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Abstract We obtain nontrivial solutions to the Brezis–Nirenberg problem for the fractional
p-Laplacian operator, extending some results in the literature for the fractional Laplacian.
The quasilinear case presents two serious new difficulties. First an explicit formula for a
minimizer in the fractional Sobolev inequality is not available when p �= 2. We get around
this difficulty by working with certain asymptotic estimates for minimizers recently obtained
in (Brasco et al., Cal. Var. Partial Differ Equations 55:23, 2016). The second difficulty is
the lack of a direct sum decomposition suitable for applying the classical linking theorem.
We use an abstract linking theorem based on the cohomological index proved in (Yang and
Perera, Ann. Sci. Norm. Super. Pisa Cl. Sci. doi:10.2422/2036-2145.201406_004, 2016) to
overcome this difficulty.
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1 Introduction and main result

For 1 < p < ∞, s ∈ (0, 1), and N > sp, the fractional p-Laplacian (−�)sp is the nonlinear
nonlocal operator defined on smooth functions by

(−�)sp u(x) = 2 lim
ε↘0

∫
Bε(x)c

|u(x) − u(y)|p−2 (u(x) − u(y))

|x − y|N+sp
dy, x ∈ R

N .

This definition is consistent, up to a normalization constant depending on N and s, with
the usual definition of the linear fractional Laplacian operator (−�)s when p = 2. There
is, currently, a rapidly growing literature on problems involving these nonlocal operators. In
particular, fractional p-eigenvalue problems have been studied in Brasco et al. [7], Brasco
and Parini [6], Franzina and Palatucci [21], Iannizzotto and Squassina [30], and Lindgren
and Lindqvist [35]. Regularity of solutions was obtained in Brasco and Lindgren [5], Di
Castro et al. [16,17], Iannizzotto et al. [29], Kuusi et al. [32], and Lindgren [34]. Existence
via Morse theory was investigated in Iannizzotto et al. [28]. This operator appears in some
recent works, see [2,31] as well as [9] for the motivations, that led to its introduction.

Let � be a bounded domain in R
N with Lipschitz boundary. We consider the problem

{
(−�)sp u = λ |u|p−2 u + |u|p∗

s −2 u in �

u = 0 in R
N\�,

(1.1)

where λ > 0 and p∗
s = Np/(N − sp) is the fractional critical Sobolev exponent. Let us

recall the weak formulation of problem (1.1). Let

[u]s,p =
(∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

be the Gagliardo seminorm of a measurable function u : RN → R, and let

Ws,p(RN ) =
{
u ∈ L p(RN ) : [u]s,p < ∞

}

be the fractional Sobolev space endowed with the norm

‖u‖s,p = ( |u|pp + [u]ps,p
)1/p

,

where |·|p is the norm in L p(RN ). We work in the closed linear subspace

Ws,p
0 (�) =

{
u ∈ Ws,p(RN ) : u = 0 a.e. in R

N\�
}

,

equivalently renormed by setting ‖·‖ = [·]s,p , which is a uniformly convex Banach space. The
imbedding Ws,p

0 (�) ↪→ Lr (�) is continuous for r ∈ [1, p∗
s ] and compact for r ∈ [1, p∗

s ).
A function u ∈ Ws,p

0 (�) is a weak solution of problem (1.1) if

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))

|x − y|N+sp
dxdy = λ

∫
�

|u|p−2 uv dx

+
∫

�

|u|p∗
s −2 uv dx, ∀v ∈ Ws,p

0 (�).

See [28] and the references therein for further details for this framework. In the semilinear
case p = 2 problem (1.1) reduces to the critical fractional Laplacian problem
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{
(−�)s u = λu + |u|2∗

s−2 u in �

u = 0 in R
N\�,

(1.2)

where λ > 0 and 2∗
s = 2N/(N − 2s). This nonlocal problem generalizes the well-known

Brezis–Nirenberg problem, which has been extensively studied beginning with the seminal
paper [8] (see, e.g., [1,10–13,18,22,24–27,45–47,49] and references therein). Consequently,
many results known in the local case s = 1 have been extended to problem (1.2). In particular,
Servadei [41,42] and Servadei and Valdinoci [43,44] have shown that problem (1.2) has a
nontrivial weak solution in the following cases:

(i) 2s < N < 4s and λ is sufficiently large;
(ii) N = 4s and λ is not an eigenvalue of (−�)s in �;

(iii) N > 4s.

This extends to the fractional setting some well-known results of Brezis and Nirenberg [8],
Capozzi et al. [10], Zhang [49], and Gazzola and Ruf [24] for critical Laplacian problems.
In the present paper we consider the quasilinear case p �= 2 of problem (1.1). This presents
us with two serious new difficulties. Let

Ẇ s,p(RN ) =
{
u ∈ L p∗

s (RN ) : [u]s,p < ∞
}

endowed with the norm ‖ · ‖ = [·], and let

S = inf
u∈Ẇ s,p(RN )\{0}

‖u‖p

|u|pp∗
s

, (1.3)

which is positive by the fractional Sobolev inequality. Our first major difficulty is the lack of
an explicit formula for a minimizer for S. It has been conjectured that all minimizers are of
the form cU (|x − x0|/ε), where

U (x) = 1(
1 + |x |p′)(N−sp)/p

, x ∈ R
N ,

p′ = p/(p − 1) is the Hölder conjugate of p, c �= 0, x0 ∈ R
N , and ε > 0. This has been

proved in Lieb [33] for p = 2, but for p �= 2 it is not even known if these functions are
minimizers. We will get around this difficulty by working with certain asymptotic estimates
for minimizers recently obtained in Brasco et al. [4].

Our second main difficulty, which is common to nonlinear eigenvalue problems, is that the
linking arguments based on eigenspaces of (−�)s used in the case p = 2 do not work when
p �= 2 since the nonlinear operator (−�)sp does not have linear eigenspaces. We will use a
more general construction based on sublevel sets as in Perera and Szulkin [39] (see also Perera
et al. [37, Proposition 3.23]). A similar construction based on the notion of cohomological
linking was used in Degiovanni and Lancelotti [15]. Moreover, the standard sequence of
variational eigenvalues of (−�)sp based on the genus does not give enough information
about the structure of the sublevel sets to carry out this linking construction. Therefore we
will use a different sequence of eigenvalues introduced in Iannizzotto et al. [28] that is based
on the Z2-cohomological index of Fadell and Rabinowitz [20].

Let us recall the definition of the cohomological index. Let W be a Banach space and let
A denote the class of symmetric subsets of W\{0}. For A ∈ A, let A = A/Z2 be the quotient
space of A with each u and −u identified, let f : A → RP∞ be the classifying map of A,
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and let f ∗ : H∗(RP∞) → H∗(A) be the induced homomorphism of the Alexander-Spanier
cohomology rings. The cohomological index of A is defined by

i(A) =
{

sup
{
m ≥ 1 : f ∗(ωm−1) �= 0

}
, if A �= ∅

0, if A = ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z2[ω].
Example 1.1 The classifying map of the unit sphere Sm−1 in R

m, m ≥ 1 is the inclusion
RPm−1 ⊂ RP∞, which induces isomorphisms on the cohomology groups Hq for q ≤ m−1,
so i(Sm−1) = m.

The following proposition summarizes the basic properties of this index.

Proposition 1.2 (Fadell-Rabinowitz [20]) The index i : A → N∪ {0,∞} has the following
properties:

(i1) Definiteness: i(A) = 0 if and only if A = ∅;
(i2) Monotonicity: If there is an odd continuousmap from A to B (in particular, if A ⊂ B),
then i(A) ≤ i(B). Thus, equality holds when the map is an odd homeomorphism;
(i3) Dimension: i(A) ≤ dim W;
(i4) Continuity: If A is closed, then there is a closed neighborhood N ∈ A of A such
that i(N ) = i(A). When A is compact, N may be chosen to be a δ-neighborhood
Nδ(A) = {u ∈ W : dist (u, A) ≤ δ};
(i5) Subadditivity: If A and B are closed, then i(A ∪ B) ≤ i(A) + i(B);
(i6) Stability: If SA is the suspension of A �= ∅, obtained as the quotient space of
A × [−1, 1] with A × {1} and A × {−1} collapsed to different points, then i(SA) =
i(A) + 1;
(i7) Piercing property: If A, A0 and A1 are closed, and ϕ : A × [0, 1] → A0 ∪ A1 is a
continuousmap such that ϕ(−u, t) = −ϕ(u, t) for all (u, t) ∈ A×[0, 1], ϕ(A×[0, 1]) is
closed, ϕ(A×{0}) ⊂ A0 and ϕ(A×{1}) ⊂ A1, then i(ϕ(A×[0, 1])∩ A0 ∩ A1) ≥ i(A);
(i8) Neighborhood of zero: If U is a bounded closed symmetric neighborhood of 0, then
i(∂U ) = dim W.

The Dirichlet spectrum of (−�)sp in � consists of those λ ∈ R for which the problem
{

(−�)sp u = λ |u|p−2 u in �

u = 0 in R
N\� (1.4)

has a nontrivial weak solution. Although a complete description of the spectrum is not known
when p �= 2, we can define an increasing and unbounded sequence of variational eigenvalues
via a suitable minimax scheme. The standard scheme based on the genus does not give the
index information necessary for our purposes here, so we will use the following scheme
based on the cohomological index as in Iannizzotto et al. [28] (see also Perera [36]). Let

�(u) = 1

|u|pp
, u ∈ M = {

u ∈ Ws,p
0 (�) : ‖u‖ = 1

}
.

Then eigenvalues of problem (1.4) coincide with critical values of �. We use the standard
notation

�a = {u ∈ M : �(u) ≤ a} , �a = {u ∈ M : �(u) ≥ a} , a ∈ R
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for the sublevel sets and superlevel sets, respectively. Let F denote the class of symmetric
subsets of M, and set

λk := inf
M∈F, i(M)≥k

sup
u∈M

�(u), k ∈ N.

Then 0 < λ1 < λ2 ≤ λ3 ≤ · · · → +∞ is a sequence of eigenvalues of problem (1.4), and

λk < λk+1 �⇒ i(�λk ) = i(M\�λk+1) = k (1.5)

(see Iannizzotto et al. [28, Proposition 2.4]). The asymptotic behavior of these eigenvalues
was recently studied in Iannizzotto and Squassina [30]. Making essential use of the index
information in (1.5), we will prove the following theorem.

Theorem 1.3 (Nonlocal Brezis–Nirenberg problem) Let 1 < p < ∞, s ∈ (0, 1), N > sp,
and λ > 0. Then problem (1.1) has a nontrivial weak solution in the following cases:

(i) N = sp2 and λ < λ1;
(ii) N > sp2 and λ is not one of the eigenvalues λk;

(iii) N 2/(N + s) > sp2;
(iv) (N 3 + s3 p3)/N (N + s) > sp2 and ∂� ∈ C1,1.

This theorem extends to the fractional setting some well-known results of García Azorero
and Peral Alonso [23], Egnell [19], Guedda and Véron [27], Arioli and Gazzola [3], and
Degiovanni and Lancelotti [15] for critical p-Laplacian problems.

Weak solutions of problem (1.1) coincide with critical points of the C1-functional

Iλ(u) = 1

p
‖u‖p − λ

p
|u|pp − 1

p∗
s

|u|p∗
s

p∗
s
, u ∈ Ws,p

0 (�). (1.6)

Proof of Theorem 1.3 will be based on the following abstract critical point theorem proved
in Yang and Perera (cf. [48, Theorem 2.2]).

Theorem 1.4 Let W be a Banach space, let S = {u ∈ W : ‖u‖ = 1} be the unit sphere in
W, and let π : W\ {0} → S, u �→ u/ ‖u‖ be the radial projection onto S. Let I be a
C1-functional on W and let A0 and B0 be disjoint nonempty closed symmetric subsets of S
such that

i(A0) = i(S\B0) < ∞.

Assume that there exist R > r > 0 and v ∈ S\A0 such that

sup I (A) ≤ inf I (B), sup I (X) < ∞,

where

A = {tu : u ∈ A0, 0 ≤ t ≤ R} ∪ {R π((1 − t) u + tv) : u ∈ A0, 0 ≤ t ≤ 1} ,

B = {ru : u ∈ B0} ,

X = {tu : u ∈ A, ‖u‖ = R, 0 ≤ t ≤ 1} .

Let  = {
γ ∈ C(X,W ) : γ (X) is closed and γ |A = id A

}
, and set

c := inf
γ∈

sup
u∈γ (X)

I (u).

Then
inf I (B) ≤ c ≤ sup I (X), (1.7)
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in particular, c is finite. If, in addition, I satisfies the (PS)c condition, then c is a critical
value of I .

Theorem 1.4 generalizes the linking theorem of Rabinowitz [40]. The linking construction
in its proof was also used in Perera and Szulkin [39] to obtain nontrivial solutions of p-
Laplacian problems with nonlinearities that interact with the spectrum. A similar construction
based on the notion of cohomological linking was given in Degiovanni and Lancelotti [14].
See also Perera et al. [37, Proposition 3.23].

The following compactness result, proved in Perera et al. [38, Proposition 3.1], will be
crucial for applying Theorem 1.4 to our functional Iλ.

Proposition 1.5 Let 1 < p < ∞, s ∈ (0, 1), N > sp, and let S be as in (1.3). Then for any

λ ∈ R, Iλ satisfies the (PS)c condition for all c <
s

N
SN/sp.

Notations We use the following notations throughout the paper. For a ∈ R and q > 0, we
write aq = |a|q−1 a. For 1 ≤ q ≤ ∞, |·|q denotes the norm in Lq(�) and

q ′ =

⎧⎪⎨
⎪⎩

∞, if q = 1

q/(q − 1), if 1 < q < ∞
1, if q = ∞

is the Hölder conjugate of q .

2 Preliminaries

2.1 Minimizers for the Sobolev inequality

We have the following proposition from Brasco et al. [4] regarding the minimization problem
(1.3).

Proposition 2.1 Let 1 < p < ∞, s ∈ (0, 1), N > sp, and let S be as in (1.3). Then

(i) There exists a minimizer for S;
(ii) For every minimizer U, there exist x0 ∈ R

N and a constant sign monotone function
u : R → R such that U (x) = u(|x − x0|);

(iii) For every minimizer U, there exists λU > 0 such that
∫
R2N

(U (x) −U (y))p−1 (v(x) − v(y))

|x − y|N+sp
dxdy = λU

∫
RN

U p∗
s −1 v dx ∀v ∈ Ẇ s,p(RN ).

In the following, we shall fix a radially symmetric nonnegative decreasing minimizer
U = U (r) for S. Multiplying U by a positive constant if necessary, we may assume that

(−�)sp U = U p∗
s −1. (2.1)

Testing this equation with U and using (1.3) shows that

‖U‖p = |U |p∗
s

p∗
s

= SN/sp. (2.2)

For any ε > 0, the function

Uε(x) = 1

ε(N−sp)/p
U

( |x |
ε

)
(2.3)
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is also a minimizer for S satisfying (2.1) and (2.2), so after a rescaling we may assume that
U (0) = 1. Henceforth, U will denote such a normalized (with respect to constant multiples
and rescaling) minimizer and Uε will denote the associated family of minimizers given by
(2.3). In the absence of an explicit formula for U , we will use the following asymptotic
estimates.

Lemma 2.2 There exist constants c1, c2 > 0 and θ > 1 such that for all r ≥ 1,

c1

r (N−sp)/(p−1)
≤ U (r) ≤ c2

r (N−sp)/(p−1)
(2.4)

and
U (θ r)

U (r)
≤ 1

2
. (2.5)

Proof The inequalities in (2.4) were proved in Brasco et al. [4]. They imply

U (θ r)

U (r)
≤ c2

c1

1

θ(N−sp)/(p−1)
,

and (2.5) follows for sufficiently large θ . ��
2.2 Regularity estimates

Weak solutions of the equation (−�)sp u = f (x) enjoy the natural Lq -estimates given in the
following lemma.

Lemma 2.3 Let f ∈ Lq(�), 1 < q ≤ ∞ and let u ∈ Ws,p
0 (�) be a weak solution of

(−�)sp u = f in �. Then

|u|r ≤ C | f |1/(p−1)
q , (2.6)

where

r =

⎧⎪⎨
⎪⎩

N (p − 1) q

N − spq
, if 1 < q <

N

sp

∞, if
N

sp
< q ≤ ∞

and C = C(N ,�, p, s, q) > 0. In particular, if f ∈ L∞(�), then

|u|∞ ≤ C | f |1/(p−1)∞ .

Proof For k > 0, t ∈ R, and α > 0, set tk = max {−k, min {t, k}} and consider the
nondecreasing function g(t) = tαk . Using Brasco and Parini [6, Lemma A.2] and testing the
equation (−�)sp u = f with g(u) ∈ Ws,p

0 (�) gives

‖G(u)‖p ≤
∫
R2N

(u(x)−u(y))p−1 (g(u(x))−g(u(y)))

|x−y|N+sp
dxdy=

∫
�

f (x) g(u(x)) dx,

where

G(t) =
∫ t

0
g′(τ )1/p dτ = α1/p p

α + p − 1
t (α+p−1)/p
k .

Using the Sobolev inequality on the left and the Hölder inequality on the right we get
∣∣u(α+p−1)/p

k

∣∣p
p∗
s

≤ C | f |q
∣∣uα

k

∣∣
q ′ . (2.7)
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If 1 < q < N/sp, take

α = (p − 1) p∗
s

pq ′ − p∗
s

= N (p − 1) (q − 1)

N − spq
> 0,

so that

α + p − 1

p
p∗
s = α q ′ =: r.

Then r = N (p − 1) q/(N − spq) and (2.7) gives

|uk |pr/p
∗
s

r ≤ C | f |q |uk |r/q
′

r ,

so

|uk |r ≤ C | f |1/(p−1)
q .

Letting k → +∞ gives (2.6) for this case. If N/sp < q ≤ ∞, then (2.6) follows from
Brasco and Parini [6, Theorem 3.1]. ��

We also have the following Caccioppoli-type inequality.

Lemma 2.4 Let f ∈ Lq(�), 1 < q ≤ ∞ and let u ∈ Ws,p
0 (�) be a weak solution of

(−�)sp u = f in �. If u |ϕ|p ∈ Ws,p
0 (�), then

∫
R2N

|u(x) − u(y)|p |ϕ(x)|p
|x − y|N+sp

dxdy ≤ 2
∫

�

f (x) u(x) |ϕ(x)|p dx

+ C
∫
R2N

|u(y)|p |ϕ(x) − ϕ(y)|p
|x − y|N+sp

dxdy, (2.8)

where C = C(p) > 0.

Proof Testing the equation (−�)sp u = f with u |ϕ|p gives

∫
�

f (x) u(x) |ϕ(x)|p dx

=
∫
R2N

(u(x) − u(y))p−1 (u(x) |ϕ(x)|p − u(y) |ϕ(y)|p)
|x − y|N+sp

dxdy

=
∫
R2N

|u(x) − u(y)|p |ϕ(x)|p
|x − y|N+sp

dxdy

+
∫
R2N

(u(x) − u(y))p−1 u(y) (|ϕ(x)|p − |ϕ(y)|p)
|x − y|N+sp

dxdy. (2.9)
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By the elementary inequality ||a|p−|b|p| ≤ p |a−b| (|a|p−1 +|b|p−1) valid for all a, b ∈ R

and the Young’s inequality,

−
∫
R2N

(u(x) − u(y))p−1 u(y) (|ϕ(x)|p − |ϕ(y)|p)
|x − y|N+sp

dxdy

≤ p
∫
R2N

|u(x) − u(y)|p−1 |u(y)| |ϕ(x) − ϕ(y)| (|ϕ(x)|p−1 + |ϕ(y)|p−1)

|x − y|N+sp
dxdy

≤ 1

4

∫
R2N

|u(x) − u(y)|p (|ϕ(x)|p + |ϕ(y)|p)
|x − y|N+sp

dxdy

+ C
∫
R2N

|u(y)|p |ϕ(x) − ϕ(y)|p
|x − y|N+sp

dxdy

= 1

2

∫
R2N

|u(x) − u(y)|p |ϕ(x)|p
|x − y|N+sp

dxdy + C
∫
R2N

|u(y)|p |ϕ(x) − ϕ(y)|p
|x − y|N+sp

dxdy.

Combining this with (2.9) gives (2.8). ��
As a consequence of Lemmas 2.3 and 2.4, we have the following lemma.

Lemma 2.5 Let f ∈ Lq(�), N/sp < q ≤ ∞ and let u ∈ Ws,p
0 (�) be a weak solution of

(−�)sp u = f (x) in �. Then

‖uϕ‖p ≤ C | f |p/(p−1)
q

(
|ϕ|ppq ′ + ‖ϕ‖p

)
∀ϕ ∈ L pq ′

(�) ∩ Ws,p
0 (�), (2.10)

where C = C(N ,�, p, s, q) > 0.

Proof Setting tk = max {−k, min {t, k}} for k > 0 and t ∈ R, noting that u |ϕk |p ∈ Ws,p
0 (�),

and applying Lemma 2.4 gives∫
R2N

|u(x) − u(y)|p |ϕk(x)|p
|x − y|N+sp

dxdy ≤ 2
∫

�

f (x) u(x) |ϕk(x)|p dx

+ C
∫
R2N

|u(y)|p |ϕk(x) − ϕk(y)|p
|x − y|N+sp

dxdy. (2.11)

Since N/sp < q ≤ ∞,
|u|∞ ≤ C | f |1/(p−1)

q (2.12)

by Lemma 2.3. By (2.11), (2.12), and the Hölder inequality,∫
R2N

|u(x) − u(y)|p |ϕk(x)|p
|x − y|N+sp

dxdy ≤ C | f |p/(p−1)
q

(
|ϕk |ppq ′ + ‖ϕk‖p

)

≤ C | f |p/(p−1)
q

(
|ϕ|ppq ′ + ‖ϕ‖p

)
,

and letting k → +∞ gives∫
R2N

|u(x) − u(y)|p |ϕ(x)|p
|x − y|N+sp

dxdy ≤ C | f |p/(p−1)
q

(
|ϕ|ppq ′ + ‖ϕ‖p

)
. (2.13)

Since∫
R2N

|u(x) ϕ(x) − u(y) ϕ(y)|p
|x − y|N+sp

dxdy ≤ C

(∫
R2N

|u(x) − u(y)|p |ϕ(x)|p
|x − y|N+sp

dxdy

+
∫
R2N

|u(y)|p |ϕ(x) − ϕ(y)|p
|x − y|N+sp

dxdy

)
,
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(2.10) readily follows from (2.13) and (2.12). ��
Now let θ be as in Lemma 2.2, let η ∈ C∞(RN , [0, 1]) be such that

η(x) =
{

0, if |x | ≤ 2θ

1, if |x | ≥ 3θ,

and let ηδ(x) = η
( x

δ

)
for δ > 0.

Lemma 2.6 Assume that 0 ∈ �. Then there exists a constant C = C(N ,�, p, s) > 0 such
that for any v ∈ Ws,p

0 (�) such that (−�)sp v ∈ L∞(�) and δ > 0 such that B5θδ(0) ⊂ �,

‖vηδ‖p ≤ ‖v‖p + C
∣∣∣(−�)sp v

∣∣∣p/(p−1)

∞ δN−sp.

Proof We have

‖vηδ‖p ≤
∫
A1

|v(x) − v(y)|p
|x − y|N+sp

dxdy +
∫
A2

|v(x) ηδ(x) − v(y) ηδ(y)|p
|x − y|N+sp

dxdy

+ 2
∫
A3

|v(x) ηδ(x) − v(y)|p
|x − y|N+sp

dxdy =: I1 + I2 + 2I3, (2.14)

where

A1 = B3θδ(0)c × B3θδ(0)c, A2 = B4θδ(0) × B4θδ(0), A3 = B3θδ(0) × B4θδ(0)c.

Clearly, I1 ≤ ‖v‖p . To estimate I2, let ϕ ∈ C∞
0 (B5θ (0), [0, 1]) with ϕ = η in B4θ (0) and let

ϕδ(x) = ϕ(x/δ). Then

I2 =
∫
A2

|v(x) ϕδ(x) − v(y) ϕδ(y)|p
|x − y|N+sp

dxdy ≤ ‖vϕδ‖p ≤ C
∣∣∣(−�)sp v

∣∣∣p/(p−1)

∞ ‖ϕδ‖p

by Lemma 2.5 applied to ϕδ with q = ∞, and ‖ϕδ‖p = δN−sp ‖ϕ‖p . Since |x − y| ≥
|y| − 3θδ ≥ |y|/4 on A3,

I3 ≤ C |v|p∞
∫
A3

dxdy

|y|N+sp
≤ C

∣∣∣(−�)sp v

∣∣∣p/(p−1)

∞ δN−sp

by Lemma 2.3. ��
2.3 Auxiliary estimates

We now construct some auxiliary functions and estimate their norms. In what follows θ is the
universal constant in Lemma 2.2 that depends only on N , p, and s. We may assume without
loss of generality that 0 ∈ �. For ε, δ > 0, let

mε,δ = Uε(δ)

Uε(δ) −Uε(θδ)
,

let

gε,δ(t) =

⎧⎪⎨
⎪⎩

0, if 0 ≤ t ≤ Uε(θδ)

mp
ε,δ (t −Uε(θδ)), if Uε(θδ) ≤ t ≤ Uε(δ)

t +Uε(δ) (mp−1
ε,δ − 1), if t ≥ Uε(δ),
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and let

Gε,δ(t) =
∫ t

0
g′
ε,δ(τ )1/p dτ =

⎧⎪⎨
⎪⎩

0, if 0 ≤ t ≤ Uε(θδ)

mε,δ (t −Uε(θδ)), if Uε(θδ) ≤ t ≤ Uε(δ)

t, if t ≥ Uε(δ).

(2.15)

The functions gε,δ and Gε,δ are nondecreasing and absolutely continuous. Consider the
radially symmetric nonincreasing function

uε,δ(r) = Gε,δ(Uε(r)),

which satisfies

uε,δ(r) =
{
Uε(r), if r ≤ δ

0, if r ≥ θδ.
(2.16)

We have the following estimates for uε,δ .

Lemma 2.7 There exists a constant C = C(N , p, s) > 0 such that for any ε ≤ δ/2,

∥∥uε,δ

∥∥p ≤ SN/sp + C
(ε

δ

)(N−sp)/(p−1)

, (2.17)

∣∣uε,δ

∣∣p
p ≥

⎧⎪⎨
⎪⎩

1

C
εsp log

(
δ

ε

)
, if N = sp2

1

C
εsp, if N > sp2,

(2.18)

∣∣uε,δ

∣∣p∗
s

p∗
s

≥ SN/sp − C
(ε

δ

)N/(p−1)

. (2.19)

Proof Using Brasco and Parini [6, Lemma A.2] and testing the equation (−�)sp Uε = U
p∗
s −1

ε

with gε,δ(Uε) ∈ Ws,p
0 (�) gives

∥∥Gε,δ(Uε)
∥∥p ≤

∫
R2N

(Uε(x) −Uε(y))p−1 (gε,δ(Uε(x)) − gε,δ(Uε(y)))

|x − y|N+sp
dxdy

=
∫
RN

Uε(x)
p∗
s −1 gε,δ(Uε(x)) dx

= |Uε|p
∗
s

p∗
s
+
∫
RN

(gε,δ(Uε(x)) −Uε(x))Uε(x)
p∗
s −1 dx .

We have |Uε|p
∗
s

p∗
s

= SN/sp by (2.2),

gε,δ(t) − t ≤ Uε(δ)m
p−1
ε,δ = 1

ε(N−sp)/p
U

(
δ

ε

) [
1 −U

(
θδ

ε

)/
U

(
δ

ε

)]−(p−1)

≤ 2p−1 c2
ε(N−sp)/p(p−1)

δ(N−sp)/(p−1)
, ∀t ≥ 0

by (2.4) and (2.5), ∫
RN

Uε(x)
p∗
s −1 dx = ε(N−sp)/p

∫
RN

U (x)p
∗
s −1 dx,

and the last integral is finite by (2.4) again, so (2.17) follows. Using (2.16),∫
RN

uε,δ(x)
p dx ≥

∫
Bδ(0)

uε,δ(x)
p dx =

∫
Bδ(0)

Uε(x)
p dx = εsp

∫
Bδ/ε(0)

U (x)p dx,
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and the last integral is greater than or equal to
∫ δ/ε

1
U (r)p r N−1 dr ≥ cp1

∫ δ/ε

1
r−(N−sp2)/(p−1)−1 dr

by (2.4). A direct evaluation of the integral on the right gives (2.18) since δ/ε ≥ 2. Using
(2.16) again, ∫

RN
uε,δ(x)

p∗
s dx ≥

∫
Bδ(0)

uε,δ(x)
p∗
s dx =

∫
Bδ(0)

Uε(x)
p∗
s dx

= SN/sp −
∫
Bδ/ε(0)c

U (x)p
∗
s dx

by (2.2). By (2.4), the last integral is less than or equal to

c
p∗
s

2

∫ ∞

δ/ε

r−N/(p−1)−1 dr = (p − 1) c
p∗
s

2

N

(ε

δ

)N/(p−1)

,

so (2.18) follows. ��
We note that Lemma 2.7 gives the following estimate for

Sε,δ(λ) :=
∥∥uε,δ

∥∥p − λ
∣∣uε,δ

∣∣p
p∣∣uε,δ

∣∣p
p∗
s

:

there exists a constant C = C(N , p, s) > 0 such that for any ε ≤ δ/2,

Sε,δ(λ) ≤

⎧⎪⎪⎨
⎪⎪⎩
S − λ

C
εsp log

(
δ

ε

)
+ C

(
ε

δ

)sp

, if N = sp2

S − λ

C
εsp + C

(
ε

δ

)(N−sp)/(p−1)

, if N > sp2.

(2.20)

3 Proof of the main result

In this section we prove Theorem 1.3. For 0 < λ < λ1, mountain pass theorem and (2.20)
will give us a positive critical level of Iλ below the threshold level for compactness given in
Proposition 1.5. For λ ≥ λ1, we will use the abstract linking theorem, Theorem 1.4.

3.1 Case 1: N ≥ sp2 and 0 < λ < λ1

We have

Iλ(u) ≥ 1

p

(
1 − λ

λ1

)
‖u‖p − 1

p∗
s S

p∗
s /p

‖u‖p∗
s ,

so the origin is a strict local minimizer of Iλ. Fix δ > 0 so small that Bθδ(0) ⊂⊂ �, so that
supp uε,δ ⊂ � by (2.16). Noting that

Iλ(Ruε,δ) = Rp

p

(∥∥uε,δ

∥∥p − λ
∣∣uε,δ

∣∣p
p

)
− Rp∗

s

p∗
s

∣∣uε,δ

∣∣p∗
s

p∗
s

→ −∞ as R → +∞,

fix R0 > 0 so large that Iλ(R0uε,δ) < 0. Then let

 = {
γ ∈ C([0, 1],Ws,p

0 (�)) : γ (0) = 0, γ (1) = R0uε,δ

}
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and set

c := inf
γ∈

max
t∈[0,1] Iλ(γ (t)) > 0.

Since t �→ t R0uε,δ is a path in ,

c ≤ max
t∈[0,1] Iλ(t R0uε,δ) = s

N

(∥∥uε,δ

∥∥p − λ
∣∣uε,δ

∣∣p
p∣∣uε,δ

∣∣p
p∗
s

)N/sp

= s

N
Sε,δ(λ)N/sp. (3.1)

By (2.20),

Sε,δ(λ) ≤

⎧⎪⎪⎨
⎪⎪⎩
S +

(
C − λ

C
|log ε|

)
εsp, if N = sp2

S −
(

λ

C
− C ε(N−sp2)/(p−1)

)
εsp, if N > sp2,

so Sε,δ(λ) < S if ε > 0 is sufficiently small. So

c <
s

N
SN/sp

by (3.1), and hence Iλ satisfies the (PS)c condition by Proposition 1.5. Then c is a critical
level of Iλ by the mountain pass theorem.

3.2 Case 2: N > sp2 and λ > λ1 is not one of the eigenvalues λk

We have λk < λ < λk+1 for some k ∈ N, and then i(�λk ) = i(M\�λk+1) = k by (1.5). In
what follows

π(u) = u

‖u‖ , πp(u) = u

|u|p , u ∈ Ws,p
0 (�)\ {0}

are the radial projections onto

M = {
u ∈ Ws,p

0 (�) : ‖u‖ = 1
}
, Mp = {

u ∈ Ws,p
0 (�) : |u|p = 1

}
,

respectively.

Proposition 3.1 If λk < λk+1, then �λk has a compact symmetric subset E with i(E) = k
such that ∣∣∣(−�)sp v

∣∣∣∞ ≤ C ∀v ∈ E,

where C = C(N ,�, p, s, k) > 0. In particular,

|v|∞ ≤ C ∀v ∈ E .

Proof For w ∈ Lq(�) with q ≥ max
{
1, (p − 1) (p∗

s )
′}, the equation (−�)sp u = |w|p−2 w

has a unique weak solution u = B(w) ∈ Ws,p
0 (�). By Lemma 2.3,

|B(w)|γ (q) ≤ C(q) |w|q , (3.2)

where

γ (q) =

⎧⎪⎨
⎪⎩

N (p − 1) q

N (p − 1) − spq
, if

q

p − 1
<

N

sp

∞, if
N

sp
<

q

p − 1
≤ ∞.
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For w ∈ Mp , let J (w) = πp(u) ∈ Mp , where u = B(w). Testing (−�)sp u = |w|p−2 w

with u, w and using the Hölder inequality gives

‖u‖p =
∫

�

|w|p−2 wu dx ≤ |w|p−1
p |u|p = |u|p ,

1 = |w|pp =
∫
R2N

(u(x) − u(y))p−1 (w(x) − w(y))

|x − y|N+sp
dxdy ≤ ‖u‖p−1 ‖w‖ ,

respectively, so

‖J (w)‖ = ‖u‖
|u|p ≤ 1

‖u‖p−1 ≤ ‖w‖ , |B(w)|p = |u|p ≥ ‖u‖p ≥ 1

‖w‖p/(p−1)
. (3.3)

Let

A = πp(�
λk ) = {

w ∈ Mp : ‖w‖p ≤ λk
}
.

Then i(A) = i(�λk ) = k by the monotonicity of the index and (1.5), and A is strongly
compact in L p(�). By (3.3), J (A) ⊂ A and

|B(w)|p ≥ 1

λ
1/(p−1)
k

∀w ∈ A. (3.4)

For w ∈ A, if p/(p − 1) > N/sp, then γ (p) = ∞ and hence

|J (w)|∞ = |B(w)|∞
|B(w)|p ≤ C(p) λ

1/(p−1)
k |w|p = C(p) λ

1/(p−1)
k

by (3.2) and (3.4). Otherwise, take max
{
1, (p − 1) (p∗

s )
′} ≤ q0 < p and define the sequence

(qi ) recursively by setting qi = γ (qi−1) if qi−1/(p − 1) < N/sp, in which case

qi − qi−1 = sp q2
i−1

N (p − 1) − sp qi−1
≥ sp

N (p − 1) − sp
> 0.

Hence q0 may be chosen so that qn−1/(p − 1) < N/sp < qn/(p − 1) for some n ≥ 1.
Iterating (3.2) and (3.4), and using the Hölder inequality at the last step then gives

∣∣Jn(w)
∣∣∞ =

∣∣B(Jn−1(w))
∣∣∞∣∣B(Jn−1(w))
∣∣
p

≤ C(qn) λ
1/(p−1)
k

∣∣Jn−1(w)
∣∣
qn

(3.5)

≤ · · · ≤ C(qn) · · ·C(q0) λ
(n+1)/(p−1)
k |w|q0 ≤ C λ

(n+1)/(p−1)
k .

Let Ã = Jn+1(A) ⊂ A. For each ṽ ∈ Ã, there exists w̃ ∈ Jn(A) ⊂ A such that ṽ = J (w̃) =
u/ |u|p , where u = B(w̃). Then

(−�)sp ṽ = (−�)sp u

|u|p−1
p

= |w̃|p−2 w̃

|B(w̃)|p−1
p

,

so ∣∣∣(−�)sp ṽ

∣∣∣∞ = |w̃|p−1∞
|B(w̃)|p−1

p

≤ C λn+2
k (3.6)

by (3.4) and (3.5). Since the imbedding Ws,p
0 (�) ↪→ L p(�) is compact and J is an odd

continuous map from L p(�) to Ws,p
0 (�), Ã is a compact set and i( Ã) = i(A) = k.
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Let E = π( Ã) and note that E is compact with i(E) = i( Ã) = k. For each v ∈ E , there
exists ṽ ∈ Ã ⊂ A such that v = ṽ/ ‖̃v‖. Then

�(v) = ‖̃v‖p

|̃v|pp
≤ λk,

so E ⊂ �λk . Since 1 = |̃v|p ≤ C ‖̃v‖,

∣∣∣(−�)sp v

∣∣∣∞ =
∣∣∣(−�)sp ṽ

∣∣∣∞
‖̃v‖p−1 ≤ C λn+2

k

by (3.6). ��
For v ∈ E , let vδ = vηδ , where ηδ is the cut-off function in Lemma 2.6, and let

Eδ = {π(vδ) : v ∈ E} .

Proposition 3.2 There exists a constant C = C(N ,�, p, s, k) > 0 such that for all suffi-
ciently small δ > 0,

1

C
≤ |w|q ≤ C ∀w ∈ Eδ, 1 ≤ q ≤ ∞, (3.7)

sup
w∈Eδ

�(w) ≤ λk + CδN−sp, (3.8)

Eδ ∩ �λk+1 = ∅, i(Eδ) = k, and supp w ⊂ B2θδ(0)c for all w ∈ Eδ . In particular, the
supports of w and π(uε,δ) are disjoint and hence π(uε,δ) /∈ Eδ .

Proof Let v ∈ E and let w = π(vδ). We have∫
�

|v|q dx =
∫

�\B3θδ(0)

|vδ|q dx +
∫
B3θδ(0)

|v|q dx ≤
∫

�

|vδ|q dx + C |v|q∞ δN ,

so ∫
�

|vδ|q dx ≥
∫

�

|v|q dx − CδN (3.9)

by Proposition 3.1. In particular, |vδ|1 ≥ |v|1 − CδN . On the other hand,

1 = ‖v‖p =
∫

�

v (−�)sp v dx ≤
∣∣∣(−�)sp v

∣∣∣∞
∫

�

|v| dx ≤ C |v|1

by Proposition 3.1 again, so |vδ|1 ≥ 1/C − CδN . Since

‖vδ‖p ≤ 1 + CδN−sp (3.10)

by Lemma 2.6 and Proposition 3.1, then

|w|1 = |vδ|1
‖vδ‖ ≥

1

C
− CδN

1 + Cδ(N−sp)/p
= 1

C
+ O(δ(N−sp)/p),

which together with the Hölder inequality gives the first half of (3.7). By (3.9) with q = p,

|vδ|pp ≥ |v|pp − CδN ≥ 1

λk
− CδN (3.11)
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since E ⊂ �λk . So |vδ|p , and hence also ‖vδ‖, is bounded away from zero. Since |v|∞
is bounded by Proposition 3.1 and 0 ≤ ηδ ≤ 1, |vδ|∞ is bounded, so this shows that
|w|∞ = |vδ|∞ / ‖vδ‖ is bounded, which gives the second half of (3.7).

Combining (3.10) and (3.11) gives

�(w) = ‖vδ‖p

|vδ|pp
≤ 1 + CδN−sp

1

λk
− CδN

= λk + O(δN−sp).

Fix δ > 0 so small that λk + CδN−sp < λk+1. Then Eδ ⊂ M\�λk+1 by (3.8), and hence
i(Eδ) ≤ i(M\�λk+1) = k by the monotonicity of the index and (1.5). On the other hand,
E → Eδ, v �→ π(vδ) is an odd continuous map and hence i(Eδ) ≥ i(E) = k. So i(Eδ) = k.

Finally, supp π(vδ) = supp vδ ⊂ supp ηδ ⊂ B2θδ(0)c for all v ∈ E , and

supp π(uε,δ) = supp uε,δ ⊂ Bθδ(0),

by virtue of (2.16). ��
We are now ready to apply Theorem 1.4 to obtain a nontrivial critical point of Iλ in the

case where λ > λ1 is not one of the eigenvalues λk . Fix λ′ such that λk < λ′ < λ < λk+1, and
let δ > 0 be so small that the conclusions of Proposition 3.2 hold with λk + CδN−sp < λ′,
in particular,

�(w) < λ′ ∀w ∈ Eδ. (3.12)

Then take A0 = Eδ and B0 = �λk+1 , and note that A0 and B0 are disjoint nonempty closed
symmetric subsets of M such that

i(A0) = i(M\B0) = k

by Proposition 3.2 and (1.5). Now let 0 < ε ≤ δ/2, let R > r > 0, let v0 = π(uε,δ) ∈ M\Eδ ,
and let A, B and X be as in Theorem 1.4.

For u ∈ �λk+1 ,

Iλ(ru) ≥ 1

p

(
1 − λ

λk+1

)
r p − 1

p∗
s S

p∗
s /p

r p
∗
s .

Since λ < λk+1, it follows that inf Iλ(B) > 0 if r is sufficiently small.
Next we show that Iλ ≤ 0 on A if R is sufficiently large. For w ∈ Eδ and t ≥ 0,

Iλ(tw) ≤ t p

p

(
1 − λ

�(w)

)
≤ 0

by (3.12). Now let w ∈ Eδ and 0 ≤ t ≤ 1, and set u = π((1 − t)w + tv0). Clearly,
‖(1 − t)w + tv0‖ ≤ 1, and since the supports of w and v0 are disjoint by Proposition 3.2,

|(1 − t)w + tv0|p
∗
s

p∗
s

= (1 − t)p
∗
s |w|p∗

s
p∗
s
+ t p

∗
s |v0|p

∗
s

p∗
s
.

In view of (3.7) and since

|v0|p
∗
s

p∗
s

=
∣∣uε,δ

∣∣p∗
s

p∗
s∥∥uε,δ

∥∥p∗
s

≥ 1

SN/(N−sp)
+ O(ε(N−sp)/(p−1)) (3.13)

by Lemma 2.7, it follows that

|u|p∗
s

p∗
s

=
|(1 − t)w + tv0|p

∗
s

p∗
s

‖(1 − t)w + tv0‖p∗
s

≥ 1

C
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if ε is sufficiently small, where C = C(N ,�, p, s, k) > 0. Then

Iλ(Ru) ≤ Rp

p
− Rp∗

s

p∗
s

|u|p∗
s

p∗
s

≤ Rp

p
− Rp∗

s

p∗
s C

≤ 0

if R is sufficiently large. In view of (1.7) and Proposition 1.5, it only remains to show that

sup Iλ(X) <
s

N
SN/sp,

if ε is sufficiently small. Noting that

X = {ρ π((1 − t)w + tv0) : w ∈ Eδ, 0 ≤ t ≤ 1, 0 ≤ ρ ≤ R} ,

let w ∈ Eδ and 0 ≤ t ≤ 1, and set u = π((1 − t)w + tv0). Then

sup
0≤ρ≤R

Iλ(ρu) ≤ sup
ρ≥0

[
ρ p

p

(
1 − λ |u|pp

)− ρ p∗
s

p∗
s

|u|p∗
s

p∗
s

]
= s

N

[(
1 − λ |u|pp

)+
|u|pp∗

s

]N/sp

= s

N

[(‖(1 − t)w + tv0‖p − λ |(1 − t)w + tv0|pp
)+

|(1 − t)w + tv0|pp∗
s

]N/sp

. (3.14)

Since w = 0 in B2θδ(0) by Proposition 3.2 and v0 = 0 in Bθδ(0)c by (2.16),

‖(1 − t)w + tv0‖p

≤ (1 − t)p
∫
A1

|w(x) − w(y)|p
|x − y|N+sp

dxdy + t p
∫
A2

|v0(x) − v0(y)|p
|x − y|N+sp

dxdy

+ 2
∫
A3

|(1 − t)w(x) − tv0(y)|p
|x − y|N+sp

dxdy =: (1 − t)p I1 + t p I2 + 2I3, (3.15)

where

A1 = Bθδ(0)c × Bθδ(0)c, A2 = B2θδ(0) × B2θδ(0), A3 = B2θδ(0)c × Bθδ(0).

We estimate I3 using the following elementary inequality: given κ > 1 and p − 1 < q < p,
there exists a constant C = C(κ, q) > 0 such that

|a + b|p ≤ κ |a|p + |b|p + C |a|p−q |b|q ∀a, b ∈ R.

Taking κ = λ/λ′ and, thanks to N > sp2, choosing q ∈ ]N (p − 1)/(N − sp), p[, we get

I3 ≤ λ

λ′ (1 − t)p
∫
A3

|w(x) − w(y)|p
|x − y|N+sp

dxdy + t p
∫
A3

|v0(x) − v0(y)|p
|x − y|N+sp

dxdy

+ C
∫
A3

|w(x)|p−q v0(y)q

|x − y|N+sp
dxdy =: λ

λ′ (1 − t)p I4 + t p I5 + C Jq . (3.16)

Clearly, I1 + 2I4 ≤ ‖w‖p = 1 and I2 + 2I5 ≤ ‖v0‖p = 1. By (3.7) and since

|x − y| ≥ |x | − θδ ≥ |x |/2, on A3,

we have

Jq ≤ C∥∥uε,δ

∥∥q
∫
A3

uε,δ(y)q

|x |N+sp
dxdy ≤ C

δsp

∫
RN

uε,δ(y)
q dy
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since (2.18) implies that
∣∣uε,δ

∣∣
p∗
s
, and hence also

∥∥uε,δ

∥∥, is bounded away from zero if ε is
sufficiently small. Recalling (2.15), it holds Gε,δ(t) ≤ t for all t ≥ 0, and thus∫

RN
uε,δ(y)

q dy ≤
∫
RN

Uε(y)
q dy = εN−(N−sp) q/p

∫
RN

U (y)q dy,

and the last integral is finite by (2.4) since q > N (p − 1)/(N − sp). So combining (3.15)
and (3.16) gives

‖(1 − t)w + tv0‖p ≤ λ

λ′ (1 − t)p + t p + C εN−(N−sp) q/p. (3.17)

On the other hand, since the supports of w and v0 are disjoint,

|(1 − t)w + tv0|pp = (1 − t)p |w|pp + t p |v0|pp ,

|(1 − t)w + tv0|p
∗
s

p∗
s

= (1 − t)p
∗
s |w|p∗

s
p∗
s
+ t p

∗
s |v0|p

∗
s

p∗
s
. (3.18)

By (3.12), |w|pp = 1/�(w) > 1/λ′. By (3.7), |w|p∗
s

is bounded away from zero, and (3.13)
implies that so is |v0|p∗

s
if ε is sufficiently small, so the last expression in (3.18) is bounded

away from zero. It follows from (3.17) and (3.18) that

‖(1 − t)w + tv0‖p − λ |(1 − t)w + tv0|pp
|(1 − t)w + tv0|pp∗

s

≤ 1 − λ |v0|pp
|v0|pp∗

s

+ C εN−(N−sp) q/p.

Since v0 = uε,δ/
∥∥uε,δ

∥∥, the right-hand side is less than or equal to

Sε,δ(λ) + C εN−(N−sp) q/p ≤ S −
(

λ

C
− C ε(N−sp2)/(p−1) − C ε(N−sp)(1−q/p)

)
εsp

by (2.20). Since N > sp2 and q < p, it follows from this that the last expression in (3.14)

is strictly less than
s

N
SN/sp if ε is sufficiently small.

3.3 Case 3: N2/(N + s) > sp2 and λ = λk

Let λ = λk < λk+1, let δ > 0 be so small that the conclusions of Proposition 3.2 hold
with λk + CδN−sp < λk+1, in particular, �(w) < λk+1 for all w ∈ Eδ , and take A0 = Eδ

and B0 = �λk+1 as in the last subsection. Then let 0 < ε ≤ δ/2, let R > r > 0, let
v0 = π(uε,δ) ∈ M\Eδ , and let A, B and X be as in Theorem 1.4. As before, inf Iλ(B) > 0
if r is sufficiently small and

Iλ(R π((1 − t)w + tv0)) ≤ 0 ∀w ∈ Eδ, 0 ≤ t ≤ 1

if R is sufficiently large. On the other hand,

Iλ(tw) ≤ t p

p

(
1 − λk

�(w)

)
≤ CRpδN−sp ∀w ∈ Eδ, 0 ≤ t ≤ R

by (3.8), where C denotes a generic positive constant independent of ε and δ. It follows that

sup Iλ(A) ≤ CRpδN−sp < inf Iλ(B)

if δ is sufficiently small. As in the last proof, it only remains to show that (see (3.14))

sup
(w,t)∈Eδ×[0,1]

‖(1 − t)w + tv0‖p − λk |(1 − t)w + tv0|pp
|(1 − t)w + tv0|pp∗

s

< S (3.19)
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if ε and δ are suitably small. We estimate the integral I3 in (3.15) using the elementary
inequality

|a + b|p ≤ |a|p + |b|p + C
(|a|p−1 |b| + |a| |b|p−1) ∀a, b ∈ R (3.20)

to get

I3 ≤ (1 − t)p
∫
A3

|w(x) − w(y)|p
|x − y|N+sp

dxdy + t p
∫
A3

|v0(x) − v0(y)|p
|x − y|N+sp

dxdy

+ C (1−t)p−1
∫
A3

|w(x)|p−1 v0(y)

|x−y|N+sp
dxdy+C (1−t)

∫
A3

|w(x)| v0(y)p−1

|x−y|N+sp
dxdy

=: (1 − t)p I4 + t p I5 + C (1 − t)p−1 J1 + C (1 − t)Jp−1. (3.21)

As before, I1 + 2I4, I2 + 2I5 ≤ 1 and for q = 1, p − 1,

Jq :=
∫
A3

|w(x)|p−q v0(y)q

|x − y|N+sp
dxdy ≤ C

∫
A3

uε,δ(y)q

|x |N+sp
dxdy ≤ C

δsp

∫
Bθδ(0)

Uε(y)
q dy

≤C εN−(N−sp) q/p

δsp

∫
Bθδ/ε(0)

U (y)q dy.

We take δ = εα with α ∈ (0, 1) and use (2.4) to estimate the last integral to get

Jq ≤ C ε(N−sp)[p (p−q−1) α+q]/p (p−1).

So combining (3.15) and (3.21) gives

‖(1 − t)w + tv0‖p ≤ (1 − t)p + t p + J̃1 + J̃p−1, (3.22)

where

J̃q := C (1 − t)p−q Jq ≤ C (1 − t)p−q ε(N−sp)[p (p−q−1) α+q]/p (p−1).

Young’s inequality then gives

J̃q ≤ κ

3
(1 − t)p

∗
s + C εsp+βq (α)κ−γq (3.23)

for any κ > 0, where

βq(α) = [N 2 − sp2 (N + s)](p − 1)(p − q) − Np (N − sp)(p − q − 1)(α0 − α)

[(N − sp) q + sp2](p − 1)
,

and

α0 = N − sp2

N − sp
, γq = (N − sp)(p − q)

Np − (N − sp)(p − q)
.

Then

‖(1−t)w+tv0‖p ≤(1−t)p+t p+ 2κ

3
(1 − t)p

∗
s + C εsp

(
εβ1(α)

κ−γ1
+ εβp−1(α)

κ−γp−1

)
(3.24)

by (3.22) and (3.23). Using N 2/(N + s) > sp2, we fix α < α0 so close to α0 that βq(α) > 0
for q = 0, 1, p − 1, p. By (3.8) and Young’s inequality,

λk (1−t)p |w|pp ≥ (1−t)p
(

1−C ε(N−sp) α
)

≥ (1−t)p − κ

3
(1 − t)p

∗
s − C εsp+β0(α)κ−γ0 . (3.25)
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By (3.24), (3.18), and (3.25), the quotient Q(w, t) in (3.19) satisfies

Q(w, t) ≤
(
1 − λk |v0|pp

)
t p + κ (1 − t)p

∗
s + C εsp+β(α)κ−γ

[
(1 − t)p∗

s |w|p∗
s

p∗
s
+ t p∗

s |v0|p
∗
s

p∗
s

]p/p∗
s

, (3.26)

where

β(α) = min
{
β0(α), β1(α), βp−1(α)

}
> 0, γ = max

{
γ0, γ1, γp−1

} = N

sp
− 1.

As before, the denominator is bounded away from zero if ε is sufficiently small, so it
follows that

sup
(w,t)∈Eεα ×[0,t0)

Q(w, t) ≤ C(t p0 + κ + εsp+β(α)κ−γ ) < S

for some t0 > 0 if κ and ε are sufficiently small. For t ≥ t0, rewriting the right-hand side of
(3.26) as

1 − λk |v0|pp
|v0|pp∗

s

+ κ (1 − t)p
∗
s + C εsp+β(α)κ−γ

t p |v0|pp∗
s⎡

⎣ |w|p∗
s

p∗
s

t p∗
s |v0|p

∗
s

p∗
s

(1 − t)p∗
s + 1

⎤
⎦

p/p∗
s

gives Q(w, t) ≤ g((1 − t)p
∗
s ), where

g(τ ) = Sε,εα (λk) + C
(
κτ + εsp+β(α)κ−γ

)
(1 + C−1 τ)p/p

∗
s

, C = C(N , p, s, t0).

Since 0 ≤ (1 − t)p
∗
s < 1, then

Q(w, t) ≤ Sε,εα (λk) + C
(
κ + εsp+β(α)κ−γ

)
.

If Sε j ,ε
α
j
(λk) < S/2 for some sequence ε j → 0, then the right-hand side is less than S for

sufficiently small κ and ε = ε j with sufficiently large j , so we may assume that Sε,εα (λk) ≥
S/2 for all sufficiently small ε. Then it is easily seen that if κ ≤ (p/p∗

s ) S/2 (C + 1), then
g′(τ ) ≤ 0 for all τ ∈ [0, 1] and hence the maximum of g((1 − t)p

∗
s ) on [t0, 1] occurs at

t = 1. So, we reach

Q(w, t) ≤ Sε,εα (λk) + C εsp+β(α)κ−γ ≤ S −
(

λk

C
− C εβp(α) − C εβ(α)κ−γ

)
εsp

by (2.20), and the desired conclusion follows for sufficiently small κ and ε.

3.4 Case 4: (N3 + s3 p3)/N (N + s) > sp2, ∂� ∈ C1,1, and λ = λk

By Iannizzotto et al. [29, Theorem 4.4], there exists a constant C = C(N ,�, p, s) > 0 such
that for any v ∈ Ws,p

0 (�) with (−�)sp v ∈ L∞(�),

|v(x)| ≤ C
∣∣∣(−�)sp v

∣∣∣1/(p−1)

∞ ds(x) ∀x ∈ R
N , (3.27)

where d(x) = dist (x,RN\�).
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Lemma 3.3 Assume that ∂� ∈ C1,1. Given α, β > 1, there exists a constant C =
C(N ,�, p, s, α, β) > 0 such that if Bβr (0) ⊂ {x ∈ � : d(x) < αr}, then for any v ∈
Ws,p

0 (�) with (−�)sp v ∈ L∞(�),

|v(x) − v(y)| ≤ C
∣∣∣(−�)sp v

∣∣∣1/(p−1)

∞ |x − y|s ∀x ∈ Br (0), y ∈ �\Bβr (0).

Proof By (3.27),

|v(x) − v(y)| ≤ C
∣∣∣(−�)sp v

∣∣∣1/(p−1)

∞ (ds(x) + ds(y)).

Since d(x) ≤ αr and |x − y| ≥ (β − 1) r ,

d(x) ≤ α

β − 1
|x − y|,

and since d(y) ≤ d(x) + |x − y| by the triangle inequality and s < 1,

ds(y) ≤ ds(x) + |x − y|s .
So the desired inequality holds with the constant C (2αs/(β − 1)s + 1). ��

Let ηδ be the cut-off function in Lemma 2.6.

Lemma 3.4 Assume that ∂� ∈ C1,1. Then there exists a constant C = C(N ,�, p, s)
> 0 such that for any v ∈ Ws,p

0 (�) such that (−�)sp v ∈ L∞(�) and δ > 0 such that
B6θδ(0) ⊂ {x ∈ � : d(x) < 12θδ},

‖vηδ‖p ≤ ‖v‖p + C
∣∣∣(−�)sp v

∣∣∣p/(p−1)

∞ δN . (3.28)

Proof Set f = (−�)sp v and K = | f |∞ < ∞. Then

|v(x)| ≤ CK 1/(p−1) δs ∀x ∈ B6θδ(0) (3.29)

by (3.27), and for k = 3, 5,

|v(x) − v(y)| ≤ CK 1/(p−1) |x − y|s ∀x ∈ Bkθδ(0), y ∈ �\B(k+1)θδ(0) (3.30)

by Lemma 3.3. We proceed splitting ‖vηδ‖p as in the proof of Lemma 2.6, and estimate the
integral

I3 =
∫
A3

|v(x) − v(y) + v(x) (ηδ(x) − 1)|p
|x − y|N+sp

dxdy

in (2.14) using the elementary inequality

|a + b|p ≤ |a|p + C
(|a|p−1 |b| + |b|p) ∀a, b ∈ R

to get

I3 ≤
∫
A3

|v(x) − v(y)|p
|x − y|N+sp

dxdy + C
∫
A3

|v(x) − v(y)|p−1 |v(x)|
|x − y|N+sp

dxdy

+C
∫
A3

|v(x)|p
|x − y|N+sp

dxdy =: I4 + C I5 + C I6.

123



 105 Page 22 of 25 S. Mosconi et al.

We have I1 + 2I4 ≤ ‖v‖p . By (3.29) and (3.30), and since |x − y| ≥ |y|/4 on A3,

I5 ≤ CK p/(p−1) δs
∫
A3

dxdy

|y|N+s
= CK p/(p−1) δN ,

I6 ≤ CK p/(p−1) δsp
∫
A3

dxdy

|y|N+sp
= CK p/(p−1) δN .

To estimate I2, let ϕδ be as in the proof of Lemma 2.6. Since ϕδ = ηδ in A2,

I2 ≤ C

(∫
A2

|v(x)|p |ϕδ(x) − ϕδ(y)|p
|x − y|N+sp

dxdy +
∫
A2

|v(x) − v(y)|p ϕδ(y)p

|x − y|N+sp
dxdy

)

=: C (I7 + I8).

By (3.29) and ‖ϕδ‖p = δN−ps ‖ϕ‖p by scaling, we get

I7 ≤ CK p/(p−1) δsp ‖ϕδ‖p = CK p/(p−1) δN . (3.31)

By Lemma 2.4,

I8 ≤ 2
∫

�

f (x) v(x) ϕδ(x)
p dx + C

∫
R2N

|v(x)|p |ϕδ(x) − ϕδ(y)|p
|x − y|N+sp

dxdy =: 2I9 + C I10.

Since ϕ = 0 outside B5θδ(0),

I9 ≤
∫
B5θδ(0)

| f (x)| |v(x)| dx ≤ CK p/(p−1) δN+s

by (3.29) again. Changing variables gives

I10 = δN−sp
∫
R2N

|v(δx)|p |ϕ(x) − ϕ(y)|p
|x − y|N+sp

dxdy.

We have |v(δx)| ≤ CK 1/(p−1) ds(δx) by (3.27), and d(δx) ≤ d(0) + δ |x | ≤ Cδ since
d(0) ≤ 6θδ and � is bounded, so the last integral is less than or equal toCK p/(p−1) δsp ‖ϕ‖p .
Hence I10 ≤ CK p/(p−1) δN . ��

Since ∂� ∈ C1,1, for all sufficiently small δ > 0, the ball B6θδ(0) is contained in
{x ∈ � : d(x) < 12θδ} after a translation. Then by Lemma 3.4 and Proposition 3.1,

‖vδ‖p ≤ 1 + CδN ∀v ∈ E,

and using this inequality in place of (3.10) in the proof of Proposition 3.2 shows that (3.8)
can now be strengthened to

sup
w∈Eδ

�(w) ≤ λk + CδN . (3.32)

Proceeding as in the last subsection, we have to verify (3.19) for suitably small ε and δ. Since
the argument is similar, we only point out where it differs. Let v ∈ E and let

w = π(vδ) = vδ/ ‖vδ‖ .

As noted in the proof of Proposition 3.2, ‖vδ‖ is bounded away from zero, so

Jq ≤ C
∫
A3

|vδ(x)|p−q uε,δ(y)q

|x − y|N+sp
dxdy,
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where A3 = B2θδ(0)c × Bθδ(0). By Lemma 3.3, (3.27), and Proposition 3.1, and since

|x − y| ≥ |x |/2 ≥ θδ, on A3,

we get

|vδ(x)|p−q ≤ |v(x)|p−q ≤ C
(|v(x) − v(y)|p−q + |v(y)|p−q)

≤ C
(|x − y|s(p−q) + δs(p−q)

) ≤ C |x − y|s(p−q),

so

Jq ≤ C
∫
A3

uε,δ(y)q

|x |N+sq
dxdy ≤ C

δsq

∫
Bθδ(0)

Uε(y)
q dy

≤ C ε{p [(p−q−1) N+sq]α+(N−sp) q}/p (p−1).

Then (3.23) holds with

βq (α)= [N 3+s3 p3−sp2N (N+s)](p−1)(p−q)−Np (N−sp)[N (p−q−1)+sq](α0−α)

(N−sp)[(N−sp) q+sp2](p−1)
,

and so does (3.25) by (3.32). Using

(N 3 + s3 p3)/N (N + s) > sp2,

we fix α < α0 so close to α0 that βq(α) > 0 for q = 0, 1, p − 1, p and proceed as before.
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