
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2017067
DYNAMICAL SYSTEMS
Volume 37, Number 3, March 2017 pp. 503–521
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Abstract. The paper deals with the existence and multiplicity of solutions of

the fractional Schrödinger–Kirchhoff equation involving an external magnetic
potential. As a consequence, the results can be applied to the special case

(a + b[u]2ϑ−2
s,A )(−∆)sAu + V (x)u = f(x, |u|)u in RN ,

where s ∈ (0, 1), N > 2s, a ∈ R+
0 , b ∈ R+

0 , ϑ ∈ [1, N/(N − 2s)), A : RN → RN

is a magnetic potential, V : RN → R+ is an electric potential, (−∆)sA is the

fractional magnetic operator. In the super– and sub–linear cases, the existence
of least energy solutions for the above problem is obtained by the mountain
pass theorem, combined with the Nehari method, and by the direct methods

respectively. In the superlinear–sublinear case, the existence of infinitely many
solutions is investigated by the symmetric mountain pass theorem.
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1. Introduction and main result. The paper deals with the existence of solu-
tions of the fractional Schrödinger–Kirchhoff problem

M([u]2s,A)(−∆)sAu+ V (x)u = f(x, |u|)u in RN , (1)

where hereafter s ∈ (0, 1), N > 2s,

[u]s,A =

(¨
R2N

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy

)1/2

,

M : R+
0 → R+

0 is a Kirchhoff function, V : RN → R+ is a scalar potential, the
vector function A : RN → RN is a magnetic potential, and (−∆)sA is the associated
fractional magnetic operator which, up to a normalization constant, is defined as

(−∆)sAϕ(x) = 2 lim
ε→0+

ˆ
RN\Bε(x)

ϕ(x)− ei(x−y)·A( x+y2 )ϕ(y)

|x− y|N+2s
dy, x ∈ RN ,

along functions ϕ ∈ C∞0 (RN ,C). Henceforward Bε(x) denotes the ball of RN cen-
tered at x ∈ RN and radius ε > 0. For details on fractional magnetic operators we
refer to [14] and to the references [21–24] for the physical background.

The operator (−∆)sA is consistent with the definition of fractional Laplacian
(−∆)s when A ≡ 0. For further details on (−∆)s, we refer the interested reader
to [16]. Nonlocal operators can be seen as the infinitesimal generators of Lévy
stable diffusion processes [1]. Moreover, they allow us to develop a generalization
of quantum mechanics and also to describe the motion of a chain or an array of
particles that are connected by elastic springs as well as unusual diffusion processes
in turbulent fluid motions and material transports in fractured media (for more
details see for example [1,5,6] and the references therein). Indeed, the literature on
nonlocal fractional operators and on their applications is quite large, see for example
the recent monograph [33], the extensive paper [17] and the references cited there.

The paper was motivated by some works appeared in recent years concerning the
magnetic Schrödinger equation

−(∇− iA)2u+ V (x)u = f(x, |u|)u in RN , (2)

which has been extensively studied (see [2,11,15,28,42]). The magnetic Schrödinger
operator is defined as

−(∇− iA)2u = −∆u+ 2iA(x) · ∇u+ |A(x)|2u+ iudivA(x).

As stated in [43] (see also [36, 37]), up to correcting the operator by the factor
(1 − s), it follows that (−∆)sAu converges to −(∇u − iA)2u as s ↑ 1. Thus, up to
normalization, the nonlocal case can be seen as an approximation of the local case
(see Section 2 for further details). As A = 0 and M = 1, equation (1) becomes the
fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, |u|)u in RN ,

introduced by Laskin [29, 30]. Here the nonlinearity f satisfies general conditions.
We refer, for instance, to [18,19,41] and the references therein for recent results.

Throughout the paper, without explicit mention, we also assume that the po-
tentials A : RN → RN and V : RN → R+ are continuous functions, and that V
satisfies

(V1) there exists V0 > 0 such that infRN V ≥ V0.

The Kirchhoff function M : R+
0 → R+

0 is assumed to be continuous and to verify
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(M1) for any τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ ;
(M2) there exists a parameter ϑ ∈ [1, 2∗s/2) such that tM(t) ≤ ϑM (t) for all t ≥ 0,

where M (t) =
´ t

0
M(τ)dτ .

A simple typical example of M is given by M(t) = a + b tϑ−1 for t ∈ R+
0 , where

a ∈ R+
0 , b ∈ R+

0 and a + b > 0. When M is of this type, problem (1) is said to be
non–degenerate if a > 0, while it is called degenerate if a = 0.

Clearly, assumptions (M1) and (M2) cover the degenerate case. It is worth
pointing out that the degenerate case is rather interesting and is treated in well–
known papers in Kirchhoff theory, see for example [13]. In the large literature on
degenerate Kirchhoff problems, the transverse oscillations of a stretched string, with
nonlocal flexural rigidity, depends continuously on the Sobolev deflection norm of
u via M(‖u‖2). From a physical point of view, the fact that M(0) = 0 means
that the base tension of the string is zero, a very realistic model. The presence of
the nonlinear coefficient M is crucial to be considered when the changes in tension
during the motion cannot be neglected. In the case of linear string vibrations,
the tension is constant that is M(t) ≡ M(0) > 0. When the inertial effects of
longitudinal modes can be neglected, the tension is spatially uniform along the
string and can be directly computed from the elongation of the string according to
the Hooke law and arriving to the form of M proposed by Kirchhoff and derived
properly by Carrier. Again the case M(0) = 0 means that the base tension of the
string is zero, a very lifelike prototype.

After the model proposed in 1883 by Kirchhoff in [26] several physicists also
considered such equations for their researches in the theory of nonlinear vibrations
theoretically or experimentally, see [8,9,34,35]. Carrier [8,9] developed a more rig-
orous approach to model transverse vibration via the coupled governing equation
of planar vibration and recovered the nonlinear integro–partial–differential equa-
tion, without quoting Kirchhoff. Narasimha [34] also obtained the equation, called
nowadays the Kirchhoff string equation in the literature, using another approach.

For fractional degenerate Kirchhoff problems we refer to [3, 7, 32, 40, 45] and the
references therein for more details in bounded domains and in the whole space. Re-
cent existence results of solutions for fractional non–degenerate Kirchhoff problems
are given, for example, in [20,38,44,46].

Assumptions (M1) and (M2) on the Kirchhoff function M are enough to assure
the existence of solutions of (1). However, to get the existence of ground states, we
assume also the further mild request

(M3) there exists m0 > 0 such that M(t) ≥ m0t
ϑ−1 for all t ∈ [0, 1],

where ϑ is the number given in (M2) when (M2) is assumed, otherwise ϑ is any
number greater than or equal to 1.

Of course, (M3) is satisfied also in the model case, even when M(0) = 0, that is
in the degenerate case. In [40], condition (M3) was also applied to investigate the
existence of entire solutions for the stationary Kirchhoff type equations driven by
the fractional p–Laplacian operator in RN .

Superlinear nonlinearities f satisfy

(f1) f ∈ RN × R+ → R is a Carathéodory function and there exist C > 0 and
p ∈ (2ϑ, 2∗s) such that

|f(x, t)| ≤ C(1 + |t|p−2) for all (x, t) ∈ RN × R+;
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(f2) There exists a constant µ > 2ϑ such that

0 < µF (x, t) ≤ f(x, t)t2, F (x, t) =

ˆ t

0

f(x, τ)τdτ,

whenever x ∈ RN and t ∈ R+;
(f3) f(x, t) = o(1) as t→ 0+, uniformly for x ∈ RN ;
(f4) inf

x∈RN
F (x, 1) > 0.

A typical example of f , verifying (f1)–(f4), is given by f(x, |u|) = |u|p−2, where
2ϑ < p < 2∗s.

The fractional solution spaces HA,V (RN ,C) and Hs
A,V (RN ,C) are introduced

precisely in Section 3.
We say that u ∈ HA,V (RN ,C) (resp. u ∈ Hs

A,V (RN ,C)) is a (weak) solution

of (1), if

<
[
M([u]2s,A)

¨
R2N

[
u(x)− ei(x−y)·A( x+y2 )u(y)

]
·
[
ϕ(x)− ei(x−y)·A( x+y2 )ϕ(y)

]
|x− y|N+2s

dxdy

]
+ <
ˆ
RN

V uϕdx = <
ˆ
RN

f(x, |u|)uϕdx,

for all ϕ ∈HA,V (RN ,C) (resp. ϕ ∈ Hs
A,V (RN ,C)).

Now we are in a position to state the first existence result.

Theorem 1.1 (Superlinear case). Assume that V satisfies (V1), f satisfies (f1)–
(f4) and M fulfills (M1)–(M2). Then (1) admits a nontrivial radial mountain pass
solution u0 ∈ HA,V (RN ,C). Furthermore, if M satisfies (M1)–(M3), then (1) has
a ground state u ∈HA,V (RN ,C) with positive energy.

Sublinear nonlinearities f verify

(f5) There exist q ∈ (1, 2) and a ∈ L
2

2−q (RN ) such that

|f(x, t)| ≤ a(x)tq−2 for all (x, t) ∈ RN × R+.

(f6) There exist q ∈ (1, 2), δ > 0, a0 > 0 and a nonempty open subset Ω of RN
such that

F (x, t) ≥ a0t
q for all (x, t) ∈ Ω× (0, δ).

A typical example of f , verifying (f5)–(f6), is f(x, |u|) = (1+ |x|2)(q−2)/2|u|q−2 with
1 < q < 2. The second result reads as follows.

Theorem 1.2 (Sublinear case). Assume that V satisfies (V1), f satisfies (f5)–(f6)
and M is continuous in R+

0 and satisfies (M1) and (M3), with ϑ ≥ 1. Then (1)
admits a nontrivial solution u ∈ Hs

A,V (RN ,C), which is a ground sate of (1).

To get infinitely many solutions for equation (1) in the local sublinear–superlinear
case, we also assume

(V2) There exists h > 0 such that

lim
|y|→∞

L N
(
{x ∈ Bh(y) : V (x) ≤ c}

)
= 0

for all c > 0.
(f7) F (x, t) ≥ 0 for all (x, t) ∈ RN × R+

0 , and there exist q ∈ (1, 2), a nonempty
open subset Ω of RN and a1 > 0 such that

F (x, t) ≥ a1t
q for all (x, t) ∈ Ω× R+.
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An example of f , which satisfies assumptions (f1) and (f7), is

f(x, t) = (1 + |x|2)(q−2)/2tq−2 + tp−2 for all (x, t) ∈ RN × R+
0 ,

when 1 < q < 2 ≤ 2ϑ < p < 2∗s.

Theorem 1.3 (Multiplicity – local superlinear–sublinear case). Assume that V
satisfies (V1)–(V2), that f fulfills (f1) and (f7) and that M is a continuous function
in R+

0 , verifying (M1) and (M3), with ϑ ≥ 1. Then (1) admits a sequence (uk)k of
nontrivial solutions.

Remark 1.4. (i) Condition (V2), which is weaker than the coercivity assumption:
V (x)→∞ as |x| → ∞, was first proposed by Bartsch and Wang in [4] to overcome
the lack of compactness.

(ii) To our best knowledge, Theorem 1.3 is the first result for the Schrödinger–
Kirchhoff equations involving concave–convex nonlinearities in the fractional set-
ting. We also refer to [45] for some related multiplicity results.

Remark 1.5. As it is pointed out in [22], in place of the midpoint prescription

(x, y) 7→ A

(
x+ y

2

)
,

other (physically justified [22]) prescriptions are viable such as the averaged pre-
scription

(x, y) 7→
ˆ 1

0

A ((1− ϑ)x+ ϑy) dϑ =: A](x, y).

If (−∆)sA and (−∆)sA] are the fractional operators associated with the potentials

A((x + y)/2) and A](x, y) respectively it follows that (−∆)sA] is Gauge-covariant,

while (−∆)sA is not, namely

(−∆)s(A+∇φ)]
= eiφ(−∆)sA]e

−iφ, for all φ ∈ S (Rn).

This is usually relevant for Schrödinger type operators. The results and proofs in
this paper carry on in the same way for the operator with averaged prescription A].
Furthermore, the result of [43] extends to the case of A] with the same proof, that
is

lim
s↗1

(1− s)
ˆ

Ω

ˆ
Ω

|u(x)− ei(x−y)·A](x,y)u(y)|2

|x− y|n+ps
dxdy = KN

ˆ
Ω

|∇u− iA(x)u|2dx,

see the discussion in Section 2 for A((x+ y)/2).

The paper is organized as follows. In Section 2 we provide a few remarks about
the singular limit as s ↑ 1. In Section 3, we recall some necessary definitions and
properties for the functional setting. In Section 4, we obtain some preliminary
results. In Section 5, the existence of ground states of (1) is obtained by using
the mountain pass theorem together with the Nehari method, and by the direct
methods respectively. In Section 6, the existence of infinitely many solutions of (1)
is obtained by using the symmetric mountain pass theorem.

2. Remarks on the singular limit as s ↑ 1. The functional framework investi-
gated in the paper admits a very nice consistency property with more familiar local
problems, in the singular limit as the fractional diffusion parameter s approaches
1. Let Ω be a nonempty open subset of RN . We denote by L2(Ω,C) the Lebesgue
space of complex valued functions with summable square, endowed with the norm
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‖u‖L2(Ω,C). We indicate by Hs
A(Ω) the space of functions u ∈ L2(Ω,C) with finite

magnetic Gagliardo semi–norm, given by

[u]HsA(Ω) =

(¨
Ω×Ω

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy

)1/2

.

The space Hs
A(Ω) is equipped with the norm

‖u‖HsA(Ω) =
(
‖u‖2L2(Ω,C) + [u]2HsA(Ω)

)1/2
.

The space Hs
0,A(Ω) is the completion of C∞c (Ω,C) in Hs

A(Ω).

Indeed, in the paper [43] (see also [36, 37] for recent developments) the follow-
ing theorem was proved, which is a Bourgain–Brezis–Mironescu type result in the
magnetic framework.

Proposition 2.1 (Theorems 1.1 and 1.2 of [43]). Let Ω be an open bounded subset
of RN , with Lipschitz boundary and let A be of class C2 over Ω. Then,

lim
s↑1

(1− s)
¨

Ω×Ω

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy = KN

ˆ
Ω

|∇u− iA(x)u|2dx

for every u ∈ H1
A(Ω), where

KN =
1

2

ˆ
SN−1

|ω · e|2dHN−1(ω),

and SN−1 is the unit sphere of RN and e any unit vector of RN . Furthermore,

lim
s↑1

(1− s)
¨

R2N

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy = KN

ˆ
Ω

|∇u− iA(x)u|2dx

for every u ∈ H1
0,A(Ω).

Problem (1) could be treated in an arbitrary smooth open bounded subset Ω
of RN , provided that the solution space is W , which consists of all functions u in
Hs
A(RN ), with u = 0 in RN \Ω. More precisely, consider the non–degenerate model

case

M(t) = a(s) + b(s)t, where a(s) ≈ 1− s and b(s) ≈ (1− s)2b0 as s ↑ 1.

Then the corresponding problem (1) in Ω writes as(
1 + (1− s)b0

¨
R2N

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy

)
̂(−∆)sAu + V (x)u = f(x, |u|)u,

where u belongs to the solution space W and

̂(−∆)sAu = (1− s)(−∆)sAu.

This is natural since the Gagliardo semi–norms are typically multiplied by normal-
izing constants which vanish at the rate of 1− s. Since by Proposition 2.1

(1− s)
¨

R2N

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy ≈

ˆ
Ω

|∇u− iA(x)u|2dx as s ↑ 1,

̂(−∆)sAu = (1− s)(−∆)sAu ≈ −(∇u− iA)2u, as s ↑ 1,
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the above problem converges to the local problem−
(

1 + b0

ˆ
Ω

|∇u− iA(x)u|2dx
)

(∇u− iA)2u+ V (x)u = f(x, |u|)u in Ω,

u = 0 on ∂Ω,

which as A→ O reduces to−
(

1 + b0

ˆ
Ω

|∇u|2dx
)

∆u+ V (x)u = f(x, |u|)u in Ω,

u = 0 on ∂Ω.

This is the classical model of a Schrödinger–Kirchhoff equation. When b0 = 0,
the last two problems become the classical Schrödinger Dirichlet problems with or
without external magnetic potential A.

3. Functional setup. We first provide some basic functional setting that will be
used in the next sections. The critical exponent 2∗s is defined as 2N/(N − 2s).

Let L2(RN , V ) denote the Lebesgue space of real valued functions u, with V (x)
|u|2 in L1(RN ), equipped with norm

‖u‖2,V =

(ˆ
RN

V (x)|u|2dx
)1/2

for all u ∈ L2(RN , V ).

The fractional Sobolev space Hs
V (RN ) is then defined as

Hs
V (RN ) =

{
u ∈ L2(RN , V ) : [u]s <∞

}
,

where [u]s is the Gagliardo semi–norm

[u]s =

(¨
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

.

The space Hs
V (RN ) is endowed with the norm

‖u‖s =
(
‖u‖22,V + [u]2s

)1/2
.

The localized norm, on a compact subset K of RN , for the space Hs
V (K), is denoted

by

‖u‖s,K =

(ˆ
K

V (x)|u|2dx+

¨
K×K

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

. (3)

The embedding Hs
V (RN ) ↪→ Lν(RN ) is continuous for any ν ∈ [2, 2∗s] by [16, Theo-

rem 6.7], namely there exists a positive constant C such that

‖u‖Lν(RN ) ≤ C‖u‖s for all u ∈ Hs
V (RN ).

Let us set

Hs
r,V (RN ) =

{
u ∈ Hs

V (RN ) : u(x) = u(|x|) for all x ∈ RN
}
.

To prove the existence of radial weak solutions of (1), we shall use the following
embedding theorem due to P.L. Lions.

Theorem 3.1 (Compact embedding, I – Théorème II.1 of [31]). Let N ≥ 2. For
any α ∈ (2, 2∗s) the embedding Hs

r,V (RN ) ↪→↪→ Lα(RN ) is compact.

Furthermore, we also have
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Theorem 3.2 (Compact embedding, II – Theorem 2.1 of [39]). Assume that con-
ditions (V1)–(V2) hold. Then, for any ν ∈ (2, 2∗s) the embedding Hs

V (RN ) ↪→↪→
Lν(RN ) is compact.

Let L2
V (RN ,C) be the Lebesgue space of functions u : RN → C, with V |u|2 ∈

L1(RN ), endowed with the (real) scalar product

〈u, v〉L2,V = <
ˆ
RN

V (x)uvdx for all u, v ∈ L2(RN ,C),

where z̄ denotes complex conjugation of z ∈ C. Consider now, according to [14],
the magnetic Gagliardo semi–norm given by

[u]s,A =

(¨
R2N

|u(x)− ei(x−y)·A( x+y2 )u(y)|2

|x− y|N+2s
dxdy

)1/2

.

Define Hs
A,V (RN ) as the closure of C∞c (RN ,C) with respect to the norm

‖u‖s,A =
(
‖u‖2L2,V + [u]2s,A

)1/2
.

A scalar product on Hs
A,V (RN ) is given by

〈u, v〉s,A = 〈u, v〉L2,V

+ <
¨

R2N

[
u(x)− ei(x−y)·A( x+y2 )u(y)

]
·
[
v(x)− ei(x−y)·A( x+y2 )v(y)

]
|x− y|N+2s

dxdy.

Arguing as in [14, Proposition 2.1], we see that
(
Hs
A,V (RN ), 〈·, ·〉s,A

)
is a real Hilbert

space.

Lemma 3.3. For each u ∈ Hs
A,V (RN ,C)

|u| ∈ Hs
V (RN ) and

∥∥|u|∥∥
s
≤ ‖u‖s,A.

Proof. The assertion follows directly from the pointwise diamagnetic inequality∣∣|u(x)| − |u(y)|
∣∣ ≤ ∣∣∣u(x)− ei(x−y)·A( x+y2 )u(y)

∣∣∣ ,
for a.e. x, y ∈ RN , see [14, Lemma 3.1, Remark 3.2].

Following Lemma 3.3 and using the same discussion of [14, Lemma 3.5], we have

Lemma 3.4. The embedding

Hs
A,V (RN ,C) ↪→ Lp(RN ,C)

is continuous for all p ∈ [2, 2∗s]. Furthermore, for any compact subset K ⊂ RN and
all p ∈ [1, 2∗s) the embeddings

Hs
A,V (RN ,C) ↪→ Hs

V (K,C) ↪→↪→ Lp(K,C)

are continuous and the latter is compact, where Hs
V (K,C) is endowed with (3).

Define now

HA,V (RN ,C) =
{
u ∈ Hs

A,V (RN ,C) : u(x) = u(|x|), x ∈ RN
}
.

By Theorems 3.1–3.2 and Lemma 3.3, we have the next result (cf. also [14, Lem-
ma 4.1]).
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Lemma 3.5. Let V satisfy (V1). Let (un)n be a bounded sequence in HA,V (RN ,C).
Then, up to a subsequence, (|un|)n converges strongly to some function u in Lp(RN )
for all p ∈ (2, 2∗s). Moreover, if V satisfies (V1)–(V2), then for all bounded sequence
(un)n in Hs

A,V (RN ,C) the sequence (|un|)n admits a subsequence converging strongly

to some u in Lp(RN ) for all p ∈ [2, 2∗s).

4. Preliminary results. The functional I : HA,V (RN ,C) → R, associated with
equation (1), is defined by

I(u) =
1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V −

ˆ
RN

F (x, |u|)dx.

It is easy to see that I is of class C1(HA,V (RN ,C),R) and

〈I′(u), v〉=<
[
M([u]2s,A)

¨
R2N

(u(x)− ei(x−y)·A( x+y
2

)u(y))(v(x)− ei(x−y)·A( x+y
2

)v(y))

|x− y|N+2s
dxdy

+

ˆ
RN

V uvdx

]
−<
ˆ
RN

f(x, |u|)uvdx,

for all u, v ∈ HA,V (RN ,C). Hereafter, 〈·, ·〉 denotes the duality pairing between(
HA,V (RN ,C)

)′
and HA,V (RN ,C).

Hence, the critical points of I are exactly the weak solutions of (1). Moreover,
M ([u]2s,A) is weakly lower semi–continuous in HA,V (RN ,C) by the weak lower semi–

continuity of u 7→ [u]2s,A jointly with the monotonicity and continuity of M . Thus,

I is weakly lower semi–continuous in HA,V (RN ,C), being
´
RN F (x, |u|)dx weakly

continuous in HA,V (RN ,C).

Definition 4.1. We say that I satisfies the (PS) condition in HA,V (RN ,C), if
any (PS) sequence (un)n ⊂ HA,V (RN ,C), namely a sequence such that (I(un))n
is bounded and I ′(un) → 0 as n → ∞, admits a strongly convergent subsequence
in HA,V (RN ,C).

Lemma 4.2 (Palais–Smale condition). Let (M1)–(M2) and (f1)–(f3) hold. Then
I satisfies the (PS) condition in HA,V (RN ,C).

Proof. Let (un)n be a (PS) sequence in HA,V (RN ,C). Thus there exists C > 0
such that |I(un)| ≤ C and |〈I ′(un), un〉| ≤ C‖un‖s,A for all n. As in Lemma 4.5
of [7], see also [12], we divide the proof into two parts.

•Case infn∈N[un]s,A = d > 0. By (M1), there exists κ = κ(d) > 0 with M(t) ≥
κ > 0 for all t ≥ d. Thus, (M2) and (f2) yield

C + C‖un‖s,A ≥ I(un)− 1

µ
〈I ′(un), un〉

=
1

2
M ([un]2s,A)− 1

µ
M([un]2s,A)[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V

− 1

µ

ˆ
RN

(µF (x, |un|)− f(x, |un|)|un|2)dx
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≥ 1

2
M ([un]2s,A)− 1

µ
M([un]2s,A)[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V

≥
(

1

2ϑ
− 1

µ

)
M([un]2s,A)[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V

≥ κ
(

1

2ϑ
− 1

µ

)
[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V .

(4)

This implies at once that (un)n is bounded in HA,V (RN ,C), being µ > 2ϑ. Going
if necessary to a subsequence, thanks to Lemmas 3.4 and 3.5, we have

un ⇀ u in HA,V (RN ,C), un → u a.e. in RN ,

|un| → |u| in Lp(RN ), (5)

|un| ≤ h a.e. in RN , for some h ∈ Lp(RN ).

To prove that (un)n converges strongly to u in HA,V (RN ,C) as n → ∞, we first
introduce a simple notation. Let ϕ ∈ HA,V (RN ,C) be fixed and denote by L(ϕ)
the linear functional on HA,V (RN ,C) defined by

〈L(ϕ), v〉=<
¨

R2N

(ϕ(x)− ei(x−y)·A( x+y2 )ϕ(y))

|x− y|N+2s
(v(x)− ei(x−y)·A( x+y2 )v(y))dxdy (6)

for all v ∈ HA,V (RN ,C). Clearly, by the Hölder inequality, L(ϕ) is continuous,
being

|〈L(ϕ), v〉| ≤ ‖ϕ‖s,A‖v‖s,A.

Hence the weak convergence in (5) gives

lim
n→∞

〈L(u), un − u〉 = 0.

Furthermore, by the boundedness of M([un]2s,A) we have

lim
n→∞

M([un]2s,A)〈L(u), un − u〉 = 0. (7)

By (f1) and (f3), for any ε > 0 there exists Cε > 0 such that

|f(x, t)t| ≤ ε|t|+ Cε|t|p−1 for all x ∈ RN and t ∈ R+. (8)

Using the Hölder inequality, we obtainˆ
RN

∣∣(f(x, |un|)un − f(x, |u|)u)(un − u)
∣∣dx

≤
ˆ
RN

[ε(|un|+ |u|) + Cε(|un|p−1 + |u|p−1)]|un − u|dx

≤ ε(‖un‖L2 + ‖u‖L2)‖un − u‖L2 + Cε(‖un‖p−1
Lp + ‖u‖p−1

Lp )‖un − u‖Lp
≤ Cε+ CCε‖un − u‖Lp .

(9)

The Brézis–Lieb lemma and the fact that |un| → |u| in Lp(RN ) give

lim
n→∞

ˆ
RN
|un − u|pdx = lim

n→∞

ˆ
RN

(
|un|p − |u|p

)
dx = 0.

Inserting this in (9), we get

lim
n→∞

ˆ
RN

(f(x, |un|)un − f(x, |u|)u)(un − u)dx = 0, (10)
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since ε is arbitrary. Of course, 〈I ′(un)−I ′(u), un−u〉 → 0 as n→∞, since un ⇀ u
in HA,V (RN ,C) and I ′(un)→ 0 in the dual space of HA,V (RN ,C). Thus,

o(1) = 〈I ′(un)− I ′(u), un − u〉
= M([un]2s,A)〈L(un)− L(u), un − u〉+ ‖un − u‖2L2,V

+
(
M([un]2s,A)−M([u]2s,A)

)
〈L(u), un − u〉

− <
ˆ
RN

(f(x, |un|)un − f(x, |u|)u)(un − u)dx,

this, together with (7) and (10), implies that

lim
n→∞

(
M([un]2s,A)〈L(un)− L(u), un − u〉+ ‖un − u‖2L2,V

)
= 0,

which yields un → u in HA,V (RN ,C), since M([un]2s,A) ≥ κ > 0 for all n ≥ 1.

•Case infn∈N[un]s,A = 0. If 0 is an isolated point for ([un]s,A)n, then there is a
subsequence ([unk ]s,A)k such that infk∈N[unk ]s,A = d > 0 and one can proceed as
before. If, instead, 0 is an accumulation point for ([un]s,A)n, there is a subsequence,
still labeled as (un)n, such that

[un]s,A → 0, un → 0 in L2∗
s (RN ) and a.e. in RN . (11)

We claim that (un)n converges strongly to 0 in HA,V (RN ,C). To this aim, we need
only to show that ‖un‖2,V → 0 thanks to (11). Now, (4) and (11) yield that as
n→∞

C + C‖un‖2,V + o(1) ≥
(

1

2
− 1

µ

)
‖un‖22,V + o(1).

Hence, (un)n is bounded in L2(RN , V ) and so in HA,V (RN ,C). Thus, by (11) and
Lemma 3.4

un ⇀ 0 in HA,V (RN ,C) and un → 0 in Lp(RN ), (12)

being p ∈ (2, 2∗s). Clearly, by (8) and (12), for every ε > 0∣∣∣∣∣
ˆ
RN

f(x, |un|)u2
ndx

∣∣∣∣∣ ≤ ε‖un‖22 + Cε‖un‖pp = εC + o(1)

as n→∞. Thus,

lim
n→∞

ˆ
RN

f(x, |un|)u2
ndx = 0, (13)

being ε > 0 arbitrary. Obviously, 〈I ′(un), un〉 → 0 as n→∞, by (12) and the fact

that I ′(un)→ 0 in
(
HA,V (RN ,C)

)′
. Hence, by the continuity of M and (11)–(13),

we have

o(1) = 〈I ′(un), un〉 = M([un]2s,A)[un]2s,A + ‖un‖22,V −
ˆ
RN

f(x, |un|)u2
ndx

= ‖un‖22,V + o(1)

as n→∞. This shows the claim.
Therefore, I satisfies the (PS) condition in HA,V (RN ,C) also in this second case

and this completes the proof.

Before going to the proof of Theorem 1.1, we give some useful preliminary results.
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Lemma 4.3 (Mountain Pass Geometry I). Assume that (M1)–(M2), (f1) and
(f3) hold. Then there exist constant %, α > 0 such that I(u) ≥ α for all u ∈
HA,V (RN ,C), with ‖u‖s,A = %.

Proof. It follows from (f3) that for any ε ∈ (0, 1) there exists δ = δ(ε) > 0 such
that |f(x, t)| ≤ ε for all x ∈ RN and t ∈ [0, δ]. On the other hand, (f1) yields that
|f(x, t)| ≤ C

(
1 + δ2−p)|t|p−2 for all x ∈ RN and t > δ. In conclusion,

|f(x, t)| ≤ ε+ C
(
1 + δ2−p)|t|p−2 for all x ∈ RN and t ∈ R+

0 . (14)

Whence, for some Cε > 0, we get

|F (x, t)| ≤
ˆ t

0

|f(x, τ)τ |dτ ≤ ε

2
t2 + Cεt

p, (15)

for all x ∈ RN and t ≥ 0. Moreover, (M2) gives

M (t) ≥M (1)tϑ for all t ∈ [0, 1], (16)

while (M1) implies that M (1) > 0. Thus, using (15), (16) and the Hölder inequality,
we obtain for all u ∈HA,V (RN ,C), with ‖u‖s,A ≤ 1,

I(u) =
1

2
M (‖u‖2s,A) +

1

2
‖u‖2L2,V −

ˆ
RN

F (x, |u|)dx

≥ M (1)

2
[u]2ϑs,A +

1

2
‖u‖2L2,V −

ε

2

ˆ
RN
|u|2dx− Cε

ˆ
RN
|u|pdx

≥ M (1)

2
[u]2ϑs,A +

(1

2
− ε

2V0

)
‖u‖2L2,V − CεCpp‖u‖

p
s,A

≥ min

{
M (1)

2
,
V0 − ε

2V0

}
([u]2ϑs,A + ‖u‖2L2,V )− CεCpp‖u‖

p
s,A

≥ min

{
M (1)

2
,
V0 − ε

2V0

}
([u]2ϑs,A + ‖u‖2ϑL2,V )− CεCpp‖u‖

p
s,A

≥ 21−ϑ min

{
M (1)

2
,
V0 − ε

2V0

}
([u]2s,A + ‖u‖2L2,V )ϑ − CεCpp‖u‖

p
s,A

=

(
21−ϑ min

{
M (1)

2
,
V0 − ε

2V0

}
− CεCpp‖u‖

p−2ϑ
s,A

)
‖u‖2ϑs,A,

where Cp is the embedding constant of HA,V (RN ,C) into Lp(RN ,C) given by
Lemma 3.4. Here we used that ‖un‖L2,V ≤ ‖un‖s,A ≤ 1 and the inequality (a+b)ϑ ≤
2ϑ−1(aϑ + bϑ) for all a, b ≥ 0. Choosing ε = V0/2 and taking ‖u‖s,A = % ∈ (0, 1) so
small that

21−ϑ min

{
M (1)

2
,
V0

4

}
− CV0/2C

p
p%
p−2ϑ > 0,

we have

I(u) ≥ α =

(
21−ϑ min

{
M (1)

2
,
V0

4

}
− CV0/2C

p
p%
p−2ϑ

)
%2ϑ > 0,

for all u ∈HA,V (RN ,C), with ‖u‖s,A = %.

Lemma 4.4 (Mountain Pass Geometry II). Assume that (M1)–(M2) and (f1)–(f4)
hold. Then there exists e ∈ C∞c (RN ,C), with ‖e‖s,A ≥ 2, such that I(e) < 0. In
particular, ‖e‖s,A > ρ, where ρ > 0 is the number introduced in Lemma 4.3
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Proof. For any x ∈ RN , set k(t) = F (x, t)t−µ for all t ≥ 1. Condition (f2) implies
that k is nondecreasing on [1,∞). Therefore, k(t) ≥ k(1) for any t ≥ 1, that is,

F (x, t) ≥ F (x, 1)tµ ≥ cF |t|µ for all x ∈ RNand t ≥ 1, (17)

where cF = infx∈RN F (x, 1) > 0 by assumption (f4). From (f3) there exists δ ∈
(0, 1) such that |f(x, t)t| ≤ t for all x ∈ RN and t ∈ [0, δ]. Furthermore, |f(x, t)| ≤
2C for all x ∈ RN and all t, with δ < t ≤ 1, thanks to (f1). Hence, the above
inequalities imply that f(x, t)t ≥ −(1 + 2C)t for x ∈ RN and t ∈ [0, 1]. Thus,

F (x, t) =

ˆ t

0

f(x, τ)τdτ ≥ −1 + 2C

2
t2 for all x ∈ RN and t ∈ [0, 1]. (18)

Combining (17) with (18), we obtain

F (x, t) ≥ cF |t|µ − CF |t|2 for all x ∈ RN and t ≥ 0, (19)

where CF = cF + (1 + 2C)/2. Again (M2) gives

M (t) ≤M (1)tϑ for all t ≥ 1, (20)

with M (1) > 0 by (M1). Fix u ∈ C∞c (RN ,C), with [u]s,A = 1. By (19) and (20) as
t→∞

I(tu) =
1

2
M ([tu]2s,A) +

1

2
‖tu‖2L2,V −

ˆ
RN

F (x, t|u|)dx

≤ M (1)

2
t2ϑ[u]2ϑs,A +

1

2
‖tu‖2L2,V − cF tµ‖u‖

µ
Lµ(RN )

+
M1

V0
t2‖u‖2L2,V

≤ M (1)

2
t2ϑ − cFCµµ tµ‖u‖

µ
s,A +

(
M1

V0
+

1

2

)
t2‖u‖2L2,V

≤ M (1)

2
t2ϑ − cFCµµ tµ[u]µs,A +

(
M1

V0
+

1

2

)
t2‖u‖2L2,V

=
M (1)

2
t2ϑ − cFCµµ tµ +

(
M1

V0
+

1

2

)
t2‖u‖2L2,V → −∞,

since 2 ≤ 2ϑ < µ. The assertion follows at once, taking e = T0u, with T0 > 0 large
enough.

5. Proof of Theorems 1.1 and 1.2. The following standard Mountain Pass The-
orem will be used to get our main result.

Theorem 5.1. Let J be a functional on a real Banach space E and of class
C1(E,R). Let us assume that there exists α, ρ > 0 such that
(i) J(u) ≥ α for all u ∈ E with ‖u‖ = ρ,
(ii) J(0) = 0 and J(e) < α for some e ∈ E with ‖e‖ > ρ.
Let us define Γ = {γ ∈ C([0, 1];E) : γ(0) = 0, γ(1) = e}, and

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

Then there exists a sequence (un)n in E such that J(un) → c and J ′(un) → 0 in
E′, the dual space of E, as n→∞.
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5.1. Proof of Theorem 1.1. Taking into account Lemmas 4.3 and 4.4, by The-
orem 5.1 there exists a sequence (un)n ⊂ HA,V (RN ,C) such that I(un) → c > 0
and I ′(un) → 0 as n → ∞. Then, in view of Lemma 4.2, there exists a nontrivial
critical point u0 ∈HA,V (RN ,C) of I with I(u0) = c > 0 = I(0).

Set N = {u ∈ HA,V (RN ,C) \ {0} : I ′(u) = 0}. Then u0 ∈ N 6= ∅. Next we
show that I is coercive and bounded from below on N . Indeed, by I ′(u) = 0 and
(f2), we getˆ

RN
F (x, |u|)dx ≤ 1

µ

ˆ
RN

f(x, |u|)|u|2dx =
1

µ

(
M([u]2s,A)[u]2s,A + ‖u‖2L2,V

)
. (21)

By using (21), (M2) and the fact that 2 ≤ 2ϑ < µ, for all u ∈ N , we have

I(u) ≥ 1

2
M (‖u‖2s,A) +

1

2
‖u‖2L2,V −

1

µ
(M([u]2s,A)[u]2s,A + ‖u‖2L2,V )

=

(
1

2ϑ
− 1

µ

)
M([u]2s,A)[u]2s,A +

(
1

2
− 1

µ

)
‖u‖2L2,V ≥ 0.

Hence, by (M1) and (M3) for u ∈ N

I(u) ≥
(

1

2ϑ
− 1

µ

)
·

(
‖u‖2L2,V +

{
κ[u]2s,A, if [u]s,A ≥ 1

m0[u]2ϑs,A, if [u]s,A ≤ 1

)
, (22)

where κ = κ(1) > 0 by (M1). Hence in all cases, for all u ∈ N

I(u) ≥ min{κ,m0}
(

1

2ϑ
− 1

µ

)
‖u‖2s,A − 1,

by the elementary inequality tϑ ≥ t − 1 for all t ∈ R+
0 . In particular, I is coercive

and bounded from below on N .
Define cmin = inf{I(u) : u ∈ N }. Clearly, 0 ≤ cmin ≤ I(u0) = c. Let (un)n

be a minimizing for cmin, namely I(un) → cmin and 〈I ′(un), un〉 = 0. Then, since
N is a complete metric space, by Ekeland’s variational principle we can find a
new minimizing sequence, still denoted by (un)n, which is a (PS) sequence for
I at the level cmin. Moreover, Lemma 4.2 implies that (un)n has a convergence
subsequence, which we still denote by (un)n, such that un → u in HA,V (RN ,C).
Thus cmin = I(u) and 〈I ′(u), u〉 = 0.

We claim that cmin > 0. Otherwise, there is (un)n ⊂ HA,V (RN ,C) \ {0} with
I ′(un) = 0 and I(un) → 0. This via (22) implies that ‖un‖s,A → 0. On the other
hand, by (14), we have for any ε ∈ (0, V0)

M([un]2s,A)[un]2s,A+‖un‖2L2,V =

ˆ
RN
f(x, |un|)|un|2dx ≤

ε

V0
‖un‖2L2,V +CεC

p
p‖un‖

p
s,A.

Thus, M([un]2s,A)[un]2s,A +
(

1 − ε/V0

)
‖un‖2L2,V ≤ CεC

p
p‖un‖

p
s,A. Now take N1 so

large that ‖un‖s,A ≤ 1 for all n ≥ N1. Hence, (M3) implies that for all n ≥ N1

m0[un]2ϑs,A +
(
1− ε/V0

)
‖un‖2ϑL2,V ≤ CεCpp‖un‖

p
s,A,

that is

min
{
m0,

(
1− ε/V0

)}
≤ CεCpp‖un‖

p−2ϑ
s,A .

This is a contradiction since 2ϑ < p and proves the claim.
In conclusion, u is a nontrivial critical point of I, with I(u) = cmin > 0. There-

fore, u is a ground state solution of (1).
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5.2. Proof of Theorem 1.2. By assumptions (f5), (V1) and the Hölder inequality,
for all u ∈ Hs

s,A(RN ,C) we have

I(u) ≥ 1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V −

ˆ
RN

a(x)|u|qdx

≥ 1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V − ‖a‖L 2

2−q
‖u‖qL2

≥ 1

2
M ([u]2s,A) +

1

4
‖u‖2L2,V +

V0

4
‖u‖2L2 − ‖a‖

L
2

2−q
‖u‖qL2

≥ 1

2
M ([u]2s,A) +

1

4
‖u‖2L2,V − C0,

C0 =
‖a‖

L
2

2−q

2q
(2q − 1)

(
2‖a‖

L
2

2−q

qV0

)q/(2−q)
.

As shown in (22), this, (M1) and (M3) imply at once that for all u ∈ Hs
s,A(RN ,C)

I(u) ≥ min{κ,m0}
4

‖u‖2s,A − 1− C0,

κ = κ(1). Hence I is coercive and bounded below on Hs
s,A(RN ,C). Set

J(u) =
1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V , H(u) =

ˆ
RN

F (x, |u|)dx

for all u ∈ Hs
A,V (RN ). Then J is weakly lower semi–continuous in Hs

A,V (RN ),

since M is continuous and monotone non–decreasing in R+
0 . Moreover, by using a

similar discussion as [40, Lemma 2.3], one can show that H is weakly continuous
on Hs

A,V (RN ) under condition (f5). Thus, I(u) = J(u) − H(u) is weakly lower

semi–continuous in Hs
A,V (RN ). Then there exists u0 ∈ Hs

A,V (RN ) such that

I(u0) = inf{I(u) : u ∈ Hs
A,V (RN )}.

Next we show u0 6= 0. Let x0 ∈ Ω and let R > 0 such that BR(x0) ⊂ Ω. Fix
ϕ ∈ C∞0 (BR(x0)) with 0 ≤ ϕ ≤ 1, ‖ϕ‖s,A ≤ C(R) and ‖ϕ‖Lq(BR(x0)) 6= 0. Then, by
(f6) for all t ∈ (0, δ)

I(tϕ) ≤ t2

2

(
sup

0≤ξ≤(δC(R))2
M(ξ)

)
[ϕ]2s,A +

t2

2
‖ϕ‖2L2,V − tq

ˆ
BR(x0)

a0|ϕ|qdx

≤ t2

2

(
sup

0≤ξ≤(δC(R))2
M(ξ) + 1

)
‖ϕ‖2s,A − tqa0‖ϕ‖Lq(BR(x0)).

Since 1 < q < 2, we get I(t̄ϕ) < 0 by taking t̄ > 0 small enough. Hence, in
particular, I(u0) ≤ I(t̄ϕ) < 0, and so u0 is a nontrivial critical point. In other
words, u0 is a nontrivial solution of (1).

6. Proof of Theorem 1.3. We first recall the following symmetric mountain pass
theorem in [25].

Theorem 6.1. Let X be an infinite dimensional real Banach space. Suppose that
J is in C1(X,R) and satisfies the following condition:
(a) J is even, bounded from below, J(0) = 0 and J satisfies the (PS) condition;
(b) For each k ∈ N there exists Ek ⊂ Γk such that supu∈Ek J(u) < 0, where

Γk = {E : E is closed symmetric subset of X and 0 /∈ E, γ(E) ≥ k}
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and γ(E) is a genus of a closed symmetric set E. Then J admits a sequence of
critical points (uk)k such that J(uk) ≤ 0, uk 6= 0 and ‖uk‖ → 0 as k →∞.

Let h ∈ C1(R+
0 ,R) be a radial decreasing function such that 0 ≤ h(t) ≤ 1 for

all t ∈ R+
0 , h(t) = 1 for 0 ≤ t ≤ 1 and h(t) = 0 for t ≥ 2. Let φ(u) = h(‖u‖2s,A).

Following the idea of [20], we consider the truncation functional

I(u) =
1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V − φ(u)

ˆ
RN

F (x, |u|)dx.

Clearly, I ∈ C1(Hs
A,V (RN ,C),R) and

〈I ′(u), v〉 = M([u]2s,A)〈L(u), v〉+ <
ˆ
RN

V (x)uvdx

− 2φ′(u)

ˆ
RN

F (x, |u|)dx · 〈L(u), v〉 − φ(u)<
ˆ
RN

f(x, |u|)uvdx

for all u, v ∈ Hs
A,V (RN ,C). Here L(u) is the linear functional on Hs

A,V (RN ,C),

introduced in (6).

6.1. Proof of Theorem 1.3. For all u ∈ Hs
A,V (RN ,C), with ‖u‖s,A ≥ 2, we get

I(u) ≥ 1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V ≥

1

2
min{κ, m0}‖u‖2s,A,

by (M1) and (M3), where κ = κ(1), as in the proof of Theorem 1.2. Hence I(u)→∞
as ‖u‖s,A →∞ and I is coercive and bounded from below on Hs

A,V (RN ,C).

Let (un)n be a (PS) sequence, i.e. I(un) is bounded and I ′(un)→ 0 as n→∞.
Then the coercivity of I implies that (un)n is bounded in Hs

A,V (RN ,C). Without

loss of generality, we assume that un ⇀ u in Hs
A,V (RN ,C) and un → u a.e. in RN .

We now claim that

lim
n→∞

ˆ
RN

(f(x, |un|)un − f(x, |u|)u)(un − u)dx = 0. (23)

Clearly, |f(x, t)t| ≤ C(|t| + |t|p−1) for all x ∈ RN and t ∈ R+
0 by (f1). Using the

Hölder inequality, we obtainˆ
RN
|(f(x, |un|)un − f(x, |u|)u)(un − u)|dx

≤
ˆ
RN

C[|un|+ |u|+ |un|p−1 + |u|p−1]|un − u|dx (24)

≤ C(‖un‖L2 + ‖u‖L2)‖un − u‖L2 + C(‖un‖p−1
Lp + ‖u‖p−1

Lp(RN )
)‖un − u‖Lp(RN )

≤ C(‖un − u‖L2 + ‖un − u‖Lp).

Lemma 3.5 guarantees that |un| → |u| in Lp(RN ) and |un| → |u| in L2(RN ). Hence,
un → u in Lp(RN ,C) and in L2(RN ,C) by the Brézis–Lieb lemma. Inserting these
facts in (24), we get the desired claim (23).

Now, 〈I ′(un)−I ′(u), un−u〉 → 0, since I ′(un)→ 0 and un ⇀ u in Hs
A,V (RN ,C).

By (23), we have as n→∞
o(1) = 〈I ′(un)− I ′(u), un − u〉

= M([un]2s,A)〈L(un), un − u〉 −M([u]2s,A)〈L(u), un − u〉

+ <
ˆ
RN

V (x)(un − u)(un − u)dx− 2φ′(un)

ˆ
RN

F (x, |un|)dx · 〈L(un), un − u〉
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− 2φ′(u)

ˆ
RN
F (x, |u|)dx · 〈L(u), un − u〉 − φ(un)<

ˆ
RN
f(x, |un|)un(un − u)dx

− φ(u)<
ˆ
RN

f(x, |u|)u(un − u)dx.

From (f7) and the facts that un ⇀ u in Hs
A,V (RN ,C) and φ′ ≤ 0 it follows that

0≤M([un]2s,A)〈L(un)− L(u), un − u〉+<
ˆ
RN
V (x)(un − u)(un − u)dx ≤ o(1). (25)

We divide the proof into two parts.

Case infn∈N[un]s,A = d > 0. By (M1), there exists κ = κ(d) > 0 with M(t) ≥ κ > 0
for all t ≥ d. This, together with (25), implies that
¨

R2N

|un(x)− u(x)− ei(x−y)·A( x+y
2

)(un(y)− u(y))|2

|x− y|N+2s
dxdy +

ˆ
RN
V (x)|un − u|2dx→ 0

as n→∞. Hence un → u in Hs
A,V (RN ,C).

Case infn∈N[un]s,A = 0. If 0 is an isolated point for ([un]s,A)n, then there is a
subsequence ([unk ]s,A)k such that infk∈N[unk ]s,A = d > 0 and one can proceed as
before.

If, instead, 0 is an accumulation point for ([un]s,A)n, there is a subsequence, still

labeled as (un)n, such that [un]s,A → 0 and un → 0 in L2∗
s (RN ) as n→∞ and again

(25) implies at once that un → 0 in Hs
A,V (RN ,C), since 〈L(un)−L(u), un−u〉 → 0

and M([un]2s,A)→M(0) ≥ 0 as n→∞.

In conclusion, I satisfies the (PS) condition in Hs
A,V (RN ,C). For each k ∈ N, we

take k disjoint open sets Ki such that
⋃k
i=1Ki ⊂ Ω. For each i = 1, . . . , k let ui be in

(Hs
A,V (RN ,C)

⋂
C∞0 (Ki,C))\{0}, with ‖ui‖s,A = 1, andWk = span{u1, u2, . . . , uk}.

Therefore, for any u ∈ Wk, with ‖u‖s,A = ρ ≤ 1 small enough, we obtain by (f7),
being q ∈ (1, 2),

I(u) ≤ 1

2

(
max

0≤t≤1
M(t)

)
[u]2s,A +

1

2
‖u‖2L2,V −

ˆ
Ω

a1|u|qdx

≤ 1

2

(
1 + max

0≤t≤1
M(t)

)
‖u‖2s,A − C

q
ka1‖u‖qs,A

=
1

2

(
1 + max

0≤t≤1
M(t)

)
ρ2 − Cqka1ρ

q < 0,

where Ck > 0 is a constant such that ‖u‖Lq(RN ,C) ≤ Ck‖u‖s,A for all u ∈Wk, since
all norms on Wk are equivalent. Therefore, we deduce

{u ∈Wk : ‖u‖s,A = ρ} ⊂ {u ∈Wk : I(u) < 0}.
Obviously, γ({u ∈ Wk : ‖u‖s,A = ρ}) = k, see [10]. Hence by the monotonicity of
the genus γ, cf. [27], we obtain

γ(u ∈Wk : I(u) < 0) ≥ k.
Choosing Ek = {u ∈Wk : I(u) < 0}, we have Ek ⊂ Γk and supu∈Γk

I(u) < 0. Thus,
all the assumptions of Theorem 6.1 are satisfied, Hence, there exists a sequence (uk)k
such that

I(uk) ≤ 0, I ′(uk) = 0, and ‖uk‖s,A → 0 as k →∞.
Therefore, we can take k so large that ‖uk‖s,A ≤ 1, and so these infinitely many
functions uk are solutions of (1).
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