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1. Introduction and main results

We consider existence of positive solutions for the following class of equations

(−Δ)1/2u + u = K(x)g(u) in R. (1.1)

Here (−Δ)1/2 stands for the 1/2-Laplacian, K : R → R is a positive func-
tion and g is a continuous function with exponential subcritical or critical
growth in the sense of the Trudinger-Moser embedding due to Ozawa [17].
Recently, a great attention has been focused on the study of nonlocal op-
erators. These arise in thin obstacle problems, optimization, finance, phase
transitions, stratified materials, anomalous diffusion, crystal dislocation, soft
thin films, semipermeable membranes, flame propagation, conservation laws,
water waves, etc. [16]. The fractional laplacian (−Δ)s for s ∈ (0, 1) of a func-
tion u : R → R is defined by F((−Δ)su)(ξ) = |ξ|2sF(u)(ξ), where F is the
Fourier transform. Since the problem is set on the whole space one has to
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tackle compactness issues, which can be overcome by considering suitable as-
sumptions of the vanishing behaviour of K at infinity. Recently the problem
in R

N with N > 2s, s ∈ (0, 1), 2∗
s = 2N/(N − 2s),

(−Δ)su + V (x)u = K(x)g(u) + λ|u|2∗
s−2u in R

N .

where g has subcritical growth has been investigated in [9] inspired by some
arguments of [4]. The aim of this paper is to extend the achievements of [9]
to cover the case where the nonlinearity is allowed to grow at an exponential
rate. As is pointed out in [14], nonlocal problems with linear fractional diffu-
sion involving exponential growth should be set in R. In that manuscript the
authors prove existence results for problems involving critical and subcritical
exponential growth nonlinearities and 1/2-Laplacian in a bounded domain.
The main ingredient is the Trudinger-Moser type inequality [17] (see Propo-
sition 2.3). For related problems involving Moser-Trudinger embeddings we
would like to mention the celebrated works [15,18] as well as [1–3,8,10–12]
and the references therein. As known, Caffarelli and Silvestre [7] developed
a local interpretation of the fractional Laplacian by considering a Neumann
type operator in R

N+1
+ = {(x, t) ∈ R

N+1 : t > 0} (see also [6] for bounded
domains of RN , with N > 1). For the case N = 1 the main reference is the
work by Frank and Lenzmann [13]. The space Ḣ1/2(R) is the completion of
C∞

0 (R) under

[u]1/2 :=
(∫

R

|ξ||Fu|2 dξ

)1/2

=
(∫

R

|(−Δ)1/4u|2 dx

)1/2

,

while H1/2(R) is the Hilbert space of u ∈ L2(R) such that [u]H1/2 < ∞,
endowed with the norm

‖u‖1/2 =
(
‖u‖2

L2 + [u]21/2

)1/2

.

The space X1(R2
+) is defined as the completion of C∞

0 (R2
+) under the semi-

norm

‖w‖X1 :=

(∫
R

2
+

|∇w|2 dxdy

)1/2

.

For a function u ∈ Ḣ1/2(R), the solution w ∈ X1(R2
+) to{−div(∇w) = 0 in R

2
+

w = u on R × {0} (1.2)

is called harmonic extension w = E1/2(u) of u and it is proved in [5,7] for
N > 1 and in [13] for N = 1, that, up to some constant,

lim
y→0+

∂w

∂y
(x, y) = −(−Δ)1/2u(x).

Also, up to a constant, [u]1/2 = ‖w‖X1 , see [5]. Our problem (1.1) will be
studied in the half-space,{−div(∇w) = 0 in R

2
+

−∂w
∂ν = −u + K(x)g(u) on R × {0},

(1.3)
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where ∂w
∂ν = limy→0+

∂w
∂y (x, y). We look for positive solutions in the Hilbert

space E defined by

E :=
{

w ∈ X1(R2
+) :

∫
R

w(x, 0)2 dx < ∞
}

,

endowed with the norm

‖w‖ :=

(∫
R

2
+

|∇w|2 dxdy +
∫
R

w(x, 0)2 dx

)1/2

.

We mention that E is precisely the space introduced in [13, formula (3.13)].
Consider now the energy functional J : E → R associated to (1.3) given by

J(w) :=
1
2
‖w‖2 −

∫
R

K(x)G(w(x, 0) dx, G(s) :=
∫ s

0

g(t) dt, (1.4)

which, under suitable assumptions, is C1 (see Proposition 2.9) and, for all
w, v ∈ E,

J ′(w)(v) =
∫
R

2
+

∇w · ∇v dxdy +
∫
R

w(x, 0)v(x, 0) dx

−
∫
R

K(x)g(w(x, 0))v(x, 0) dx. (1.5)

We now formulate assumptions for K and g in order to be able to solve (1.1).
• Assumption on K. We assume K ∈ L∞(R)∩C(R) with K > 0. Furthermore,
if {An} is a sequence of measurable sets of R with |An| ≤ R for some R > 0,

lim
r→∞

∫
An∩Bc

r(0)

K(x) dx = 0, uniformly with respect to n ∈ N. (1.6)

• Assumptions on g-subcritical case

(g1) (behaviour at zero). g : R → R
+ is continuous with g = 0 on R

− and

lim sup
s→0+

g(s)
s

= 0.

(g2) (subcritical growth). it holds

lim sup
s→+∞

g(s)
eαs2 − 1

= 0, for all α > 0.

(g3) (super-quadraticity). g(s)
s is non-decreasing in R

+ and

lim sup
s→+∞

G(s)
s2

= +∞.

Under assumption (1.6) on K, we have the following

Theorem 1.1. Assume (g1)–(g3). Then (1.1) admits a positive solution u ∈
H1/2(R).

• Assumptions on g-critical case
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(g2)′ (critical growth). there exists ω ∈ (0, π] and α0 ∈ (0, ω] (cf. Proposi-
tion 2.3)

lim sup
s→+∞

g(s)
eαs2 − 1

= 0, for all α > α0,

lim sup
s→+∞

g(s)
eαs2 − 1

= +∞, for all α < α0.

(g3)′ (super-quadraticity). g(s)
s is non-decreasing in R

+ and there exists
q > 2 such that

G(s) ≥ Cqs
q, for all s ∈ R

+,

where Cq > 0 is sufficiently large.
(AR) (Ambrosetti-Rabinowitz). there exists ϑ > 2 such that

ϑG(s) ≤ sg(s), for all s ∈ R
+. (AR)

Under assumption (1.6) on K, we also have the following

Theorem 1.2. Assume (g1)–(g2)′–(g3)′ and (AR). Then (1.1) has a positive
solution u ∈ H1/2(R) provided that the constant Cq in condition (g3)′ satisfies

Cq >
( 2ϑ

ϑ − 2
q − 2
2q

) q−2
2

S
q
q

qL
,

with

Sq =
‖ψ‖

‖ψ(·, 0)‖Lq

> 0, L = inf
supt(ψ)

K > 0,

where ψ is a fixed smooth and compactly supported function on R.

The above results extend the existence results obtained in [14] in the case where
the problem is set on the whole R and compactness issues have to be tackled.
Also, they constitute an extension to the results of [9] to the case where the
nonlinearity is allowed for an exponential growth, critical or subcritical with
respect to the Trudinger-Moser inequality (2.8). As potentials K satisfying
(1.6), one can consider Ks with K(x) → 0 as |x| → ∞. As examples of
nonlinearities satisfying the above assumptions, define g : R → R

+ by setting
g(t) = 0 for all t ≤ 0 and

g(t) =
{

tq if 0 ≤ t ≤ 1,
tqetr−1 if t ≥ 1,

1 < r < 2, q > 1,

This function satisfies (g1)–(g3). Define g : R → R
+ by setting g(t) = 0 for all

t ≤ 0 and

g(t) = Cq

{
tq if 0 ≤ t ≤ 1,

tqeα0(t
2−1) if t > 1,

q > 2,

where α0 ∈ (0, ω] and Cq > 0 is sufficiently large. This map satisfies (g1)–
(g2)′–(g3)′ and (AR).
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2. Preliminary results

In this section we provide some preliminary stuff. Consider the weighted Ba-
nach space

Lp
K(R) =

{
u : R → R measurable:

∫
R

K(x)|u|p dx < ∞
}

, p ∈ (1,∞),

endowed with the norm

‖u‖Lp
K

=
(∫

R

K(x)|u|p dx

)1/p

.

Remark 2.1. Let Ω ⊂ R be a bounded domain. Then the space H1/2(R)
is compactly embedded into Lq(Ω) for any q ≥ 2. Firstly, [16, Theorem 7.1]
provides the compactness in L2(Ω). Then the assertion follows by interpolation,
since H1/2(R) is continuously embedded into Lm(R) for any m ≥ 2, by [16,
Theorem 6.9]. Finally, in view of [13, Proposition 3.6], also E is compactly
embedded into Lq(Ω) for any q ≥ 2.

The first result, is a compact injection for the space E.

Proposition 2.2. E is compactly embedded into Lq
K(R) for all q ∈ (2,∞).

Proof. Let q > 2, r > q and ε > 0. Then, there exist 0 < s0(ε) < s1(ε), a
positive constant C(ε) and C0 depending only on K, such that

K(x)|s|q ≤ εC0(|s|2 + |s|r) + C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, x, s ∈ R. (2.1)

Therefore we obtain, for every w ∈ E and r > 0,∫
Bc

r(0)

K(x)|w(x, 0)|q dx ≤ εQ(w) + C(ε)s1(ε)q

∫
Aε∩Bc

r(0)

K(x) dx, (2.2)

where we have set

Q(w) := C0‖w(·, 0)‖2
L2 + C0‖w(·, 0)‖r

Lr , Aε := {x ∈ R : s0(ε) ≤ |w(x, 0)| ≤ s1(ε)} .
(2.3)

If (wn) ⊂ E is such that wn ⇀ w weakly in E for some w ∈ E, there exists
M > 0 such that ∫

R
2
+

|∇wn|2 dxdy +
∫
R

|wn(x, 0)|2 dx ≤ M,

∫
R

|wn(x, 0)|r dx ≤ M, for all r ≥ 2.

(2.4)

The second inequality is due to the continuous injection of H1/2(R) in an
arbitrary Lr(R) space with r ≥ 2, see [16, Theorem 6.9]. Hence Q(wn) is
bounded. On the other hand, if

An
ε :=

{
x ∈ R : s0(ε) ≤ |wn(x, 0)| ≤ s1(ε)

}
,

we get

s0(ε)q|An
ε | ≤

∫
An

ε

|wn(x, 0)|q dx ≤
∫
RN

|wn(x, 0)|q dx ≤ M, for all n ∈ N.
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which implies that supn∈N
|An

ε | < +∞.
Then, in light of (1.6), there exists r(ε) > 0 such that∫

An
ε ∩Bc

r(ε)(0)

K(x) dx <
ε

C(ε)s1(ε)q
, for all n ∈ N. (2.5)

Whence, in light of (2.2), we conclude∫
Bc

r(ε)(0)

K(x)|wn(x, 0)|q dx ≤ (2C0M + 1)ε. (2.6)

On account of Remark 2.1, we have

lim
n

∫
Br(ε)(0)

K(x)|wn(x, 0)|q dx =
∫

Br(ε)(0)

K(x)|w(x, 0)|q dx. (2.7)

Combining (2.6)–(2.7), yields

lim
n

∫
R

K(x)|wn(x, 0)|q dx =
∫
R

K(x)|w(x, 0)|q dx.

This concludes the proof. �

Let us now recall the Trudinger Moser type inequality of [17].

Proposition 2.3. There exists 0 < ω ≤ π such that, for all α ∈ (0, ω), there
exists Hα > 0 with ∫

R

(eαu2 − 1) dx ≤ Hα‖u‖2
L2 , (2.8)

for all u ∈ H1/2(R) with ‖(−Δ)1/4u‖2
L2 ≤ 1.

Next, we state a useful Trudinger-Moser type bound for bounded sequences of
E.

Lemma 2.4. Let (wn) ⊂ E be a bounded sequence and set supn∈N
‖wn‖ = M .

Then

sup
n∈N

∫
R

(eαwn(x,0)2 − 1) dx < ∞, for every 0 < α <
ω

M2
;

In particular, if M ∈ (0, 1), there exists αM > ω such that

sup
n∈N

∫
R

(eαM wn(x,0)2 − 1) dx < ∞.

Proof. Let 0 < αM2 < ω. Then, setting un(x) = wn(x, 0), by virtue of Propo-
sition 2.3, we have∫

R

(
eαu2

n −1
)
dx≤

∫
R

(
eαM2

(
un

‖wn‖
)2

−1
)
dx≤HαM2

‖un‖2
L2

‖wn‖2
≤ HαM2 , (2.9)

since ‖(−Δ)1/4un‖wn‖−1‖2
L2 = ‖(−Δ)1/4un‖2

L2/‖wn‖2 = ‖wn‖2
X1/‖wn‖2 ≤ 1.

Concerning the last assertion, there exists αM > ω with αMM2 < ω and the
conclusion follows. �
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Lemma 2.5. Let α > 0 and let (wn) ⊂ E be such that wn → w strongly in E.
Then

lim
n

∫
R

(
eαwn(x,0)2 − 1

)
dx =

∫
R

(
eαw(x,0)2 − 1

)
dx.

Proof. By applying Lagrange’s theorem to the function s �→ eαs2
, we get∣∣(eαwn(x,0)2 − 1

) − (
eαw(x,0)2 − 1

)∣∣ ≤ 2α(|wn(x, 0) − w(x, 0)| + |w(x, 0)|)
× e2α|wn(x,0)−w(x,0)|2e2α|w(x,0)|2 |wn(x, 0) − w(x, 0)|.

The right-hand side splits into several terms. We shall handle one of them,
namely

(|wn(x, 0) − w(x, 0)| + |w(x, 0)|)(e2α|wn(x,0)−w(x,0)|2 − 1)

×(e2α|w(x,0)|2 − 1)|wn(x, 0) − w(x, 0)|,
since the other terms can be handled in a similar fashion. Then one applies
Hölder inequality with four terms with exponents r1, r4 ≥ 2 and r2, r3 > 1
such that 1/r1 + 1/r2 + 1/r3 + 1/r4 = 1. Recall that (ex − 1)r ≤ (erx − 1)
holds for r > 1 and x ≥ 0. For the first term, ‖wn − w‖Lr1 + ‖w‖Lr1 ≤ C by
the continuous Sobolev embedding in any Lr space with r ≥ 2. For the second
term, since ‖wn − w‖ → 0, one can apply Lemma 2.4 (this is the key point of
the proof) and deduce∫

R

(
e2r2α|wn(x,0)−w(x,0)|2 − 1

)
dx ≤ C.

For the third term we have∫
R

(
e2r3α|w(x,0)|2 − 1

)
dx < ∞.

Here we used that eu2 − 1 ∈ L1(R) for u ∈ H1/2(R), see the argument in [14,
Proposition 2.5]. Finally the last term is estimated with ‖wn − w‖Lr4 , which
goes to zero and conclude the proof. �

The next is a straightforward application of the generalized Dominated Con-
vergence Theorem.

Lemma 2.6. Let fn, gn, hn : R → R
+ sequences of nonnegative measurable

functions. Assume that fn converges pointwisely to 0 and that gn, hn converge
pointwisely to g, h : R → R

+. Assume also that, for every ε > 0, there exists
C(ε) > 0 such that

fn ≤ εgn + C(ε)hn, n ∈ N, sup
n∈N

∫
R

gn dx < ∞, lim
n

∫
R

hn dx =
∫
R

h dx.

Then fn → 0 in L1(R).

We can now state the following compactness result for the subcritical growth
case.
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Proposition 2.7 (Compactness I-subcritical case). Assume (g1)–(g3). Let
(wn) ⊂ E be a bounded sequence and wn ⇀ w in E. Then, up to a subse-
quence, the following facts hold:

lim
n

∫
R

K(x)G(wn(x, 0)) dx =
∫
R

K(x)G(w(x, 0)) dx; (2.10)

lim
n

∫
R

K(x)wn(x, 0)g(wn(x, 0)) dx =
∫
R

K(x)w(x, 0)g(w(x, 0)) dx; (2.11)

lim
n

∫
R

K(x)g(wn(x, 0))v(x, 0) dx =
∫
R

K(x)g(w(x, 0)v(x, 0)) dx, for all v ∈ E.

(2.12)

Proof. Let us prove (2.10) and (2.11). Let supn∈N
‖wn‖ =: M . Let us also fix

ε > 0, q > 2 and 0 < α < ω/M2, according to Lemma 2.4. In light of (g2), we
learn that

lim sup
s→+∞

g(s)s
eαs2 − 1

= lim sup
s→+∞

G(s)
eαs2 − 1

= 0, lim sup
s→0+

g(s)s
s2

= lim sup
s→0+

G(s)
s2

= 0.

Then there exist 0 < s0(ε) < s1(ε), C(ε) > 0 and C0 depending only upon K,
such that

|K(x)G(s)| ≤ εC0(s
2 + eαs2 − 1) + C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, for all s ∈ R,

(2.13)

|K(x)g(s)s| ≤ εC0(s
2 + eαs2 − 1) + C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, for all s ∈ R.

(2.14)

By virtue of Lemma 2.4 we find E > 0 such that

sup
n∈N

∫
R

(eαwn(x,0)2 − 1) dx ≤ E,

∫
R

|wn(x, 0)|2 dx ≤ E. (2.15)

Notice again that, by means of (1.6), there exists r(ε) > 0 such that∫
An

ε ∩Bc
r(ε)(0)

K(x) dx ≤ ε

C(ε)s1(ε)q
, for all n ∈ N. (2.16)

Now, combining the above inequality with (2.13)–(2.14), we have∫
Bc

r(ε)(0)

K(x)G(wn(x, 0)) dx ≤ (2C0E + 1)ε, for all n ∈ N, (2.17)

∫
Bc

r(ε)(0)

K(x)g(wn(x, 0))wn(x, 0) dx ≤ (2C0E + 1)ε, for all n ∈ N. (2.18)

Notice that we have

|K(x)(G(wn(x, 0)) − G(w(x, 0))| ≤ ε(wn(x, 0)2 + eαwn(x,0)2 − 1 + w(x, 0)2

+ eαw(x,0)2 − 1)

+ C(ε)(|wn(x, 0)|q + |w(x, 0)|q).
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A similar estimation holds for K(x)g(s)s. Hence, by (2.15) and since wn(x, 0)
→ w(x, 0) in Lq(Br(ε)(0)) on account of Remark 2.1, Lemma 2.6, allows to
conclude that

lim
n

∫
Br(ε)(0)

K(x)G(wn(x, 0)) dx =
∫

Br(ε)(0)

K(x)G(w(x, 0)) dx,

lim
n

∫
Br(ε)(0)

K(x)g(wn(x, 0))wn(x, 0) dx =
∫

Br(ε)(0)

K(x)g(w(x, 0)w(x, 0) dx.

Combining these with (2.17)–(2.18) we conclude the proof.
Let us now prove (2.12). The sequence (

√
K(x)g(wn(x, 0))χ{|wn(x,0)|≤1}) is

bounded in L2(R) as by (g1)

|
√

K(x)g(wn(x, 0))χ{|wn(x,0)|≤1}|2 ≤ C|wn(x, 0)|2.
This, by pointwise convergence, yields for every ϕ ∈ L2(R)

lim
n

∫
R

√
K(x)g(wn(x, 0))χ{|wn(x,0)|≤1}ϕ(x) dx

=
∫
R

√
K(x)g(w(x, 0))χ{|w(x,0)|≤1}ϕ(x) dx.

Given v ∈ E, it follows
√

K(x)v(x, 0) ∈ L2(R), yielding

lim
n

∫
R

K(x)g(wn(x, 0))χ{|wn(x,0)|≤1}v(x, 0) dx

=
∫
R

K(x)g(w(x, 0))χ{|w(x,0)|≤1}v(x, 0) dx.

Moreover, by (g2), (K(x)g(wn(x, 0))χ{|wn(x,0)|≥1}) is bounded in Lm(R) by
Lemma 2.4 as

|K(x)g(wn(x, 0))χ{|wn(x,0)|≥1}|m ≤ C(emαwn(x,0)2 − 1), for mα < ω/M2.

Here m > 1 is taken close to 1. Then, for all v ∈ E ⊂ Lm′
(R) (notice that

m′ > 2), we get

lim
n

∫
R

K(x)g(wn(x, 0))χ{|wn(x,0)|≥1}v(x, 0) dx

=
∫
R

K(x)g(w(x, 0))χ{|w(x,0)|≥1}v(x, 0) dx.

This concludes the proof of (2.12). �

From now on, in assumption (g2)′, we can assume that α0 = ω, without loss
of generality. We can state the following for the critical growth case.

Proposition 2.8 (Compactness II-critical case). Assume (g1)–(g2)′–(g3)′. Let
(wn) ⊂ E a bounded sequence and wn ⇀ w in E such that

sup
n∈N

‖wn‖ ∈ (0, 1).
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Then, up to a subsequence, the following facts hold:

lim
n

∫
R

K(x)G(wn(x, 0)) dx =
∫
R

K(x)G(w(x, 0)) dx; (2.19)

lim
n

∫
R

K(x)wn(x, 0)g(wn(x, 0)) dx =
∫
R

K(x)w(x, 0)g(w(x, 0)) dx; (2.20)

lim
n

∫
R

K(x)g(wn(x, 0))v(x, 0) dx =
∫
R

K(x)g(w(x, 0)v(x, 0)) dx, for all v∈E.

(2.21)

Proof. Let us prove (2.19) and (2.20). Let supn∈N
‖wn‖ =: M ∈ (0, 1). By

virtue of Lemma 2.4 there are αM > ω and E > 0 with

sup
n∈N

∫
R

(eαM wn(x,0)2 − 1) dx ≤ E,

∫
R

|wn(x, 0)|2 dx ≤ E (2.22)

Let us fix ε > 0 and q > 2. By virtue of (g1) and (g2)′ we know that

lim sup
s→+∞

g(s)s
eαM s2 − 1

= lim sup
s→+∞

G(s)
eαM s2 − 1

= 0,

lim sup
s→0+

g(s)s
s2

= lim sup
s→0+

G(s)
s2

= 0.

Then there exist 0 < s0(ε) < s1(ε), C(ε) > 0 and C0 depending only upon K,
with

|K(x)G(s)| ≤ εC0(|s|2 + eαM s2 − 1) + C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, for all s ∈ R,
(2.23)

|K(x)g(s)s| ≤ εC0(|s|2 + eαM s2 − 1) + C(ε)K(x)χ[s0(ε),s1(ε)](|s|)|s|q, for all s ∈ R.
(2.24)

Notice again that, by means of (1.6), there exists r(ε) > 0 such that∫
An

ε ∩Bc
r(ε)(0)

K(x) dx ≤ ε

C(ε)s1(ε)q
, for all n ∈ N.

Now, combining the above inequality with (2.22) and (2.23)–(2.24), we have∫
Bc

r(ε)(0)

K(x)G(wn(x, 0)) dx ≤ (2C0E + 1)ε, for all n ∈ N,

∫
Bc

r(ε)(0)

K(x)g(wn(x, 0))wn(x, 0) dx ≤ (2C0E + 1)ε, for all n ∈ N.

The rest of the proof for (2.19) and (2.20) follows an in Proposition 2.7, with
α replaced by αM . Concerning (2.21), since αMM2 < ω there exists m > 1
very close to 1 such that mαMM2 < ω. Then (K(x)g(wn(x, 0))χ{|wn(x,0)|≥1})
is bounded in Lm(R) by Lemma 2.4 since

|K(x)g(wn(x, 0))χ{|wn(x,0)|≥1}|m ≤ C(emαM wn(x,0)2 − 1).
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Then, for all v ∈ E ⊂ Lm′
(R) (as m′ > 2), we get

lim
n

∫
R

K(x)g(wn(x, 0))χ{|wn(x,0)|≥1}v(x, 0) dx

=
∫
R

K(x)g(w(x, 0))χ{|w(x,0)|≥1}v(x, 0) dx.

This concludes the proof of (2.21). �

Proposition 2.9. J ∈ C1(E,R).

Proof. Let (wn) ⊂ E with wn → w strongly in E. There exist C > 0 and
α > 0 such that

|g(s)|2 ≤ C(|s|2 + eαs2 − 1), for all s ∈ R.

This choice fits both the subcritical and critical case. Hence

|g(wn(x, 0)) − g(w(x, 0))|2 ≤ C(|wn(x, 0)|2 + eαwn(x,0)2 − 1) + C(|w(x, 0)|2
+eαw(x,0)2 − 1).

Taking into account Lemma 2.5, we have

lim
n

∫
R

(|wn(x, 0)|2 + eαwn(x,0)2 − 1) dx =
∫
R

(|w(x, 0)|2 + eαw(x,0)2 − 1) dx.

Then, by the Generalized Dominated Convergence Theorem, ‖g(wn) − g(w)
‖L2 → 0. In turn,

sup
‖v‖≤1

∣∣∣∣
∫
R

K(x)(g(wn(x, 0)) − g(w(x, 0)))v dx

∣∣∣∣
≤ C‖g(wn) − g(w)‖L2 sup

‖v‖≤1

‖v‖L2(R) ≤ Con(1),

which concludes the proof. �

Next, we show that J satisfies the Mountain Pass geometry.

Lemma 2.10. The functional J satisfies

(1) There exists β, ρ > 0 such that J(w) ≥ β if w ∈ E and ‖w‖ = ρ;
(2) There exists e ∈ E\{0} with ‖e‖ > ρ such that J(e) ≤ 0;

Proof. Assertion (2) is straightforward due to the superquadraticity assump-
tions. For (1), let us consider w ∈ E with ‖w‖ = ρ < 1 and ω < α < ω/ρ2. By
the growth conditions on g (both critical and subcritical), there exist r > 1 so
close to 1 that rα < ω/ρ2, q > 2 and C > 0 with

G(s) ≤ 1
4
s2 + C(erαs2 − 1)1/rsq, for all s ∈ R

+.
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Then, taking into account inequality (2.9), we have

J(w) ≥ 1
2
‖w‖2 − 1

4
‖w(·, 0)‖2

L2 − C

∫
R

(
erα|w(x,0)|2 − 1

)1/r|w(x, 0)|q dx

≥ 1
4
‖w‖2 − C

(∫
R

(
erα|w(x,0)|2 − 1

)
dx

)1/r (∫
R

|w(x, 0)|r′q dx

)1/r′

≥ 1
4
‖w‖2 − C‖w‖q =

1
4
ρ2 − Cρq = β > 0,

for every ρ > 0 sufficiently small. �

Therefore, there exists a sequence (wn) ⊂ E, so called Cerami sequence such
that

J(wn) → c, (1 + ‖wn‖)‖J ′(wn)‖ → 0, (2.25)

where c is given by

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

with

Γ =
{
γ ∈ C([0, 1], E) : γ(0) = 0 and J(γ(1)) ≤ 0

}
.

We have the following result

Lemma 2.11. The Cerami sequence (wn) ⊂ E is bounded and ‖w−
n ‖ → 0 as

n → ∞.

Proof. If g has critical growth, the assertion is obvious since the Ambrosetti-
Rabinowitz condition (AR) is assumed. On the contrary, in the subcritical case,
the proof follows by mimicking the argument in the first part of the proof of
[9, Lemma 2.3], which is based upon monotonicity of H(s) = sg(s) − 2G(s),
holding since g(s)

s is non-decreasing in R
+, and the application of (2.10). �

To handle the case where g is at critical growth, we shall need the following
result.

Lemma 2.12. Let (wn) ⊂ E be a bounded Palais-Smale sequence for the func-
tional J at the Mountain Pass energy level c. Then

sup
n∈N

‖wn‖ ∈ (0, 1),

provided that the constant Cq > 0 which appears in (g3)′ is sufficiently large.

Proof. Let q > 2 and Cq > 0 as in assumption (g3)′, to be chosen later
sufficiently large. Let us fix a cut-off function ψ ∈ C∞

c (R,R+) \ {0} and let us
denote

L := inf
supt(ψ)

K > 0, Sq :=
‖ψ‖

‖ψ(·, 0)‖Lq

.



Vol. 22 (2015) Fractional problems with exponential growth on R 1407

Also, let ωq > 0 be such that J(ωqψ) < 0. This is possible, since

J(ωψ) =
ω2

2
‖ψ‖2 −

∫
R

K(x)G(ωψ(x, 0)) dx

≤ ω2

2
‖ψ‖2 − ωqCqL‖ψ(x, 0)‖q

Lq dx < 0,

for every ω > 0 sufficiently large, say ω = ωq. Then, γ ∈ C([0, 1], E) defined
by γ(t) := tωqψ ∈ Γ for t ∈ [0, 1] belongs to the class of continuous paths Γ.
Hence, we get

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ max
t∈[0,1]

J(tωqψ) ≤ max
t∈R+

J(tψ)

= max
t≥0

(
t2

2
‖ψ‖2 − CqLtq‖ψ(·, 0)‖q

Lq

)

= max
t≥0

(
S

2
q

2
t2‖ψ(·, 0)‖2

Lq − CqLtq‖ψ(·, 0)‖q
Lq

)

= max
t≥0

(
S

2
q

2
t2 − CqLtq

)
=

q − 2
2q

S

2q
q−2
q

(qCqL)
2

q−2
.

On the other hand, since (wn) is a Palais-Smale sequence, we get

c = lim sup
n

(
J(wn) − 1

ϑ
J ′(wn)(wn)

) ≥ ϑ − 2
2ϑ

lim sup
n

‖wn‖2.

In turn, by combining the above inequalities, we get

lim sup
n

‖wn‖2 ≤ 2ϑ

ϑ − 2
q − 2
2q

S

2q
q−2
q

(qCqL)
2

q−2
< 1,

provided that Cq satisfies the condition in the statement of Theorem 1.2. �

3. Proof of the main results

3.1. Proof of Theorem 1.1 completed

In light of Lemma 2.10, there exists a Cerami sequence {wn} ⊂ E for J at the
Mountain Pass level c > 0. From Lemma 2.11 it follows that {wn} is bounded,
w−

n → 0 in E, and thus it admits a nonnegative weak limit w ∈ E. By (2.12)
of Proposition 2.7, it follows that∫

R
2
+

∇w·∇v dxdy+
∫
R

w(x, 0)v(x, 0) dx =
∫
R

K(x)g(w(x, 0))v(x, 0) dx, ∀v ∈ E.

(3.1)
Then, we have a weak solution u ∈ H1/2(R) to (1.1). We have u > 0 if u = 0,
arguing as in [9]. We prove that w = E1/2(u) ≡ 0. In fact, (wn) converges to
w strongly in E, as n → ∞. Indeed, since J ′(wn)(wn) = on(1), we have, by
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(2.11) of Proposition 2.7,

lim
n

‖wn‖2 = lim
n

∫
R

K(x)g(wn(x, 0))wn(x, 0) dx

=
∫
R

K(x)g(w(x, 0))w(x, 0) dx = ‖w‖2,

that is, wn → w in E. Hence J(w) = c > 0 by continuity, yielding w ≡ 0. �

3.2. Proof of Theorem 1.2 completed

In light of Lemma 2.10, there exists a Cerami sequence {wn} ⊂ E for J at the
Mountain Pass level c > 0. From Lemma 2.11 it follows that {wn} is bounded,
w−

n → 0 in E, and thus it admits a nonnegative weak limit w ∈ E. By taking
Cq sufficiently large in assumption (g3)′, in light of Lemma 2.12, it follows
that supn∈N

‖wn‖ ∈ (0, 1). Then, we are allowed to apply the assertions of
Proposition 2.8. By (2.21) of Proposition 2.8, it follows that (3.1) is satisfied.
Then, we have a weak solution u ∈ H1/2(R) to (1.1). We have u > 0 if
u = 0, arguing as in [9]. Indeed u = 0. In fact w = E1/2(u) ≡ 0. Suppose by
contradiction that w = 0. Then, since wn ⇀ 0, we have by (2.19) and (2.20)
of Proposition 2.8

lim
n

∫
R

K(x)G(wn(x, 0) dx = lim
n

∫
R

K(x)g(wn(x, 0)wn(x, 0) dx = 0.

Then, from
1
2
‖wn‖2 −

∫
R

K(x)G(wn(x, 0)) dx = c + on(1),

‖wn‖2 −
∫
R

K(x)g(wn(x, 0))wn(x, 0) dx = on(1)

we get a contradiction, since c > 0. The proof is complete. �
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[9] do Ó, J.M., Miyagaki, O.H., Squassina, M.: Critical and subcritical fractional
problems with vanishing potentials. preprint
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