
Calc. Var.          (2024) 63:142 
https://doi.org/10.1007/s00526-024-02749-x Calculus of Variations

Normalized solutions for a fractional Schrödinger–Poisson
systemwith critical growth

Xiaoming He1 · Yuxi Meng2 ·Marco Squassina3

Received: 7 February 2024 / Accepted: 28 May 2024
© The Author(s) 2024

Abstract
In this paper, we study the fractional critical Schrödinger–Poisson system{

(−�)su + λφu = αu + μ|u|q−2u + |u|2∗
s−2u, in R

3,

(−�)tφ = u2, in R
3,

having prescribed mass ∫
R3

|u|2dx = a2,

where s, t ∈ (0, 1) satisfy 2 s + 2t > 3, q ∈ (2, 2∗
s ), a > 0 and λ,μ > 0 parameters and

α ∈ R is an undetermined parameter. For this problem, under the L2-subcritical perturbation
μ|u|q−2u, q ∈ (2, 2+ 4 s

3 ), we derive the existence ofmultiple normalized solutions bymeans
of the truncation technique, concentration-compactness principle and the genus theory. In
the L2-supercritical perturbation μ|u|q−2u, q ∈ (2+ 4 s

3 , 2∗
s ), we prove two different results

of normalized solutions when parameters λ,μ satisfy different assumptions, by applying
the constrained variational methods and the mountain pass theorem. Our results extend and
improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15–30, 2016); and of
Teng (JDiffer Equ 261:3061–3106, 2016), sincewe are concernedwith normalized solutions.
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1 Introduction

In the last decade, the following time-dependent fractional Schrödinger–Poisson system⎧⎨
⎩i

∂�

∂τ
= (−�)s� + λφ� − f (x, |�|), x ∈ R

3,

(−�)tφ = |�|2, x ∈ R
3,

(1.1)

has attracted much attention, where � : R×R
3 → C, s, t ∈ (0, 1), λ ∈ R. It is well-known

that, the first equation in (1.1) was used by Laskin (see [17, 18]) to extend the Feynman path
integral, from Brownian-like to Lévy-like quantummechanical paths. This class of fractional
Schrödinger equations with a repulsive nonlocal Coulombic potential can be approximated
by the Hartree–Fock equations to describe a quantum mechanical system of many particles;
see, for example, Cho et al. [7], Lieb and Loss [20], Longhi [21], Molica Bisci [26], Di Nezza
et al. [27] for more applied backgrounds on the fractional Laplacian.

When we look for standing wave solutions to (1.1), namely to solutions of the form
�(τ, x) = (e−iατu(x), φ(x)), α ∈ R, then the function (u(x), φ(x)) solves the equation{

(−�)su + λφu = αu + f (x, u), x ∈ R
3,

(−�)tφ = u2, x ∈ R
3.

(1.2)

Here (−�)s is a nonlocal operator defined by

(−�)su(x) = Cs P.V.
∫
R3

u(x) − u(y)

|x − y|3+2s dy, x ∈ R
3, s ∈ (0, 1),

and P.V. stands for the Cauchy principal value on the integral, and Cs is a suitable normal-
ization constant.

We note that, when α ∈ R is a fixed real number, there was a lot of attention in recent
years on the system (1.2) for the existence and multiplicity of ground state solutions, bound
state solutions and concentrating solutions, see for examples [34, 36, 37, 39] and references
therein. Especially, Zhang et al. [39] considered the existence and asymptotical behaviors of
positive solutions as λ → 0+, for the fractional Schrödinger–Poisson system{

(−�)su + λφu = g(u), x ∈ R
3,

(−�)tφ = λu2, x ∈ R
3,

where λ > 0 and g may be subcritical or critical growth satisfying the Berestycki–Lions
conditions. In [31], Teng studied the existence of a nontrivial ground state solution for the
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nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent{
(−�)su + V (x)u + φu = μ|u|q−1u + |u|2∗

s−2u, x ∈ R
3,

(−�)tφ = u2, x ∈ R
3,

where μ ∈ R
+ is a parameter, 1 < q < 2∗

s − 1, s, t ∈ (0, 1) with 2s + 2t > 3. The potential
V satisfies some suitable hypotheses. By the monotonicity trick, concentration-compactness
principe and a global compactness Lemma, the author establishes the existence of ground
state solutions. Formally, system (1.1) with s = t = 1 can be regarded as the following
classical Schrödinger–Poisson system{

−�u + λφu = f (x, u), in R
3,

−�φ = u2, in R
3,

which appears in semiconductor theory [26] and also describes the interaction of a charged
particle with the electrostatic field in quantummechanics. The literature on the Schrödinger–
Poisson system in presence of a pure power nonlinearity is very rich, we refer to [34, 36, 38]
and references therein.

Alternatively, from a physical point of view, it is interesting to find solutions of (1.2) with
prescribed L2-norms, α appearing as Lagrange multiplier. Solutions of this type are often
referred to as normalized solutions. The occurrence of the L2-constraint renders several
methods developed to deal with variational problems without constraints useless, and the
L2-constraint induces a new critical exponent, the L2-critical exponent given by

q̄ := 2 + 4s

3
,

and the number q̄ can keep the mass invariant by the law of conservation of mass. Precisely
for this reason, 2 + 4s

3 is called L2-critical exponent or mass critical exponent, which is the
threshold exponent formany dynamical properties such as global existence, blow-up, stability
or instability of ground states. In particular, it strongly influences the geometrical structure of
the corresponding functional. Meanwhile, the appearance of the L2-constraint makes some
classical methods, used to prove the boundedness of any Palais–Smale sequence for the
unconstrained problem, difficult to implement. In [22], Li and Teng proved the existence of
normalized solutions to the following fractional Schrödinger–Poisson system:⎧⎪⎪⎨

⎪⎪⎩
(−�)su + φu = λu + f (u), in R

3,

(−�)tφ = u2, in R
3,∫

R3
|u|2dx = a2,

(1.3)

where s ∈ (0, 1), 2 s + 2t > 3, λ ∈ R and f ∈ C1(R,R) satisfies some general conditions
which contain the case f (u) ∼ |u|q−2u with q ∈ ( 4 s+2t

s+t , 2 + 4 s
3 ) ∪ (2 + 4 s

3 , 2∗
s ), i.e.,

the nonlinearity f is L2-mass subcritical or L2-mass supercritical growth, but is Sobolev
subcritical growth. In [37], Yang et al. showed the existence of infinitely many solutions
(u, λ) to (1.3) with subcritical nonlinearity μ|u|q−2u, by using the cohomological index
theory.

We note that, when s = t = 1, problem (1.3), are related to the the following equation⎧⎨
⎩

−�u + λu − γ (|x |−1 ∗ |u|2)u = a|u|p−2u, in R
3,∫

R3
|u|2dx = c2, u ∈ H1(R3).

(1.4)
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Recently, Jeanjean and Trung Le [15] studied the existence of normalized solutions for (1.4)
when γ > 0 and a > 0, both in the Sobolev subcritical case p ∈ (10/3, 6) and in the Sobolev
critical case p = 6, they showed that there exists a c1 > 0 such that, for any c ∈ (0, c1),
Eq. (1.4) admits two solutions u+

c and u−
c which can be characterized respectively as a local

minima and as a mountain pass critical point of the associated energy functional restricted to
the norm constraint. While in the case γ < 0, a > 0 and p = 6 the authors showed that (1.4)
does not admit positive solutions. Bellazzini et al. [4] proved that for c > 0 sufficiently small,
there exists a critical point which minimizes with prescribed L2-norms. In [14], Jeanjean and
Luo studied the existence of minimizers for with L2-norm for (1.4), and they expressed a
threshold value of c > 0 separating existence and nonexistence of minimizers. In [32], Wang
and Qian established the existence of ground state and infinitely many radial solutions to
(1.4) with a|u|p−2u replaced by a general subcritical nonlinearity a f (u), by constructing a
particular bounded Palais–Smale sequencewhen γ < 0, a > 0. In [23], Li and Zhang studied
the existence of positive normalized ground state solutions for a class of Schrödinger-Bopp-
Podolsky system. For more results on the existence and no-existence of normalized solutions
of Schrödinger–Poisson systems, we refer to [2, 3, 5, 6, 12, 14, 15, 24, 35, 37] and references
therein.

After the above bibliography review we have found only two papers [22, 37] considering
the normalized solutions for the fractional Schrödinger–Poisson system by the prescribed
mass approaches with the nonlinearity f (u), being Sobolev subcritical growth.

A natural question arises: How to obtain solutions to system (1.3) in presence of the
nonlinear term f (u) = μ|u|q−2u + |u|2∗

s−2u, combining the Sobolev critical term with a
subcritical perturbation?

The main contribution of this paper is to give an affirmative answer to this question and
fill this gap. To be specific, in the present paper we aim to study the following fractional
Schrödinger–Poisson system{

(−�)su + λφu = αu + μ|u|q−2u + |u|2∗
s−2u, in R

3,

(−�)tφ = u2, in R
3,

(1.5)

having prescribed L2-norm ∫
R3

|u|2dx = a2, (1.6)

where s, t ∈ (0, 1) satisfy 2s+2t > 3, q ∈ (2, 2∗
s ) and α ∈ R is an undetermined parameter,

μ, λ > 0 are parameters. For this purpose, applying the reduction argument introduced in
[39], system (1.5) is equivalent to the following single equation

(−�)su + λφt
uu = αu + μ|u|q−2u + |u|2∗

s−2u, x ∈ R
3, (1.7)

where

φt
u(x) = ct

∫
R3

|u(y)|2
|x − y|3−2t dy, and ct := 
( 32 − 2t)

π322t
(t)
.

We shall look for solutions to (1.5)–(1.6), as a critical point of the action functional

Iμ(u) = 1

2

∫
R3

|(−�)
s
2 u|2dx + λ

4

∫
R3

φt
u |u|2dx − μ

q

∫
R3

|u|qdx − 1

2∗
s

∫
R3

|u|2∗
s dx,

restricted on the set

Sa =
{
u ∈ Hs(R3) :

∫
R3

|u|2dx = a2
}

,
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with α being the Lagrange multipliers, Clearly, to each critical point ua ∈ Sa of Iμ|Sa ,
corresponds a Lagrange multiplier α ∈ R such that (ua, α) solves (1.7). In particular, if
ua ∈ Sa is a minimizer of problem

m(a) := inf
u∈Sa

Iμ(u),

then there exists α ∈ R as a Lagrange multiplier and then (ua, α) is a weak solution of
(1.7). As far as we know, there is no result about the existence of normalized solutions for
Schrödinger–Poisson system with a critical term in the current literature. For this aim, we
shall focus our attention on the existence, asymptotic andmultiplicity of normalized solutions
for problem (1.5)–(1.6).

2 Themain results

In this section we formulate the main results. We first deal with the existence of multiple
normalized ground state solutions in the L2-subcritical case: q ∈ (2, 2 + 4s

3 ). Secondly, we
are concernedwith the existence and asymptotic behavior of positive normalized ground state
solutions of Schrödinger–Poisson system (1.7) in the L2-supercritical case: q ∈ (2+ 4 s

3 , 2∗
s ).

To state the main results, for δq,s = 3(q − 2)/2qs, we introduce the following constants:

D1 := 2
− qδq,s−2

2∗s −2 S
3(2∗s −q)

2s(2∗s −2) ; (2.1)

D2 := D(s, t)−1S
3[(2∗s −2)−q(1−δq,s )]

2s(2∗s −2) , (2.2)

where

D(s, t) :=
(

(3 − 2t)λ
t

2s

) (qδq,s−2)s
s2∗s +2t−3

, (2.3)

and 
t is given in (3.3).
The first result is concerned with the multiplicity of normalized solutions for the L2-

subcritical perturbation, which can be formulated as

Theorem 2.1 Let μ, λ, a > 0, and q ∈ (2, 2 + 4s
3 ). Then, for a given k ∈ N, there exists

β > 0 independent of k and μ∗
k > 0 large, such that problem (1.5)–(1.6) possesses at least

k couples (u j , α j ) ∈ Hs(R3) × R of weak solutions for μ > μ∗
k and

a ∈
(
0,

(
β

μ

) 1
q(1−δq,s )

)
(2.4)

with
∫
R3 |u j |2dx = a2, α j < 0 for all j = 1, . . . , k.

The second result of this paper is concerned with the existence and asymptotical behavior
of normalized solutions for the L2-supercritical perturbation when the parameters λ,μ > 0
are suitably small.

Theorem 2.2 Let q ∈ (2 + 4s
3 , 2∗

s ), assume that μ, a > 0 satisfy the following inequality

μδq,s max

{
aq(1−δq,s ), a

(q−2)2t+2s(2∗s −4)
s2∗s +2t−3

}
< min{D1, D2}, (2.5)
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where δq,s = 3(q − 2)/2qs. Then, there exists �∗ > 0 such that for 0 < λ < �∗, problem
(1.5)–(1.6) possesses a positive normalized ground state solution uα ∈ Hs(R3) for some
α < 0.

Finally, we present an existence result of normalized solutions under the L2-supercritical
perturbation, when parameter μ > 0 is large.

Theorem 2.3 If 2 + 4s
3 < q < 2∗

s , there exists μ∗ = μ∗(a) > 0 large, such that as
μ > μ∗, problem (1.5)–(1.6) possesses a couple (ua, α) ∈ Hs(R3) × R of weak solutions
with

∫
R3 |ua |2dx = a2, α < 0.

Remark 2.1 (i) Theorems 2.1–2.3 improve and complement the main results in [31, 39] in
the sense that, we are concerned with the normalized solutions.

(ii) Our studies improve and fill in gaps of the main works of [22, 30, 37], since we consider
the existence of normalized solutions to (1.5)–(1.6) with Sobolev critical growth.

2.1 Remarks on the proofs

We give some comments on the proof for the main results above. Since the critical terms
|u|2∗

s−2u is L2-supercritical, the functional Iμ is always unbounded frombelowon Sa, and this
makes it difficulty to deal with existence of normalized solutions on the L2- constraint. One
of the main difficulties that one has to face in such context is the analysis of the convergence
of constrained Palais–Smale sequences: In fact, the critical growth term in the equation
makes the bounded (PS) sequences possibly not convergent; moreover, the Sobolev critical
term |u|2∗

s−2u and nonlocal convolution term λφt
uu, makes it more complicated to estimate

the critical value of mountain pass, and one has to consider how the interaction between the
nonlocal term and the nonlinear term, and the energy balance between these competing terms
needs to be controlled through moderate adjustments of parameter λ > 0. Another difficulty
is that sequences of approximated Lagrange multipliers have to be controlled, since α is not
prescribed; and moreover, weak limits of Palais–Smale sequences could leave the constraint,
since the embeddings Hs(R3) ↪→ L2(R3) and also Hs

rad(R
3) ↪→ L2(R3) are not compact.

To overcome these difficulties, we employ Jeanjean’s theory [13] by showing that the
mountain pass geometry of Iμ|Sa allows to construct a Palais–Smale sequence of func-
tions satisfying the Pohozaev identity. This gives boundedness, which is the first step in
proving strong Hs-convergence. As naturally expected, the presence of the Sobolev critical
term in (1.5) further complicates the study of the convergence of Palais–Smale sequences.
To overcome the loss of compactness caused by the critical growth, we shall employ the
concentration-compactness principle,mountain pass theorem and energy estimation to obtain
the existence of normalized ground states of (1.5), by showing that, suitably combining some
of the main ideas from [28, 29], compactness can be restored in the present setting.

Finally, let us sketch the ideas andmethods used along this paper to obtain ourmain results.
For the L2-subcritical perturbation: q ∈ (2, 2 + 4s

3 ), it is difficult to get the boundedness
of the (PS) sequence by the idea of [13]. To get over this difficulty, we use the truncation
technique; to restore the loss of compactness of the (PS) sequence caused by the critical
growth, we apply for the concentration-compactness principle; and to obtain the multiplicity
of normalized solutions of (1.5)–(1.6), we employ the genus theory. For the L2-supercritical
perturbation: q ∈ (2 + 4s

3 , 2∗
s ), we use the Pohozaev manifold and mountain pass theorem

to prove the existence of positive ground state solutions for system (1.5)–(1.6) when μ > 0
small. While if the parameter μ > 0 is large, we employ a fiber map and the concentration-
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compactness principle to prove that the (PS) sequence is strongly convergent, to obtain a
normalized solution of (1.5)–(1.6).

2.2 Paper outline

This paper is organized as follows.

• Section 2 provides the main results, and Sect. 3 presents some preliminary results that
will be used frequently in the sequel.

• Section4 presents the multiplicity of normalized ground state solutions for system (1.5)–
(1.6) when q ∈ (2, 2 + 4s

3 ), and finish the proof of Theorem 2.1.
• Section5 proves the existence of normalized positive ground state solutions for problem

(1.5)–(1.6) when q ∈ (2 + 4s
3 , 2∗

s ), and Theorem 2.2 is proved if μ, λ > 0 are suitably
small.

• In Sect. 6 we give another existence result for problem (1.5)–(1.6) with q ∈ (2+ 4 s
3 , 2∗

s ),

when the parameter μ > 0 is large, and finishes the proof of Theorem 2.3.

Notations. In the sequel of this paper, we denote by C,Ci > 0 different positive constants
whose values may vary from line to line and are not essential to the problem. We denote
by L p = L p(R3) with 1 < p ≤ ∞ the Lebesgue space with the standard norm ‖u‖p =(∫

R3 |u|pdx)1/p .

3 Preliminary stuff

In this section, we first give the functional space setting, and sketch the fractional order
Sobolev spaces [27]. We recall that, for any s ∈ (0, 1), the nature functions space associated
with (−�)s is H := Hs(R3) which is a Hilbert space equipped with the inner product and
norm, respectively given by

〈u, v〉 :=
∫
R3

((−�)
s
2 u(−�)

s
2 v + uv)dx, ‖u‖2H = 〈u, u〉.

The homogeneous fractional Sobolev space Ds,2(R3) is defined by

Ds,2(R3) =
{
u ∈ L2∗

s (R3) :
∫∫

R6

|u(x) − u(y)|2
|x − y|3+2s dxdy < +∞

}
,

a completion of C∞
0 (R3) under the norm

‖u‖2 := ‖u‖2Ds,2(R3)
=
∫∫

R6

|u(x) − u(y)|2
|x − y|3+2s dxdy,

where 2∗
s = 6/(3 − 2s) is the critical exponent. From Proposition 3.4 and 3.6 in [27] we

have

‖u‖2 = ‖(−�)
s
2 u‖22 =

∫∫
R6

|u(x) − u(y)|2
|x − y|3+2s dxdy.

The best fractional Sobolev constant S is defined as

S = inf
u∈Ds,2(R3),u �=0

‖(−�)
s
2 u‖22

(
∫
R3 |u|2∗

s dx)
2
2∗s

. (3.1)
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The work space Hs
rad(R

3) is defined by

Hs
rad(R

3) := {u ∈ Hs(R3) : u is radially decreasing
}
.

Let H = H × R with the scalar product 〈·, ·〉H + 〈·, ·〉R, and the corresponding norm
‖(·, ·)‖2

H
= ‖·, ·‖2H + |·, ·|2

R
.

The following two inequalities play an important role in the proof of our main results.

Proposition 3.1 (Hardy–Littlewood–Sobolev inequality [20]) Let l, r > 1 and 0 < μ < N
be such that 1

r + 1
l + μ

N = 2, f ∈ Lr (RN ) and h ∈ Ll(RN ). Then there exists a constant
C(N , μ, r , l) > 0 such that∣∣∣∣

∫
RN

∫
RN

f (x)h(y)|x − y|−μdxdy

∣∣∣∣ ≤ C(N , μ, r , l)‖ f ‖r‖h‖l .

We recall the fractional Gagliardo-Nirenberg inequality.

Lemma 3.2 ([11]) Let 0 < s < 1, and p ∈ (2, 2∗
s ). Then there exists a constant C(p, s) =

S− δp,s
2 > 0 such that

‖u‖p
p ≤ C(p, s)‖(−�)

s
2 u‖pδp,s

2 ‖u‖p(1−δp,s )

2 , ∀u ∈ Hs(R3), (3.2)

where δp,s = 3(p − 2)/2ps.

Lemma 3.3 (Lemma 5.1 [9]) If un⇀u in Hs
rad(R

3), then∫
R3

φt
un u

2
ndx →

∫
R3

φuu
2dx,

and ∫
R3

φt
un unϕdx →

∫
R3

φt
uuϕdx, ∀ϕ ∈ Hs

rad(R
3).

From Proposition 3.1, with l = r = 6
3+2t , then Hardy–Littlewood–Sobolev inequality

implies that: ∫
R3

φt
uu

2dx =
∫
R3

(
1

|x |3−2t ∗ u2
)
u2dx ≤ 
t‖u‖412

3+2t
. (3.3)

It is easy to enumerate that

qδq,s

⎧⎨
⎩

< 2, if 2 < q < q̄;
= 2, if q = q̄;
> 2, if q̄ < q < 2∗

s ,

where q̄ := 2 + 4s
3 is the L2-critical exponent.

Now, we introduce the Pohozaev mainfold associated to (1.7), which can be derived from
[31].

Proposition 3.4 Let u ∈ Hs(R3) be a weak solution of (1.7), then u satisfies the equality

3 − 2s

2
‖u‖2 + 2t + 3

4
λ

∫
R3

φt
uu

2dx = 3α

2
‖u‖22 + 3μ

q

∫
R3

|u|qdx + 3

2∗
s

∫
R3

|u|2∗
s dx .
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Lemma 3.5 Let u ∈ Hs(R3) be a weak solution of (1.7), then we can construct the following
Pohozaev manifold

Pa = {u ∈ Sa : Pμ(u) = 0},
where

Pμ(u) = s‖u‖2 + 3 − 2t

4
λ

∫
R3

φt
uu

2dx − sμδq,s

∫
R3

|u|qdx − s
∫
R3

|u|2∗
s dx .

Proof From Proposition 3.4, we know that u satisfies the Phohzaev identity as follows

3 − 2s

2
‖u‖2 + 2t + 3

4
λ

∫
R3

φt
uu

2dx = 3α

2
‖u‖22 + 3μ

q

∫
R3

|u|qdx

+ 3

2∗
s

∫
R3

|u|2∗
s dx . (3.4)

Moreover, since u is the weak solution of system (1.7), we have

‖u‖2 + λ

∫
R3

φt
uu

2dx = α‖u‖22 + μ

∫
R3

|u|qdx +
∫
R3

|u|2∗
s dx . (3.5)

Combining with (3.4) and (3.5), we get

s‖u‖2 + 3 − 2t

4
λ

∫
R3

φt
uu

2dx = sμδq,s

∫
R3

|u|qdx + s
∫
R3

|u|2∗
s dx,

which finishes the proof. ��
Finally, we state the following well-known embedding result.

Lemma 3.6 ([10]). Let N ≥ 2. The embedding Hs
rad(R

N ) ↪→ L p(RN ) is compact for any
2 < p < 2∗

s .

4 Proof of Theorem 2.1

In this section, we aim to show the multiplicity of normalized solutions to (1.5)–(1.6). To
begin with, we recall the definition of a genus. Let X be a Banach space and let A be a subset
of X . The set A is said to be symmetric if u ∈ A implies that −u ∈ A. We denote the set

� := {A ⊂ X \ {0} : A is closed and symmetric with respect to the origin}.
For A ∈ �, define

γ (A) =
⎧⎨
⎩
0, if A = ∅,

inf{k ∈ N : ∃ an odd ϕ ∈ C(A,Rk \ {0})},
+∞, if no such odd map,

and that �k = {A ∈ � : γ (A) ≥ k}.
In order to overcome the loss of compactness of the (PS) sequences, we need to apply for

the following concentration-compactness principle.

Lemma 4.1 ([40]) Let {un} be a bounded sequence in Ds,2(R3) converging weakly and a.e. to
some u ∈ Ds,2(R3). We have that |(−�)

s
2 un |2⇀ω and |un |2∗

s ⇀ζ in the sense of measures.
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Then, there exist some at most a countable set J , a family of points {z j } j∈J ⊂ R
3, and

families of positive numbers {ζ j } j∈J and {ω j } j∈J such that

ω ≥ |(−�)
s
2 u|2 +

∑
j∈J

ω jδz j , (4.1)

ζ = |u|2∗
s +

∑
j∈J

ζ jδz j (4.2)

and

ω j ≥ Sζ

2
2∗s
j , (4.3)

where δz j is the Dirac-mass of mass 1 concentrated at z j ∈ R
3.

Lemma 4.2 ([40]) Let {un} ⊂ Ds,2(R3) be a sequence in Lemma 4.1 and define that

ω∞ := lim
R→∞ lim sup

n→∞

∫
|x |≥R

|(−�)
s
2 un |2dx, ζ∞ := lim

R→∞ lim sup
n→∞

∫
|x |≥R

|un |2∗
s dx .

Then it follows that

ω∞ ≥ Sζ

2
2∗s∞ , (4.4)

lim sup
n→∞

∫
R3

|(−�)
s
2 un |2dx =

∫
R3

dω + ω∞ (4.5)

and

lim sup
n→∞

∫
R3

|un |2∗
s dx =

∫
R3

dζ + ζ∞. (4.6)

For u ∈ Sr ,a , in view of Lemma 3.2, and the Sobolev inequality, one has that

Iμ(u) = 1

2

∫
R3

|(−�)
s
2 u|2dx + λ

4

∫
R3

φt
uu

2dx − μ

q

∫
R3

|u|qdx − 1

2∗
s

∫
R3

|u|2∗
s dx

≥ 1

2
‖(−�)

s
2 u‖22 − μ

q
aq(1−δq,s )Cq,s‖(−�)

s
2 u‖qδq,s

2 − 1

2∗
s
S− 2∗s

2 ‖(−�)
s
2 u‖2∗

s
2

:= g(‖(−�)
s
2 u‖2),

(4.7)

where

g(r) = 1

2
r2 − μ

q
aq(1−δq,s )Cq,sr

qδq,s − 1

2∗
s
S− 2∗s

2 r2
∗
s .

Recalling that 2 < q < 2 + 4s
3 , we get that qδq,s < 2, and there exists β > 0 such that,

if μaq(1−δq,s ) ≤ β, the function g attains its positive local maximum. More precisely, there
exist two constants 0 < R1 < R2 < +∞, such that

g(r) > 0, ∀r ∈ (R1, R2); g(r) < 0, ∀r ∈ (0, R1) ∪ (R2,+∞).

Let τ : R+ → [0, 1] be a nonincreasing and C∞ function satisfying

τ(r) =
{
1, if r ∈ [0, R1],
0, if r ∈ [R2,+∞).
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In the sequel, let us consider the truncated functional

Iμ,τ (u) = 1

2

∫
R3

|(−�)
s
2 u|2dx + λ

4

∫
R3

φt
uu

2dx − μ

q

∫
R3

|u|qdx

−τ(‖(−�)
s
2 u‖2)

2∗
s

∫
R3

|u|2∗
s dx .

For u ∈ Sr ,a , again by Lemma 3.2, and the Sobolev inequality, it is easy to see that

Iμ,τ (u) ≥1

2
‖(−�)

s
2 u‖22 − μ

q
aq(1−δq,s )Cq,s‖(−�)

s
2 u‖qδq,s

2

− τ(‖(−�)
s
2 u‖2)

2∗
s

S− 2∗s
2 ‖(−�)

s
2 u‖2∗

s
2

:=g̃(‖(−�)
s
2 u‖2),

where

g̃(r) = 1

2
r2 − μ

q
aq(1−δq,s )Cq,sr

qδq,s − τ(r)

2∗
s

S− 2∗s
2 r2

∗
s .

Then, by the definition of τ(·), when a ∈ (0, ( β
μ
)

1
q(1−δq,s ) ), we have

g̃(r) < 0, ∀r ∈ (0, R1); g̃(r) > 0, ∀r ∈ (R1,+∞).

In what follows, we always assume that a ∈ (0, ( β
μ
)

1
q(1−δq,s ) ). Without loss of generality, in

the sequel, we may assume that

1

2
r2 − 1

2∗
s
S− 2∗s

2 r2
∗
s ≥ 0, ∀ r ∈ [0, R1] (4.8)

and

R1 < S
3
4s . (4.9)

Lemma 4.3 The functional Iμ,τ has the following characteristics:

(i) Iμ,τ ∈ C1
(
Hs
rad(R

3),R
) ;

(ii) Iμ,τ is coercive and bounded from below on Sr ,a. Moreover, if Iμ,τ (u) ≤ 0, then
‖(−�)

s
2 u‖2 ≤ R1 and Iμ,τ (u) = I (u);

(iii) Iμ,τ |Sr,a satisfies the (PS)c condition for all c < 0, provided that μ > μ∗
1 > 0 large.

Proof We can obtain conclusions (i) and (i i) by a standard argument. To prove item (i i i),
let {un} be a (PS)c sequence of Iμ,τ restricted to Sr ,a with c < 0. By (i i), we see that
‖(−�)

s
2 un‖2 ≤ R1 for large n, and thus {un} is a (PS)c sequence of I |Sr,a with c < 0; i.e.,

I (un) → c < 0 and ‖I |′Sr,a (un)‖ → 0 as n → ∞. Then, {un} is bounded in Hs
rad(R

3).

Therefore, up to a subsequence, there exists u ∈ Hs
rad(R

3) such that un⇀u in Hs
rad(R

3) and
un → u in L p(R3) for 2 < p < 2∗

s and un(x) → u(x) a.e. onR3. From2 < q < 2+ 4s
3 < 2∗

s
and Lemma 3.3, we infer to

lim
n→∞

∫
R3

|un |qdx =
∫
R3

|u|qdx,
∫
R3

φt
un u

2
ndx →

∫
R3

φt
uu

2dx .
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Moreover, we have that u �≡ 0. Indeed, assume by contradiction that, u ≡ 0, then
limn→∞

∫
R3 |un |qdx = 0. From (4.8) and the definition of Iμ,τ , we infer that

0 > c = lim
n→∞ Iμ,τ (un) = lim

n→∞ Iμ(un)

= lim
n→∞

[
1

2

∫
R3

|(−�)
s
2 un |2dx + λ

4

∫
R3

φt
un u

2
ndx

− μ

q

∫
R3

|un |qdx − 1

2∗
s

∫
R3

|un |2∗
s dx

]

≥ lim
n→∞

[
1

2
‖(−�)

s
2 un‖22 − 1

2∗
s
S− 2∗s

2 ‖(−�)
s
2 un‖2

∗
s

2 − μ

q

∫
R3

|un |qdx
]

≥ − μ

q
lim
n→∞

∫
R3

|un |qdx = 0,

which is absurd. On the other hand, setting the function �(v) : Hs
rad(R

3) → R by

�(v) = 1

2

∫
R3

|v|2dx,

it follows that Sa = �−1({ a22 }). Then, by Proposition 5.12 in [33], there exists αn ∈ R such
that

‖I ′
μ(un) − αn�

′(un)‖ → 0, as n → ∞.

Hence, we have that

(−�)sun + φt
un un − μ|un |q−2un − |un |2∗

s−2un = αnun + on(1) in H−s
rad(R

3), (4.10)

where H−s
rad(R

3) is the dual space of Hs
rad(R

3). Thus, we have for ϕ ∈ Hs
rad(R

3), that∫
R3

(−�)
s
2 un(−�)

s
2 ϕdx +

∫
R3

φt
un unϕdx − μ

∫
R3

|un |q−2unϕdx −
∫
R3

|un |2∗
s−2unϕdx

= αn

∫
R3

unϕdx + on(1),
(4.11)

and if we choose ϕ = un , we get

‖(−�)
s
2 un‖22 + λ

∫
R3

φt
un u

2
ndx − μ

∫
R3

|un |qdx −
∫
R3

|un |2∗
s dx

= αn

∫
R3

u2ndx + on(1). (4.12)

From (4.12), and the boundedness of {un} in Ds,2(R3), we can deduce that {αn} is bounded
in R. Then we can assume that, up to a subsequence, αn → α for some α ∈ R. Then, by
(4.11), we can derive that u solves the following equation

(−�)su + φuu − μ|u|q−2u − |u|2∗
s−2u = αu. (4.13)

Indeed, for any ϕ ∈ Hs
rad(R

3), it follows by un⇀u in Hs
rad(R

3) and αn → α, that∫
R3

(−�)
s
2 un(−�)

s
2 ϕdx →

∫
R3

(−�)
s
2 u(−�)

s
2 ϕdx; and αn

∫
R3

unϕdx → α

∫
R3

uϕdx .
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as n → ∞. Since {|un |2∗
s−2un} is bounded in L

2∗s
2∗s −1 (R3), {|un |q−2un} is bounded in

L
2∗s
q−1 (R3), and un(x) → u(x) a.e. on R

3, we obtain that

|un |2∗
s−2un⇀|u|2∗

s−2u in L
2∗s

2∗s −1 (R3), and |un |q−2un⇀|u|q−2u in L
2∗s

2∗s −q+1 (R3),

and so,∫
R3

|un |2∗
s−2unϕdx →

∫
R3

|u|2∗
s−2uϕdx and

∫
R3

|un |q−2unϕdx →
∫
R3

|u|q−2uϕdx,

as n → ∞. Recall from Lemma 3.3 that∫
R3

φt
un unϕdx →

∫
R3

φuuϕdx, ∀ϕ ∈ Hs
rad(R

3).

Thus, we have∫
R3

(−�)
s
2 u(−�)

s
2 ϕdx +

∫
R3

φt
uuϕdx − μ

∫
R3

|u|q−2uϕdx −
∫
R3

|u|2∗
s−2uϕdx

= α

∫
R3

uϕdx .
(4.14)

Therefore, u solves equation (4.13).
In the sequel, by the concentration-compactness principle, we can prove that

∫
R3

|un |2∗
s dx →

∫
R3

|u|2∗
s dx . (4.15)

In fact, since ‖(−�)
s
2 un‖2 ≤ R1 for n large enough, by Lemma 4.1, there exist two positive

measures, ζ, ω ∈ M(R3), such that

|(−�)
s
2 un |2⇀ω, |un |2∗

s ⇀ζ in M(R3) (4.16)

as n → ∞. Then, by Lemma 4.1, either un → u in L
2∗
s

loc(R
3) or there exists a (at most

countable) set of distinct points {x j } j∈J ⊂ R
3 and positive numbers {ζ j } j∈J such that

ζ = |u|2∗
s +

∑
j∈J

ζ jδx j .

Moreover, there exist some at most a countable set J ⊆ N, a corresponding set of distinct
points {x j } j∈J ⊂ R

3, and two sets of positive numbers {ζ j } j∈J and {ω j } j∈J such that items
(4.1)–(4.3) holds. Now, assume that J �= ∅. We split the proof into three steps.

Step 1.We prove that ω j = ζ j , where ω j , and ζ j come from Lemma 4.1.
Define ϕ ∈ C∞

0 (R3) as a cut-off function with ϕ ∈ [0, 1], ϕ ≡ 1 in B1/2(0), ϕ ≡ 0 in
R
3\B1(0). For any ρ > 0, define

ϕρ(x) := ϕ

(
x − x j

ρ

)
=
{
1, |x − x j | ≤ 1

2ρ,

0, |x − x j | ≥ ρ.
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By the boundedness of {un} in Hs
rad(R

3), we have that {ϕρun} is also bounded in Hs
rad(R

3).
Thus, one has that

on(1) = 〈I ′
μ(un), unϕρ〉

=
∫
R3

(−�)
s
2 un(−�)

s
2 (unϕρ)dx + λ

∫
R3

φt
un unϕρdx

− μ

∫
R3

|un |qϕρdx

−
∫
R3

|un |2∗
s ϕρdx .

(4.17)

It is easy to check that∫
R3

(−�)
s
2 un(−�)

s
2 (unϕρ)dx

=
∫∫

R6

[un(x) − un(y)]|un(x) − un(y)|2[un(x)ϕρ(x) − un(y)ϕρ(y)]
|x − y|3+2s dxdy

=
∫∫

R6

|un(x) − un(y)|2ϕρ(y)

|x − y|3+2s dxdy

+
∫∫

R6

[un(x) − un(y)][ϕρ(x) − ϕρ(y)]un(x)
|x − y|3+2s dxdy

:= T1 + T2,

(4.18)

where

T1 =
∫∫

R6

|un(x) − un(y)|2ϕρ(y)

|x − y|3+2s dxdy

and

T2 =
∫∫

R6

[un(x) − un(y)][ϕρ(x) − ϕρ(y)]un(x)
|x − y|3+2s dxdy.

For T1, by (4.16), we obtain

lim
ρ→0

lim
n→∞ T1 = lim

ρ→0
lim
n→∞

∫∫
R6

|un(x) − un(y)|2ϕρ(y)

|x − y|3+2s dxdy

= lim
ρ→0

∫
R3

ϕρdω = ω({x j }) = ω j .

(4.19)

From Hölder’s inequality, we have

T2 =
∫∫

R6

[un(x) − un(y)][ϕρ(x) − ϕρ(y)]un(x)
|x − y|3+2s dxdy

≤
(∫∫

R6

|ϕρ(x) − ϕρ(y)|2|un(x)|2
|x − y|3+2s dxdy

) 1
2
(∫∫

R6

|un(x) − un(y)|2
|x − y|3+2s dxdy

) 1
2

≤ C

(∫∫
R6

|ϕρ(x) − ϕρ(y)|2|un(x)|2
|x − y|3+2s dxdy

) 1
2

.

Analogously to the proof of Lemma 3.4 in [40], we obtain

lim
ρ→0

lim
n→∞

∫∫
R6

|ϕρ(x) − ϕρ(y)|2|un(x)|2
|x − y|3+2s dxdy = 0,
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and

lim
ρ→0

lim
n→∞

∫
R3

(−�)
s
2 un(−�)

s
2 (unϕρ)dx = ω({x j }) = ω j .

Again by (4.16), we have

lim
ρ→0

lim
n→∞

∫
R3

|un |2∗
s ϕρdx = lim

ρ→0

∫
R3

ϕρdζ = ζ({x j }) = ζ j . (4.20)

By the definition of ϕρ , and the absolute continuity of the Lebesgue integral, one has that

lim
ρ→0

lim
n→∞

∫
R3

|un |qϕρdx = lim
ρ→0

∫
R3

|u|qϕρdx = lim
ρ→0

∫
|x−x j |≤ρ

|u|qϕρdx = 0. (4.21)

Thus, by Proposition 3.1 and Lemma 3.6, we have

∫
R3

φt
un u

2
nϕρdx ≤ C

(∫
R3

|un | 12
3+2t dx

) 3+2t
6
(∫

R3
|u2nϕρ | 6

3+2t dx

) 3+2t
6

≤ C‖un‖2Hs

(∫
R3

|un | 12
3+2t |ϕρ | 6

3+2t dx

) 3+2t
6

≤ C1

(∫
R3

|un | 12
3+2t ϕρdx

) 3+2t
6

.

(4.22)

Therefore,

lim
ρ→0

lim
n→∞

∫
R3

φt
un u

2
nϕρdx ≤ lim

ρ→0
lim
n→∞C1

(∫
R3

|un | 12
3+2t ϕρdx

) 3+2t
6

= lim
ρ→0

C1

(∫
R3

|u| 12
3+2t ϕρdx

) 3+2t
6

= lim
ρ→0

C1

(∫
|x−x j |≤ρ

|u| 12
3+2t ϕρdx

) 3+2t
6

= 0.

(4.23)

Summing up, from (4.17)–(4.19) and (4.21), taking the limit as n → ∞, and then the limit
as ρ → 0, we arrive at

ω j = ζ j .

Step 2. We show that ω∞ = ζ∞, where ω∞ and ζ∞ are given in Lemma 4.2. Let ψ ∈
C∞
0 (R3) be a cut-off function with ψ ∈ [0, 1], ψ ≡ 0 in B1/2(0), ψ ≡ 1 in R

3\B1(0). For
any R > 0, define

ψR(x) := ψ
( x
R

)
=
{
0, |x | ≤ 1

2 R,

1, |x | ≥ R.

Using again the boundedness of {un} and {unψR} in Hs
rad(R

3), we have

on(1)=〈I ′
μ(un), unψR〉

=
∫
R3

(−�)
s
2 un(−�)

s
2 (unψR)dx+λ

∫
R3

φt
un u

2
nψRdx−μ

∫
R3

|un |qψRdx

−
∫
R3

|un |2∗
s ψRdx .

(4.24)
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It is easy to derive that∫
R3

(−�)
s
2 un(−�)

s
2 (unψR)dx

=
∫∫

R6

[un(x) − un(y)][un(x)ψR(x) − un(y)ψR(y)]
|x − y|3+2s dxdy

=
∫∫

R6

|un(x) − un(y)|2ψR(y)

|x − y|3+2s dxdy

+
∫∫

R6

[un(x) − un(y)][ψR(x) − ψR(y)]un(x)
|x − y|3+2s dxdy

:= T3 + T4,

where

T3 =
∫∫

R6

|un(x) − un(y)|2ψR(y)

|x − y|3+2s dxdy

and

T4 =
∫∫

R6

[un(x) − un(y)][ψR(x) − ψR(y)]un(x)
|x − y|3+2s dxdy.

For T3, by (4.16) and Lemma 4.2, we infer to

lim
R→∞ lim

n→∞ T3 = lim
R→∞ lim

n→∞

∫∫
R6

|un(x) − un(y)|2ψR(y)

|x − y|3+2s dxdy = ω∞.

By virtue of Hölder’s inequality, we get

T4 =
∫∫

R6

[un(x) − un(y)][ψR(x) − ψR(y)]un(x)
|x − y|3+2s dxdy

≤
(∫∫

R6

|ψR(x) − ψR(y)|2|un(x)|2
|x − y|3+2s dxdy

) 1
2
(∫∫

R6

|un(x) − un(y)|2
|x − y|3+2s dxdy

) 1
2

≤ C

(∫∫
R6

|ψR(x) − ψR(y)|2|un(x)|2
|x − y|3+2s dxdy

) 1
2

.

Combining the above proof, we conclude that

lim
R→∞ lim

n→∞

∫∫
R6

|ψR(x) − ψR(y)|2|un(x)|2
|x − y|3+2s dxdy

= lim
R→∞ lim

n→∞

∫∫
R6

|[1 − ψR(x)] − [1 − ψR(y)]|2|un(x)|2
|x − y|3+2s dxdy = 0.

Hence,

lim
R→∞ lim

n→∞

∫∫
R6

(−�)
s
2 un(−�)

s
2 (unψR)dx = ω∞.

By Lemma 4.2, we have

lim
R→∞ lim

n→∞

∫
R3

|un |2∗
s ψRdx = ζ∞. (4.25)
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Analogous the proof of Lemma 3.3 in [40], we infer to

lim
R→∞ lim

n→∞

∫
R3

|un |qψRdx = lim
R→∞

∫
R3

|u|qψRdx

= lim
R→∞

∫
|x |> 1

2 R
|u|qψRdx = 0. (4.26)

Moreover, we can obtain

lim
R→∞ lim

n→∞

∫
R3

φt
un u

2
nψRdx ≤ lim

R→∞ lim
n→∞C1

(∫
R3

|un | 12
3+2t ψRdx

) 3+2t
6

= lim
R→∞C1

(∫
R3

|u| 12
3+2t ψRdx

) 3+2t
6

= lim
R→∞C1

(∫
|x |≥R/2

|u| 12
3+2t ψRdx

) 3+2t
6

= 0.

(4.27)

Summing up, from (4.24)–(4.27), taking the limit as n → ∞, and then the limit as R → ∞,
we have

ω∞ = ζ∞.

Step 3.We claim that ζ j = 0 for any j ∈ J and ζ∞ = 0.
Suppose by contradiction that, there exists j0 ∈ J such that ζ j0 > 0 or ζ∞ > 0. Step 1,

Step 2, and Lemmas 4.1, 4.2 imply that

ζ j0 ≤ (S−1ω j0)
2∗s
2 = (S−1ζ j0)

2∗s
2 , (4.28)

and

ζ∞ = (S−1ω∞)
2∗s
2 = (S−1ζ∞)

2∗s
2 . (4.29)

Consequently, we get ζ j0 ≥ S
3
2s or ζ∞ ≥ S

3
2s . If the former case occurs, we have

R2
1 ≥ lim

n→∞ ‖(−�)
s
2 un‖22 ≥ S lim

n→∞

(∫
R3

|un |2∗
s dx

) 2
2∗s

≥ S lim
n→∞

(∫
R3

|un |2∗
s ϕρdx

) 2
2∗s = S

(∫
R3

ϕρdζ

) 2
2∗s

.

(4.30)

Taking the limit ρ → 0 in the last inequality, we get

R2
1 ≥ S(ζ j0)

2
2∗s ≥ S(S

3
2s )

2
2∗s = S

3
2s ,

which contradicts (4.9). If the last case happens, we have

R2
1 ≥ lim

n→∞ ‖(−�)
s
2 un‖22 ≥ S lim

n→∞

(∫
R3

|un |2∗
s dx

) 2
2∗s

≥ S lim
n→∞

(∫
R3

|un |2∗
s ψRdx

) 2
2∗s

≥ S lim
n→∞

(∫
|x |≥R

|un |2∗
s dx

) 2
2∗s

.

(4.31)
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Taking the limits n → ∞ and R → ∞ in (4.31), we infer to

R2
1 ≥ S(ζ∞)

2
2∗s ≥ S(S

3
2s )

2
2∗s = S

3
2s ,

which also contradicts (4.9). Therefore, ζ j = 0 for any j ∈ J and ζ∞ = 0. As a result, by

Lemma 4.1, we obtain that un → u in L
2∗
s

loc(R
3); while by Lemma 4.2, we know that un → u

in L2∗
s (R3).

Now, we prove there exists μ∗
1 > 0 independently on n ∈ N such that if μ > μ∗

1, the
Lagrange multiplier α < 0 in (4.13). Indeed, note that {un} ⊂ Sr ,s and ‖(−�)

s
2 un‖2 ≤ R1,

as can be seen from the previous proof of this lemma, and (3.2)–(3.3) that, there exists Q1 > 0
independently on n, such that

Q1 ≤
∫
R3

|un |qdx ≤ C(q, s)‖(−�)
s
2 un‖qδq,s

2 ‖un‖q(1−δq,s )

2

≤ C(q, s)R
qδq,s
1 aq(1−δq,s ),

(4.32)

and

∫
R3

φt
un u

2
ndx ≤ 
t‖un‖412

3+2t
≤ 
tC (12/3 + 2t, s)

3+2t
3 ‖(−�)

s
2 un‖

3−2t
s

2 ‖un‖
2t+4s−3

s
2

≤ 
tC (12/3 + 2t, s)
3+2t
3 R

3−2t
s

1 a
2t+4s−3

s

:= Q2,

(4.33)

where Q2 = Q2(s, t, R1, a) > 0. We define the constant

μ∗
1 := qλ(2t + 4s − 3)Q2

2[6 − q(3 − 2s)]Q1
. (4.34)

By (4.32)–(4.34) we have

μ∗
1 > lim

n→+∞

{
qλ(2t + 4s − 3)

∫
R3 φt

un u
2
ndx

2[6 − q(3 − 2s)] ∫
R3 |un |qdx

}

= qλ(2t + 4s − 3)
∫
R3 φt

uu
2dx

2[6 − q(3 − 2s)] ∫
R3 |u|qdx > 0. (4.35)

Recall by (4.13) and its Pohozaev identity Pμ(u) = 0, we infer to

sα‖u‖22 = λ
2t + 4s − 3

4

∫
R3

φt
uu

2dx + q(3 − 2s) − 6

2q
μ

∫
R3

|u|qdx . (4.36)

Now, if μ > μ∗
1, we conclude from (4.35), that

μ >
qλ(2t + 4s − 3)

∫
R3 φt

uu
2dx

2[6 − q(3 − 2s)] ∫
R3 |u|qdx .
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Thus, from (4.36), we infer to limn→+∞ αn = α < 0. Hence, taking into account (4.12), we
derive

lim
n→∞

[
‖(−�)

s
2 un‖22 + λ

∫
R3

φt
un u

2
ndx − α‖un‖22

]

= lim
n→∞

[
μ‖un‖qq +

∫
R3

|un |2∗
s dx + on(1)

]

= μ‖u‖qq +
∫
R3

|u|2∗
s dx = ‖(−�)

s
2 u‖22 + λ

∫
R3

φuu
2dx − α‖u‖22.

(4.37)

Since α < 0 for μ > μ∗
1 large, we obtain by Fatou’s Lemma,

lim
n→∞

[
‖(−�)

s
2 un‖22 + λ

∫
R3

φt
un u

2
ndx − α‖un‖22

]

≥ ‖(−�)
s
2 u‖22 + λ

∫
R3

φt
uu

2dx + lim inf
n→∞ (−α‖un‖22),

(4.38)

and from (4.37)–(4.38), one has

− α‖u‖22 ≥ lim inf
n→∞ (−α‖un‖22). (4.39)

But by Fatou’s Lemma, we see that

lim inf
n→∞ (−α‖un‖22) ≥ −α‖u‖22. (4.40)

Combining (4.39) with (4.40) we get

lim
n→∞

(−α‖un‖22
) = −α‖u‖22;

that is,

lim
n→∞ ‖un‖22 = ‖u‖22.

Thus, by (4.37) we have

lim
n→∞ ‖(−�)

s
2 un‖22 = ‖(−�)

s
2 u‖22.

Theerfore, un → u in Hs
rad(R

3) and ‖u‖2 = a. The proof is complete. ��
For ε > 0, we introduce the set

I−ε
μ,τ = {u ∈ Hs

rad(R
3) ∩ Sa : Iμ,τ (u) ≤ −ε

} ⊂ Hs
rad(R

3).

By the fact that Iμ,τ (u) is continuous and even on Hs
rad(R

3), I−ε
μ,τ is closed and symmetric.

Lemma 4.4 For any fixed k ∈ N, there exists εk := ε(k) > 0 and μk := μ(k) > 0 such that,
for 0 < ε ≤ εk and μ ≥ μk , one has that γ (I−ε

μ,τ ) ≥ k.

The proof of Lemma 4.4 is similar to Lemma 3.2 in [1], so we omit it here.
In the sequel, we define the set

�k := {� ⊂ Hs
rad(R

3) ∩ Sa : � is closed and symmetric, γ (�) ≥ k
}
,

and by Lemma 4.3-(ii), we know that

ck := inf
�∈�k

sup
u∈�

Iμ,τ (u) > −∞
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for all k ∈ N. To prove Theorem 2.1, we introduce the critical value, we define

Kc := {u ∈ Hs
rad(R

3) ∩ Sa : I ′
μ,τ (u) = 0, Iμ,τ (u) = c}.

Then, we can derive the following conclusion:

Lemma 4.5 If c = ck = ck+1 = ·· · = ck+�, then one has γ (Kc) ≥ �+1. Especially, Iμ,τ (u)

admits at least � + 1 nontrivial critical points.

Proof For ε > 0, it is easy to check that I−ε
μ,τ ∈ �. For any fixed k ∈ N, by Lemma 4.4, there

exists εk := ε(k) > 0 and μk := μ(k) > 0 such that, if 0 < ε ≤ εk and μ ≥ μk , we have
γ (I−εk

μ,τ ) ≥ k. Thus, I−εk
μ,τ ∈ �k , and moreover,

ck ≤ sup
u∈I−εk

μ,τ

Iμ,τ (u) = −εk < 0.

Assume that 0 > c = ck = ck+1 = · · · = ck+�. Then, by Lemma 4.3-(iii), Iμ,τ (u) satisfies
the (PS)c-condition at the level c < 0. So, Kc is a compact set. By Theorem 2.1 in [1], or
Theorem 2.1 in [16], we know that the restricted functional Iμ,τ |Sa possesses at least � + 1
nontrivial critical points. ��
Proof of Theorem 2.1 Let μ ≥ μ∗

k = max{μ∗
1, μk}. From Lemma 4.3-(ii), we see that the

critical points of Iμ,τ (u) found in Lemma 4.5 are the critical points of Iμ, which completes
the proof. ��

5 Proof of Theorem 2.2

From Lemma 3.5, we see that any critical point of Iμ|Sa belongs to Pa . Consequently, the
properties of the manifold Pa have relation to the mini-max structure of Iμ|Sa . For u ∈ Sa
and t ∈ R, we introduce the transformation (e.g. [29]):

(θ�u)(x) := e
3θ
2 u(eθ x), x ∈ R

3, θ ∈ R. (5.1)

It is easy to check that the dilations preserve the L2-norm such that θ�u ∈ Sa , by direct
calculation, one has

I (u, θ) = Iμ((θ�u)) = e2sθ

2
‖u‖2 + λe(3−2t)θ

4

∫
R3

φt
uu

2dx − μ

q
e(

3q
2 −3)θ

∫
R3

|u|qdx

− 1

2∗
s
e3(

2∗s
2 −1)θ

∫
R3

|u|2∗
s dx,

(5.2)

Lemma 5.1 Let u ∈ Sa, then

(i) ‖(−�)
s
2 (θ�u)‖2 → 0 and Iμ((θ�u)) → 0 as θ → −∞;

(ii) ‖(−�)
s
2 (θ�u)‖2 → +∞ and Iμ((θ�u)) → −∞ as θ → +∞.

Proof A direct computation shows that∫
R3

|(−�)
s
2 (θ�u)|2dx = e2sθ

∫
R3

|(−�)
s
2 u|2dx, (5.3)

and

‖(−�)
s
2 (θ�u)‖2 → 0 as θ → −∞.
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Notice that

Iμ((θ�u)) = e2sθ

2
‖u‖2 + λe(3−2t)θ

4

∫
R3

φt
uu

2dx − μ

q
e(

3q
2 −3)θ

∫
R3

|u|qdx

− 1

2∗
s
e
3(2∗s −2)

2 θ

∫
R3

|u|2∗
s dx,

(5.4)

by q > 2, we infer to

Iμ((θ�u)) → −∞, as θ → +∞.

Hence, item (i) follows. Using 2s + 2t > 3, it is easy to obtain that 3(2∗
s−2)
2 > 3 − 2t , and

conclusion (ii) holds. ��

Lemma 5.2 There exist K = Ka > 0 and ã > 0 such that for all 0 < a < ã,

0 < sup
u∈Aa

Iμ(u) < inf
u∈Ba

Iμ(u), (5.5)

whereAa := {u ∈ Sr ,a : ∫
R3 |(−�)

s
2 u|2dx ≤ Ka}, Ba := {u ∈ Sr ,a : ∫

R3 |(−�)
s
2 u|2dx =

2Ka}.

Proof By Lemma 3.2, we have for any q ∈ (2, 2∗
s ), that

‖u‖qq ≤ C(q, s)‖(−�)
s
2 u‖qδq,s

2 ‖u‖q(1−δq,s )

2 . (5.6)

By the Sobolev inequality (3.1), and (5.6), for u ∈ Sr ,a , we have

Iμ((θ�u)) − Iμ(u)

= 1

2
‖(θ�u)‖2 − 1

2
‖u‖2 + λ

4

∫
R3

φt
(θ�u)|(θ�u)|2dx − λ

4

∫
R3

φt
uu

2dx

− μ

q

∫
R3

|(θ�u)|qdx + μ

q

∫
R3

|u|qdx − 1

2∗
s

∫
R3

|(θ�u)|2∗
s dx + 1

2∗
s

∫
R3

|u|2∗
s dx

≥ 1

2
‖(θ�u)‖2 − 1

2
‖u‖2 − λ
t K

3−2t
2s

a ‖u‖
4s+2t−3

s
2 − μ

q

∫
R3

|(θ�u)|qdx

− 1

2∗
s

∫
R3

|(θ�u)|2∗
s dx

≥ 1

2
‖(θ�u)‖2 − 1

2
‖u‖2 − λ
t K

3−2t
2s

a a
4s+2t−3

s − μ

q
C(q, s)a

6−q(3−2s)
2s

(‖(θ�u)‖2) qδq,s
2

− S− 2∗s
2

2∗
s

(‖(θ�u)‖2) 2∗s2 .

(5.7)

Let ‖u‖2 ≤ Ka and choose θ > 0 such that ‖(θ�u)‖2 = 2Ka , here Ka will be determined
later, set

ã =
⎛
⎝K

2t+2s−3
2s

a

16λ
t

⎞
⎠

s
4s+2t−3

,
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then we get

Iμ((θ�u)) − Iμ(u)

≥ 1

2
Ka − λ
t K

3−2t
2s

a ã
4s+2t−3

s − μ

q
2

qδq,s
2 C(q, s )̃a

6−q(3−2s)
2s K

3(q−2)
4s

a − S− 2∗s
2

2∗
s

2
2∗s
2 K

2∗s
2

a

≥ 1

2
Ka − 1

16
Ka − μ

q
2

3(q−2)
4s C(q, s)

(
1

16λ
t

) 6−q(3−2s)
2(4s+2t−3)

K
[6−q(3−2s)][2t+2s−3]

4s(4s+2t−3)
a K

3(q−2)
4s

a

− S− 2∗s
2

2∗
s

2
2∗s
2 K

2∗s
2

a

= 7

16
Ka − μ2

3(q−2)
4s C(q, s)

q(16λ
t )
6−q(3−2s)
2(4s+2t−3)

K γ1
a Ka − 2

2∗s
2

2∗
s S

2∗s
2

K
2∗s −2
2

a Ka

≥ 5

16
Ka > 0,

(5.8)

where γ1 := [2t+2s−3][6−q(3−2s)]+[3(q−2)−4s][4s+2t−3]
4s(4s+2t−3) . If we take

Ka = min

⎧⎪⎨
⎪⎩
⎛
⎝ q[16λ
t ]

6−q(3−2s)
2(4s+2t−3)

16μ2
3(q−2)

4s C(q, s)

⎞
⎠

γ2

,

⎛
⎝2∗

s S
2∗s
2

2
2∗s
2 16

⎞
⎠

2
2∗s −2

⎫⎪⎬
⎪⎭

with γ2 := 4s(4s+2t−3)
[2t+2s−3][6−q(3−2s)]+[3(q−2)−4s][4s+2t−3] , then, we deduce by (5.8) that (5.5)

holds. ��
By Lemma 5.2, we can deduce the following

Corollary 5.1 Let Ka, ã be given in Lemma 5.2, and u ∈ Sr ,a with ‖u‖2 ≤ Ka, then Iμ(u) >

0. Furthermore, we have

L0 := inf

{
Iμ(u) : u ∈ Sr ,a, ‖u‖2 = 1

2
Ka

}
> 0.

Proof As in the proof of Lemma 5.2, we have that

Iμ(u) ≥ 1

2
‖u‖2 − μ

q
C(q, s)a

6−q(3−2s)
2s

(‖u‖2) 3(q−2)
4s − S− 2∗s

2

2∗
s

(‖u‖2) 2∗s2 > 0,

if ‖u‖2 ≤ Ka , and the conclusion follows. ��
Next, we study the characterizations of the mountain pass levels for I (u, θ) and Iμ(u).

Denote the closed set I dμ := {u ∈ Sr ,a : Iμ(u) ≤ d}, and Sr ,a := Hs
rad(R

3) ∩ Sa .

Proposition 5.3 Under assumptions 2 + 4s
3 < q < 2∗

s , define

c̃μ(a) := inf
γ̃∈
̃

max
t∈[0,1] I (γ̃ (t)),

where


̃a = {γ̃ ∈ C([0, 1], Sr ,a × R) : γ̃ (0) ∈ (Aa, 0), γ̃ (1) ∈ (I 0μ, 0)},
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and

cμ(a) := inf
γ∈


max
t∈[0,1] Iμ(γ (t)),

where


a = {γ ∈ C([0, 1], Sr ,a) : γ (0) ∈ Aa, γ (1) ∈ I 0μ},
then we have

c̃μ(a) = cμ(a) > 0.

Proof Note that 
a × {0} ⊂ 
̃a, we see that c̃μ(a) ≤ cμ(a). On the other hand, for γ̃ (t) =
(γ̃1(t), γ̃2(t)) ∈ 
̃a , we denote by γ (t) = γ̃1(t)�γ̃2(t). Thus, γ (t) ∈ 
a, and so

max
t∈[0,1] I (γ̃ (t)) = max

t∈[0,1] Iμ(γ̃1(t)�γ̃2(t)) = max
t∈[0,1] Iμ(γ (t)),

which implies that c̃μ(a) ≥ cμ(a) > 0, using Corollary 5.1. ��

Next, we show the existence of the (PS)cμ(a)-sequence for I (u, θ) on Sr ,a × R ⊂ H. It
is obtained by a standard argument using Ekeland’s variational principle and constructing
pseudo-gradient flow, see Proposition 2.2 [13].

Proposition 5.4 Let {hn} ⊂ 
̃a satisfying that

max
t∈[0,1] I (hn(t)) ≤ c̃μ(a) + 1

n
,

then there exists a sequence {(vn, θn)} ⊂ Sr ,a × R such that

(i) I (vn, θn) ∈ [̃cμ(a) − 1
n , c̃μ(a) + 1

n ],
(ii) mint∈[0,1] ‖(vn, θn) − hn(t)‖H ≤ 1√

n
; and

(iii) ‖(I |Sr,a×R)′(vn, θn)‖ ≤ 2√
n
, that is,

|〈I ′(vn, θn), z〉H−1×H| ≤ 2√
n

‖z‖H,

for all

z ∈ T̃(vn ,θn) � {(z1, z2) ∈ H : 〈vn, z1〉L2 = 0}.

It follows from the above proposition, we can obtain a special (PS)cμ(a)-sequence for
Iμ(u) on Sr ,a ⊂ Hs(R3).

Proposition 5.5 Under the assumption 2+ 4s
3 < q < 2∗

s , there exists a sequence {un} ⊂ Sr ,a
such that

(1) Iμ(un) → cμ(a) as n → ∞;
(2) Pμ(un) → 0 as n → ∞;
(3) (Iμ|Sr,a )′(un) → 0as n → ∞, i.e., 〈I ′

μ(un), z〉H−1×H → 0, uniformly for all z satisfying

‖z‖H ≤ 1, where z ∈ Tun := {z ∈ H : 〈un, z〉L2 = 0}
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Proof By Proposition 5.3, c̃μ(a) = cμ(a). Hence, we can take {hn = ((hn)1, 0)} ∈ 
̃a so as
to

max
t∈[0,1] I (hn(t)) ≤ c̃μ(a) + 1

n
.

It follows from Proposition 5.4 that, there exists a sequence {(vn, θn)} ⊂ Sr ,a × R such that
as n → ∞, one has

I (vn, θn) → cμ(a), θn → 0; (5.9)

(I |Sr,a×R)′(vn, θn) → 0. (5.10)

Set un = θn�vn . Then, Iμ(un) = I (vn, θn), and by (5.9), item (1) holds. To prove conclusion
(2), we utilize

∂θ I (vn, θn) = se2sθn‖vn‖2 + (3 − 2t)λ

4
e(3−2t)θn

∫
R3

φvnv
2
ndx

− 3μ(q − 2)

2q
e(

3q
2 −3)θn

∫
R3

|vn |qdx

− 3(2∗
s − 2)

22∗
s

e
3(2∗s −2)

2 θn

∫
R3

|vn |2∗
s dx

= s‖(−�)
s
2 un‖2 + (3 − 2t)λ

4

∫
R3

φt
un u

2
ndx − 3μ(q − 2)

2q

∫
R3

|un |qdx

− 3(2∗
s − 2)

22∗
s

∫
R3

|un |2∗
s dx

= Pμ(un)

which implies item (2) by (5.10). To show item (3), we set zn ∈ Tun . Then,

I ′
μ(un)zn =

∫∫
R6

(un(x) − un(y))(zn(x) − zn(y))

|x − y|3+2s dxdy + λ

∫
R3

φt
un unzndx

− μ

∫
R3

|un |q−2unzndx −
∫
R3

|un |2∗
s−2unzndx

= e
(4s−3)θn

2

∫∫
R6

(vn(x) − vn(y))(zn(e−θn x) − zn(e−θn y))

|x − y|3+2s dxdy

+ e
3−4t
2 θn

∫
R3

φvnvn(x)zn(e
−θn x)dx

− μe
3(q−3)

2 θn

∫
R3

|vn |q−2vn(x)zn(e
−θn x)dx

− e
3(2∗s −3)

2 θn

∫
R3

|vn |2∗
s−2vn(x)zn(e

−θn x)dx .

Denote by z̃n(x) = e− 3 s
2 zn(e−θn x), then we get

〈I ′
μ(un), zn〉H−1×H = 〈I ′(vn, θn), (̃zn, 0)〉H−1×H.
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It is easy to check that

〈vn, z̃n〉L2 =
∫
R3

vn(x)e
− 3s

2 zn(e
−θn x)dx

=
∫
R3

vn(e
θn x)e

3s
2 zn(x)dx

=
∫
R3

un(x)zn(x)dx = 0

Therefore, we see that (̃zn, 0) ∈ T̃(vn ,θn). On the other hand,

‖(̃zn, 0)‖2H = ‖̃zn‖2H = ‖zn‖22 + e−2sθn‖zn‖2 ≤ C‖zn‖2,
where the last inequality follows by θn → 0. Consequently, we conclude item (3). ��
Remark 5.1 From Propositions 5.4, 5.5, we know that un := θn�vn ⊂ Sr ,a is a (PS) sequence
for Iμ with the level cμ(a), that is

Iμ(un) → cμ(a) as n → +∞, (5.11)

and

(Iμ|Sr,a )′(un) → 0 as n → +∞. (5.12)

Lemma 5.6 The (PS) sequence {un} mentioned in Remark 5.1 is bounded in Hs
rad(R

3).

Moreover, suppose that cμ(a) < s
3 S

3
2s , and λ < λ∗

1 for some λ∗
1 > 0, then limn→+∞ αn =

α < 0.

Proof From Remark 5.1 we see that Iμ(un) is bounded. In fact, by Pμ(un) → 0 as n → ∞,

we have ∣∣(1 + 2t)Iμ(un) + Pμ(un)
∣∣ ≤ 3cμ(a),

which implies that,

1 + 2s + 2t

2
‖(−�)

s
2 un‖22 + λ

∫
R3

φt
un u

2
ndx − μ

(
1 + 2t

2
+ sδq,s

)∫
R3

|un |qdx

−
(
1 + 2t

2∗
s

+ s

)∫
R3

|un |2∗
s dx ≥ −3cμ(a).

(5.13)

In view of the boundedness of Iμ(un), we have

‖(−�)
s
2 un‖2 + λ

2

∫
R3

φt
un u

2
ndx ≤ 6cμ(a) + 2μ

q

∫
R3

|un |qdx + 2

2∗
s

∫
R3

|un |2∗
s dx .(5.14)

By (5.13)–(5.14), we obtain

2s + 2t − 3

4

∫
R3

φt
un u

2
ndx + μ

(δq,s − 2)s

q

∫
R3

|un |qdx + (2∗
s − 2)s

2∗
s

∫
R3

|un |2∗
s dx

≤ 3cμ(a)(2 + 2s + 2t).

Note that 2s + 2t > 3, q > 2 + 4s
3 , we have that qδq,s − 2 > 0, and so∫

R3
φt
un u

2
ndx,

∫
R3

|un |qdx and
∫
R3

|un |2∗
s dx
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are all bounded. Thus, ‖(−�)
s
2 un‖2 ≤ R2 for some R2 > 0 independently on n ∈ N. Since

{un} ⊂ Sr ,a, we see that {un} is bounded in Hs
rad(R

3). Thus, passing to a subsequence, and
wemay assume that un⇀u for some u ∈ Hs

rad(R
3), and so un → u in L p(R3),∀p ∈ (2, 2∗

s ).
Now, we set the functional � : Hs

rad(R
3) → R as

�(u) = 1

2

∫
R3

|u|2dx,

then Sr ,a = �−1
(
a2
2

)
. As a result, it can be derived from Proposition 5.12 [33] that there is

a sequence {αn} ⊂ R such that

I ′
μ(un) − αn�

′(un) → 0 in H−s
rad(R

3) as n → ∞.

That is, we have

(−�)sun + φt
un un − μ|un |q−2un − |un |2∗

s−2un = αnun + on(1) in H−s
rad(R

3), (5.15)

Similar to the proof of Lemma 4.3, we know that u solves the equation

(−�)su + φt
uu − μ|u|q−2u − |u|2∗

s−2u = αu. (5.16)

Moreover, u �≡ 0. In fact, argue by contradiction that u ≡ 0. Then un → 0 in L p(R3), ∀ p ∈
(2, 2∗

s ), and by Pμ(un) = on(1), (3.3), we have

on(1) = s‖un‖2 + λ
3 − 2t

4

∫
R3

φt
un u

2
ndx − μsδq,s

∫
R3

|un |qdx − s
∫
R3

|un |2∗
s dx

= s‖un‖2 − s
∫
R3

|un |2∗
s dx + on(1).

We may assume that limn→+∞ ‖un‖2 = limn→+∞
∫
R3 |un |2∗

s dx = ϑ ≥ 0. Thus, we have

cμ(a) + on(1) = Iμ(un)

= 1

2

∫
R3

|(−�)
s
2 un |2dx + λ

4

∫
R3

φt
un u

2
ndx

− μ

q

∫
R3

|un |qdx − 1

2∗
s

∫
R3

|un |2∗
s dx

= 1

2
ϑ − 1

2∗
s
ϑ + on(1) = s

3
ϑ + on(1).

(5.17)

On the other hand, by the Sobolev inequality (3.1), we have ϑ ≥ Sϑ
2
2∗s . Then we have two

possible cases: (i) ϑ = 0; (ii) ϑ ≥ S
3
2 s .

If ϑ = 0, then by (5.17) we get Iμ(un) → 0, which contradicts to Iμ(un) → cμ(a) > 0.

Now if the second case ϑ ≥ S
3
2s occurs, then by (5.17) we get Iμ(un) → s

3ϑ ≥ s
3 S

3
2 s ,

which contradicts to Iμ(un) → cμ(a) < s
3 S

3
2s . Hence, u �≡ 0. Moreover, by (5.15) and

Pμ(un) = on(1), we have

sαn‖un‖22 = λ
2t + 4s − 3

4

∫
R3

φt
un u

2
ndx + q(3 − 2s) − 6

2q
μ

∫
R3

|un |qdx + on(1).

(5.18)

Since {un} ⊂ Sr ,a is bounded in Hs
rad(R

3), then by Lemma 3.6 and (5.18), we derive that
{αn} is bounded and limn→+∞ αn = α ∈ R. By a similar argument as in (4.32) and (4.33),
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for all n ∈ N, we have

T1 ≤
∫
R3

|un |qdx ≤ C(q, s)‖(−�)
s
2 un‖qδq,s

2 ‖un‖q(1−δq,s )

2

≤ C(q, s)R
qδq,s
2 aq(1−δq,s ),

(5.19)

and∫
R3

φt
un u

2
ndx ≤ 
t‖un‖412

3+2t
≤ 
tC (12/3 + 2t, s)

3+2t
3 ‖(−�)

s
2 un‖

3−2t
s

2 ‖un‖
2t+4s−3

s
2

≤ 
tC (12/3 + 2t, s)
3+2t
3 R

3−2t
s

2 a
2t+4s−3

s

:= T2,

(5.20)

where T2 = Q2(s, t, R2, a) > 0. We define the positive constant

λ∗
1 := 2[6 − q(3 − 2s)]μT1

q(2t + 4s − 3)T2
. (5.21)

Therefore, if λ < λ∗
1, we get

λq(2t + 4s − 3)T2 < 2[6 − q(3 − 2s)]μT1.

Hence, by (5.19), (5.20) we see that

λ
2t + 4s − 3

4

∫
R3

φt
un u

2
ndx <

[6 − q(3 − 2s)]μ
2q

∫
R3

|un |qdx . (5.22)

Taking the limit in (5.21) as n → +∞, and applying Lemmas 3.3, 3.6, we obtain

λ
2t + 4s − 3

4

∫
R3

φt
uu

2dx <
[6 − q(3 − 2s)]μ

2q

∫
R3

|u|qdx . (5.23)

Consequently, passing the limit in (5.18) as n → +∞, and using (5.23) we deduce that

sαa2 = λ
2t + 4s − 3

4

∫
R3

φt
uu

2dx + q(3 − 2s) − 6

2q
μ

∫
R3

|u|qdx < 0.

Thus, we have that α < 0, if λ < λ∗
1 small. ��

Lemma 5.7 If 2 + 4s
3 < q < 2∗

s , and inequality (2.5) holds, then there λ∗
2 > 0, such that

cμ(a) < s
3 S

3
2 s for λ < λ∗

2 small.

Proof From [8], we know that S defined in (3.1) is attained in R3 by functions

Uε(x) = C(s)ε3−2s

(ε2 + |x |2) 3−2s
2

for any ε > 0 and C(s) being normalized constant such that

‖(−�)
s
2Uε‖22 =

∫
R3

|Uε|2∗
s dx = S

3
2s .

We define uε = ϕUε, and

vε = a
uε

‖uε‖2 ∈ Sa ∩ Hs
rad(R

3),
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where ϕ(x) ∈ C∞
0 (B2(0)) is a radial cutoff function such that 0 ≤ ϕ(x) ≤ 1 and ϕ(x) ≡ 1

on B1(0). From Proposition 21 and Proposition 22 in [28], we have∫
R3

|(−�)
s
2 uε|2dx = S

3
2s + O(ε3−2s). (5.24)∫

R3
|uε|2∗

s dx = S
3
2s + O(ε3). (5.25)

For any p > 1, by a direct computation [31], we obtain the following estimations:

∫
R3

|uε|pdx =

⎧⎪⎪⎨
⎪⎪⎩
O
(
ε

3(2−p)+2sp
2

)
, if p > 3

3−2s ;
O(ε

3
2 | log ε|), if p = 3

3−2s ;
O
(
ε

(3−2s)p
2

)
, if p < 3

3−2s ,

(5.26)

and especially,

∫
R3

|uε|2dx =
⎧⎨
⎩
Cε2s, if 0 < s < 3

4 ;
Cε2s | log ε|, if s = 3

4 ;
Cε3−2s, if 3

4 < s < 1.
(5.27)

Define the function

�μ
vε

(θ) := Iμ((θ�vε)) = e2sθ

2
‖vε‖2 + e(3−2t)θ

4
λ

∫
R3

φt
vε

v2εdx − μ

q
e
3(q−2)

2 θ

∫
R3

|vε|qdx

− 1

2∗
s
e2

∗
s sθ
∫
R3

|vε|2∗
s dx,

(5.28)

then it is easy to see that �
μ
vε (θ) → 0+ as θ → −∞, and �

μ
vε (θ) → −∞ as θ →

+∞. Therefore, �
μ
vε can obtain its global positive maximum at some θε,μ > 0. A direct

computation yields that

(�μ
vε

)′(θ)

= se2sθ‖vε‖2 + 3 − 2t

4
e(3−2t)θλ

∫
R3

φt
vε

v2εdx

− 3μ(q − 2)

2q
e
3(q−2)

2 θ

∫
R3

|vε|qdx − se2
∗
s sθ
∫
R3

|vε|2∗
s dx

= s‖θ�vε‖2 + 3 − 2t

4
λ

∫
R3

φt
θ�vε

|θ�vε|2dx

− 3μ(q − 2)

2q

∫
R3

|θ�vε|qdx − s
∫
R3

|θ�vε|2∗
s dx

= Pμ(θ�vε);

(5.29)

and

(�μ
vε

)′′(θ) = 2s2e2sθ‖vε‖2 + (3 − 2t)2

4
e(3−2t)θ λ

∫
R3

φt
vε

v2εdx

− μqs2δ2q,se
3(q−2)

2 θ

∫
R3

|vε|qdx − 2∗
s s

2e2
∗
s sθ
∫
R3

|vε|2∗
s dx .
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Let θε,μ be the maximum point of �
μ
vε (θ), then θε,μ is unique. In fact, combining with

(�
μ
vε )

′(θε,μ) = 0, and 3 − 2t − 2s < 0, 2 − qδq,s < 0, 2 − 2∗
s < 0, we have

(�μ
vε

)′′(θε,μ)

= 2s2e2sθε,μ‖vε‖2 + (3 − 2t)2

4
e(3−2t)θε,μλ

∫
R3

φt
vε

v2εdx

− μqs2δ2q,se
3(q−2)

2 θε,μ

∫
R3

|vε|qdx − 2∗
s s

2e2
∗
s sθε,μ

∫
R3

|vε|2∗
s dx

= 2s2‖ũε‖2 + (3 − 2t)2

4
λ

∫
R3

φt
ũε
ũ2εdx − μs2qδ2q,s

∫
R3

|̃uε|qdx − 2∗
s s

2
∫
R3

|̃uε|2∗
s dx

= (3 − 2t)(3 − 2t − 2s)

4
λ

∫
R3

φt
ũε
ũ2εdx + μs2δq,s[2 − qδq,s]

∫
R3

|̃uε|qdx + s2[2 − 2∗
s ]∫

R3
|̃uε|2∗

s dx < 0,

where ũε = θε,μ�vε, and the uniqueness of θε,μ follows. Using (�
μ
vε )

′(θε,μ) =
Pμ(θε,μ�vε) = 0 again, we have

se2
∗
s sθε,μ

∫
R3

|vε|2∗
s dx = se2sθε,μ‖vε‖2 + λ

3 − 2t

4
e(3−2t)θε,μ

∫
R3

φt
vε

v2εdx

− 3μ(q − 2)

2q
e
3(q−2)

2 θε,μ

∫
R3

|vε|qdx

≤ se2sθε,μ‖vε‖2 + λ
3 − 2t

4
e(3−2t)θε,μ

∫
R3

φt
vε

v2εdx

= e2sθε,μ

(
s‖vε‖2 + λ

3 − 2t

4
e(3−2t−2s)θε,μ

∫
R3

φt
vε

v2εdx

)

≤ e2sθε,μ2max

{
s‖vε‖2, λ3 − 2t

4
e(3−2t−2s)θε,μ

∫
R3

φt
vε

v2εdx

}
.

(5.30)

In the sequel, we distinguish the following two possible cases.
Case 1. s‖vε‖2 > λ 3−2t

4 e(3−2t−2 s)θε,μ
∫
R3 φt

vε
v2εdx .

In this case, we have from (5.30) that

se2
∗
s sθε,μ

∫
R3

|vε|2∗
s dx < e2sθε,μ2s‖vε‖2 �⇒ e(2∗

s−2)sθε,μ ≤ 2‖vε‖2
‖vε‖2

∗
s

2∗
s

, (5.31)

and from (�
μ
vε )

′(θε,μ) = 0, we have

e(2∗
s−2)sθε,μ

= ‖vε‖2
‖vε‖2

∗
s

2∗
s

+ λ
3 − 2t

4s

e(3−2t−2s)θε,μ
∫
R3 φt

vε
v2εdx

‖vε‖2
∗
s

2∗
s

− μδq,se
(qδq,s−2)sθε,μ

‖vε‖qq
‖vε‖2

∗
s

2∗
s

≥ ‖vε‖2
‖vε‖2

∗
s

2∗
s

− μδq,s

⎛
⎝2‖vε‖2

‖vε‖2
∗
s

2∗
s

⎞
⎠

qδq,s−2
2∗s −2 ‖vε‖qq

‖vε‖2
∗
s

2∗
s

= ‖uε‖2
∗
s−2

2 ‖uε‖2
a2∗

s−2‖uε‖2
∗
s

2∗
s

− μδq,s

⎛
⎝2‖uε‖2

∗
s−2

2

a2∗
s−2

‖uε‖2
‖uε‖2

∗
s

2∗
s

⎞
⎠

qδq,s−2
2∗s −2 ‖uε‖qq

‖uε‖2
∗
s

2∗
s

‖uε‖2
∗
s−q

2

a2∗
s−q
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= ‖uε‖2
∗
s−2

2 (‖uε‖2)
qδq,s−2
2∗s −2

a2∗
s−2‖uε‖2

∗
s

2∗
s

⎡
⎢⎣(‖uε‖2)

2∗s −qδq,s
2∗s −2 − μδq,s2

qδq,s−2
2∗s −2 aq(1−δq,s )‖uε‖qq

(‖uε‖2)q(1−δq,s )(‖uε‖2
∗
s

2∗
s
)
qδq,s−2
2∗s −2

⎤
⎥⎦ .

(5.32)

Notice that, by (5.24)–(5.27), there exist positive constants C1,C2 and C3 depending on s
and q such that

(‖uε‖2)
2∗s −qδq,s
2∗s −2 ≥ C1, C2 ≤ (‖uε‖2

∗
s

2∗
s
)
qδq,s−2
2∗s −2 ≤ 1

C2
. (5.33)

and

‖uε‖qq
‖uε‖q(1−γq,s )

2

=

⎧⎪⎪⎨
⎪⎪⎩
C3ε

3− 3−2s
2 q−sq(1−γq,s ) = C3, if 0 < s < 3

4 ;
C3| ln ε| q(γq,s−1)

2 , if s = 3
4 ;

C3ε
3− 3−2s

2 q− (3−2s)q(1−γq,s )

2 , if 3
4 < s < 1;

(5.34)

Next, we show that

e(2∗
s−2)sθε,μ ≥ C

‖uε‖2
∗
s−2

2

a2∗
s−2 , (5.35)

under suitable conditions. To this aim, we distinguish the following three subcases.
Subcase (i). 0 < s < 3

4 . In this case, it holds that

3 − 3 − 2s

2
q − sq(1 − δq,s) = 0, (5.36)

and from (5.32)–(5.34) we have

e(2∗
s−2)sθε,μ ≥ C‖uε‖2

∗
s−2

2

a2∗
s−2

[
C1 − μδq,sa

q(1−γq,s )2
qδq,s−2
2∗s −2

C3

C2

]
,

and we see that inequality (5.35) holds only when μγq,saq(1−δq,s ) < C1C2(C3)
−12

− qδq,s−2
2∗s −2 .

Thus, we have to give a more precise estimate, let us come back to (5.32) and observe that
by well-known interpolation inequality, we have

‖uε‖qq
(‖uε‖2)q(1−δq,s )(‖uε‖2

∗
s

2∗
s
)
qδq,s−2
2∗s −2

≤
(‖uε‖2

∗
s

2∗
s
)

q−2
2∗s −2 (‖uε‖22)

2∗s −q
2∗s −2

(‖uε‖2)q(1−δq,s )(‖uε‖2
∗
s

2∗
s
)
qδq,s−2
2∗s −2

= (‖uε‖2
∗
s

2∗
s
)
q(1−δq,s )

2∗s −2 .

(5.37)

Therefore, by (5.37) and (5.32) we have

e(2∗
s−2)sθε,μ ≥ ‖uε‖2

∗
s−2

2 (‖uε‖2)
qδq,s−2
2∗s −2

a2∗
s−2‖uε‖2

∗
s

2∗
s[

(‖uε‖2)
2∗s −qδq,s
2∗s −2 − μδq,s2

qδq,s−2
2∗s −2 aq(1−δq,s )(‖uε‖2

∗
s

2∗
s
)
q(1−δq,s )

2∗s −2

]
. (5.38)
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From the estimations (5.24), (5.25), we see that the right hand side of (5.38) is positive
provided that

μδq,sa
q(1−γq,s )2

qδq,s−2
2∗s −2 <

(‖uε‖2
) 2∗s −qγq,s

2∗s −2

(‖uε‖2
∗
s

2∗
s
)
q(1−δq,s )

2∗s −2

=
(
S

3
2s + O(ε3−2s)

) 2∗s −qγq,s
2∗s −2

(
S

3
2s + O(ε3)

) q(1−δq,s )
2∗s −2

= S
3(2∗s −q)

2s(2∗s −2) + O(ε3−2s).

Therefore, if 0 < s < 3
4 and

μδq,sa
q(1−δq,s )2

qδq,s−2
2∗s −2 < S

3(2∗s −q)

2s(2∗s −2) , (5.39)

we have

e(2∗
s−2)sθṽε ≥ C‖uε‖2

∗
s−2

2

a2∗
s−2 .

Subcase (ii). s = 3
4 . In this case, then we have 3 < q < 4, and

| ln ε| q(γq,s−1)
2 = | ln ε| q−2∗s

4s(3−2s) → 0 as ε → 0.

Consequently,

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤ C3ε
3− 3−2s

2 q−sq(1−γq,s )| ln ε| q(γq,s−1)
2 = oε(1).

Therefore, we get

e(2∗
s−2)sθvε ≥ C

‖uε‖2
∗
s−2

2

a2∗
s−2

[
C1 − μγq,sa

q(1−γq,s )2
qδq,s−2
2∗s −2

C3

C2
oε(1)

]
≥ C‖uε‖2

∗
s−2

2

a2∗
s−2 .

Subcase (iii). 3
4 < s < 1. By the definition of δq,s and a direct computation we infer to

3 − 3 − 2s

2
q − (3 − 2s)q(1 − γq,s)

2

= (3 − 2s)

[
3

3 − 2s
− q − 3(q − 2)

4s

]
= 3 − 4s

4s

[
q − 6

3 − 2s

]
(3 − 2s) > 0.

Thus, ε3− 3−2s
2 q− (3−2s)q(1−γq,s )

2 → 0 as ε → 0, and so

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤ Cε3−
3−2s
2 q− (3−2s)q(1−γq,s )

2 = oε(1).

Therefore, we conclude that,

e(2∗
s−2)sθvε ≥ C

‖uε‖2
∗
s−2

2

a2∗
s−2

[
C1 − μγq,sa

q(1−γq,s )
C3

C2
oε(1)

]
≥ C‖uε‖22

∗
α,s−2

2

a2∗
s−2 .

Case 2. s‖vε‖2 ≤ λ 3−2t
4 e(3−2t−2 s)θε,μ

∫
R3 φt

vε
v2εdx .
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In this case, we have from (5.30) that se2
∗
s sθε,μ

∫
R3 |vε|2∗

s dx < e2 sθε,μ 3−2t
2 e(3−2t−2 s)θε,μλ∫

R3 φt
vε

v2εdx, which implies that

e(s2∗
s+2t−3)θε,μ ≤ 3 − 2t

2s

λ
∫
R3 φt

vε
v2εdx

‖vε‖2
∗
s

2∗
s

, (5.40)

and from (�
μ
vε )

′(θε,μ) = 0 and (5.40), together with (3.2)–(3.3) and Hölder inequality, we
induce that

e(2∗
s−2)sθε,μ

= ‖vε‖2
‖vε‖2

∗
s

2∗
s

+ 3 − 2t

4s

e(3−2t−2s)θε,μλ
∫
R3 φt

vε
v2εdx

‖vε‖2
∗
s

2∗
s

− μδq,se
(qδq,s−2)sθε,μ

‖vε‖qq
‖vε‖2

∗
s

2∗
s

≥ ‖vε‖2
‖vε‖2

∗
s

2∗
s

− μδq,s

⎛
⎝3 − 2t

2s

λ
∫
R3 φvεv

2
εdx

‖vε‖2
∗
s

2∗
s

⎞
⎠

(qδq,s−2)s
s2∗s +2t−3 ‖vε‖qq

‖vε‖2
∗
s

2∗
s

≥ ‖vε‖2
‖vε‖2

∗
s

2∗
s

− μδq,s

⎛
⎝3 − 2t

2s

λ
t‖vε‖412
3+2t

‖vε‖2
∗
s

2∗
s

⎞
⎠

(qδq,s−2)s
s2∗s +2t−3 ‖vε‖qq

‖vε‖2
∗
s

2∗
s

≥ ‖vε‖2
‖vε‖2

∗
s

2∗
s

− μδq,s

(
(3 − 2t)λ
t

2s

) (qδq,s−2)s
s2∗s +2t−3

⎛
⎝‖vε‖4τ2 ‖vε‖4(1−τ)

2∗
s

‖vε‖2
∗
s

2∗
s

⎞
⎠

(qδq,s−2)s
s2∗s +2t−3 ‖vε‖qq

‖vε‖2
∗
s

2∗
s

= ‖vε‖2
‖vε‖2

∗
s

2∗
s

− μδq,s D(s, t)a
4τ(qδq,s−2)s
s2∗s +2t−3

⎛
⎝ 1

‖vε‖2
∗
s−4(1−τ)

2∗
s

⎞
⎠

(qδq,s−2)s
s2∗s +2t−3 ‖vε‖qq

‖vε‖2
∗
s

2∗
s

= ‖uε‖2
∗
s−2

2 ‖uε‖2
a2∗

s−2‖uε‖2
∗
s

2∗
s

− μδq,s D(s, t)a
4τ(qδq,s−2)s
s2∗s +2t−3

×
⎛
⎝ ‖uε‖2

∗
s−4(1−τ)

2

a2∗
s−4(1−τ)‖uε‖2

∗
s−4(1−τ)

2∗
s

⎞
⎠

(qδq,s−2)s
s2∗s +2t−3 ‖uε‖qq

‖uε‖2
∗
s

2∗
s

‖uε‖2
∗
s−q

2

a2∗
s−q

= ‖uε‖2
∗
s−2

2 ‖uε‖2
a2∗

s−2‖uε‖2
∗
s

2∗
s

− μδq,s D(s, t)a
4τ(qδq,s−2)s−(2∗s −4(1−τ))(qδq,s−2)s

s2∗s +2t−3
−2∗

s+q

‖uε‖
2∗
s+[2∗

s−4(1−τ)] (qδq,s−2)s
s2∗s +2t−3

2∗
s

×‖uε‖
2∗
s−q+[2∗

s−4(1−τ)] (qδq,s−2)s
s2∗s +2t−3

2 ‖uε‖qq

= ‖uε‖2
∗
s−2

2 (‖uε‖2)
qδq,s−2
2∗s −2

a2∗
s−2‖uε‖2

∗
s

2∗
s

×
[
(‖uε‖2)

2∗s −qδq,s
2∗s −2 − μδq,s D(s, t)a

4τ(qδq,s−2)s−(2∗s −4(1−τ))(qδq,s−2)s
s2∗s +2t−3

+q−2

(‖uε‖2)
qδq,s−2
2∗s −2 ‖uε‖

[2∗
s−4(1−τ)] (qδq,s−2)s

s2∗s +2t−3

2∗
s
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×‖uε‖
2−q+[2∗

s−4(1−τ)] (qδq,s−2)s
s2∗s +2t−3

2 ‖uε‖qq
]
, (5.41)

where 0 < τ = 2t+4s−3
4s < 1, and

D(s, t) =
(

(3 − 2t)λ
t

2s

) (qδq,s−2)s
s2∗s +2t−3

.

By a direct computation, we have the following clearer expressions

[2∗
s − 4(1 − τ)] (qδq,s − 2)s

s2∗
s + 2t − 3

=
[
2∗
s − 4

(
1 − 2t + 4s − 3

4s

)]
(qδq,s − 2)s

s2∗
s + 2t − 3

=
[
2∗
s − 3 − 2t

s

]
(qδq,s − 2)s

s2∗
s + 2t − 3

= qδq,s − 2; (5.42)

2 − q + [2∗
s − 4(1 − τ)] (qδq,s − 2)s

s2∗
s + 2t − 3

= 2 − q + qδq,s − 2 = (δq,s − 1)q; (5.43)

and

4τ(qδq,s − 2)s − (2∗
s − 4(1 − τ))(qδq,s − 2)s

s2∗
s + 2t − 3

+ q − 2

= s(qδq,s − 2)(4 − 2∗
s )

s2∗
s + 2t − 3

+ q − 2

= 1

s2∗
s + 2t − 3

[
(q − 2)(s2∗

s + 2t − 3) − (2∗
s − 4)s(qδq,s − 2)

]
= 1

s2∗
s + 2t − 3

[
(q − 2)(s2∗

s + 2t − 3) − (2∗
s − 4)

(
3(q − 2)

2
− 2s

)]

= (q − 2)2t + 2s(2∗
s − 4)

s2∗
s + 2t − 3

> 0,

(5.44)

where the last inequality holds true since q ∈ (2 + 4s
3 , 2∗

s ), 2s + 2t > 3. Consequently, we
have

(q − 2)2t + 2s(2∗
s − 4) >

4s

3
2t + 2s(2∗

s − 4)

= 2s

(
4t

3
+ 2∗

s − 4

)
= 2s

24s + 12t − 18 − 8st

3(3 − 2s)
> 0.

Substituting formulas (5.42)–(5.44) into (5.41), we infer to

e(2∗
s−2)sθε,μ ≥ ‖uε‖2

∗
s−2

2 (‖uε‖2)
qδq,s−2
2∗s −2

a2∗
s−2‖uε‖2

∗
s

2∗
s

×
[
(‖uε‖2)

2∗s −qδq,s
2∗s −2 − μδq,s D(s, t)a

(q−2)2t+2s(2∗s −4)
s2∗s +2t−3

(‖uε‖2)
qδq,s−2
2∗s −2 ‖uε‖qδq,s−2

2∗
s

× ‖uε‖qq
‖uε‖q(1−δq,s )

2

]
.

(5.45)
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Notice that, by (5.24)–(5.27), there exist positive constants C4,C5 and C6 depending on s
and q such that

(‖uε‖2)
qδq,s−2
2∗s −2 ≥ C4,

1

C5
≤ ‖uε‖qδq,s−2

2∗
s

≤ C5. (5.46)

and

‖uε‖qq
‖uε‖q(1−γq,s )

2

=

⎧⎪⎪⎨
⎪⎪⎩
C6ε

3− 3−2s
2 q−sq(1−γq,s ) = C6, if 0 < s < 3

4 ;
C6| ln ε| q(γq,s−1)

2 , if s = 3
4 ;

C6ε
3− 3−2s

2 q− (3−2s)q(1−γq,s )

2 , if 3
4 < s < 1;

(5.47)

Next, we show that

e(2∗
s−2)sθε,μ ≥ C

‖uε‖2
∗
s−2

2

a2∗
s−2 , (5.48)

for some positive constant C > 0. To obtain the estimation (5.48), as in Case 1, we have to
consider the three cases: (i) 0 < s < 3

4 ; (ii) s = 3
4 ; and (iii) 3

4 < s < 1.
When 0 < s < 3

4 , it holds that

3 − 3 − 2s

2
q − sq(1 − δq,s) = 0, (5.49)

and from (5.45)–(5.47) we have

e(2∗
s−2)sθε,μ ≥ C‖uε‖2

∗
s−2

2

a2∗
s−2

[
C1 − μδq,s D(s, t)a

(q−2)2t+2s(2∗s −4)
s2∗s +2t−3

C6

C4C5

]
,

andwe see that inequality (5.48) holds onlywhenμδq,s D(s, t)a
(q−2)2t+2 s(2∗s −4)

s2∗s +2t−3 < C1C4C5C
−1
6 .

Thus, we have to give a more precise estimate, let us come back to (5.45) and observe that
by well-known interpolation inequality, we have

‖uε‖qq
(‖uε‖2)

qδq,s−2
2∗s −2 ‖uε‖qδq,s−2

2∗
s

‖uε‖q(1−δq,s )

2

≤
(‖uε‖2

∗
s

2∗
s
)

q−2
2∗s −2 (‖uε‖22)

2∗s −q
2∗s −2

(‖uε‖2)
qδq,s−2
2∗s −2 (‖uε‖2)q(1−δq,s )(‖uε‖2

∗
s

2∗
s
)
qδq,s−2
2∗s −2

=
(‖uε‖2

∗
s

2∗
s
)
q(1−δq,s )

2∗s −2

(‖uε‖2)
qδq,s−2
2∗s −2

.

(5.50)

Therefore, by (5.45) and (5.50) we derive as

e(2∗
s−2)sθε,μ ≥ ‖uε‖2

∗
s−2

2 (‖uε‖2)
qδq,s−2
2∗s −2

a2∗
s−2‖uε‖2

∗
s

2∗
s

×
⎡
⎢⎣(‖uε‖2)

2∗s −qδq,s
2∗s −2 − μδq,s D(s, t)a

(q−2)2t+2s(2∗s −4)
s2∗s +2t−3

(‖uε‖2
∗
s

2∗
s
)
q(1−δq,s )

2∗s −2

(‖uε‖2)
qδq,s−2
2∗s −2

⎤
⎥⎦ .

(5.51)
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We observe that the right hand side of (5.51) is positive provided that

μδq,s D(s, t)a
(q−2)2t+2s(2∗s −4)

s2∗s +2t−3 <
‖uε‖2

(‖uε‖2
∗
s

2∗
s
)
q(1−δq,s )

2∗s −2

= S
3
2s + O(ε3−2s)(

S
3
2s + O(ε3)

) q(1−δq,s )
2∗s −2

= S
3[(2∗s −2)−q(1−δq,s )]

2s(2∗s −2) + O(ε3−2s).

Therefore, if 0 < s < 3
4 and

μδq,s D(s, t)a
(q−2)2t+2s(2∗s −4)

s2∗s +2t−3 < S
3[(2∗s −2)−q(1−δq,s )]

2s(2∗s −2) , (5.52)

we see that (5.48) holds for some constant C > 0.
For the cases: s = 3

4 , and
3
4 < s < 1, we still have the following estimations as in Case

1,

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤ C3ε
3− 3−2s

2 q−sq(1−γq,s )| ln ε| q(γq,s−1)
2 = oε(1);

and

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤ Cε3−
3−2s
2 q− (3−2s)q(1−γq,s )

2 = oε(1),

respectively. Moreover, we derive that

e(2∗
s−2)sθṽε ≥ C

‖uε‖2
∗
s−2

2

a2∗
s−2

[
C1 − μδq,s D(s, t)a

(q−2)2t+2s(2∗s −4)
s2∗s +2t−3

C5

C4
oε(1)

]

≥ C‖uε‖2
∗
s−2

2

a2∗
s−2 . (5.53)

To sum up, condition (2.5) can ensure that (5.39), (5.52) occur, so as to guarantee (5.53)
hold.

In what follows we focus on an upper estimate of maxθ∈R �
μ
vε (θ). We split the argument

into two steps.
Step 1. We estimate for maxθ∈R �0

vε
(θ), where,

�0
vε

(θ) := e2sθ

2
‖vε‖2 − e2

∗
s sθ

2∗
s

∫
R3

|vε|2∗
s dx .

It is easy to see that for every vε ∈ Sr ,a the function �0
vε

(θ) has a unique critical point θε,0,
which is a strict maximum point and is given by

esθε,0 =
(

‖vε‖2∫
R3 |vε|2∗

s dx

) 1
2∗s −2

. (5.54)

Using the fact that

sup
θ≥0

(
θ2

2
a − θ2

∗
s

2∗
s
b

)
= s

3

(
a

b2/2∗
s

) 2∗s
2∗s −2

,
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for any fixed a, b > 0. We can deduce by (5.24), (5.25), that

�0
vε

(θε,0) = s

3

⎛
⎝ ‖vε‖2

(
∫
R3 |vε|2∗

s dx)
2
2∗s

⎞
⎠

2∗s
2∗s −2

= s

3

⎛
⎝ ‖uε‖2

(
∫
R3 |uε|2∗

s dx)
2
2∗s

⎞
⎠

2∗s
2∗s −2

= s

3

⎛
⎝ S

3
2s + O(ε3−2s)

(S
3
2s + O(ε3))

2
2∗s

⎞
⎠

2∗s
2∗s −2

= s

3
S

3
2s + O(ε3−2s).

(5.55)

Step 2. We next estimate for maxθ∈R �
μ
vε (t). Recall (3.3), (5.30) and Hölder inequality,

we have

e(2∗
s−2)sθε,μ

≤ 2max
{‖vε‖2, λ 3−2t

4s e(3−2t−2s)θε,μ
∫
R3 φt

vε
v2εdx

}
‖vε‖2

∗
s

2∗
s

≤
2max

{
‖vε‖2, λ 3−2t

4s e(3−2t−2s)θε,μ
t‖vε‖4τ2 ‖vε‖4(1−τ)
2∗
s

}
‖vε‖2

∗
s

2∗
s

=
2max

{
a2‖uε‖2‖uε‖2

∗
s−2

2 , λ 3−2t
4s e(3−2t−2s)θε,μ
t a4‖uε‖4(1−τ)

2∗
s

‖uε‖2
∗
s−4(1−τ)

2

}
a2∗

s ‖uε‖2
∗
s

2∗
s

.

(5.56)

From the estimations (5.24)–(5.25) and (5.56), we see that the number θε,μ can not go to
+∞, and there exists some θ∗ ∈ R such that

θε,μ ≤ θ∗, for all ε, μ > 0. (5.57)

Hence, by virtue of (5.56), (5.57) and (3.3) we derive to

max
θ∈R �μ

vε
(θ)

= �μ
vε

(θε,μ) = �0
vε

(θε,μ) + e(3−2t)θε,μ

4
λ

∫
R3

φt
vε

v2εdx − μ
eqγq,s sθε,μ

q

∫
R3

|vε|qdx

≤ sup
θ∈R

�0
vε

(θ) + e(3−2t)θε,μ

4
λ

∫
R3

φt
vε

v2εdx − μ
eqγq,s sθε,μ

q

∫
R3

|vε|qdx

≤ �0
vε

(θvε,0) + Cλ

(∫
R3

|vε| 12
3+2t dx

) 3+2t
3 − Cμaq(1−γq,s )

q

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

≤ s

3
S

3
2s + O(ε3−2s) + C

λa4

‖uε‖42

(∫
R3

|uε| 12
3+2t dx

) 3+2t
3 − Cμaq(1−γq,s )

q

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

≤ s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε| 12

3+2t dx
) 3+2t

3

‖uε‖42
− C3

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

.

(5.58)

Next, we separate three cases:
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Case 1: 0 < s < 3
4 . In this case, owing to 2t + 8s < 9, we get p = 12

3+2t > 3
3−2s , it

following from (5.26)–(5.27) and (5.34) that,

s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε| 12

3+2t dx
) 3+2t

3

‖uε‖42
− C3

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

= s

3
S

3
2s + C1ε

3−2s + C2λ
ε2t+4s−3

ε4s
− C3

<
s

3
S

3
2s ,

(5.59)

if we choose λ = εs .
Case 2: s = 3

4 . In this case, we still have 2t+8s = 2t+6 < 9, and also, p = 12
3+2t > 3

3−2s .

Moreover, 2 + q(γq,s−1)
2 = q(3−2s)

4s > 0, hence

ε2t+2s−3 → 0, ε3−2s(log ε)2 → 0, and | ln ε|2+ q(γq,s−1)
2 → +∞,

when ε → 0+. Consequently, if we choose λ = ε2s , then we have

s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε| 12

3+2t dx
) 3+2t

3

‖uε‖42
− C3

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

= s

3
S

3
2s + C1ε

3−2s + C2λ
ε2t+4s−3

ε4s | log ε|2 − C3| ln ε| q(γq,s−1)
2

= s

3
S

3
2s + 1

(log ε)2

[
C1ε

3−2s(log ε)2 + C2ε
2t+2s−3 − C3| ln ε|2+ q(γq,s−1)

2

]

<
s

3
S

3
2s ,

(5.60)

when ε > 0 small enough.
Case 3: 3

4 < s < 1. In this case, using the fact that 2t + 2s > 3, q > 2 + 4s
3 , we can

obtain the inequality by a direct computation,

3 − 3 − 2s

2
q − (3 − 2s)q(1 − γq,s)

2
< 3 − 2s.

Thus, from (5.26)–(5.27) and (5.34), letting λ = ε6−4s we derive that

s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε| 12

3+2t dx
) 3+2t

3

‖uε‖42
− C3

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

= s

3
S

3
2s + C1ε

3−2s + C2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ
ε2t+4s−3

ε6−4s , if
12

3 + 2t
>

3

3 − 2s
,

λ
ε2t+4s−3| ln ε| 3+2t

3

ε6−4s , if
12

3 + 2t
= 3

3 − 2s
,

λ
ε2(3−2s)

ε6−4s , if
12

3 + 2t
<

3

3 − 2s

− C3ε
3− 3−2s

2 q− (3−2s)q(1−γq,s )

2 −(3−2s)

<
s

3
S

3
2s .

(5.61)
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Since vε ∈ Sr ,a, from Lemma 5.1 we can take θ1 < 0 and θ2 > 0 such that θ1�vε ∈ Aa

and Iμ(θ2�vε) < 0, respectively. Then we can define a path

γvε : t ∈ [0, 1] �→ ((1 − t)θ1 + tθ2)�vε ∈ 
a .

To sum up, by the estimations (5.58)–(5.61), we can derive that

cr ,μ(a) ≤ max
t∈[0,1] Iμ(γvε (t)) ≤ max

θ∈R �μ
vε

(θ) <
s

3
S

3
2s , (5.62)

for ε > 0 small enough, which is the desired result. ��

Lemma 5.8 Let {un} be the (PS) sequence in Sr ,a at level cμ(a),with cμ(a) < s
3 S

3
2 s , assume

that un⇀u, then, u �≡ 0.

Proof Arguing by contradiction, we suppose that u ≡ 0. Noticing that {un} is bounded in
Hs
rad(R

3), going to a subsequence, we may assume that ‖(−�)
s
2 un‖22 → � ≥ 0. By Lemma

3.6, un → 0 in L p(R3),∀p ∈ (2, 2∗
s ). From Proposition 5.5 and Lemmas 3.3, 3.6, we have

Pμ(un) → 0 such that,∫
R3

|un |2∗
s dx = ‖(−�)

s
2 un‖22 + 3 − 2t

4s
λ

∫
R3

φt
un u

2
ndx − μδq,s

∫
R3

|un |qdx
= ‖(−�)

s
2 un‖22 + on(1)

= � + on(1),

as n → ∞. Then, using Sobolev’s inequality, one has � ≥ S�
2
2∗s , and so, either � ≥ S

3
2 s or

� = 0. In the case � ≥ S
3
2 s , from Iμ(un) → cμ(a), Pμ(un) → 0, we know

cμ(a) + on(1)

= Iμ(un) = Iμ(un) − 1

s2∗
s
Pμ(un)

= s

3
‖(−�)

s
2 un‖22 + λ

s2∗
s + 2t − 3

4s2∗
s

∫
R3

φt
un |un |2dx − μ

2∗
s − q

q2∗
s

∫
R3

|un |qdx + on(1)

= s

3
� + on(1)

which means cμ(a) = s
3�, that is cμ(a) ≥ s

3 S
3
2 s , which contradicts the assumption cμ(a) <

s
3 S

3
2s . In the case � = 0, one has

‖(−�)
s
2 un‖22 → 0,

∫
R3

|un |2∗
s dx → 0,

and combining with ∫
R3

φt
un u

2
ndx → 0,

∫
R3

|un |qdx → 0,

we have, Iμ(un) → 0, which is absurd since cμ(a) > 0. Therefore, u �≡ 0. ��

Lemma 5.9 Let {un} be the (PS) sequence in Sr ,a at level cμ(a), with cμ(a) < s
3 S

3
2s , assume

that Pμ(un) → 0 when n → ∞, and λ < λ∗
1 small. Then one of the following alternatives

holds:
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(i) either going to a subsequence un⇀u weakly in Hs
rad(R

3), but not strongly, where
u �≡ 0 is a solution to

(−�)su + λφt
uu = αu + μ|u|q−2u + |u|2∗

s−2u, in R
3, (5.63)

where αn → α < 0, and

Iμ(u) < cμ(a) − s

3
S

3
2s ;

(ii) or passing to a subsequence un → u strongly in Hs
rad(R

3), Iμ(u) = cμ(a) and u is a
solution of (1.5)–(1.6) for some α < 0.

Proof By Lemma 5.6, we have that {un} ⊂ Sr ,a is a bounded (PS) sequence for Iμ in
Hs
rad(R

3), and so un⇀u in Hs
rad(R

3) for some u. By the Lagrange multiplier principle,
there exists {αn} ⊂ R satisfying∫

R3
(−�)

s
2 un(−�)

s
2 ϕdx − αn

∫
R3

unϕdx + λ

∫
R3

φt
un uϕdx − μ

∫
R3

|un |q−2unϕdx

−
∫
R3

|un |2∗
s−2unϕdx = on(1)‖ϕ‖,

(5.64)

for any ϕ ∈ Hs
rad(R

3). Moreover, one has limn→∞ αn = α < 0. Letting n → ∞ in (5.64),
we have ∫

R3
(−�)

s
2 u(−�)

s
2 ϕdx + λ

∫
R3

φt
uuϕdx

−μ

∫
R3

|u|q−2uϕdx −
∫
R3

|u|2∗
s−2uϕdx − α

∫
R3

uϕdx = 0,

which implies that u solves the equation

(−�)su + λφt
uu = αu + μ|u|q−2u + |u|2∗

s−2u, in R
3, (5.65)

and we have the Pohozăev identity Pμ(u) = 0.
Let vn = un − u, then vn⇀0 in Hs

rad(R
3). According to Brezis–Lieb lemma [33] and

Lemma 3.3, one has

‖(−�)
s
2 un‖22 = ‖(−�)

s
2 u‖22 + ‖(−�)

s
2 vn‖22 + on(1),

‖un‖2
∗
s

2∗
s

= ‖u‖2∗
s

2∗
s
+ ‖vn‖2

∗
s

2∗
s
+ on(1), (5.66)

and ∫
R3

φt
un u

2
ndx =

∫
R3

φuu
2dx + on(1), ‖un‖qq = ‖u‖qq + ‖vn‖qq + on(1). (5.67)

Then, from Pμ(un) → 0, un → u in L p(R3), one can derive that

‖(−�)
s
2 u‖22 + ‖(−�)

s
2 vn‖22 + 3 − 2t

4s
λ

∫
R3

φt
uu

2dx

= μδq,s

∫
R3

|u|qdx +
∫
R3

|u|2∗
s dx +

∫
R3

|vn |2∗
s dx + on(1).

By Pμ(u) = 0, we have

‖(−�)
s
2 vn‖22 =

∫
R3

|vn |2∗
s dx + on(1). (5.68)

123



  142 Page 40 of 48 X. He et al.

Passing to a subsequence, we may assume that

lim
n→∞ ‖(−�)

s
2 vn‖22 = lim

n→∞

∫
R3

|vn |2∗
s dx = � ≥ 0. (5.69)

Then, it follows from Sobolev’s inequality that � ≥ S�
2
2∗s , and so, either � ≥ S

3
2 s or � = 0.

In the case � ≥ S
3
2 s , from Iμ(un) → cμ(a), Pμ(un) → 0, we know

cμ(a) = lim
n→∞ Iμ(un) = lim

n→∞

{
Iμ(u) + 1

2
‖vn‖2 − 1

2∗
s

∫
R3

|vn |2∗
s dx + on(1)

}

= Iμ(u) + s

3
� ≥ Iμ(u) + s

3
S

3
2s

(5.70)

which means that item (i) holds.
If � = 0, then ‖un − u‖ = ‖vn‖ → 0, one has un → u in Ds,2(R3), and so un → u

in L2∗
s (R3). To prove that un → u in Hs

rad(R
3), it remains only to prove that un → u in

L2(R3). Fix ψ = un − u as a test function in (5.64), and un − u as a test function of (5.65),
we deduce that∫

R3
|(−�)

s
2 (un − u)|2dx −

∫
R3

(αnun − αu)(un − u)dx + λ

∫
R3

(φt
un un − φt

uu)(un − u)dx

= μ

∫
R3

(|un |q−2un − |u|q−2u)(un − u)dx

+
∫
R3

(|un |2∗
s −2un − |u|2∗

s−2u)(un − u)dx + on(1).

(5.71)

Passing the limit in (5.71) as n → ∞, we have

0 = lim
n→∞

∫
R3

(αnun − αu)(un − u)dx = lim
n→∞ α

∫
R3

(un − u)2dx,

and then un → u in L2(R3). Therefore, item (ii) holds. ��
Now, we are ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2 Let λ < �∗ := min{λ∗
1, λ

∗
2}. By virtue of Lemmas 5.1–5.2, 5.6–5.7,

Propositions 5.3–5.5, there exists a bounded (PS)cμ(a)-sequence {un} ⊂ Sr ,a , with cμ(a) <

s
3 S

3
2s , and u ∈ Hs

rad(R
3) such that one of the alternatives of Lemma 5.9 holds. We assert

that (i) of Lemma 5.9 can not occur. Indeed, suppose by contradiction that, item (i) holds,
then u is a nontrivial solution of (5.63), and by Lemmas 5.9 and 5.7, we have

Iμ(u) < cμ(a) − s

3
S

3
2s < 0.

On the other hand, we have

Iμ(u) = Iμ(u) − 1

2s
Pμ(u)

= 2s + 2t − 3

8
λ

∫
R3

φt
uu

2dx + qδq,s − 2

2q
μ

∫
R3

|u|qdx + s

3

∫
R3

|u|2∗
s dx

≥ 0,

which leads to a contradiction. Therefore, un → u strongly in Hs
rad(R

3)with Iμ(u) = cμ(a),
and u is a solution of (1.5)–(1.6) for some α < 0. Moreover, u(x) > 0 in R

3. In fact, we
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note that all the calculations above can be repeated word by word, replacing Iμ with the
functional

I+
μ (u) = 1

2

∫
R3

|(−�)
s
2 u|2dx + λ

4

∫
R3

φt
uu

2dx − μ

q

∫
R3

|u+|qdx

− 1

2∗
s

∫
R3

|u+|2∗
s dx . (5.72)

Then u is the critical point of I+
μ restricted on the set Sr ,a , it solves the equation

(−�)su + λφt
uu = αu + μ|u+|q−2u + |u+|2∗

s−2u. in R
3, (5.73)

Using u− = min{u, 0} as a test function in (5.73), in view of (a − b)(a− − b−) ≥ |a− −
b−|2,∀a, b ∈ R, we conclude that

‖(−�
s
2 )u−‖22 =

∫∫
R6

|u−(x) − u(y)|2
|x − y|3+2s dxdy

≤ ‖(−�
s
2 )u−‖22 + λ

∫
R3

φt
u |u−|2dx − α

∫
R3

|u−|2dx

≤
∫∫

R6

(u(x) − u(y))((u−(x) − u−(y))

|x − y|3+2s dxdy

+ λ

∫
R3

φt
u |u−|2dx − α

∫
R3

|u−|2dx
= 0.

Thus, u− = 0 and u ≥ 0,∀x ∈ R
3, is a solution of (5.73). By the regularity result [36]

we know that u ∈ L∞(R3) ∩ C0,α(R3) for some α ∈ (0, 1). Suppose u(x0) = 0 for some
x0 ∈ R

3, then (−�)su(x0) = 0 and by the definition of (−�)s , we have [27]:

(−�)su(x0) = −Cs

2

∫
R3

u(x0 + y) + u(x0 − y) − 2u(x0)

|y|3+2s dy.

Hence,
∫
R3

u(x0+y)+u(x0−y)
|y|3+2s dy = 0, which implies u ≡ 0, a contradiction. Thus, u(x) >

0,∀x ∈ R
3. ��

6 Proof of Theorem 2.3

In this section, we deal with the L2-supercritical case 2 + 4s
3 < q < 2∗

s , when parameter

μ > 0 large. In view of 3(q−2)
2s > 2, the truncated functional Iμ,τ defined in Sect. 4 is still

unbounded from below on Sr ,a , and the truncation technique can not be applied to study
problem (1.5)–(1.6).

To overcome this difficulty, as in Sect. 5 we introduce the transformation (e.g. [29]):

(θ�u)(x) := e
3θ
2 u(eθ x), x ∈ R

N , θ ∈ R, (6.1)

and the auxiliary functional

I (u, θ) = Iμ((θ�u)) = e2sθ

2
‖u‖2 + λe(3−2t)θ

4

∫
R3

φt
uu

2dx − μ

q
eqδq,s sθ

∫
R3

|u|qdx

− 1

2∗
s
e
3(2∗s −2)

2 θ

∫
R3

|u|2∗
s dx .

(6.2)
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From Lemmas 5.1, 5.2, we have the the mountain pass level value cμ(a) by

cμ(a) := inf
γ∈


max
t∈[0,1] Iμ(γ (t)) > 0,

where


a = {γ ∈ C([0, 1], Sr ,a) : γ (0) ∈ Aa, γ (1) ∈ I 0μ}.
In what follows, we set g(t) = μ|t |q−2t + |u|2∗

s−2u, for any t ∈ R. From Propositions
5.4, 5.5, we know that there exist a (PS)cμ(a)-sequence {un} ⊂ Sr ,a satisfying

Iμ(un) → cμ(a), ‖I ′
μ|Sr,a (un)‖ → 0 and Pμ(un) → 0, as n → ∞,

where

Pμ(un) =s
∫
R3

|(−�)
s
2 un |2dx + 3 − 2t

4
λ

∫
R3

φt
uu

2dx + 3
∫
R3

G(un)dx − 3

2

∫
R3

g(un)undx .

Similar to the Sect. 5, setting the functional �(v) : Hs
rad(R

3) → R given by

�(v) = 1

2

∫
R3

|v|2dx,

it follows that Sr ,a = �−1({ a22 }), and by Proposition 5.12 in [33], there exists αn ∈ R such
that

‖I ′
μ(un) − αn�

′(un)‖ → 0, as n → ∞.

That is, we have

(−�)sun + λφt
un un − g(un) = αnun + on(1) in H−s

rad(R
3). (6.3)

Therefore, for any ϕ ∈ Hs
rad(R

3), one has∫
R3

(−�)
s
2 un(−�)

s
2 ϕdx + λ

∫
R3

φt
un unϕdx −

∫
R3

g(un)ϕdx

= αn

∫
R3

unϕdx + on(1). (6.4)

In the sequel, we study the asymptotical behavior of the mountain pass level value cμ(a)

as μ → +∞, and the properties of the (PS)cμ(a)-sequence {un} ⊂ Sr ,a as n → +∞.

Lemma 6.1 The limit limμ→+∞ cμ(a) = 0 holds.

Proof Recall Lemmas 5.1, 5.2, we see that for fixed u0 ∈ Sr ,a , there exists two constants
θ1, θ2 satisfying θ1 < 0 < θ2 such that u1 := θ1�u0 ∈ A and Iμ(u2) < 0. Then we can
define a path

η0 : τ ∈ [0, 1] → ((1 − τ)θ1 + τθ2)�u0 ∈ 
a .

Thus, we have

cμ(a) ≤ max
t∈[0,1] Iμ(η0(t))

≤ max
r≥0

{
r2s

2
‖u0‖2 + r3−2t

4
λ

∫
R3

φt
u0u

2
0dx − μ

q
r

3q−6
2

∫
R3

|u0|qdx
}

:= max
r≥0

h(r).
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Note that 3q−6
2 > 2s > 3 − 2t, we have that limr→0+ h(r) = 0+, limr→+∞ h(r) = −∞,

and so, there exists a unique maximum point r0 > 0 such that maxr≥0 h(r) = h(r0) > 0.
Hence, we distinguish two cases: r0 ≥ 1 and 0 ≤ r0 < 1.

If r0 ≥ 1, we have by 2s + 2t > 3, that

max
t∈[0,1] Iμ(η0(t)) ≤ h(r0)

≤ r2s0
2

‖u0‖2 + r2s0
4

λ

∫
R3

φt
u0u

2
0dx − μ

q
r

3q−6
2

0

∫
R3

|u0|qdx

≤ max
r≥0

{
2max

{
1

2
‖u0‖2, λ

4

∫
R3

φt
u0u

2
0dx

}
r2s − μ

q
r

3q−6
2

∫
R3

|u0|qdx
}

= 2a(rmax )
2s − μb

q
(rmax )

3q−6
2

= 2a(3q − 6 − 4s)

3q − 6

[
8qsa

μb(3q − 6)

] 4s
3q−6−4s

,

where

rmax =
[

8qsa

μb(3q − 6)

] 4s
3q−6−4s

, a = max

{
1

2
‖u0‖2, λ

4

∫
R3

φt
u0u

2
0dx

}
, b =

∫
R3

|u0|qdx .

Therefore, for 2 + 4s
3 < q < 2∗

s , we have a positive constant C̃ independent of μ such that

γμ(a) ≤ C̃μ
− 4s

3q−6−4s → 0, as μ → +∞.

If 0 ≤ r0 < 1, we infer to

max
t∈[0,1] Iμ(η0(t)) ≤ r2s0

2
‖u0‖2 + r3−2t

0

4

∫
R3

φt
u0u

2
0dx − μ

q
r

3q−6
2

0

∫
R3

|u0|qdx

≤ max
r≥0

{
2max

{
1

2
‖u0‖2, 1

4

∫
R3

φt
u0u

2
0dx

}
r3−2t − μ

q
r

3q−6
2

∫
R3

|u0|qdx
}

= 2a(̃rmax )
3−2t − μb

q
(̃rmax )

3q−6
2

= 2a(3q + 4t − 12)

3q − 6

[
4qa(3 − 2t)

μb(3q − 6)

] 2(3−2t)
3q+4t−12

,

where

r̃max =
[
4qa(3 − 2t)

μb(3q − 6)

] 2
3q+4t−12

.

Since 2 + 4s
3 < q < 2∗

s , and 2s + 2t > 3, we can deduce that 3q + 4t − 12 > 0, then there
exists a positive constant C1 independent of μ such that

cμ(a) ≤ C1μ
− 2(3−2t)

3q+4t−12 → 0, as μ → +∞.

This completes the proof. ��
Lemma 6.2 There exists a constant C = C(q, s) > 0 such that

lim sup
n→∞

∫
R3

G(un)dx ≤ Ccμ(a),
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lim sup
n→∞

∫
R3

g(un)undx ≤ Ccμ(a),

and

lim sup
n→∞

∫
R3

φt
un u

2
ndx ≤ Ccμ(a), lim sup

n→∞

∫
R3

|(−�)
s
2 un |2dx ≤ Ccμ(a).

Proof Since Iμ(un) → cμ(a) and Pμ(un) → 0 as n → ∞, we have

3cμ(a) + on(1) = 3Iμ(un) + Pμ(un)

= 3 + 2s

2

∫
R3

|(−�)
s
2 un |2dx + λ

3 − t

2

∫
R3

φt
un u

2
ndx − 3

2

∫
R3

g(un)undx

= 3 + 2s

2

(
2cμ(a) − λ

2

∫
R3

φt
un u

2
ndx + 2

∫
R3

G(un)dx + on(1)

)

+ λ
3 − t

2

∫
R3

φt
un u

2
ndx − 3

2

∫
R3

g(un)undx

= (3 + 2s)

[
cμ(a) +

∫
R3

G(un)dx + on(1)

]

− 3

2

∫
R3

g(un)undx − λ
2t + 2s − 3

4

∫
R3

φt
un u

2
ndx .

(6.5)

Hence,

2scμ(a) + on(1) = λ
2t + 2s − 3

4

∫
R3

φun u
2
ndx

+ 3

2

∫
R3

g(un)undx − (3 + 2s)
∫
R3

G(un)dx

≥ 3q

2

∫
R3

G(un)dx − (3 + 2s)
∫
R3

G(un)dx

= 3q − 2(3 + 2s)

2

∫
R3

G(un)dx,

which implies that

lim sup
n→∞

∫
R3

G(un)dx ≤ 4s

3q − 2(3 + 2s)
cμ(a) ≤ Ccμ(a) (6.6)

and then

lim sup
n→∞

∫
R3

g(un)undx ≤ Ccμ(a). (6.7)

Then, from (6.5)–(6.7), we have

lim sup
n→∞

{
3 + 2s

2

∫
R3

|(−�)
s
2 un |2dx + λ

3 − t

2

∫
R3

φun u
2
ndx

}

= lim sup
n→∞

{
3cμ(a) + 3

2

∫
R3

g(un)undx + on(1)

}
≤ Ccμ(a).

(6.8)

Consequently, the proof is completed. ��
Lemma 6.3 There exists μ∗

1 := μ∗
1(a) > 0 such that u �≡ 0 for all μ ≥ μ∗

1.
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Proof From Lemma 5.6, we know that {un} is bounded in Hs
rad(R

3), and by Lemma 3.6, up
to a subsequence, there exists u ∈ Hs

rad(R
3) such that un⇀u weakly in Hs

rad(R
3), un → u

strongly in Lt (R3), for t ∈ (2, 2∗
s ), un → u a.e. on R

3. In view of 2 + 4s
3 < q < 2∗

s , and
Lemmas 3.3, 3.6, then

lim
n→∞

∫
R3

|un |qdx =
∫
R3

|u|qdx, lim
n→∞

∫
R3

φt
un u

2
ndx =

∫
R3

φt
uu

2dx . (6.9)

Suppose by contradiction that, u ≡ 0. Then, by (6.9) and Pμ(un) = on(1), we deduce as

on(1) = ‖(−�)
s
2 un‖22 + 3 − 2t

4s
λ

∫
R3

φt
un u

2
ndx − μδq,s

∫
R3

|un |qdx −
∫
R3

|un |2∗
s dx

= ‖(−�)
s
2 un‖22 −

∫
R3

|un |2∗
s dx + on(1).

Without loss of generality, we may assume that∫
R3

|(−�)
s
2 un |2dx → �, and

∫
R3

|un |2∗
s dx → �,

as n → ∞. By Sobolev’s inequality we get � ≥ S�
2
2∗s , and so, either � ≥ S

3
2 s or � = 0.

If � ≥ S
3
2s , then from Iμ(un) → cμ(a), Pμ(un) → 0, we have

cμ(a) + on(1)

= Iμ(un) = Iμ(un) − 1

s2∗
s
Pμ(un)

= s

3
‖(−�)

s
2 un‖22 + λ

s2∗
s + 2t − 3

4s2∗
s

∫
R3

φt
un u

2
ndx − μ

2∗
s − qδq,s

q2∗
s

∫
R3

|un |qdx + on(1)

= s

3
� + on(1),

which implies that cμ(a) = s
3�, and so, cμ(a) ≥ s

3 S
3
2s , but this is impossible since by Lemma

6.1, there exists some μ∗
1 := μ∗

1(a) > 0 such that cμ(a) < s
3 S

3
2 s as μ > μ∗

1.

If � = 0, then we have ‖(−�)
s
2 un‖22 → 0, thus Iμ(un) → 0, which is absurd since

cμ(a) > 0. Therefore, u �≡ 0. ��
Lemma 6.4 {αn} is bounded in R, and lim supn→∞ |αn | ≤ C

a2
cμ(a) has the following esti-

mation:

αn = 1

a2

[
λ
2t + 4s − 3

4s

∫
R3

φt
un u

2
ndx + q(3 − 2s) − 6

2qs
μ

∫
R3

|un |qdx
]

+ on(1).

Moreover, there exists some μ∗
2 := μ∗

2(a) > 0 such that limn→+∞ αn = α < 0, if μ > μ∗
2

large.

Proof By (6.3) and the fact that un ∈ Sr ,a , we have∫
R3

|(−�)
s
2 un |2dx + λ

∫
R3

φt
un u

2
ndx −

∫
R3

g(un)undx = αn

∫
R3

|un |2dx + on(1)

= αna
2 + on(1).

It indicates that

αn = 1

a2

[∫
R3

|(−�)
s
2 un |2dx + λ

∫
R3

φt
un |un |2dx −

∫
R3

g(un)undx

]
+ on(1).
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By Lemma 5.6 we have the boundedness of {un} in Hs
rad(R

3), and so, {αn} is bounded
in R. By Lemma 6.2 we know that lim supn→∞ |αn | ≤ C

a2
cμ(a). Moreover, together with

Pμ(un) → 0 as n → ∞, we derive as

αn = 1

a2

[∫
R3

|(−�)
s
2 un |2dx + λ

∫
R3

φt
un |un |2dx −

∫
R3

g(un)undx − 1

s
Pμ(un)

]
+ on(1)

= 1

a2

[
λ
2t + 4s − 3

4s

∫
R3

φt
un u

2
ndx + q(3 − 2s) − 6

2qs
μ

∫
R3

|un |qdx
]

+ on(1).

By (6.9) and similar arguments to that of (4.32)–(4.35), we see that there exists μ∗
2 :=

μ∗
2(a) > 0, such that

α = lim
n→∞ αn

= lim
n→∞

1

a2

{
λ
2t + 4s − 3

4s

∫
R3

φt
un u

2
ndx + q(3 − 2s) − 6

2qs
μ

∫
R3

|un |qdx + on(1)

}

= 1

a2

[
λ
2t + 4s − 3

4s

∫
R3

φt
uu

2dx + q(3 − 2s) − 6

2qs
μ

∫
R3

|u|qdx
]

< 0, (6.10)

for μ > μ∗
2 large. ��

Subsequently, using the concentration-compactness principle, we derive the following
lemma, whose proof is similar to that of Lemma 4.3 in Sect. 5, we omit its details here.

Lemma 6.5 For μ > μ∗ := max{μ∗
1, μ

∗
2}, there holds

∫
R3 |un |2∗

s dx → ∫
R3 |u|2∗

s dx .

With the help of the above technical lemmas, we can prove Theorem 2.3 as follows.

Proof of Theorem 2.3 Let μ > μ∗ := max{μ∗
1, μ

∗
2}. From Lemmas 5.1, 5.2, the functional

Iμ satisfies the Mountain pass geometry, from Propositions 5.4, 5.5, there exist a (PS)cμ(a)-
sequence {un} ⊂ Sr ,a satisfying (6.3), (6.4), which is bounded in Hs

rad(R
3), and there exists

u ∈ Hs
rad(R

3) such that un⇀u weakly in Hs
rad(R

3), un → u strongly in L p(R3), for
p ∈ (2, 2∗

s ). Moreover, by Lemmas 6.1–6.4, we have that αn → α < 0 as n → +∞. By
the weak convergence of un⇀u in Hs

rad(R
3), Eqs. (6.3) and (6.4), we have that u solves the

equation

(−�)su + φt
uu − μ|u|q−2u − |u|2∗

s−2u = αu. (6.11)

Therefore, from (6.9)–(6.11) and Lemma 6.5, it follows that

‖(−�)
s
2 u‖22 + λ

∫
R3

φt
uu

2dx − α‖u‖22 = μ‖u‖qq +
∫
R3

|u|2∗
s dx

= lim
n→∞

[
μ‖un‖qq +

∫
R3

|un |2∗
s dx

]

= lim
n→∞[‖(−�)

s
2 un‖22 + λ

∫
R3

φt
un u

2
ndx − αn‖un‖22]

= lim
n→∞[‖(−�)

s
2 un‖22 − αn‖un‖22] + λ

∫
R3

φt
uu

2dx .

Since α < 0, as in the proof of Lemma 4.3, we can derive as

lim
n→∞ ‖(−�)

s
2 un‖22 = ‖(−�)

s
2 u‖22 and lim

n→∞ ‖un‖22 = ‖u‖22.
Therefore, un → u in Hs

rad(R
3) and ‖u‖2 = a. This completes the proof. ��
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