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1. Introduction and results

Let D = {x € R? : |x| < 1} and, for m € N with m > 2, consider the system

{Auf +f(xl,u) =0 inD,

fori=1,... 1.1
u'=0 on aD, ort s T (11)

where f! are smooth functions over (0, 1) x (0, c0)™. Semi-linear elliptic systems as (1.1) arise naturally in many physical
and biological contests; see e.g. [8,15,16,18,20] and the references therein. As far as the symmetry of positive solutions is
concerned and the functions f* are decreasing in the radial variable, the celebrated moving plane method [9] can be applied
when the system is cooperative namely 3f'/d1/ > 0 for every i # j [6,13,21]. The aim of this note is to establish a general
symmetry result (Theorem 1.1) for n-mode (27 /n-rotation invariant) solutions, namely solutions (u', ..., u™) such that
each component u' : D — R, in polar coordinates, satisfies

u'(r,0) = u'(r,0 4+ 2 /n), forall (r,0) € [0,1] x R,
as well as provide a meaningful application of it (Theorem 1.2) to the system of Hénon type
2
Au+ —p|x|°‘u"’1vq =0 inD,
p+q

2q

Av + [X|vPv9~' =0 inD, (1.2)
p+gq

u>0, v>0 inD,

u=v=0 on aD.
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Quite recently, these systems were carefully investigated in [22,23] (see also [1,10,11] and references therein) and they can
be considered as a vectorial counterpart of the celebrated equation

Au+ |x|*uP"' =0 inD,
u>0 inD,
u=0 on dD,

first studied in [17] after being introduced by Hénon in [12] in connection with the research of rotating stellar structures.
We shall say that u is of class C" at the origin if u is of class C"~! in a neighborhood of the origin and each (n — 1)-th partial
derivative is totally differentiable at the origin. Then we prove the following

Theorem 1.1. Let m,n € Nwithm,n > 2andf',...,f™ € C((0,1) x (0, c0)™, R) such that

(i) foreachi e {1,...,m}and (u', ..., u™) € (0, c0)™, the map

re 272 ut, o, u™ i (0,1) > R
is nonincreasing; '

(ii) foreachi e {1,...,m}andr € (0, 1), fi(r, -, ..., ) € C'((0, 00)™, R);

(iii) foreachi,j € {1,...,m}withi#jand (r,u',...,u™) € (0, 1) x (0, c0)™,
9 i
i(r,ul,...,u’") > 0;
ow

(iv) foreachi,je {1,...,m},rg € (0, 1) and M € (0, c0),

P i
supi ﬁ(r, ul, U™t L u™) € (1o, 1) x (0, M]m} < 0.
Let (u',...,u™ e C3(D\ {0}) N C(D) be a solution of (1.1) such that each u' is n-mode, positive and of class C™ at the origin.

Then, each u' is radially symmetric and %—f(|x|) < 0 forr = |x|

For scalar equations, this result was obtained in [ 19]. Due to the recent interest of the community for the symmetry issues
for elliptic systems, we believe that the statement above is of interest. Also, it admits some interesting consequences; see
for instance Theorem 1.2 below. Of course, system (1.1) includes both variational and nonvariational problems or systems
of Hamiltonian type; see e.g. [7] for a wide overview. We point out, in particular, that the weakly coupled semi-linear
Schrodinger systems, see [ 14] and the references therein, which come from physically relevant situations and have recently
received much attention, satisfy conditions (ii)-(iv).

For the sake of completeness, we refer the reader to [3-5] for recent partial (foliated Schwarz symmetry) symmetry
results for the smooth solutions to (1.1) in rotationally invariant domains and for possibly sign-changing solutions and
where the maps r — fi(r, sq, ..., s™) are possibly nondecreasing and some convexity assumptions are assumed on the s;
variables.

For every @ > 0 and p, g > 1, let us set

Vul> + |Vu]?
Rypq(u, v) == Jo(Vul + | |2) , foranyu, v € H}(D).

p+q
Jp X1 ulPv]a

Moreover, for each y > 0, we shall denote by [y the smallest integer greater than or equal to y. Then, we have the
following

Theorem 1.2. The following facts hold.

@ If @ € (0,00),p,q € (1, o0) and (u, v) is an n-mode solution of (1.2) withn > 1+ [« /2], then u, v are radially symmetric.

(IT) Foreacha € (2,00) andp, q € (1, 00), if n, > 1 then (1.2) has a nonradial n-mode solution (u,, v,) forn =1,...,1n,
such that
R(l,p,q(ulv V) <o < Ra,p,q(unw Vn,), (1.3)

where n,, is the greatest integer less than

o+2 iz oa—2 iz o
1+ -). 14
2a o <+2 (14)
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In particular, the following facts hold.
(i) For each o € (2, 00), if at least one of p, q € (1, co) is large enough, then n, = [« /2], that is (1.2) has a nonradial

n-mode solution for n = 1, ..., [a/2] satisfying (1.3).
(ii) Foreachp,q € (1,00)and ¢ € N, if a € (2, 00) is large enough (1.2) has a nonradial n-mode solution (u,, v,) for
n=1,...,¢suchthat

Ra,p,q(uls V) <o < Ra,p,q(ul’v ve).
In particular, for each p, q € (1, 0o), the number of nonradial solutions of (1.2) tends to infinity as « — oo.

Hence, as far as « gets large, the symmetry breaking phenomenon occurs and we can find as many n-mode positive solutions
as we want. In Section 2 we shall prove Theorem 1.1, while in Section 3 we shall provide the proof of Theorem 1.2.

2. Proof of Theorem 1.1

~ By using the planar polar coordinates, for eachi = 1,...,m, we define the function U’ : 5 — R by setting
u(r,0) = ul(r'/*,0/n), for every (r,0) € D. Since (u',...,u™) satisfies system (1.1) and each u' is n-mode, we can
see that U’ € C2(D \ {0}) N C(D) and (@', ..., u™) satisfies the system
AT +Fi(Ix, 7", ..., 7)) =0 inD)\ {0} .
i R ’ B { =1,... . 2.1
{E‘:O on dD, ort e M (21)
Here,F € C((0, 1) x (0, c0)™, R) is the function defined by
Fir ot o ™) = n 2 Coam gt/ g1,
forevery (r, t!,...,t™ € (0, 1) x (0, c0)™ andf‘ satisfies
for each (t', ..., t™) € (0, 00)™, r — fi(r, t', ..., t™) is nonincreasing. (2.2)

Indeed, from

_ o - 1 am | 0 0
AU(r,0) + fir,u'(r,0), ..., 0", 0)) = ﬁrznz (u}(r;,n> ( ri n) +

“fo3)
ap2) o)

we deduce (2.1), and we can easily see that (2.2) holds as well, in light of assumption (i). For each A € (0, 1), we set
= {x € D : x; > A} and we define the map h; : X, — Dby h; (x) = (2A — x1, x3) for x = (x1, x) € X,. We note that

h;, satisfies

:r\—‘

3\%

:\m‘ —

|h, (x)] < |x| foreach X € (0,1)andx € X, Ulntyp(X, N aD). (2.3)

Here, for a subset E of dD, we denote by IntypE, the interior set of E with respect to the relative topology of dD. We set
= (2X,0) for A € (0, 1). We can see

X foreach A € (0, %) )
X, € 10X, for A = %, (2.4)
R?\ X, foreacha e (%, 1)
and
(2.5)

h;, (x,) =0 foreach X € (0, 1/2].
For the sake of completeness, we note that X, \ {x,} = X, foreach 1 € [%, 1) and %, \ {x,} = X, foreach A € (%, 1). For
eachi,j=1,...,m, wedefine vi € C?(Z; \ {x,}) NC(Z,) and ¢; € L®(X};) by setting

vl (x) =T (x) —T(h(x), forxe X, (2.6)

and

) = - f f(lxl ST + (1 =T @), .., ST X + (1= 9T (,(0)) ds. 27)
0
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By the assumptions of Theorem 1.1, we can see that C;J <0ifiz#jforx € X, and

sup sup |c;j(x)| < oo, foreachr e (0,1)andi,j=1,...,m. (2.8)
r<i<lxeXy

Therefore, it holds
— Avj (%) + Zci’(x)v’k(x) <0 forie(0,1),xe X \{x}andi=1,...,m. (2.9)
j=1
Indeed, (2.9) can be obtained as follows:

0 = AT (h(x) +F (LT (1 (X)), ... T (1 () — AT () — FI(Ix], T' (), ... T" (%))

> —AvLX) + P T (), . T () = FL (% T (), - T ()
m
= AV () + Y0V, X).
j=1
We set
Ai={re[1/2,1): v)"\(x) < Oforeachx € ¥; andi € {1, ..., m}},
M1 = inf A. (2.10)
reAq
We now claim that A; # (. Leti € {1,...,m}and A € [1/2, 1) such that X is sufficiently close to 1. Then we can

easily see v; (x) < O0forx € 90X, and vi(x) < 0for x € Intygp(dD N 9X;) from (2.3). Since | X, | < 1 and (2.9) holds,
by [2, Corollary 14.1], we have vi <0on X,.By

m
— AV )+ OV < =Y () <0 in X\ x) (2.11)
J#
and the strong maximum principle, we have v; < 0in X). Since i is any element of {1, ..., m}, we have shown A € A;,

which proves the claim.

We now claim that u; = 1/2 € A;. Leti € {1,..., m}. We have vfh (x) <0forx € X,,.Since (2.11) holds with A = p4
and le(x) < Oforx € Intyp(d X,,,NAD) from (2.3), by the strong maximum principle, we have le(x) < Oforx € X¥,,,.Since
iis an arbitrary element of {1, . .., m}, we have u, € A;. We will show p; = 1/2. Suppose not, namely ©; > 1/2. Again let
ie(1,..., m}.Let G be an open set such that G C Y, and | X, \ G| « 1.We have maxX, g vL](x) < 0.Let0 < & <« 1.Then
we have max, ¢ v!, _, (x) <0forx € 3(X,,—\G),

(x) < 0and|X,, . \G| < 1.Since(2.9)holdswith A = u;—¢and v}, _,
we have v/, (x) < 0forx € X, . by [2, Corollary 14.1]. From v}, . (x) < 0 forx € (Intyp(d &, . N 8D)) U G and

! n1—¢
the strong maximum principle, we have Uibﬁs (x) < Oforx € ¥, _,.Sinceiis an arbitrary element of {1, ..., m}, we have
1 — & € Aq. This is a contradiction. Hence 1 = 1/2 € A;.

We now set

A, ={re(0,1/2): v;(x) < Oforeachx € ¥y andi € {1,...,m}},

. 2.12)
= inf A. (
H2 AIEAZ
We now claim that A, # @. Leti € {1, ..., m}. We note that x;,, = (1, 0). Let G be an open set such that GC %12 and
|Z12 \ G| < 1.From 1/2 € Ay and G C )5, we have max, ¢ v} ,(x) < 0.Let A € (0, 1/2) such that A is sufficiently

glose to 1/2. We note | ¥, \ G| <« 1and x, is clos¢ to (1, 0). We chgose_ a sufficiently small open neighborhoog U of x; with
U C X,,and we set H = GU U. Then we have v} (x) < Oforx € H, v; (x) < Oforx € 9%, UdH and | X, \ H| < 1. Since
(2.9) holds on X, \ H, by [2, Corollary 14.1], we have vi < 0on X,.From (2.11) and the strong maximum principle, we have

vi < Oon Xy.Since i is an arbitrary element of {1, ..., m}, we have shown A € A,.
Recalling that u is of class C" at the origin, arguing exactly as in [19, Lemma 4] we get
A oh
M(xﬂz) =0 foreachi=1,...,m. (2.13)
BX]
We now claim that 4, = 0. Suppose not. Leti € {1, ..., m}. Then we have u, € (0, 1/2) by the previous claim and we

can see sz < 0on X,,. We will show sz <0on X, \ {x,,}. We have sz (x) < 0forx € Intyp(d X, N D) from (2.3).
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i
H2

(X,,) = 0.Let vy = (—1,0) and v, = (1, 0). From (2.13), we have

By (2.11) with A = i, and the strong maximum principle, we have vLZ < O0on X, \ {x,,}. Next, we will show v
Suppose v}, (x,,) < 0 does not hold, i.e., v]

(%4,) < 0.

M2
av! U dioh,,) ot
a‘:z (X,) = _Tm(xuz) + Tm(xuz) = _37)61()(“2)’
Uiy i A o hy,) o

(xuz) - 87)(1 (X/J_z) - (X/LZ) - 37)(1 (Xuz ) .

8\)2 8x1

By Hopf's lemma, we obtain
~i ~i

u u
——(x,,) <0 and —(x,,) <O,
BX]( 12) 8X1( 12)

which is a contradiction. So we have shown vLZ (x,,) < 0.Thus we have vLZ < Oon X,,. Since i is an arbitrary element of
{1,..., m}, we have u, € A;. Againleti € {1, ..., m}. We choose an open set G suchthat G C ¥, and | X, \ G| < 1. We
have maxg v, < 0.Let0 < ¢ < 1.Then we have | ¥, . \ G| < 1and maxgv,,_, < 0.Since (2.9) holds with A = u, —¢,
by [2, Corollary 14.1], we have v;,“rs (x) <0forx € ¥, \G.By(2.11) with A = u, — ¢ and the strong maximum principle,
we havev  (x) <Oforx € X, \ G.Hence we have shown v _, (x) < Oforx € X, .. Sinceiis an arbitrary element

np—¢
of {1,..., T?l}, we have i, — ¢ € Ay, which is a contradiction. Therefore we obtain p, = 0. .
We can finally conclude the proof of Theorem 1.1. Leti € {1, ..., m}. By the conclusions above, we can infer that o' is

radially symmetric and %—ﬂri(|x|) < Oforr = |x| € (0, 1). From the definition of i, we can find ' is also radially symmetric
and 2£(|x]) < 0.
3. Proof of Theorem 1.2

Let us first prove assertion (I) of Theorem 1.2. Assume that (u, v) is an n-mode solution to system (1.2) such that
n > 1+ [a/2]. Then, we may choose i1, m € N such that m/f € N, (¢ + 2)it < 2n < 2(a + 2)fi and

nn 2n
m > max .

(@+2)n—n" a+2

Setting {i(r, 0) := u(r™", m@/n) and d(r, 6) := v(r™", mH/n), it is readily seen that {i and 9 are both 1 = m/f-mode and
solve, in D \ {0}, the system

~ 2pm2 m(a+2)—2n , 1n
+ — m P~ '09=0 inD\ {0},
or o \ {0}
R 2pm? m@+2)-2n . .
Ab+ —PT " @250 =0 inD)\ {0},
(p+qn
>0, >0 inD \ {0},
ut=0v=0 on aD.
We need to show that (i1, v) is a solution of the corresponding system on D, namely
N 2 m2 m(a —2n . ~ .
All + p72|x| G154 — 0 in D,
(p+qn (3.1)
R 2 m2 m(a =2n .. . . .
P x| P91 =0 inD.

V+ ————
(p + qn?
To this aim, let ¢ € C°(D) a function and let ¢ € (0, 1). Then, if D, denotes the ball centered at zero with radius €, we get

A 2pm2 m(a+2)—2n n
0= / Atlig + 7/ R e )
D\Ds @+ 9n? Jp\p,
ol . 2pm? m@+2)-2n , 1
= — —q@dS — Viuve + ——— x| 7 m 0P p,
ap, O D\De (» + @n* Jp\p,
2pm? m+2)—2n
0 = / Af)(p—{—i‘/ P A
D\Ds (p +@)n? Jp\p,

v ~ 2 m2 m(@+2)—2n , .
= _f —(pds—/ VvVgo—l—piz/ x| M P,
ap, OT D\Ds @+ @n? Jp\p,
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Since also u € C'(D), the functions 2 (r, 8), 124(r, 6), 22(r, ), 12¢(r, 0) are bounded on D. From ii(r, §) = u(rn
there exists some positive constant C such that

, 1),

0| < crit ooy <ar
or | B P Rt

for each (r, 6) € D. Hence, we have

ou
/ —@dS
x|=¢ ar

/ vaw-/vavw
{e<|x|<1} D

Hence, letting ¢ — +0, we conclude that (i, D) is a weak (and hence a strong) solution to (3.1). Since (m(a + 2) — 2n)/n >
i — 1, it follows that i, 9 € C™(D). Furthermore, since (o« + 2)ii < 2n the map r +> r2-2tm@+2-2m/n jg honincreasing.
In turn, by applying Theorem 1.1, it follows that &1 and ¥ are radially symmetric and hence u and v are radially symmetric,
concluding the first part of the proof.

We now come to the proof of assertion (II). We set H, = {u € H(} (D) : uisn-mode} foralln € Nand Hy,, = {u € H(} D) :
u is radially symmetric}. Forany p,q > 1,« > 0and n € N U {00}, set

Se,p.qn = inf{Ry pq(u, v) 1 u, v € Hy \ {0}}.
From the proof of [23, Proposition 2.5], we can find

1+ -2
pHq
o+ 2
Sa,p,q,oo = 50.,p,q,1 2 .

m
<Cen,

m
< Cent! 4+ ce?.

(3.2)

Next, let ¢ be any element of C§° (D). Since we can consider ¢ € C§° (R?) by the trivial extension, we can define ¢, € (D)
by ¢q (X1, X2)) = @(a(x; — (1 — 1/)), axy) for (xq1, x) € D. We set D; = D and

D,={(r,0):0<r<1,—n/n<6 <m/n} forneN\({1}.

For eachn € Nand « > 0 with supp ¢, C Dy, we will show

i
Se n <3S m]*ﬁal’% * . (3.3)
g, = 90,p,q, o —2
Wedefine P, : D — Dby P,(r,0) = (r, 042w /n) for (r, 0) € [0, 1) xR. We set @(X) = @g (%) +¢y (Pa(X)+ - -+@ (PI1(x))
for x € D. Since we have

/ Vel? = / VP
D D
and
2 o
/ 1%|%|@alP|@e|? > a2 <1 - *) f lelPlel?,
D o D

we obtain

~ o~ n [,(Vel? + [Vol*)
Soz,p,q,n 5 Ra,p,q((pa ¢) f D = -

o pHq
(na‘2<1 - i) I le”lwlq)

Since ¢ € C§°(D) is arbitrary, we have shown (3.3). From (3.2) and (3.3), we can see that n < n, is a sufficient condition
for Sap.gn < Sap.q.00- We will show thatifn > 1and Sy pgn < Sapgoo thenSypq1 < -+- < Sypgn- Letn > 1and
Sap.gn < Sa,p,g.00- We can choose u, v € H, \ {0} such that R, p q(u, v) = Sy pqnandu, v > 0. We note that u, v & Heo
and (u, v) is a positive solution of (1.2). Let m € {1,...,n — 1}. We define u,v € H,, by u(r,0) = u(r, mé/n) and
v(r,0) = v(r,ml/n) for (r, 6) € [0, 1) x R.Since we can see

/|x|“|a|"|a|q=f|x|“|u|”|v|q,
D D

2 1
fesr= [ [
D 0 0

u 2+ m? |du
ar a6

2
>rdrd0 <f|Vu|2
D

n2r2
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and [, |Vo|]? < [, |Vv|?, we have

Se.pgm = Ra.p,q(ﬂs v) < Ra,p,q(us v) = Se,p.q.n-

By a similar argument, we conclude that Sy p g1 < -+ < Sgpqn. Hence we infer that if Sy p g0 < S¢,p.q,00, then for each
£ =1, ..., n,there exists a nonradial positive solution (u, v,) € Hy x H of (1.2) satisfying Ry p q(¢, V¢) = Su pq.¢. We set
the number in (1.4) as n(«, p, q). For a fixed ¢ € (2, 00), we have (o, p,q) — 1+ /2 asp 4+ q — oo, which yields (i).
For a fixed p, q € (1, 0c0), we have n(«, p, ) — 00 as o — oo, yielding (ii). Hence, we finish the proof of Theorem 1.2.
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