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Abstract. The semiclassical limit of a weakly coupled nonlinear focusing Schrödinger system in presence of a nonconstant

potential is studied. The initial data is of the form (u1, u2) with ui = ri(
x−x̃

ε )e(i/ε)x·ξ̃ , where (r1, r2) is a real ground state so-
lution, belonging to a suitable class, of an associated autonomous elliptic system. For ε sufficiently small, the solution (φ1, φ2)
will been shown to have, locally in time, the form (r1( x−x(t)

ε )e(i/ε)x·ξ(t), r2( x−x(t)
ε )e(i/ε)x·ξ(t)), where (x(t), ξ(t)) is the solu-

tion of the Hamiltonian system ẋ(t) = ξ(t), ξ̇(t) = −∇V (x(t)) with x(0) = x̃ and ξ(0) = ξ̃.

Keywords: weakly coupled nonlinear Schrödinger systems, concentration phenomena, semiclassical limit, orbital stability of
ground states, soliton dynamics

1. Introduction and main result

1.1. Introduction

In recent years much interest has been devoted to the study of systems of weakly coupled nonlinear
Schrödinger equations. This interest is motivated by many physical experiments especially in nonlin-
ear optics and in the theory of Bose–Einstein condensates (see e.g. [1,17,24,26]). Existence results of
ground and bound states solutions have been obtained by different authors (see e.g. [3,5,13,21,22,30]).
A very interesting aspect regards the dynamics, in the semiclassical limit, of a general solution, that is
to consider the nonlinear Schrödinger system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iε∂tφ1 +
ε2

2
Δφ1 − V (x)φ1 + φ1

(
|φ1 |2p + β|φ2 |p+1 |φ1 |p−1) = 0 in R

N × R
+,

iε∂tφ2 +
ε2

2
Δφ2 − V (x)φ2 + φ2

(
|φ2 |2p + β|φ1 |p+1 |φ2 |p−1) = 0 in R

N × R
+,

φ1(0, x) = φ0
1(x), φ2(0, x) = φ0

2(x),

(1.1)
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with 0 < p < 2/N , N � 1, and β > 0 is a constant modeling the birefringence effect of the material.
The potential V (x) is a regular function in R

N modeling the action of external forces (see (1.11)),
φi : R

+ × R
N → C are complex valued functions and ε > 0 is a small parameter playing the rôle of

Planck’s constant. The task to be tackled with respect to this system is to recover the full dynamics of a
solution (φε

1, φε
2) as a point particle subjected to Galileian motion for the parameter ε sufficiently small.

Since the famous papers [2,14,16], a large amount of work has been dedicated to this study in the case
of a single Schrödinger equation and for a special class of solutions, namely standing wave solutions
(see [4] and the references therein). When considering this particular kind of solutions one is naturally
lead to study the following elliptic system corresponding to the physically relevant case p = 1 (that is
Kerr nonlinearities)

{
−ε2Δu + V (x)u = u3 + βv2u in R

N ,
−ε2Δv + V (x)v = v3 + βu2v in R

N ,
(1.2)

so that the analysis reduces to the study of the asymptotic behavior of solutions of an elliptic system. The
concentration of a least energy solution around the local minima (possibly degenerate) of the potential V
has been studied in [27], where some sufficient and necessary conditions have been established. To our
knowledge the semiclassical dynamics of different kinds of solutions of a single Schrödinger equation
has been tackled in the series of papers [7,18,19] (see also [6] for recent developments on the long
term soliton dynamics), assuming that the initial datum is of the form r((x − x̃)/ε)e(i/ε)x·ξ̃, where r is
the unique ground state solution of an associated elliptic problem (see Eq. (1.8)) and x̃, ξ̃ ∈ R

N . This
choice of initial data corresponds to the study of a different situation from the previous one. Indeed,
it is taken into consideration the semiclassical dynamics of ground state solutions of the autonomous
elliptic equation once the action of external forces occurs. In these papers it is proved that the solution
is approximated by the ground state r – up to translations and phase changes – and the translations and
phase changes are precisely related with the solution of a Newtonian system in R

N governed by the
gradient of the potential V . Here we want to recover similar results for system (1.1) taking as initial data

φ0
1(x) = r1

(
x − x̃

ε

)
e(i/ε)x·ξ̃, φ0

2(x) = r2

(
x − x̃

ε

)
e(i/ε)x·ξ̃, (1.3)

where the vector R = (r1, r2) is a suitable ground state (see Definition 1.3) of the associated elliptic
system

⎧⎪⎪⎨
⎪⎪⎩

− 1
2

Δr1 + r1 = r1
(

|r1 |2p + β|r2 |p+1 |r1 |p−1) in R
N ,

− 1
2

Δr2 + r2 = r2
(

|r2 |2p + β|r1 |p+1 |r2 |p−1) in R
N .

(E)

When studying the dynamics of systems some new difficulties can arise. First of all, we have to take
into account that, up to now, it is still not known if a uniqueness result (up to translations in R

N ) for
real ground state solutions of (E) holds. This is expected, at least in the case where β > 1. Besides,
also nondegeneracy properties (in the sense provided in [12,28]) are proved in some particular cases
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[12,28]. These obstacles lead us to restrict the set of admissible ground state solutions we will take into
consideration (see Definition 1.3) in the study of soliton dynamics.

Our first main result (Theorem 1.5) will give the desired asymptotic behaviour. Indeed, we will show
that a solution which starts from (1.3) (for a suitable ground state R) will remain close to the set of ground
state solutions, up to translations and phase rotations. Furthermore, in the second result (Theorem 1.9),
we will prove that the mass densities associated with the solution φi converge – in the dual space of
C2(RN ) × C2(RN ) – to the delta measure with mass given by ‖ri‖L2 and concentrated along x(t),
solution to the (driving) Newtonian differential equation

ẍ(t) = − ∇V
(
x(t)

)
, x(0) = x̃, ẋ(0) = ξ̃, (1.4)

where x̃ and ξ̃ are fixed in the initial data of (1.1). A similar result for each single component of the
momentum density is lost as a consequence of the birefringence effect. However, we can afford the de-
sired result for a balance on the total momentum density. This shows that – in the semiclassical regime –
the solution moves as a point particle under the Galileian law given by the Hamiltonian system (1.4). In
the case of V constant our statements are related with the results obtained, by linearization procedure,
in [31] for the single equation. Here, by a different approach, we show that (1.4) gives a modulation
equation for the solution generated by the initial data (1.3). Although we cannot predict the shape of
the solution, we know that the dynamic of the mass center is described by (1.4). The arguments will
follow [7,18,19], where the case of a single Schrödinger equations has been considered. The main in-
gredients are the conservation laws of (1.1) and of the Hamiltonian associated with the ODE in (1.4)
and a modulational stability property for a suitable class of ground state solutions for the associated au-
tonomous elliptic system (E), recently proved in [28] by the authors in the same spirit of the works [31,
32] on scalar Schrödinger equations.

The problem for the single equation has been also studied using the WKB analysis (see, for example,
[9] and the references therein), to our knowledge, there are no results for the system using this approach.
Some of the arguments and estimates in the paper are strongly based upon those of [19]. On the other
hand, for the sake of self-containedness, we prefer to include all the details in the proofs.

1.2. Admissible ground state solutions

Let Hε be the space of the vectors Φ = (φ1, φ2) in H = H1(RN ; C
2) endowed with the rescaled norm

‖Φ‖2
Hε

=
1

εN
‖Φ‖2

2 +
1

εN −2
‖∇Φ‖2

2,

where ‖Φ‖2
2 = ‖(φ1, φ2)‖2

2 = ‖φ1 ‖2
2 + ‖φ2 ‖2

2 and ‖φi‖2
2 = ‖φi‖2

L2 is the standard norm in the Lebesgue
space L2 given by ‖φi‖2

2 =
∫

φi(x)φ̄i(x) dx.
We aim to study the semiclassical dynamics of a least energy solution of problem (E) once the action

of external forces is taken into consideration.
In [3,22,30] it is proved that there exists a least action solution R = (r1, r2) �= (0, 0) of (E) which

has nonnegative components. Moreover, R is a solution to the following minimization problem (cf.
Theorems 3.4 and 3.6 in [23]):

E (R) = min
M

E , where M =
{
U ∈ H: ‖U ‖2 = ‖R‖2

}
, (1.5)
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where the functional E : H → R is defined by

E (U ) =
1
2

‖∇U ‖2
2 −

∫
Fβ(U ) dx, (1.6)

Fβ(U ) =
1

p + 1

(
|u1 |2p+2 + |u2 |2p+2 + 2β|u1 |p+1 |u2 |p+1) (1.7)

for any U = (u1, u2) ∈ H. We shall denote with G the set of the (complex) ground state solutions.

Remark 1.1. Any element V = (v1, v2) of G has the form

V (x) =
(
eiθ1

∣∣v1(x)
∣∣, eiθ2

∣∣v2(x)
∣∣), x ∈ R

N ,

for some θ1, θ2 ∈ S1 (so that (|v1 |, |v2 |) is a real, positive, ground state solution). Indeed, if we consider
the minimization problems

σC = inf
{

E (V ): V ∈ H, ‖V ‖L2 = ‖R‖L2

}
,

σR = inf
{

E (V ): V ∈ H1(
R

N ; R
2)‖V ‖L2 = ‖R‖L2

}
it results that σC = σR. Trivially one has σC � σR. Moreover, if V = (v1, v2) ∈ H, due to the well-
known pointwise inequality |∇|vi(x)| | � | ∇vi(x)| for a.e. x ∈ R

N , it holds

∫ ∣∣∇
∣∣vi(x)

∣∣∣∣2
dx �

∫ ∣∣∇vi(x)
∣∣2

dx, i = 1, 2,

so that also E (|v1 |, |v2 |) � E (V ). In particular, we conclude that σR � σC, yielding the desired equality
σC = σR. Let now V = (v1, v2) be a solution to σC and assume by contradiction that, for some i = 1, 2,

LN({
x ∈ R

N : |∇|vi

∣∣(x)
∣∣ <

∣∣∇vi(x)
∣∣})

> 0,

where LN is the Lebesgue measure in R
N . Then ‖(|v1 |, |v2 |)‖L2 = ‖V ‖L2 , and

σR � 1
2

2∑
i=1

∫ ∣∣∇|vi|
∣∣2

dx −
∫

Fβ

(
|v1 |, |v2 |

)
dx <

1
2

2∑
i=1

∫
| ∇vi|2 dx −

∫
Fβ(v1, v2) dx = σC,

which is a contradiction, being σC = σR. Hence, we have |∇|vi(x)| | = | ∇vi(x)| for a.e. x ∈ R
N and

any i = 1, 2. This is true if and only if Re vi∇(Im vi) = Im vi∇(Re vi). In turn, if this last condition
holds, we get

v̄i∇vi = Re vi∇(Re vi) + Im vi∇(Im vi), a.e. in R
N ,

which implies that Re(iv̄i(x)∇vi(x)) = 0 a.e. in R
N . Finally, for any i = 1, 2, from this last identity

one immediately finds θi ∈ S1 with vi = eiθi |vi|, concluding the proof.
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In the scalar case, the ground state solution for the equation

− 1
2

Δr + r = r2p+1 in R
N (1.8)

is always unique (up to translations) and nondegenerate (see e.g. [20,25,31]). For system (E), in general,
the uniqueness and nondegeneracy of ground state solutions is a delicate open question.

The so-called modulational stability property of ground states solutions plays an important rôle in
soliton dynamics on finite time intervals. More precisely, in the scalar case, some delicate spectral esti-
mates for the seld-adjoint operator E ′ ′(r) were obtained in [31,32], allowing to get the following energy
convexity result.

Theorem 1.2. Let r be a ground state solution of Eq. (1.8) with p < 2/N . Let φ ∈ H1(RN , C) be such
that ‖φ‖2 = ‖r‖2 and define the positive number

Γφ = inf
y∈RN

θ∈[0,2π)

∥∥φ(·) − eiθr(· − y)
∥∥2

H1 .

Then there exist two positive constants A and C such that

Γφ � C
(

E (φ) − E (R)
)
,

provided that E (φ) − E (R) < A.

For systems, we consider the following definition.

Definition 1.3. We say that a ground state solution R = (r1, r2) of system (E) is admissible for the
modulational stability property to hold, and we shall write that R ∈ R, if ri ∈ H2(RN ) are radial,
|x|ri ∈ L2(RN ), the corresponding solution φi(t) belongs to H2(RN ) for all times t > 0 and the
following property holds: let Φ ∈ H be such that ‖Φ‖2 = ‖R‖2 and define the positive number

ΓΦ := inf
y∈RN

θ1,θ2 ∈[0,2π)

∥∥Φ(·) −
(
eiθ1r1(· − y), eiθ2r2(· − y)

)∥∥2
H
. (1.9)

Then there exist a continuous function ρ : R
+ → R

+ with ρ(ξ)
ξ → 0 as ξ → 0+ and a positive constant C

such that

ρ(ΓΦ) + ΓΦ � C
(

E (Φ) − E (R)
)
.

In particular, there exist two positive constants A and C ′ such that

ΓΦ � C ′(E (Φ) − E (R)
)
, (1.10)

provided that ΓΦ < A.
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In the one-dimensional case, for an important physical class, there exists a ground state solution of
system (E) which belongs to the class R (see [28]).

Theorem 1.4. Assume that N = 1, p ∈ [1, 2) and β > 1. Then there exists a ground state solution
R = (r1, r2) of system (E) which belongs to the class R.

1.3. Statement of the main results

The action of external forces is represented by a potential V : R
N → R satisfying

V is a C3 function bounded with its derivatives, (1.11)

and we will study the asymptotic behavior (locally in time) as ε → 0 of the solution of the following
Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iε ∂tφ1 +
ε2

2
Δφ1 − V (x)φ1 + φ1

(
|φ1 |2p + β|φ2 |p+1 |φ1 |p−1) = 0 in R

N × R
+,

iε ∂tφ2 +
ε2

2
Δφ2 − V (x)φ2 + φ2

(
|φ2 |2p + β|φ1 |p+1 |φ2 |p−1) = 0 in R

N × R
+,

φ1(x, 0) = r1

(
x − x̃

ε

)
e(i/ε)x·ξ̃, φ2(x, 0) = r2

(
x − x̃

ε

)
e(i/ε)x·ξ̃,

(Sε)

where x̃, ξ̃ ∈ RN N � 1, the exponent p is such that

0 < p < 2/N. (1.12)

It is known (see [15]) that, under these assumptions, and for any initial datum in L2, there exists a unique
solution Φε = (φε

1, φε
2) of the Cauchy problem that exists globally in time. We have chosen as initial data

a scaling of a real vector R = (r1, r2) belonging to R.
The first main result is the following theorem.

Theorem 1.5. Let R = (r1, r2) be a ground state solution of (E) which belongs to the class R. Under
assumptions (1.11), (1.12), let Φε = (φε

1, φε
2) be the family of solutions to system (Sε). Furthermore, let

(x(t), ξ(t)) be the solution of the Hamiltonian system

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = ξ(t),
ξ̇(t) = − ∇V

(
x(t)

)
,

x(0) = x̃,
ξ(0) = ξ̃.

(1.13)

Then, there exists a locally uniformly bounded family of functions θε
i : R

+ → S1, i = 1, 2, such that,
defining the vector Qε(t) = (qε

1(x, t), qε
2(x, t)) by

qε
i (x, t) = ri

(
x − x(t)

ε

)
e(i/ε)[x·ξ(t)+θε

i (t)],
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it holds

∥∥Φε(t) − Qε(t)
∥∥

Hε
� O(ε), as ε → 0 (1.14)

locally uniformly in time.

Roughly speaking, the theorem states that, in the semiclassical regime, the modulus of the solution Φε

is approximated, locally uniformly in time, by the admissible real ground state (r1, r2) concentrated in
x(t), up to a suitable phase rotation. Theorem 1.5 can also be read as a description of the slow dynamic
of the system close to the invariant manifold of the standing waves generated by ground state solutions.
This topic has been studied, for the single equation, in [29].

Remark 1.6. Suppose that ξ̃ = 0 and x̃ is a critical point of the potential V . Then the constant function
(x(t), ξ(t)) = (x̃, 0), for all t ∈ R

+, is the solution to system (1.13). As a consequence, from Theo-
rem 1.5, the approximated solutions is of the form

ri

(
x − x̃

ε

)
e(i/ε)θε

i (t), x ∈ R
N , t > 0,

that is, in the semiclassical regime, the solution concentrates around the critical points of the potential V .
This is a remark related to [27] where we have considered as initial data ground states solutions of an
associated nonautonomous elliptic problem.

Remark 1.7. As a corollary of Theorem 1.5 we point out that, in the particular case of a constant
potential, the approximated solution has components

ri

(
x − x̃ − ξ̃t

ε

)
e(i/ε)[x·ξ̃+θε

i (t)], x ∈ R
N , t > 0.

Hence, the mass center x(t) of Φ(t, x) moves with constant velocity ξ̃ realizing a uniform motion. This
topic has been tackled, for the single equation, in [31].

Remark 1.8. For values of β > 1 both components of the ground states R are nontrivial and, for R ∈ R,
the solution of the Cauchy problem are approximated by a vector with both nontrivial components. We
expect that ground state solutions for β > 1 are unique (up to translations in R

N ) and nondegenerate.

We can also analyze the behavior of total momentum density defined by

P ε(x, t) := pε
1(x, t) + pε

2(x, t) for x ∈ R
N , t > 0, (1.15)

where

pε
i (x, t) :=

1
εN −1

Im
(
φ̄ε

i (x, t)∇φε
i (x, t)

)
for i = 1, 2, x ∈ R

N , t > 0. (1.16)
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Moreover, let M (t) := (m1 + m2)ξ(t) be the total momentum of the particle x(t) solution of (1.13),
where

mi := ‖ri‖2
2 for i = 1, 2. (1.17)

The information about the asymptotic behavior of P ε and of the mass densities |φε
i |2/εN are contained

in the following result.

Theorem 1.9. Under the assumptions of Theorem 1.5, there exists ε0 > 0 such that

∥∥(∣∣φε
1

∣∣2
/εN dx,

∣∣φε
2

∣∣2
/εN dx

)
− (m1, m2)δx(t)

∥∥
(C2 ×C2)∗ � O

(
ε2),∥∥P ε(t, x) dx − M (t)δx(t)

∥∥
(C2)∗ � O

(
ε2)

for every ε ∈ (0, ε0) and locally uniformly in time.

Remark 1.10. Essentially, the theorem states that, in the semiclassical regime, the mass densities of
the components φi of the solution Φε behave as a point particle located in x(t) of mass respectively mi

and the total momentum behaves like M (t)δx(t). It should be stressed that we can obtain the asymptotic
behavior for each single mass density, while we can only afford the same result for the total momentum.
The result will follow by a more general technical statement (Theorem 2.4).

Remark 1.11. The hypotheses on the potential V can be slightly weakened. Indeed, we can assume that
V is bounded from below and that ∂αV are bounded only for |α| = 2 or |α| = 3. This allows to include
the important class of harmonic potentials (used e.g. in Bose–Einstein theory), such as

V (x) =
1
2

N∑
j=1

ω2
jx

2
j , ωj ∈ R, j = 1, . . . , N.

Hence, Eq. (1.13) reduces to the system of harmonic oscillators

ẍj(t) + ω2
jxj(t) = 0, j = 1, . . . , N. (1.18)

For instance, in the 2D case, renaming x1(t) = x(t) and x2(t) = y(t) the ground states solutions are
driven around (and concentrating) along the lines of a Lissajous curves having periodic or quasi-periodic
behavior depending on the case when the ratio ωi/ωj is, respectively, a rational or an irrational number.
See Figs 1 and 2 for the corresponding phase portrait in some 2D cases, depending on the values of
ωi/ωj .

The paper is organized as follows.
In Section 2 we set up the main ingredients for the proofs as well as state two technical approximation

results (Theorems 2.2 and 2.4) in a general framework. In Section 3 we will collect some preliminary
technical facts that will be useful to prove the results. In Section 4 we will include the core computations
regarding energy and momentum estimates in the semiclassical regime. Finally, in Section 5, the main
results (Theorems 1.5 and 1.9) will be proved.
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Fig. 1. Phase portrait of system (1.18) in 2D with ω1/ω2 = 3/5 (left) and ω1/ω2 = 7/5 (right). Notice the periodic behaviour.

Fig. 2. Phase portrait of system (1.18) in 2D with ω1/ω2 =
√

3/3 increasing the integration time from t ∈ [0, 40π] (left) to
t ∈ [0, 60π] (right). Notice the quasi-periodic behaviour, the plane is filling up.

2. A more general Schrödinger system

In the following sections we will study the behavior, for sufficiently small ε, of a solution Φ = (φ1, φ2)
of the more general Schrödinger system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iε ∂tφ1 +
ε2

2
Δφ1 − V (x)φ1 + φ1

(
|φ1 |2p + β|φ2 |p+1 |φ1 |p−1) = 0 in R

N × R
+,

iε ∂tφ2 +
ε2

2
Δφ2 − W (x)φ2 + φ2

(
|φ2 |2p + β|φ1 |p+1 |φ2 |p−1) = 0 in R

N × R
+,

φ1(0, x) = r1

(
x − x̃

ε

)
e(i/ε)x·ξ̃1 , φ2(0, x) = r2

(
x − x̃

ε

)
e(i/ε)x·ξ̃2 ,

(Fε)

where p verifies (1.12), the potentials V , W both satisfy (1.11) and (r1, r2) is a real ground state solution
of problem (E). As for the case of a single potential, we get a unique globally defined Φε = (φε

1, φε
2)

that depends continuously on the initial data (see, e.g. [15], Theorem 1). Moreover, if the initial data are
chosen in H2 × H2, then Φε(t) enjoys the same regularity property for all positive times t > 0 (see e.g.
[10]).

Remark 2.1. With no loss of generality, we can assume V , W � 0. Indeed, if φ1, φ2 is a solution to
(Fε), since V , W are bounded from below by (1.11), there exist μ > 0 such that V (x) + μ � 0 and
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W (x) + μ � 0, for all x ∈ R
N . Then φ̂1 = φ1e−i(μt/ε) and φ̂2 = φ2e−i(μt/ε) is a solution of (Fε) with

V + μ (resp. W + μ) in place of V (resp. W ).

We will show that the dynamics of (φε
1, φε

2) is governed by the solutions

X = (x1, x2) : R → R
2N , Θ = (ξ1, ξ2) : R → R

2N ,

of the following Hamiltonian systems

⎧⎨
⎩

ẋ1(t) = ξ1(t),
ξ̇1(t) = − ∇V

(
x1(t)

)
,(

x1(0), ξ1(0)
)

= (x̃, ξ̃1),

⎧⎨
⎩

ẋ2(t) = ξ2(t),
ξ̇2(t) = − ∇W

(
x2(t)

)
,(

x2(0), ξ2(0)
)

= (x̃, ξ̃2).
(H)

Notice that the Hamiltonians related to these systems are

H1(t) =
1
2

∣∣ξ1(t)
∣∣2 + V

(
x1(t)

)
, H2(t) =

1
2

∣∣ξ2(t)
∣∣2 + W

(
x2(t)

)
(2.1)

and are conserved in time. Under assumptions (1.11) it is immediate to check that the Hamiltonian
systems (H) have global solutions. With respect to the asymptotic behavior of the solution of (Fε) we
can prove the following results.

2.1. Two more general results

We now state two technical theorems that will yield, as a corollary, Theorems 1.5 and 1.9.

Theorem 2.2. Assume (1.12) and that V , W both satisfy (1.11). Let Φε = (φε
1, φε

2) be the family of
solutions to system (Fε). Then, there exist ε0 > 0, T ε

∗ > 0, a family of continuous functions �ε : R+ → R

with �ε(0) = O(ε2), locally uniformly bounded sequences of functions θε
i : R

+ → S1 and a positive
constant C, such that, defining the vector Qε(t) = (qε

1(x, t), qε
2(x, t)) by

qε
i (x, t) = ri

(
x − x1(t)

ε

)
e(i/ε)[x·ξi(t)+θε

i (t)], i = 1, 2,

it results

∥∥Φε(t) − Qε(t)
∥∥

Hε
� C

√
�ε(t) +

(
�ε(t)

ε

)2

for all ε ∈ (0, ε0) and all t ∈ [0, T ε
∗ ], where x1(t) is the first component of the Hamiltonian system for V

in (H).

Remark 2.3. Theorem 2.2 is quite instrumental in the context of our paper, as we cannot guarantee in
the general case of different potentials that the function �ε is small as ε vanishes, locally uniformly in
time. Moreover, the time dependent shifting of the components qi into x1(t) is quite arbitrary, a similar
statement could be written with the component x2(t) in place of x1(t), this arbitrariness is a consequence
of the same initial data x̃ in (H) for both x1 and x2. The task of different initial data in (H) for x1 and x2

is to our knowledge an open problem.
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In the following, if ξi are the second components of the systems in (H), we set

M (t) := m1ξ1(t) + m2ξ2(t), t > 0. (2.2)

If Φε = (φε
1, φε

2) is the family of solutions to (Fε), we have the following theorem.

Theorem 2.4. There exist ε0 > 0 and T ε
∗ > 0 and a family of continuous functions �ε : R

+ → R with
�ε(0) = O(ε2) such that

∥∥(∣∣φε
1

∣∣2
/εN dx, |φε

2 |2/εN dx
)

− (m1, m2)δx1(t)
∥∥

(C2 ×C2)∗ � �ε(t),∥∥P ε(t, x) dx − M (t)δx1(t)
∥∥

(C2)∗ � �ε(t)

for every ε ∈ (0, ε0) and all t ∈ [0, T ε
∗ ].

3. Some preliminary results

In this section we recall and show some results we will use in proving Theorems 1.5, 1.9, 2.2 and 2.4.
First we recall the following conservation laws.

Proposition 3.1. The mass components of a solution Φ of (Fε),

N ε
i (t) :=

1
εN

∥∥φε
i (t)

∥∥2
L2 for i = 1, 2, t > 0, (3.1)

are conserved in time. Moreover, also the total energy defined by

Eε(t) = Eε
1 (t) + Eε

2 (t) (3.2)

is conserved as time varies, where

Eε
1 (t) =

1
2εN −2

∥∥∇φε
1

∥∥2
L2 +

1
εN

∫
V (x)

∣∣φε
1

∣∣2
dx − 1

2εN

∫
Fβ

(
Φε) dx,

Eε
2 (t) =

1
2εN −2

∥∥∇φε
2

∥∥2
2 +

1
εN

∫
W (x)

∣∣φε
2

∣∣2
dx − 1

2εN

∫
Fβ

(
Φε) dx.

Proof. This is a standard fact. For the proof, see e.g. [15]. �

Remark 3.2. From the preceding proposition we obtain that, due to the form of our initial data, the
mass components N ε

i (t) do not actually depend on ε. Indeed, for i = 1, 2,

N ε
i (t) = N ε

i (0) =
1

εN

∫ ∣∣φε
i (x, 0)

∣∣2
dx =

1
εN

∫ ∣∣∣∣ri

(
x − x̃

ε

)∣∣∣∣
2

dx = mi. (3.3)

Thus, the quantities φε
i/ε

N/2 have constant norm in L2 equal, respectively, to mi. In Theorem 2.4 we
will show that, for sufficiently small values of ε, the mass densities behave, point-wise with respect to t,
as a δ functional concentrated in x1(t).
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In the following we will often make use of the following simple lemma.

Lemma 3.3. Let A ∈ C2(RN ) be such that A, DjA, D2
ijA are uniformly bounded and let R = (r1, r2)

be a ground state solution of problem (E). Then, for every y ∈ R
N fixed, there exists a positive con-

stant C0 such that

∣∣∣∣
∫ [

A(εx + y) − A(y)
]
r2
i (x) dx

∣∣∣∣ � C0ε
2. (3.4)

Proof. By virtue of the regularity properties of the function A and Taylor expansion theorem we get

1
ε2

∣∣∣∣
∫ [

A(εx + y) − A(y)
]
r2
i (x) dx

∣∣∣∣ � 1
ε

∣∣∇A(y)
∣∣∣∣∣∣

∫
xr2

i (x) dx

∣∣∣∣ +
∥∥ Hes(A)

∥∥
∞

∫
|x|2r2

i (x) dx,

where ‖ Hes(A)‖∞ denotes the L∞ norm of the Hessian matrix associated to the function A. The first
integral on the right-hand side is zero since each component ri is radial. The second integral is finite,
since |x|ri ∈ L2(RN ). �

In order to show the desired asymptotic behavior we will use the following property of the functional
δy on the space C2(RN ).

Lemma 3.4. There exist K0, K1, K2 positive constants, such that, if ‖δy − δz ‖C2∗ � K0 then

K1 |y − z| � ‖δy − δz ‖C2∗ � K2 |y − z|.

Proof. For the proof see [19], Lemmas 3.1 and 3.2. �

The following lemma will be used in proving our main result.

Lemma 3.5. Let Φε = (φε
1, φε

2) be a solution of (Fε) and consider the vector functions αi : R → R
N

defined by

αε
i (t) =

∫
pε

i (x, t) dx − miξi(t), t > 0, i = 1, 2, (3.5)

where the ξi’s are defined in (H) and the mi’s are defined in (1.17), for i = 1, 2. Then {t �→ αε
i (t)} is a

continuous function and αε
i (0) = 0, for i = 1, 2.

Remark 3.6. The integral in (3.5) defines a vector whose components are the integral of Im(φ̄ε
i ∂φε

i/
∂xj)/εN −1 for j = 1, . . . , N , so that αε

i : R → R
N .

Proof of Lemma 3.5. The continuity of αi immediately follows from the regularity properties of the
solution φε

i . In order to complete the proof, first note that, for all x ∈ R
N ,

φ̄ε
i (x, 0)∇φε

i (x, 0) =
i
ε
ξ̃ir

2
i

(
x − x̃

ε

)
+

1
ε
ri

(
x − x̃

ε

)
∇ri

(
x − x̃

ε

)
,

so that, as ri is a real function, the conclusion follows by a change of variable. �
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Lemma 3.7. Let V and W both satisfying assumptions (1.11) and let Φε = (φε
1, φε

2) be a solution
of (Fε). Moreover, let A a positive constant defined by

A = K1 sup
[0,T0]

[∣∣x1(t)
∣∣ +

∣∣x2(t)
∣∣] + K0, (3.6)

where xi(t) is defined in (H), K0 and K1 are defined in Lemma 3.4, and let χ be a C∞(RN ) function
such that 0 � χ � 1 and

χ(x) = 1 if |x| < A, χ(x) = 0 if |x| > 2A. (3.7)

Then the functions⎧⎪⎪⎨
⎪⎪⎩

ηε
1(t) = m1V

(
x1(t)

)
− 1

εN

∫
χ(x)V (x)

∣∣φε
1(x, t)

∣∣2
dx,

ηε
2(t) = m2W

(
x2(t)

)
− 1

εN

∫
χ(x)W (x)

∣∣φε
2(x, t)

∣∣2
dx

(3.8)

are continuous and satisfy |ηε
i (0)| = O(ε2) for i = 1, 2.

Proof. The continuity of ηε
i immediately follows from the regularity properties of the solution φε

i . We
will prove the conclusion only for ηε

1(0), the result for ηε
2(0) can be showed in an analogous way. We

have

∣∣ηε
1(0)

∣∣ =
∣∣∣∣m1V

(
x1(0)

)
− 1

εN

∫
χ(x)V (x)

∣∣φε
1(x, 0)

∣∣2
dx

∣∣∣∣
�

∣∣∣∣m1V (x̃) − 1
εN

∫
V (x)r2

1

(
x − x̃

ε

)
dx

∣∣∣∣ +
1

εN

∫
|x|>A

(
1 − χ(x)

)
V (x)r2

1

(
x − x̃

ε

)
dx.

Then, by Lemma 3.3, and a change of variables imply

∣∣ηε
1(0)

∣∣ � O
(
ε2) +

∫ (
1 − χ(x̃ + εy)

)
V (x̃ + εy)r2

1(y) dy.

The properties of χ and r1 and assumption (1.11) yield the conclusion. �

We will also use the following identities.

Lemma 3.8. The following identities holds for i = 1, 2.

1
εN

∂|φε
i |2

∂t
(x, t) = − divx pε

i (x, t), x ∈ R
N , t > 0. (3.9)

Moreover, for all t > 0, it results

∫
∂P ε

∂t
(x, t) dx = − 1

εN

∫
∇V (x)

∣∣φε
1(x, t)

∣∣2
dx − 1

εN

∫
∇W (x)

∣∣φε
2(x, t)

∣∣2
dx, (3.10)

where P ε(x, t) is the total momentum density defined in (1.15).
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Remark 3.9. It follows from identity (3.10) that for systems with constant potentials the total momen-
tum

∫
P ε dx is a constant of motion.

Remark 3.10. As evident from identity (3.10) as well as physically reasonable, in the case of systems
of Schrödinger equations, the balance for the momentum needs to be stated for the sum P ε instead on
the single components pε

i . See also identities (3.11) and (3.12) in the proof, where the coupling terms
appear.

Proof of Lemma 3.8. In order to prove identity (3.9) note that

− divx pε
i = − 1

εN −1
Im

(
φ̄ε

i Δφε
i

)
,

1
εN

∂|φε
i |2

∂t
=

2
εN

Re
((

φε
i

)
tφ̄

ε
i

)
.

Since φε
i solves the corresponding equation in system (Fε), we can multiply the equation by φ̄ε

i and add
this identity to its conjugate; the conclusion follows from the properties of the nonlinearity. Concerning
identity (3.10), observe first that, setting (pε

1)j(x, t) = ε1−N Im(φ̄ε
1(x, t) ∂jφ

ε
1(x, t)) for any j and ∂j =

∂xj , it holds

∂(pε
1)j

∂t
= ε1−N Im

(
∂tφ̄

ε
1 ∂jφ

ε
1

)
+ ε1−N Im

(
φ̄ε

1 ∂j
(
∂tφ

ε
1

))
= ε1−N Im

(
∂tφ̄

ε
1 ∂jφ

ε
1

)
+ ε1−N Im

(
∂j

(
φ̄ε

1 ∂tφ
ε
1

))
− ε1−N Im

(
∂jφ̄

ε
1 ∂tφ

ε
1

)
= 2ε1−N Im

(
∂tφ̄

ε
1 ∂jφ

ε
1

)
+ ε1−N Im

(
∂j

(
φ̄ε

1 ∂tφ
ε
1

))
.

In particular the second term integrates to zero. Concerning the first addendum, take the first equation of
system (Fε), conjugate it and multiply it by 2ε−N ∂jφ1. It follows

2ε1−N Im
(
∂tφ̄

ε
1 ∂jφ

ε
1

)
= −ε2−N Re

(
Δφ̄ε

1 ∂jφ
ε
1

)
+ 2ε−NV (x)Re

(
φ̄ε

1 ∂jφ
ε
1

)
− 2ε−N

∣∣φε
1

∣∣2pRe
(
φ̄ε

1 ∂jφ
ε
1

)
− 2βε−N

∣∣φε
2

∣∣p+1∣∣φε
1

∣∣p−1 Re
(
φ̄ε

1 ∂jφ
ε
1

)
= −ε2−N Re

(
∂i

(
∂iφ̄

ε
1 ∂jφ

ε
1

))
+ ε2−N ∂j

( |∂iφ
ε
1 |2

2

)

+ ε−N ∂j
(
V (x)

∣∣φε
1

∣∣2) − ε−N ∂jV (x)
∣∣φε

1

∣∣2

− ε−N ∂j

( |φε
1 |2p+2

p + 1

)
− 2βε−N

∣∣φε
2

∣∣p+1
∂j

( |φε
1 |p+1

p + 1

)
.

Of course, one can argue in a similar fashion for the second component φ2. Then, taking into account
that all the terms in the previous identity but ∂jV (x)|φε

1 |2 and |φε
2 |p+1∂j |φε

1 |p+1 integrate to zero due to
the H2 regularity of φ1, we reach

∫
∂(pε

1)j
∂t

dx = − 1
εN

∫
∂V

∂xj
(x)

∣∣φε
1

∣∣2
dx − 2β

εN

∫ ∣∣φε
2

∣∣p+1
∂j

( |φε
1 |p+1

p + 1

)
dx, (3.11)

∫
∂(pε

2)j
∂t

dx = − 1
εN

∫
∂W

∂xj
(x)

∣∣φε
2

∣∣2
dx − 2β

εN

∫
|φε

1 |p+1 ∂j

( |φε
2 |p+1

p + 1

)
dx. (3.12)



E. Montefusco et al. / Soliton dynamics for CNLS systems with potentials 75

Adding these identities for any j and taking into account that by the regularity properties of φε
i it holds∫

∂j(|φε
1 |p+1 |φε

2 |p+1) dx = 0, formula (3.10) immediately follows. �

4. Energy, mass and momentum estimates

4.1. Energy estimates in the semiclassical regime

In order to obtain the desired asymptotic behavior stated in Theorems 1.5, 1.9, 2.2 and 2.4, we will first
prove a key inequality concerning the functional E defined in (1.6). As pointed out in the Introduction, the
main ingredients involved are the conservations laws of the Schrödinger system and of the Hamiltonians
functions and a modulational stability property for admissible ground states.

The idea is to evaluate the functional E on the vector Υ ε = (vε
1 , vε

2) whose components are given by

vε
i (x, t) = e−(i/ε)ξi(t)·[εx+x1(t)]φε

i

(
εx + x1(t), t

)
, (4.1)

where X = (x1, x2), Θ = (ξ1, ξ2) are the solution of the system (H). More precisely, we will prove the
following result.

Theorem 4.1. Let Φε = (φε
1, φε

2) be a family of solutions of (Fε), and let Υ ε be the vector defined in
(4.1). Then, there exist ε0 and T ε

∗ such that for every ε ∈ (0, ε0) and for every t ∈ [0, T ε
∗ ), it holds

0 � E
(
Υ ε) − E (R) � αε + ηε + O

(
ε2), (4.2)

where we have set

αε(t) =
∣∣(ξ1(t), ξ2(t)

)
·
(
αε

1(t), αε
2(t)

)∣∣, ηε(t) =
∣∣ηε

1(t) + ηε
2(t)

∣∣, (4.3)

αi, ηi are given in (3.5), (3.8) and R = (r1, r2) is the real ground state belonging to the class R taken
as initial datum in (Fε). Moreover, there exist families of functions θε

i , yε
1 and a positive constant L such

that
∥∥∥∥Φε −

(
e(i/ε)(xξ1+θε

1 )r1

(
x − yε

1

ε

)
, e(i/ε)(xξ2+θε

2 )r2

(
x − yε

1

ε

))∥∥∥∥
2

Hε

� L
[
αε + ηε + O

(
ε2)] (4.4)

for every ε ∈ (0, ε0) and all t ∈ [0, T ε
∗ ).

Proof. By a change of variable and Proposition 3.1, we get

∥∥vε
i (·, t)

∥∥2
2 =

∥∥φε
i

(
εx + x1(t), t

)∥∥2
2 =

1
εN

∥∥φε
i (·, t)

∥∥2
2 = mi, t > 0, i = 1, 2, (4.5)

where mi are defined in (1.17). Hence the mass of vε
i is conserved during the evolution. Moreover, by a

change of variable, and recalling definition (1.16) we have

E
(
Υ ε) =

1
2εN −2

∥∥∇Φε
∥∥2

2 +
1
2

(
m1 |ξ1 |2 + m2 |ξ2 |2) − 1

εN
Fβ

(
Φε)

−
∫ (

ξ1(t), ξ2(t)
)

·
(
pε

1(x, t), pε
2(x, t)

)
dx.
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Then, taking into account the form of the total energy functional, we obtain

E
(
Υ ε) = Eε(t) − 1

εN

∫ [
V (x)

∣∣φε
1

∣∣2 + W (x)
∣∣φε

2

∣∣2]
dx +

1
2

(
m1 |ξ1 |2 + m2 |ξ2 |2)

−
∫ (

ξ1(t), ξ2(t)
)

·
(
pε

1(x, t), pε
2(x, t)

)
dx.

Moreover, using Proposition 3.1 and performing a change of variable we get

Eε(t) = Eε(0)

= Eε
(

r1

(
x − x̃

ε

)
e(i/ε)x·ξ̃1 , r2

(
x − x̃

ε

)
e(i/ε)x·ξ̃2

)

= E (R) +
1
2

(
m1 |ξ̃1 |2 + m2 |ξ̃2 |2) +

∫ [
V (εx + x̃)|r1 |2 + W (εx + x̃)|r2 |2] dx,

this joint with Lemma 3.3 and the conservation of the Hamiltonians Hi(t) yield

E
(
Υ ε) − E (R) =

1
2

[
m1

(∣∣ξ̃1(t)
∣∣2 +

∣∣ξ1(t)
∣∣2) + m2

(∣∣ξ̃2(t)
∣∣2 +

∣∣ξ2(t)
∣∣2)]

−
∫ (

ξ1(t), ξ2(t)
)

·
(
pε

1(x, t), pε
2(x, t)

)
dx

+ m1V (x̃) + m2W (x̃) − 1
εN

∫ [
V (x)

∣∣φε
1

∣∣2 + W (x)
∣∣φε

2

∣∣2]
dx

= m1
[∣∣ξ1(t)

∣∣2 + V
(
x1(t)

)]
+ m2

[∣∣ξ2(t)
∣∣2 + W

(
x2(t)

)]
−

∫ (
ξ1(t), ξ2(t)

)
·
(
pε

1(x, t), pε
2(x, t)

)
dx

− 1
εN

∫ [
V (x)

∣∣φε
1

∣∣2 + W (x)
∣∣φε

2

∣∣2]
dx + O

(
ε2).

Using the definitions of αi and ηi, we get

E
(
Υ ε) − E (R) � −

(
ξ1(t), ξ2(t)

)
·
(
αε

1(t), αε
2(t)

)
+ ηε(t)

− 1
εN

∫ (
1 − χ(x)

)[
V (x)

∣∣φε
1

∣∣2 + W (x)
∣∣φε

2

∣∣2]
dx + O

(
ε2).

Since V and W are nonnegative functions, by (4.3) it follows that

E
(
Υ ε(t)

)
− E (R) � αε(t) + ηε(t) + O

(
ε2).

Finally, (1.5) and (4.5) imply the first conclusion of Theorem 4.1, where the positive time T ε
∗ is built up

as follows. Let T0 > 0 (to be chosen later). In order to conclude the proof of the result, notice that αi(t)
and ηi(t) are continuous functions by Lemmas 3.5 and 3.7. Moreover, let ΓΥ ε(t) be the positive number
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given in (1.9) for Φ = Υ ε(t). Notice that {t �→ ΓΥ ε(t)} is continuous and, in view of the choice of the
initial data (1.3), it holds ΓΥ ε(0) = 0. Hence, for every fixed h0, h1 > 0, we can define the time T ε

∗ > 0
by

T ε
∗ := sup

{
t ∈

[
0, T 0]: max

{
αε(s), ηε(s)

}
� h0, ΓΥ ε(s) � h1, for all s ∈ (0, t)

}
. (4.6)

Notice that, by (4.2) and choosing ε0 sufficiently small we derive, for all t ∈ [0, T ε
∗ ) and ε ∈ (0, ε0), that

0 � E (Υ ε(t)) − E (R) � 3h0. Now we choose h1 so small that h1 < A, where A is the constant appearing
in the statement of the admissible ground state (see Definition (1.3)). Therefore, from conclusion (1.10),
there exists a positive constant L such that

ΓΥ ε(t) � L
(

E
(
Υ ε(t)

)
− E (R)

)
� L

[
αε(t) + ηε(t) + O

(
ε2)] (4.7)

for every t ∈ [0, T ε
∗ ) and all ε ∈ (0, ε0). In turn, there exist two families of functions ỹε(t) and θ̃ε

i (t)
i = 1, 2 such that

∥∥Υ ε(·, t) −
(
eiθ̃ε

1 (t)r1
(

· + ỹε(t)
)
, eiθ̃ε

2 (t)r2
(

· + ỹε(t)
))∥∥2

H
� L

[
αε(t) + ηε(t) + O

(
ε2)] (4.8)

for every t ∈ [0, T ε
∗ ) and all ε ∈ (0, ε0). Making a change of variable and using the notation

θε
i (t) := εθ̃ε

i (t), yε
1(t) := x1(t) − εỹε(t),

the assertion follows. �

Remark 4.2. The previous result holds for every t ∈ [0, T ε
∗ ) where T ε

∗ is found in (4.6) and T ε
∗ � T0.

But, we have not fixed T0 yet. This will be done in Lemma 4.6.

4.2. Mass and total momentum estimates

The next lemmas will be used to prove the desired asymptotic behavior. We start with the study of the
asymptotic behavior of the mass densities and the total momentum density. From now on we shall set

α̂ε(t) := αε(t) +
∣∣αε

1(t) + αε
2(t)

∣∣, t > 0.

Lemma 4.3. There exists a positive constant L1 such that

∥∥(∣∣φε
1

∣∣2
/εN dx,

∣∣φε
2

∣∣2
/εN dx

)
− (m1, m2)δyε

1 (t)
∥∥

(C2 ×C2)∗ +
∥∥P ε(t, x) dx − M (t)δyε

1 (t)
∥∥

(C2)∗

� L1
[
α̂ε(t) + ηε(t) + O

(
ε2)]

for every t ∈ [0, T ε
∗ ] and ε ∈ (0, ε0).

Remark 4.4. This result will immediately imply Theorem 1.5, once we have shown the desired asymp-
totic behavior of α̂ε(t) + ηε(t) and of the functional δyε

1
.
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Proof of Lemma 4.3. For a given v ∈ H1, a direct calculation yields

∣∣∇|v|
∣∣2 =

1
2

| ∇v|2 +
1

4|v|2

N∑
j=1

[
(vj)2(v̄)2 + (v)2(v̄j)2] = | ∇v|2 − | Im(v̄∇v)|2

|v|2
,

where vj = vxj and, in the last term, it appears the square of the modulus of the vector whose compo-
nents are Im(v̄vj). Then, we obtain

E
(
Υ ε) = E

(∣∣vε
1

∣∣, ∣∣vε
2

∣∣) +
∫ | Im(v̄ε

1 ∇vε
1)|2

|vε
1 |2

dx +
∫ | Im(v̄ε

2 ∇vε
2)|2

|vε
2 |2

dx.

In turn, using Theorem 4.1, it follows that, as ε vanishes,

0 � E
(∣∣vε

1

∣∣, ∣∣vε
2

∣∣) − E (R) +
∫ | Im(v̄ε

1 ∇vε
1)|2

|vε
1 |2

dx +
∫ | Im(v̄ε

2 ∇vε
2)|2

|vε
2 |2

dx

� αε(t) + ηε(t) + O
(
ε2).

Moreover, since ‖(|vε
1 |, |vε

2 |)‖2 = ‖(vε
1 , vε

2)‖2 = ‖R‖2, we can conclude that

∫ | Im(v̄ε
1 ∇vε

1)|2

|vε
1 |2

dx +
∫ | Im(v̄ε

2 ∇vε
2)|2

|vε
2 |2

dx � αε(t) + ηε(t) + O
(
ε2) (4.9)

for every ε ∈ (0, ε0) and for every t ∈ [0, T ε
∗ ]. Using (4.1) and (4.5), for any i = 1, 2 we get

| Im(v̄ε
i ∇vε

i )|2

|vε
i |2

=
|εIm(φ̄ε

i (εx + x1, t)∇φε
i (εx + x1, t)) − ξi|φε

i (εx + x1, t)|2 |2

|φε
i (εx + x1, t)|2

= ε2 | Im(φ̄ε
i (εx + x1, t)∇φε

i (εx + x1(t), t))|2

|φε
i (εx + x1, t)|2

+ ξ2
i

∣∣φε
i (εx + x1, t)

∣∣2

− 2εξiIm
(
φ̄ε

i (εx + x1, t)∇φε
i

(
εx + x1(t), t

))
.

Whence, performing a change of variable and using definition (1.16), we derive

∫ | Im(v̄ε
i ∇vε

i )|2

|vε
i |2

dx = εN
∫ |pε

i (x, t)|2

|φε
i |2

dx + miξ
2
i − 2ξi

∫
pε

i (x, t) dx. (4.10)

Notice that

∫ ∣∣∣∣εN/2 pε
i

|φε
i | −

∫
pε

i dx

mi

|φε
i |

εN/2

∣∣∣∣
2

dx + mi

∣∣∣∣ξi −
∫

pε
i dx

mi

∣∣∣∣
2

= εN
∫ |pε

i |2

|φε
i |2

dx − 2
mi

[∫
pε

i dx

]2

+
[
∫

pε
i ]2

∫
|φε

i |2

εNm2
i

+ miξ
2
i +

[
∫

pε
i ]2

mi
− 2ξi

∫
pε

i dx
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which, by (4.5) is equal to (4.10). In turn, (4.9) implies that

∫ ∣∣∣∣εN/2 pε
i (x, t)

|φε
i | −

∫
pε

i dx

mi

|φε
i |

εN/2

∣∣∣∣
2

+ mi

∣∣∣∣ξi −
∫

pε
i dx

mi

∣∣∣∣
2

� αε(t) + ηε(t) + O
(
ε2). (4.11)

In order to prove the assertion, we need to estimate ρε
i (t) for i = 1, 2, where

ρε
i (t) =

∣∣∣∣ 1
εN

∫
ψ(x)

∣∣φε
i

∣∣2
dx − miψ

(
yε

1

)∣∣∣∣ +
∣∣∣∣
∫

P ε(x, t)ψ(x) dx − M (t)ψ
(
yε

1

)∣∣∣∣ (4.12)

for every function ψ in C2 such that ‖ψ‖C2 � 1. From the definition of (3.5) it holds

∣∣∣∣
∫

P ε(x, t)ψ(x) dx − M (t)ψ
(
yε

1

)∣∣∣∣
�

∣∣∣∣
∫

P ε(x, t)
[
ψ(x) − ψ

(
yε

1

)]
dx

∣∣∣∣ +
∣∣∣∣ψ(

yε
1

)(∫
P ε(x, t) dx − M (t)

)∣∣∣∣
�

∣∣∣∣
∫

P ε(x, t)
[
ψ(x) − ψ

(
yε

1

)]
dx

∣∣∣∣ +
∣∣αε

1(t) + αε
2(t)

∣∣

�
2∑

i=1

1
mi

∣∣∣∣
∫

pε
i (x, t) dx

∣∣∣∣
∣∣∣∣
∫

ψ(x)|φε
i (x, t)|2

εN
dx − miψ

(
yε

1

)∣∣∣∣
+

2∑
i=1

∣∣∣∣
∫

ψ(x)
[
pε

i (x, t) − 1
mi

(∫
pε

i (x, t) dx

) |φε
i (x, t)|2

εN

]
dx

∣∣∣∣
+

∣∣αε
1(t) + αε

2(t)
∣∣ + O

(
ε2)

for every ε ∈ (0, ε0) and for every t ∈ [0, T ε
∗ ]. Taking into account that

∫
pε

i dx is uniformly bounded
and that, of course,

∫ [
pε

i (x, t) − 1
mi

(∫
pε

i (x, t) dx

) |φε
i (x, t)|2

εN

]
dx = 0,

there exists a positive constant C0 such that, if we set ψ̃(x) = ψ(x) − ψ(yε
1), it holds

ρε
i (t) � 1

εN

∫ ∣∣ψ̃(x)
∣∣∣∣φε

i (x, t)
∣∣2

dx +
2∑

i=1

C0

εN

∫ ∣∣ψ̃(x)
∣∣∣∣φε

i (x, t)
∣∣2

dx

+
2∑

i=1

∫ ∣∣ψ̃(x)
∣∣∣∣∣∣pε

i (x, t) − 1
mi

(∫
pε

i (x, t) dx

) |φε
i (x, t)|2

εN

∣∣∣∣ dx

+
∣∣αε

1(t) + αε
2(t)

∣∣ + O
(
ε2).
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From Young inequality and (4.11) it follows (from now on C0 will denote a constant that can vary from
line to line)

ρε
i (t) � 1

εN

2∑
i=1

∫ [
C0

∣∣ψ̃(x)
∣∣ +

1
2

∣∣ψ̃(x)
∣∣2

]∣∣φε
i (x, t)

∣∣2
dx

+
1
2

2∑
i=1

∫ ∣∣∣∣pε
i (x, t)εN/2

|φε
i (x, t)| − 1

mi

(∫
pε

i (x, t) dx

) |φε
i (x, t)|
εN/2

∣∣∣∣
2

+
∣∣αε

1(t) + αε
2(t)

∣∣ + O
(
ε2)

� 1
εN

2∑
i=1

∫ [
C0

∣∣ψ̃(x)
∣∣ +

1
2

∣∣ψ̃(x)
∣∣2

]∣∣φε
i (x, t)

∣∣2

+
∣∣αε

1(t) + αε
2(t)

∣∣ +
1
2

[
αε(t) + ηε(t) + O

(
ε2)].

Using the elementary inequality a2 � 2b2 + 2(a − b)2 with

a =
φε

i (x, t)
εN/2

, b =
1

εN/2
ri

(
x − yε

1

ε

)
,

and recalling that ψ̃ is a uniformly bounded function we derive

ρε
i (t) � 1

εN

2∑
i=1

∫ [
C0

∣∣ψ̃(x)
∣∣ +

∣∣ψ̃(x)
∣∣2]

r2
i

(
x − yε

1

ε

)
dx

+
C0

εN

2∑
i=1

∫ ∣∣∣∣φε
i (x, t) − ri

(
x − yε

1

ε

)∣∣∣∣
2

dx

+
∣∣αε

1(t) + αε
2(t)

∣∣ +
1
2

[
αε(t) + ηε(t) + O

(
ε2)]

for every ε ∈ (0, ε0) and for every t ∈ [0, T ε
∗ ]. Notice that ψ̃ satisfies the hypothesis of Lemma 3.3 and

ψ̃(yε
1) = 0, then by virtue of inequality (4.4) we obtain the conclusion. �

4.3. Location estimates for yε
1

In the next results we start the study of the asymptotic behavior of yε
1 .

Lemma 4.5. Let us define the function

γε(t) =
∣∣γε

1 (t)
∣∣ +

∣∣γε
2 (t)

∣∣, with γε
i (t) = mixi(t) − 1

εN

∫
xχ(x)

∣∣φε
i (x, t)

∣∣2
dx, (4.13)

where χ(x) is the characteristic function defined in (3.7). Then γε
i (t) is a continuous function with respect

to t and |γε
i (0)| = O(ε2) for i = 1, 2.
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Proof. The continuity of γε immediately follows from the properties of the functions χ and φε
i . In order

to complete the proof, note that Lemma 3.3 implies

∣∣γε
i (0)

∣∣ =
∣∣∣∣mix̃ −

∫
(x̃ + εy)χ(x̃ + εy)

∣∣ri(y)
∣∣2

dy

∣∣∣∣ � C0ε
2 +

∣∣mix̃ − x̃χ(x̃)‖ri‖2
L2

∣∣
and as χ(x̃) = 1 we reach the conclusion. �

Lemma 4.6. Let T ε
∗ be the time introduced in (4.6). There exist positive constants h0 and ε0 such that,

if |ηε
i | � h0 and ε ∈ (0, ε0) there is a positive constant L2 such that

∣∣x1(t) − yε
1(t)

∣∣ � L2
[
α̂ε(t) + ηε(t) + γε(t) + O

(
ε2)]

for every t ∈ [0, T ε
∗ ].

Proof. First we show that there exist T0 > 0 and B > 0 such that

∣∣yε
1(t)

∣∣ � B (4.14)

for every t ∈ [0, T ε
∗ ] with T ε

∗ � T0. Let us first prove that

‖δyε
1 (t2) − δyε

1 (t1) ‖C2∗ < B for all t1, t2 ∈
[
0, T ε

∗
]
.

Let ψ ∈ C2 with ‖ψ‖C2 � 1 and pick t1, t2 ∈ [0, T ε
∗ ] with t2 > t1. From identity (3.9) and integrating

by parts, we obtain

1
εN

∫
ψ(x)

(∣∣φε
i (x, t2)

∣∣2 −
∣∣φε

i (x, t1)
∣∣2)

dx =
1

εN

∫ t2

t1

dt

∫
ψ(x)

∂|φε
i (x, t)|2

∂t
dx

= −
∫ t2

t1

dt

∫
ψ(x) div pε

i (x, t) dx

� ‖∇ψ‖∞

∫ t2

t1

dt

∫ ∣∣pε
i (x, t)

∣∣ dx.

It is readily seen from the L2 estimate of ∇φε
i that the last integral on the right-hand side is uniformly

bounded, so that there exists a positive constant C0 such that

∥∥∣∣φε
i (x, t2)

∣∣2
/εN dx −

∣∣φε
i (x, t1)

∣∣2
/εN dx‖C2∗ � C0 |t2 − t1 | � C1T0,

with C1 = 2C0. Then Lemmas 4.3, 3.5, 3.7 and 4.5 imply that the following inequality holds for suffi-
ciently small ε and h0 (the quantity αε should be replaced by α̂ε in the definition of T ε

∗ )

m1 ‖δyε
1 (t2) − δyε

1 (t1) ‖C2∗ � C1T0 + L
[
α̂ε(t2) + ηε(t2) + α̂ε(t1) + ηε(t1) + O

(
ε2)]

� C1
[
T0 + O

(
ε2) + h0

]
.
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Here we fix T0 and then ε0, h0 so small that C1[T0 + O(ε2)+h0] < MK0 where K0 is the constant fixed
in Lemma 3.4 and from this lemma it follows∣∣yε

1(t2) − yε
1(t1)

∣∣ � C2K0

for every t1, t2 � T0, and since yε
1(0) = x̃ we obtain (4.14) for B = C2K0 + |x̃|. In view of prop-

erty (4.14) we can now prove the assertion. Let us first observe that the properties of the function χ
imply

∣∣x1(t) − yε
1(t)

∣∣ =
1

m1

∣∣m1x1(t) − m1y
ε
1(t)

∣∣
� 1

m1

∣∣γε
1 (t)

∣∣ +
1

m1

∣∣∣∣
∫

1
εN

xχ(x)
∣∣φε

1(x, t)
∣∣2 − m1y

ε
1(t)

∣∣∣∣.
Using (4.14) and (3.7) we obtain that χ(yε

1) = 1, so that there exists a positive constant C0 such that

∣∣x1(t) − yε
1(t)

∣∣ � C0 ‖xχ‖C2

∥∥∣∣φε
1

∣∣2
/εN dx − miδyε

1

∥∥
C2∗ + C0γ

ε(t).

This and Lemma 4.3 give the conclusion. �

In the previous lemma we have fixed T0 such that also Lemma 4.3 and Theorem 4.1 hold and now we
are able to prove Theorem 2.2.

Proof of Theorem 2.2. We start the proof from the second conclusion of Theorem 4.1. By Theorem 4.1,
the family of continuous functions �ε : R

+ → R,

�ε(t) = L̂
[
α̂ε(t) + ηε(t) + γε(t)

]
, L̂ = max{L, L1, L2}, (4.15)

is such that �ε(0) = O(ε2) and it satisfies

∥∥∥∥Φε −
(

e(i/ε)(xξ1+θε
1 )r1

(
x − yε

1

ε

)
, e(i/ε)(xξ2+θε

2 )r2

(
x − yε

1

ε

))∥∥∥∥
2

Hε

� �ε(t). (4.16)

Moreover, Lemma 4.6 implies |εỹε| = |x1 − yε
1 | � �ε(t), so that |ỹε| = �ε(t)

ε . Also,

∥∥ri(·) − ri
(

· − ỹε)∥∥2
H1 �

∣∣ỹε
∣∣2 ‖∇ri‖2

H1 � C

(
�ε(t)

ε

)2

for all i = 1, 2.

Then∥∥∥∥Φε −
(

e(i/ε)(x·ξ1+θε
1 )r1

(
x − x1(t)

ε

)
, e(i/ε)(x·ξ2+θε

2 )r2

(
x − x1(t)

ε

))∥∥∥∥
2

Hε

� �̃ε(t),

where we have set

�̃ε(t) = �ε(t) + C
(
�ε(t)/ε

)2
.

Since �̃ε(0) = O(ε2), the assertion follows. �
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Proof of Theorem 2.4. In view of definition (4.15), the assertion immediately follows by combining
Lemmas 4.3, 4.6 and 3.4. �

4.4. Smallness estimates for α̂ε, ηε, γε

In the next lemma, under the assumptions of Theorem 1.5, we complete the study of the asymptotic
behaviour of system (Sε) by obtaining the vanishing rate of the functions α̂ε, ηε and γε as ε vanishes.
The time T0 is the one chosen in the proof of Lemma 4.6.

Lemma 4.7. Consider the framework of Theorem 1.5, that is V = W and ξ̃1 = ξ̃2 = ξ̃. Then there
exists a positive constant L̄ such that

α̂ε(t) + ηε(t) + γε(t) � L̄
(
T 0)ε2 for every t ∈ [0, T0].

Proof. By the definition of αε(t) (see formula (4.3)) and taking into account that under the assumptions
of Theorem 1.5 it holds ξ1 = ξ2 = ξ (with respect to the notations of Theorem 4.1), there exists a
positive constant C such that, for t > 0,

α̂ε(t) = αε(t) +
∣∣αε

1(t) + αε
2(t)

∣∣ �
(
1 +

∣∣ξ(t)
∣∣)∣∣αε

1(t) + αε
2(t)

∣∣ � C
∣∣αε

1(t) + αε
2(t)

∣∣.
Hence, without loss of generality, we can replace in the previous theorems (in particular Theorem 1.5)
the quantities αε(t) and α̂ε(t) with the absolute value |αε

1(t) + αε
2(t)|. In a similar fashion, it is possible

to replace the quantity γε(t) defined in formula (4.13) with the value |γε
1 (t) + γε

2 (t)|. We will prove the
desired assertion via Gronwall lemma, so that we will first show that there exists a positive constant L̄
such that, for all t ∈ [0, T ε

∗ ],

α̂ε(t) � O
(
ε2) + L̄

∫ t

0

[
α̂ε(t) + ηε(t) + γε(t)

]
dt, (4.17)

ηε(t) � O
(
ε2) + L̄

∫ t

0

[
α̂ε(t) + ηε(t) + γε(t)

]
dt, (4.18)

γε(t) � O
(
ε2) + L̄

∫ t

0

[
α̂ε(t) + ηε(t) + γε(t)

]
dt. (4.19)

Now, identity (3.10) of Lemma 3.8 yield

∣∣∣∣ d
dt

(
αε

1 + αε
2

)
(t)

∣∣∣∣ � ‖∇V ‖C2

∥∥∣∣φε
1

∣∣2
/εN − m1δx(t)

∥∥
C2∗ + ‖∇V ‖C2

∥∥∣∣φε
2

∣∣2
/εN − m2δx(t)

∥∥
C2∗ .

Hence, using Lemmas 4.3 and 4.6 one obtains, for all t ∈ [0, T ε
∗ ],

∣∣∣∣ d
dt

(
αε

1 + αε
2

)
(t)

∣∣∣∣ � L1
[
α̂ε + ηε + γε + O

(
ε2)]

for some positive constant A1, yielding inequality (4.17). As far as concern ηε, using (3.9) and Lem-
mas 4.3 and 4.6 one has for t ∈ [0, T ε

∗ ] that there exists a positive constant A2 such that, for all
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t ∈ [0, T ε
∗ ],

∣∣∣∣ d
dt

(
ηε

1 + ηε
2

)
(t)

∣∣∣∣ �
∣∣∣∣m1 ∇V

(
x(t)

)
· ξ(t) + m2 ∇V

(
x(t)

)
· ξ(t)

+
∫

χ(x)V (x) divx pε
1(x, t) +

∫
χ(x)V (x) divx pε

2(x, t)
∣∣∣∣

=
∣∣∣∣
∫ [

∇(χV )
(
pε

1 + pε
2

)
(x, t) − ∇V

(
x(t)

)
·
(
m1ξ(t) + m2ξ(t)

)]
dx

∣∣∣∣
�

∥∥∇(χV )
∥∥

C2

∥∥P ε(x, t) dx − M (t)δx(t)
∥∥

C2∗

� A2
[
α̂ε + ηε + γε + O

(
ε2)].

Let us now come to γε. By the properties of the function χ, identity (3.9), Lemmas 4.3 and 4.6 it follows
that there exists a positive constant A3 such that, for all t ∈ [0, T ε

∗ ],

∣∣∣∣ d
dt

(
γε

1 + γε
2

)
(t)

∣∣∣∣ =
∣∣∣∣
∫ [

∇(xχ) · pε
1(x, t) + ∇(xχ) · pε

2(x, t)
]

dx − m1ξ(t) − m2ξ(t)
∣∣∣∣

=
∣∣∣∣
∫ [

∇(xχ) · P ε(x, t) − ∇(xχ) · M (t)δx(t)
]

dx

∣∣∣∣
�

∥∥∇(xχ)
∥∥

C2

∥∥P ε(x, t) dx − M (t)δx(t)
∥∥

C2∗

� A3
[
α̂ε + ηε + γε + O

(
ε2)].

Then inequalities (4.17)–(4.19) immediately follow from Lemmas 3.5, 3.7 and 4.5. The conclusion on
[0, T ε

∗ ] is now a simple consequence of the Gronwall lemma over [0, T ε
∗ ]. By the definition of T ε

∗ and the
continuity of αε, α̂ε and ηε we have that T ε

∗ = T0 provided ε is chosen sufficiently small. To have this,
one also has to take into account that, by construction (cf. formula (4.7)) and by the uniform smallness
inequalities that we have just obtained over [0, T ε

∗ ], we reach

ΓΥ ε(t) � L
[
αε(t) + ηε(t) + O

(
ε2)] � O

(
ε2) for all t ∈

[
0, T ε

∗
]
. �

�

5. Proofs of the main results

Proof of Theorem 1.5. In light of Lemma 4.7 we have �ε(t), �̃ε(t) � L̄ε2 for any t ∈ [0, T0]. Hence, the
conclusions hold in [0, T0] as a direct consequence of Theorem 2.2. Finally, taking as new initial data

φ0
i (x) := ri

(
x − x(T0)

ε

)
e(i/ε)x·ξ(T0),

and taking as a new a guiding Hamiltonian system

⎧⎨
⎩

˙̄x(t) = ξ̄(t),
˙̄ξ(t) = − ∇V

(
x̄(t)

)
,

x̄(0) = x(T0), ξ̄(0) = ξ(T0),
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the assertion is valid over [T0, 2T0]. Reiterating (T0 only depends on the problem) the argument yields
the assertion locally uniformly in time. �

Proof of Theorem 1.9. Combining definition (4.15) with the assertions of Lemmas 4.3 and 4.7, we
obtain the property over the interval [0, T0]. Then we can argue as in the proof of Theorem 1.5 to achieve
the conclusion locally uniformly in time. �
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