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1. Introduction and results

Let D = {x ∈ R2
: |x| < 1} and, form ∈ N with m ≥ 2, consider the system

1ui
+ f i(|x|, ui) = 0 in D,

ui
= 0 on ∂D,

for i = 1, . . . ,m, (1.1)

where f i are smooth functions over (0, 1) × (0, ∞)m. Semi-linear elliptic systems as (1.1) arise naturally in many physical
and biological contests; see e.g. [8,15,16,18,20] and the references therein. As far as the symmetry of positive solutions is
concerned and the functions f i are decreasing in the radial variable, the celebrated moving plane method [9] can be applied
when the system is cooperative namely ∂ f i/∂uj

≥ 0 for every i ≠ j [6,13,21]. The aim of this note is to establish a general
symmetry result (Theorem 1.1) for n-mode (2π/n-rotation invariant) solutions, namely solutions (u1, . . . , um) such that
each component ui

: D → R, in polar coordinates, satisfies

ui(r, θ) = ui(r, θ + 2π/n), for all (r, θ) ∈ [0, 1] × R,

as well as provide a meaningful application of it (Theorem 1.2) to the system of Hénon type

1u +
2p

p + q
|x|αup−1vq

= 0 in D,

1v +
2q

p + q
|x|αupvq−1

= 0 in D,

u > 0, v > 0 in D,
u = v = 0 on ∂D.

(1.2)
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Quite recently, these systems were carefully investigated in [22,23] (see also [1,10,11] and references therein) and they can
be considered as a vectorial counterpart of the celebrated equation1u + |x|αup−1

= 0 in D,
u > 0 in D,
u = 0 on ∂D,

first studied in [17] after being introduced by Hénon in [12] in connection with the research of rotating stellar structures.
We shall say that u is of class Cn at the origin if u is of class Cn−1 in a neighborhood of the origin and each (n − 1)-th partial
derivative is totally differentiable at the origin. Then we prove the following

Theorem 1.1. Let m, n ∈ N with m, n ≥ 2 and f 1, . . . , f m ∈ C((0, 1) × (0, ∞)m, R) such that

(i) for each i ∈ {1, . . . ,m} and (u1, . . . , um) ∈ (0, ∞)m, the map

r → r2−2nf i(r, u1, . . . , um) : (0, 1) → R

is nonincreasing;
(ii) for each i ∈ {1, . . . ,m} and r ∈ (0, 1), f i(r, ·, . . . , ·) ∈ C1((0, ∞)m, R);
(iii) for each i, j ∈ {1, . . . ,m} with i ≠ j and (r, u1, . . . , um) ∈ (0, 1) × (0, ∞)m,

∂ f i

∂uj
(r, u1, . . . , um) ≥ 0;

(iv) for each i, j ∈ {1, . . . ,m}, r0 ∈ (0, 1) and M ∈ (0, ∞),

sup

 ∂ f i∂uj
(r, u1, . . . , um)

 : (r, u1, . . . , um) ∈ (r0, 1) × (0,M]
m


< ∞.

Let (u1, . . . , um) ∈ C2(D \ {0}) ∩ C(D) be a solution of (1.1) such that each ui is n-mode, positive and of class Cn at the origin.
Then, each ui is radially symmetric and ∂ui

∂r (|x|) < 0 for r = |x|.

For scalar equations, this result was obtained in [19]. Due to the recent interest of the community for the symmetry issues
for elliptic systems, we believe that the statement above is of interest. Also, it admits some interesting consequences; see
for instance Theorem 1.2 below. Of course, system (1.1) includes both variational and nonvariational problems or systems
of Hamiltonian type; see e.g. [7] for a wide overview. We point out, in particular, that the weakly coupled semi-linear
Schrödinger systems, see [14] and the references therein, which come from physically relevant situations and have recently
received much attention, satisfy conditions (ii)–(iv).

For the sake of completeness, we refer the reader to [3–5] for recent partial (foliated Schwarz symmetry) symmetry
results for the smooth solutions to (1.1) in rotationally invariant domains and for possibly sign-changing solutions and
where the maps r → f i(r, s1, . . . , sm) are possibly nondecreasing and some convexity assumptions are assumed on the si
variables.

For every α ≥ 0 and p, q > 1, let us set

Rα,p,q(u, v) :=


D(|∇u|2 + |∇v|

2)
D |x|α|u|p|v|q

 2
p+q

, for any u, v ∈ H1
0 (D).

Moreover, for each γ > 0, we shall denote by ⌈γ ⌉ the smallest integer greater than or equal to γ . Then, we have the
following

Theorem 1.2. The following facts hold.

(I) If α ∈ (0, ∞), p, q ∈ (1, ∞) and (u, v) is an n-mode solution of (1.2)with n ≥ 1+⌈α/2⌉, then u, v are radially symmetric.
(II) For each α ∈ (2, ∞) and p, q ∈ (1, ∞), if nα ≥ 1 then (1.2) has a nonradial n-mode solution (un, vn) for n = 1, . . . , nα

such that

Rα,p,q(u1, v1) < · · · < Rα,p,q(unα , vnα ), (1.3)

where nα is the greatest integer less than
α + 2
2α

 4
p+q−2


α − 2

α

 2α
p+q−2


1 +

α

2


. (1.4)
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In particular, the following facts hold.
(i) For each α ∈ (2, ∞), if at least one of p, q ∈ (1, ∞) is large enough, then nα = ⌈α/2⌉, that is (1.2) has a nonradial

n-mode solution for n = 1, . . . , ⌈α/2⌉ satisfying (1.3).
(ii) For each p, q ∈ (1, ∞) and ℓ ∈ N, if α ∈ (2, ∞) is large enough (1.2) has a nonradial n-mode solution (un, vn) for

n = 1, . . . , ℓ such that
Rα,p,q(u1, v1) < · · · < Rα,p,q(uℓ, vℓ).

In particular, for each p, q ∈ (1, ∞), the number of nonradial solutions of (1.2) tends to infinity as α → ∞.

Hence, as far asα gets large, the symmetry breaking phenomenon occurs andwe can find asmany n-mode positive solutions
as we want. In Section 2 we shall prove Theorem 1.1, while in Section 3 we shall provide the proof of Theorem 1.2.

2. Proof of Theorem 1.1

By using the planar polar coordinates, for each i = 1, . . . ,m, we define the function ui
: D → R by settingui(r, θ) := ui(r1/n, θ/n), for every (r, θ) ∈ D. Since (u1, . . . , um) satisfies system (1.1) and each ui is n-mode, we can

see thatui
∈ C2(D \ {0}) ∩ C(D) and (u1, . . . ,um) satisfies the system

1ui
+f i(|x|,u1, . . . ,um) = 0 in D \ {0},ui

= 0 on ∂D,
for i = 1, . . . ,m. (2.1)

Here,f i ∈ C((0, 1) × (0, ∞)m, R) is the function defined byf i(r, t1, . . . , tm) := n−2r (2−2n)/nf i(r1/n, t1, . . . , tm),

for every (r, t1, . . . , tm) ∈ (0, 1) × (0, ∞)m andf i satisfies
for each (t1, . . . , tm) ∈ (0, ∞)m, r →f i(r, t1, . . . , tm) is nonincreasing. (2.2)

Indeed, from

1ui(r, θ) +f i(r,u1(r, θ), . . . ,um(r, θ)) =
1
n2

r
2−2n

n


ui
rr


r

1
n ,

θ

n


+

1

r
1
n
ui
r


r

1
n ,

θ

n


+

1

r
2
n
ui

θθ


r

1
n ,

θ

n



+ f i

r

1
n , u1


r

1
n ,

θ

n


, . . . , um


r

1
n ,

θ

n


= 0,

we deduce (2.1), and we can easily see that (2.2) holds as well, in light of assumption (i). For each λ ∈ (0, 1), we set
Σλ = {x ∈ D : x1 > λ} and we define the map hλ : Σλ → D by hλ(x) = (2λ − x1, x2) for x = (x1, x2) ∈ Σλ. We note that
hλ satisfies

|hλ(x)| < |x| for each λ ∈ (0, 1) and x ∈ Σλ ∪ Int∂D(Σλ ∩ ∂D). (2.3)

Here, for a subset E of ∂D, we denote by Int∂DE, the interior set of E with respect to the relative topology of ∂D. We set
xλ = (2λ, 0) for λ ∈ (0, 1). We can see

xλ ∈


Σλ for each λ ∈


0,

1
2


,

∂Σλ for λ =
1
2
,

R2
\ Σλ for each λ ∈


1
2
, 1
 (2.4)

and

hλ(xλ) = 0 for each λ ∈ (0, 1/2]. (2.5)

For the sake of completeness, we note that Σλ \ {xλ} = Σλ for each λ ∈ [
1
2 , 1) and Σλ \ {xλ} = Σλ for each λ ∈ ( 1

2 , 1). For
each i, j = 1, . . . ,m, we define vi

λ ∈ C2(Σλ \ {xλ}) ∩ C(Σλ) and c ijλ ∈ L∞(Σλ) by setting

vi
λ(x) :=ui(x) −ui(hλ(x)), for x ∈ Σλ, (2.6)

and

c ijλ(x) := −

 1

0

∂f i
∂uj


|x|, su1(x) + (1 − s)u1(hλ(x)), . . . , sum(x) + (1 − s)um(hλ(x))


ds. (2.7)
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By the assumptions of Theorem 1.1, we can see that c ijλ ≤ 0 if i ≠ j for x ∈ Σλ and

sup
r<λ<1

sup
x∈Σλ

|c ijλ(x)| < ∞, for each r ∈ (0, 1) and i, j = 1, . . . ,m. (2.8)

Therefore, it holds

− 1vi
λ(x) +

m
j=1

c ijλ(x)v
j
λ(x) ≤ 0 for λ ∈ (0, 1), x ∈ Σλ \ {xλ} and i = 1, . . . ,m. (2.9)

Indeed, (2.9) can be obtained as follows:

0 = 1ui(hλ(x)) +f i(|hλ(x)|,u1(hλ(x)), . . . ,um(hλ(x))) − 1ui(x) −f i(|x|,u1(x), . . . ,um(x))
≥ −1vi

λ(x) +f i(|x|,u1(hλ(x)), . . . ,um(hλ(x))) −f i(|x|,u1(x), . . . ,um(x))

= −1vi
λ(x) +

m
j=1

c ijλ(x)v
j
λ(x).

We set

A1 = {λ ∈ [1/2, 1) : vi
λ(x) < 0 for each x ∈ Σλ and i ∈ {1, . . . ,m}},

µ1 = inf
λ∈A1

λ. (2.10)

We now claim that A1 ≠ ∅. Let i ∈ {1, . . . ,m} and λ ∈ [1/2, 1) such that λ is sufficiently close to 1. Then we can
easily see vi

λ(x) ≤ 0 for x ∈ ∂Σλ and vi
λ(x) < 0 for x ∈ Int∂D(∂D ∩ ∂Σλ) from (2.3). Since |Σλ| ≪ 1 and (2.9) holds,

by [2, Corollary 14.1], we have vi
λ ≤ 0 on Σλ. By

− 1vi
λ(x) + c iiλ(x)v

i
λ(x) ≤ −

m
j≠i

c ijλ(x)v
j
λ(x) ≤ 0 in Σλ \ {xλ} (2.11)

and the strong maximum principle, we have vi
λ < 0 in Σλ. Since i is any element of {1, . . . ,m}, we have shown λ ∈ A1,

which proves the claim.
We now claim that µ1 = 1/2 ∈ A1. Let i ∈ {1, . . . ,m}. We have vi

µ1
(x) ≤ 0 for x ∈ Σµ1 . Since (2.11) holds with λ = µ1

and vi
µ1

(x) < 0 for x ∈ Int∂D(∂Σµ1∩∂D) from (2.3), by the strongmaximumprinciple,we have vi
µ1

(x) < 0 for x ∈ Σµ1 . Since
i is an arbitrary element of {1, . . . ,m}, we have µ1 ∈ A1. We will show µ1 = 1/2. Suppose not, namely µ1 > 1/2. Again let
i ∈ {1, . . . ,m}. Let G be an open set such that G ⊂ Σµ1 and |Σµ1 \G| ≪ 1.We havemaxx∈G vi

µ1
(x) < 0. Let 0 < ε ≪ 1. Then

we havemaxx∈G vi
µ1−ε(x) < 0 and |Σµ1−ε \G| ≪ 1. Since (2.9) holdswith λ = µ1−ε and vi

µ1−ε(x) ≤ 0 for x ∈ ∂(Σµ1−ε \G),
we have vi

µ1−ε(x) ≤ 0 for x ∈ Σµ1−ε by [2, Corollary 14.1]. From vi
µ1−ε(x) < 0 for x ∈ (Int∂D(∂Σµ1−ε ∩ ∂D)) ∪ ∂G and

the strong maximum principle, we have vi
µ1−ε(x) < 0 for x ∈ Σµ1−ε . Since i is an arbitrary element of {1, . . . ,m}, we have

µ1 − ε ∈ A1. This is a contradiction. Hence µ1 = 1/2 ∈ A1.
We now set

A2 := {λ ∈ (0, 1/2) : vi
λ(x) < 0 for each x ∈ Σλ and i ∈ {1, . . . ,m}},

µ2 := inf
λ∈A2

λ. (2.12)

We now claim that A2 ≠ ∅. Let i ∈ {1, . . . ,m}. We note that x1/2 = (1, 0). Let G be an open set such that G ⊂ Σ1/2 and
|Σ1/2 \ G| ≪ 1. From 1/2 ∈ A1 and G ⊂ Σ1/2, we have maxx∈G vi

1/2(x) < 0. Let λ ∈ (0, 1/2) such that λ is sufficiently
close to 1/2. We note |Σλ \ G| ≪ 1 and xλ is close to (1, 0). We choose a sufficiently small open neighborhood U of xλ with
U ⊂ Σλ, and we set H = G ∪ U . Then we have vi

λ(x) < 0 for x ∈ H, vi
λ(x) ≤ 0 for x ∈ ∂Σλ ∪ ∂H and |Σλ \ H| ≪ 1. Since

(2.9) holds onΣλ \H , by [2, Corollary 14.1], we have vi
λ ≤ 0 onΣλ. From (2.11) and the strongmaximum principle, we have

vi
λ < 0 on Σλ. Since i is an arbitrary element of {1, . . . ,m}, we have shown λ ∈ A2.
Recalling that u is of class Cn at the origin, arguing exactly as in [19, Lemma 4] we get

∂(ui
◦ hµ2)

∂x1
(xµ2) = 0 for each i = 1, . . . ,m. (2.13)

We now claim that µ2 = 0. Suppose not. Let i ∈ {1, . . . ,m}. Then we have µ2 ∈ (0, 1/2) by the previous claim and we
can see vi

µ2
≤ 0 on Σµ2 . We will show vi

µ2
< 0 on Σµ2 \ {xµ2}. We have vi

µ2
(x) < 0 for x ∈ Int∂D(∂Σµ2 ∩ ∂D) from (2.3).
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By (2.11)with λ = µ2 and the strongmaximumprinciple, we have vi
µ2

< 0 onΣµ2 \{xµ2}. Next, wewill show vi
µ2

(xµ2) < 0.
Suppose vi

µ2
(xµ2) < 0 does not hold, i.e., vi

µ2
(xµ2) = 0. Let ν1 = (−1, 0) and ν2 = (1, 0). From (2.13), we have

∂vi
µ2

∂ν1
(xµ2) = −

∂ui

∂x1
(xµ2) +

∂(ui
◦ hµ2)

∂x1
(xµ2) = −

∂ui

∂x1
(xµ2),

∂vi
µ2

∂ν2
(xµ2) =

∂ui

∂x1
(xµ2) −

∂(ui
◦ hµ2)

∂x1
(xµ2) =

∂ui

∂x1
(xµ2).

By Hopf’s lemma, we obtain

−
∂ui

∂x1
(xµ2) < 0 and

∂ui

∂x1
(xµ2) < 0,

which is a contradiction. So we have shown vi
µ2

(xµ2) < 0. Thus we have vi
µ2

< 0 on Σµ2 . Since i is an arbitrary element of
{1, . . . ,m}, we have µ2 ∈ A2. Again let i ∈ {1, . . . ,m}. We choose an open set G such that G ⊂ Σµ2 and |Σµ2 \ G| ≪ 1. We
have maxG vi

µ2
< 0. Let 0 < ε ≪ 1. Then we have |Σµ2−ε \G| ≪ 1 and maxG vi

µ2−ε < 0. Since (2.9) holds with λ = µ2 − ε,
by [2, Corollary 14.1], we have vi

µ2−ε(x) ≤ 0 for x ∈ Σµ2−ε \G. By (2.11) with λ = µ2−ε and the strongmaximumprinciple,
we have vi

µ2−ε(x) < 0 for x ∈ Σµ2−ε \ G. Hence we have shown vi
µ2−ε(x) < 0 for x ∈ Σµ2−ε . Since i is an arbitrary element

of {1, . . . ,m}, we have µ2 − ε ∈ A2, which is a contradiction. Therefore we obtain µ2 = 0.
We can finally conclude the proof of Theorem 1.1. Let i ∈ {1, . . . ,m}. By the conclusions above, we can infer thatui is

radially symmetric and ∂ui
∂r (|x|) < 0 for r = |x| ∈ (0, 1). From the definition ofui, we can find ui is also radially symmetric

and ∂ui
∂r (|x|) < 0.

3. Proof of Theorem 1.2

Let us first prove assertion (I) of Theorem 1.2. Assume that (u, v) is an n-mode solution to system (1.2) such that
n ≥ 1 + ⌈α/2⌉. Then, we may choose n̂,m ∈ N such that m/n̂ ∈ N, (α + 2)n̂ ≤ 2n < 2(α + 2)n̂ and

m > max


nn̂

(α + 2)n̂ − n
,

2n
α + 2


.

Setting û(r, θ) := u(rm/n,mθ/n) and v̂(r, θ) := v(rm/n,mθ/n), it is readily seen that û and v̂ are both m̂ = m/n̂-mode and
solve, in D \ {0}, the system

1û +
2pm2

(p + q)n2
|x|

m(α+2)−2n
n ûp−1v̂q

= 0 in D \ {0},

1v̂ +
2pm2

(p + q)n2
|x|

m(α+2)−2n
n ûpv̂q−1

= 0 in D \ {0},

û > 0, v̂ > 0 in D \ {0},
û = v̂ = 0 on ∂D.

We need to show that (û, v̂) is a solution of the corresponding system on D, namely
1û +

2pm2

(p + q)n2
|x|

m(α+2)−2n
n ûp−1v̂q

= 0 in D,

1v̂ +
2pm2

(p + q)n2
|x|

m(α+2)−2n
n ûpv̂q−1

= 0 in D.

(3.1)

To this aim, let ϕ ∈ C∞
c (D) a function and let ε ∈ (0, 1). Then, if Dε denotes the ball centered at zero with radius ε, we get

0 =


D\Dε

1ûϕ +
2pm2

(p + q)n2


D\Dε

|x|
m(α+2)−2n

n ûp−1v̂qϕ

= −


∂Dε

∂ û
∂r

ϕdS −


D\Dε

∇û∇ϕ +
2pm2

(p + q)n2


D\Dε

|x|
m(α+2)−2n

n ûp−1v̂qϕ,

0 =


D\Dε

1v̂ϕ +
2pm2

(p + q)n2


D\Dε

|x|
m(α+2)−2n

n ûpv̂q−1ϕ

= −


∂Dε

∂v̂

∂r
ϕdS −


D\Dε

∇v̂∇ϕ +
2pm2

(p + q)n2


D\Dε

|x|
m(α+2)−2n

n ûpv̂q−1ϕ.
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Since also u ∈ C1(D), the functions ∂u
∂r (r, θ), 1

r
∂u
∂θ

(r, θ),
∂ϕ

∂r (r, θ), 1
r

∂ϕ

∂θ
(r, θ) are bounded on D. From ū(r, θ) = u(r

m
n , m

n θ),
there exists some positive constant C such that∂ ū∂r (r, θ)

 ≤ Cr
m
n −1,

 ∂ ū∂θ
(r, θ)

 ≤ Cr,

for each (r, θ) ∈ D. Hence, we have
|x|=ε

∂ ū
∂r

ϕ dS
 ≤ Cε

m
n ,

{ε<|x|<1}
∇ū∇ϕ −


D
∇ū∇ϕ

 ≤ Cε
m
n +1

+ Cε2.

Hence, letting ε → +0, we conclude that (û, v̂) is a weak (and hence a strong) solution to (3.1). Since (m(α + 2)− 2n)/n ≥

m̂ − 1, it follows that û, v̂ ∈ C m̂(D). Furthermore, since (α + 2)n̂ ≤ 2n the map r → r2−2m̂+(m(α+2)−2n)/n is nonincreasing.
In turn, by applying Theorem 1.1, it follows that û and v̂ are radially symmetric and hence u and v are radially symmetric,
concluding the first part of the proof.

We now come to the proof of assertion (II). We set Hn = {u ∈ H1
0 (D) : u is n-mode} for all n ∈ N and H∞ = {u ∈ H1

0 (D) :

u is radially symmetric}. For any p, q > 1, α ≥ 0 and n ∈ N ∪ {∞}, set

Sα,p,q,n = inf{Rα,p,q(u, v) : u, v ∈ Hn \ {0}}.

From the proof of [23, Proposition 2.5], we can find

Sα,p,q,∞ ≥ S0,p,q,1


α + 2

2

1+ 2
p+q

. (3.2)

Next, let ϕ be any element of C∞

0 (D). Since we can consider ϕ ∈ C∞

0 (R2) by the trivial extension, we can define ϕα ∈ C∞

0 (D)
by ϕα((x1, x2)) = ϕ(α(x1 − (1 − 1/α)), αx2) for (x1, x2) ∈ D. We set D1 = D and

Dn = {(r, θ) : 0 < r < 1, −π/n < θ < π/n} for n ∈ N \ {1}.

For each n ∈ N and α > 0 with suppϕα ⊂ Dn, we will show

Sα,p,q,n ≤ S0,p,q,1n
1− 2

p+q α
4

p+q


α

α − 2

 2α
p+q

. (3.3)

Wedefine Pn : D → Dby Pn(r, θ) = (r, θ+2π/n) for (r, θ) ∈ [0, 1)×R.We setϕ(x) = ϕα(x)+ϕα(Pn(x))+· · ·+ϕα(Pn−1
n (x))

for x ∈ D. Since we have
D
|∇ϕα|

2
=


D
|∇ϕ|

2

and 
D
|x|α|ϕα|

p
|ϕα|

q
≥ α−2


1 −

2
α

α 
D
|ϕ|

p
|ϕ|

q,

we obtain

Sα,p,q,n ≤ Rα,p,q(ϕ,ϕ) ≤
n

D(|∇ϕ|

2
+ |∇ϕ|

2)
nα−2


1 −

2
α

α 
D |ϕ|p|ϕ|q

 2
p+q

.

Since ϕ ∈ C∞

0 (D) is arbitrary, we have shown (3.3). From (3.2) and (3.3), we can see that n ≤ nα is a sufficient condition
for Sα,p,q,n < Sα,p,q,∞. We will show that if n > 1 and Sα,p,q,n < Sα,p,q,∞ then Sα,p,q,1 < · · · < Sα,p,q,n. Let n > 1 and
Sα,p,q,n < Sα,p,q,∞. We can choose u, v ∈ Hn \ {0} such that Rα,p,q(u, v) = Sα,p,q,n and u, v ≥ 0. We note that u, v ∉ H∞

and (u, v) is a positive solution of (1.2). Let m ∈ {1, . . . , n − 1}. We define ū, v̄ ∈ Hm by ū(r, θ) = u(r,mθ/n) and
v̄(r, θ) = v(r,mθ/n) for (r, θ) ∈ [0, 1) × R. Since we can see

D
|x|α|ū|p|v̄|

q
=


D
|x|α|u|p|v|

q,
D
|∇ū|2 =

 2π

0

 1

0

∂u∂r
2 +

m2

n2r2

 ∂u∂θ

2

r drdθ <


D
|∇u|2
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and

D |∇v̄|

2 <

D |∇v|

2, we have

Sα,p,q,m ≤ Rα,p,q(ū, v̄) < Rα,p,q(u, v) = Sα,p,q,n.

By a similar argument, we conclude that Sα,p,q,1 < · · · < Sα,p,q,n. Hence we infer that if Sα,p,q,n < Sα,p,q,∞, then for each
ℓ = 1, . . . , n, there exists a nonradial positive solution (uℓ, vℓ) ∈ Hℓ × Hℓ of (1.2) satisfying Rα,p,q(uℓ, vℓ) = Sα,p,q,ℓ. We set
the number in (1.4) as η(α, p, q). For a fixed α ∈ (2, ∞), we have η(α, p, q) → 1 + α/2 as p + q → ∞, which yields (i).
For a fixed p, q ∈ (1, ∞), we have η(α, p, q) → ∞ as α → ∞, yielding (ii). Hence, we finish the proof of Theorem 1.2.
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