].

Lemma 4.9 (Norm Estimates). There exists a constant C = C(n, p, s) > O such that for any 0 < € < g, the fol-
lowing estimates hold:
- 3 n e . 8 &
J eol) = Ued W gy gy < s+ 0((£) ™), Jlue,,s(x)lps dez st -c((5)).

e = yres 5
R2n Rn?

Next, we prove an important technical lemma. This is the only point where we use conditions (1.5) on p,s,q,n.

Lemma 4. 10 (c) 2 < Ceo). Assume that conditions (1.5) hold. Then there exists A, > O such that, for A, u satis-
fying 0 < AP + yv 7 < N\, there exists (u, v) € E\ {(0, 0)}, withu > 0, v > 0, such that

sup Ja,u(tu, tv) < Ceo,
t=0

where ¢, is the constant given in (3.13). In particular, ¢, u < Coo for all A, u satisfying 0 < A+ w%q < A,

Proof. Write Jp,,(u,v) = ](u v) — K(u, v) where the functions J: E - Rand K: E — R are defined by

2 1
el p__ < B - - q q
I, ) = P = 2 [l dx, - KGuv) = < Qi+ ) d
Q Q
Set ug := a% Ue,5, Vo 1= B%ue,g, where u s is defined by (4.13). The map h(t) := J(tuo, tvo) satisfies h(0) = 0
h(t) > 0 for t > 0 small, and h(t) < O for t > O large. Moreover, h maximizes at the point

_1
- ( o, Vo) )ﬂ
2 [ luol®|volf dx
Thus, we have

2 o
sup (o, tvo) = h(t.) = =10, vo)l? - 575 j|uo|“|vo|ﬁ dx
Q

t=>0

pla+p)

I E (o, vo)ll <7
- - b
P @Bl juollvolf dx) T

pa+p)
1x+/3 —p

a+p
B (1 1 (a + B)@r» lue,sll g

B _P__
p a+ B 2 a+;—p o a+;—p ﬁ a+p-p ( J‘Q |u€’5|a+ﬁ dX) a+p-p

G O e e]

2 %s ([olue.slPé dx)¥
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From Lemma 4.9 and (3.9), we have

s 1 LBy e[ SE A0
ngg](tuo’tv())ﬁ?[(ﬂ) ; ()] [(sis_c((gs)p"l))p?

< B(EunyEo((£)7). (4.14)

p

Let 6; > 0 be such that for all A, u satisfying 0 < = + ur1 < §1, the following holds:

25 (Sap

(5 )E—CO(AP%I +;u%q)>0.

Coo =

We have »
Jau(tuo, tvo) < %Il(uo, Vo)l < Ct? fort>0andA, u > 0.

Thus, there exists tg € (0, 1) such that

sup Ja,u(tuo, tvo) < Coo
0<t<ty

for all A, p satisfying 0 < = yp%q < 61.Since a, B > 1, from (4.13) and (4.14), it follows that

sup Ja,u(tuo, tvo) = SUP[](l‘Uo, tvo) — K(tuo, tvo)]

t>to
25 /Sap\ & e\ {5 ) 4 g q
< 7(T) +O<(5)p )—E(/Ial’ +Hﬁp) J |u€,6| dX
B(0,6)
2s Sa, 1% ';—pls tg q
S?( 2 ) +O<(5) )—E(A'i'y) J |u6,§| dX'
B(0,6)

Fix now 6 > 0 sufficiently small such that Bgs(0) € Q (we assume without loss of generality that 0 € Q), so

that supp(ue,5) ¢ Q, according to formula (4.13). By means of Lemma 4.8, forany O < € < g, we have

lue.5(017 dx = j Vel dx = €7 j U019 dx

B(0,6) B(0,6) B(0,%)
b/e b/e
> e J Urnir=1tdr> e"_%mqwn_lcz J PR gy
1 1
e if g > _ps),
=C{e" 7 loge| ifq-= ”(‘_’pi),
(n-ps)q
€01 ifg < "(‘_’p?.

Therefore, taking into account conditions (1.5), we have

- ; (-1
2 S Ls n-ps T lfq > n — s
sup J,u(tuo, tvo) < —S( aﬁ)" +C(61Tpl)—C(}l+;1) nops
t>to n 2 e 1fq _ np-1) .
n-ps
For € = (AP q +]1Lq)njpls € (0, g),we get
Sa,p o o
SUp /ol tV0) < B(2Y et + i)
A7+ prta) s (=520 if g > "D,
— C(/\. + H) P P np-1) . . X n(p-1)
(Ar=a + YT ) pinps) [log(AP=a + ura)| ifg = nps *
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-1)

nps’

Ifg > we can choose §, > 0 such that for A, u satisfying 0 < AP + w%q < 02,

p p- (

CAT + p7a) — C(A + (A7 + uoa)ns

D < Co(APT + pra), (4.15)

where Cy is the positive constant defined in (3.5). In fact, (4.15) holds if

-1 - -1
1+ L (n—n psq)< p <:>q>—n(p ).
b-gn-ps p p—-4q n-ps
If instead q = "é’f;),we can choose 83 > 0 such that for A, u satisfying 0 < AP+ ur " < 83,

CAT7 + u7#7) — CA + p)ATT + u77 )70 [log(A7°7 + pi7)| < ~Co(A77 + u7'7)

as Ilog(/\v%q +yv%q)| — +oo for A,y — 0,and

n(p-1)

(A +}1)(Ap 7+ Y- q)p(n—ps (](17 q +}u7’%q),

Then, taking -
A2 = min{él, 62, 63, (g) o } >0,

for all A, p satisfying 0 < = ur 7 < A, we have

sup Jau(tu, tv) < Ceo. (4.16)
20

Since (ug, vo) # (0, 0), from Lemma 2.5 and (4.16), there exists t, > 0 such that (¢t,uq, t>2vg) € N;W and
Cap < au(talio, t2vo) < stl;lg)]A,y(tMOa tvo) < Coo

for all A, p satisfying O < Aﬁ + yﬁ < A5. This concludes the proof. O

Proposition 4.11 (Existence of the Second Solution). There exists a positive constant A3 > 0, such that for
A, u satisfying 0 < )lz%q + }u%q < A3, the functional ], has a minimizer (uz, v;) in NXF with the following
properties: ’

@) Japu(uz,v2) =cy

(ii) (uz, v,) is a solution of problem (1.1).

Proof. Let A, be as in Lemma 4.10, and set
q\r37
N3 =M, | = M.
3 { 2 (p) 1}

By means of Proposition 4.6 (ii), for all A, u satisfying 0 < AP+ yv 7 < A3, there exists a bounded (PS)C
sequence (lik, Vi)} € Ny for Ja,u- By the same argument used in the proof of Proposition 4.7, there ex1sts
(uz, vy) € Esuchthat, up to a subsequence, iy — ua, Vx — v, stronglyin E and Jj , (u2, v2) = CA’ . Moreover,
(u», v) is a solution of problem (1.1).

Next we show that (u;, v») € NX’H. In fact, since (itg, Vi) € N‘,y, we have

ol L (1) =@ - Ol 7P - 2(a +B) - q) j|ak|“|vk|ﬁ dx < 0.

Q

Since ity — u,, Vx — v, strongly in E, passing to the limit, we obtain
Out v, (1) = (0 = Dll(uz, v2)IP - 2((a + B) - q) J|u2|a|V2|ﬁ dx < 0.

Q

Since CN/?, = ¢, we conclude that (pu2 v, (1) <0, ie., (uz,v2) € N;,y. O
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5 Proof of Theorem 1.2

Now we are ready to prove our main result.

Proof of Theorem 1.2. Taking A, = min{A;, A,, A3}, by Propositions 4.7 and 4.11, we know that for all A, u
satisfying
P P
0 < Apa +ura < A,

problem (1.1) has two solutions (uq, v1) € N/{H and (uy, ) € N;ly in E. Since N/{y n N;lu =0, these two
solutions are distinct.
We next show that (11, v1) and (u», v,) are not semi-trivial. We know that

Jau(ui, vi) <0,  Jau(uz,va) > 0. (5.1)

We note that if (u, 0) (or (0, v)) is a semi-trivial solution of problem (1.1), then (1.1) reduces to

“A)Su=Aul?%u inQ,
(-B)5u = Au| 5.2
u=0 inR"\ Q.
then 1 Ju(x) - uy)lP A
_ o | ) —uy)r A udax = P29y
]A,y(u,O)—p(! s X q!lul dx === ZJull, <0. (5.3)

From (5.1) and (5.3), we get that (u;, v») is not semi-trivial. Now we prove that (uq, v1) is not semi-trivial.
Without loss of generality, we may assume that v; = 0. Then u; is a nontrivial solution of (5.2), and

Iz, O)17 = husly, = A [lusl? dx > o.
Q

Moreover, we may choose w € Xj \ {0} such that

IO, WP = 1w, =g [1wl? dx > 0.
Q

By Lemma 2.5 there exists a unique 0 < t1 < tmax(u1, w) such that (t1uq, t1w) € N/{ w where

(@+p-q) jQ(A|u1|q+u|w|q)dx>n1« ) (a+ﬁ_q),;7 )
(a+B-p)lur, w)P “\a+f-p '

tmax (U1, w) = (

Furthermore,
tiuq, t1w) = inf ] tuq, tw).
]A,y( 1U1, 1 ) 0<t<tmax /1,;1( 1 )

This together with the fact that (uq, 0) € N/{’ u imply that
Ch S Tap(trug, tiw) < Jap(ur, w) < Japu(us, 0) = ¢

which is a contradiction. Hence, (u1, v1) is not semi-trivial too. The proof is now complete. O
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