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Abstract. In this paper, we study the fractional critical Schrödinger-Poisson system{
(−∆)su+ λϕu = αu+ µ|u|q−2u+ |u|2

∗
s−2u, in R3,

(−∆)tϕ = u2, in R3,

having prescribed mass ∫
R3

|u|2dx = a2,

where s, t ∈ (0, 1) satisfies 2s+2t > 3, q ∈ (2, 2∗s), a > 0 and λ, µ > 0 parameters and α ∈ R is an unde-
termined parameter. For this problem, under the L2-subcritical perturbation µ|u|q−2u, q ∈ (2, 2+ 4s

3
),

we derive the existence of multiple normalized solutions by means of the truncation technique,
concentration-compactness principle and the genus theory. In the L2-supercritical perturbation
µ|u|q−2u, q ∈ (2 + 4s

3
, 2∗s), we prove two different results of normalized solutions when parame-

ters λ, µ satisfy different assumptions, by applying the constrained variational methods and the

mountain pass theorem. Our results extend and improve some previous ones of Zhang, do Ó and
Squassina (Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity,
Adv. Nonlinear Stud., 2016); and of Teng (Existence of ground state solutions for the nonlinear frac-
tional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016),
since we are concerned with normalized solutions.
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1. Introduction

In the last decade, the following time-dependent fractional Schrödinger-Poisson system

(1.1)

i
∂Ψ

∂τ
= (−∆)sΨ+ λϕΨ− f(x, |Ψ|), x ∈ R3,

(−∆)tϕ = |Ψ|2, x ∈ R3,

has attracted much attention, where Ψ : R × R3 → C, s, t ∈ (0, 1), λ ∈ R. It is well-known that,
the first equation in (1.1) was used by Laskin (see [17, 18]) to extend the Feynman path integral,
from Brownian-like to Lévy-like quantum mechanical paths. This class of fractional Schrödinger
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equations with a repulsive nonlocal Coulombic potential can be approximated by the Hartree-Fock
equations to describe a quantum mechanical system of many particles; see, for example, [7, 20, 21],
and [26,27] for more applied backgrounds on the fractional Laplacian.

When we look for standing wave solutions to (1.1), namely to solutions of the form (Ψ(τ, x) =
e−iατu(x), ϕ(x)), α ∈ R, then the function (u(x), ϕ(x)) solves the equation

(1.2)

{
(−∆)su+ λϕu = αu+ f(x, u), x ∈ R3,

(−∆)tϕ = u2, x ∈ R3.

Here (−∆)s is a nonlocal operator defined by

(−∆)su(x) = Cs P.V.

∫
R3

u(x)− u(y)

|x− y|3+2s
dy, x ∈ R3, s ∈ (0, 1),

and P.V. stands for the Cauchy principal value on the integral, and Cs is a suitable normalization
constant.

We note that, when α ∈ R is a fixed real number, there was a lot of attention in recent years on the
system (1.2) for the existence and multiplicity of ground state solutions, bound state solutions and
concentrating solutions, see for examples [34, 36, 37, 39] and references therein. Especially, Zhang,

do Ó and Squassina [39] considered the existence and asymptotical behaviors of positive solutions
as λ→ 0+, for the fractional Schrödinger-Poisson system{

(−∆)su+ λϕu = g(u), x ∈ R3,

(−∆)tϕ = λu2, x ∈ R3,

where λ > 0 and g may be subcritical or critical growth satisfying the Berestycki-Lions conditions.
In [31], Teng studied the existence of a nontrivial ground state solution for the nonlinear fractional
Schrödinger-Poisson system with critical Sobolev exponent{

(−∆)su+ V (x)u+ ϕu = µ|u|q−1u+ |u|2∗s−2u, x ∈ R3,

(−∆)tϕ = u2, x ∈ R3,

where µ ∈ R+ is a parameter, 1 < q < 2∗s − 1, s, t ∈ (0, 1) with 2s + 2t > 3. The potential V
satisfies some suitable hypotheses. By the monotonicity trick, concentration-compactness principe
and a global compactness Lemma, the author establishes the existence of ground state solutions.
Formally, system (1.1) with s = t = 1 can be regarded as the following classical Schrödinger-Poisson
system {

−∆u+ λϕu = f(x, u), in R3,

−∆ϕ = u2, in R3,

which appears in semiconductor theory [26] and also describes the interaction of a charged particle
with the electrostatic field in quantum mechanics. The literature on the Schrödinger-Poisson system
in presence of a pure power nonlinearity is very rich, we refer to [34,36,38] and references therein.

Alternatively, from a physical point of view, it is interesting to find solutions of (1.2) with pre-
scribed L2-norms, α appearing as Lagrange multiplier. Solutions of this type are often referred to
as normalized solutions. The occurrence of the L2-constraint renders several methods developed
to deal with variational problems without constraints useless, and the L2-constraint induces a new
critical exponent, the L2-critical exponent given by

q̄ := 2 +
4s

3
,

and the number q̄ can keep the mass invariant by the law of conservation of mass. Precisely for
this reason, 2 + 4s

3 is called L2-critical exponent or mass critical exponent, which is the threshold
exponent for many dynamical properties such as global existence, blow-up, stability or instability
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of ground states. In particular, it strongly influences the geometrical structure of the corresponding
functional. Meanwhile, the appearance of the L2-constraint makes some classical methods, used
to prove the boundedness of any Palais-Smale sequence for the unconstrained problem, difficult
to implement. In [22], Li and Teng proved the existence of normalized solutions to the following
fractional Schrödinger-Poisson system:

(1.3)


(−∆)su+ ϕu = λu+ f(u), in R3,

(−∆)tϕ = u2, in R3,∫
R3

|u|2dx = a2,

where s ∈ (0, 1), 2s + 2t > 3, λ ∈ R and f ∈ C1(R,R) satisfies some general conditions which
contain the case f(u) ∼ |u|q−2u with q ∈ (4s+2t

s+t , 2 +
4s
3 ) ∪ (2 + 4s

3 , 2
∗
s), i.e., the nonlinearity f is L2-

mass subcritical or L2-mass supercritical growth, but is Sobolev subcritical growth. In [37], Yang,
Zhao, and Zhao showed the existence of infinitely many solutions (u, λ) to (1.3) with subcritical
nonlinearity µ|u|q−2u, by using the cohomological index theory.

We note that, when s = t = 1, problem (1.3), are related to the the following equation

(1.4)

−∆u+ λu− γ(|x|−1 ∗ |u|2)u = a|u|p−2u, in R3,∫
R3

|u|2dx = c2, u ∈ H1(R3).

Recently, Jeanjean and Trung Le in [15] studied the existence of normalized solutions for (1.4) when
γ > 0 and a > 0, both in the Sobolev subcritical case p ∈ (10/3, 6) and in the Sobolev critical
case p = 6, they showed that there exists a c1 > 0 such that, for any c ∈ (0, c1), (1.4) admits two
solutions u+c and u−c which can be characterized respectively as a local minima and as a mountain
pass critical point of the associated energy functional restricted to the norm constraint. While in
the case γ < 0, a > 0 and p = 6 the authors showed that (1.4) does not admit positive solutions.
Bellazzini, Jeanjean and Luo [4] proved that for c > 0 sufficiently small, there exists a critical
point which minimizes with prescribed L2-norms. In [14], Jeanjean and Luo studied the existence
of minimizers for with L2-norm for (1.4), and they expressed a threshold value of c > 0 separating
existence and nonexistence of minimizers. In [32], Wang and Qian established the existence of ground
state and infinitely many radial solutions to (1.4) with a|u|p−2u replaced by a general subcritical
nonlinearity af(u), by constructing a particular bounded Palais-Smale sequence when γ < 0, a > 0.
In [23], Li and Zhang studied the existence of positive normalized ground state solutions for a
class of Schrödinger-Popp-Podolsky system. For more results on the existence and no-existence of
normalized solutions of Schrödinger-Poisson systems, we refer to [2, 3, 5, 6, 12, 14, 15, 24, 35, 37] and
references therein.

After the above bibliography review we have found only two papers [22, 37] considering the nor-
malized solutions for the fractional Schrödinger-Poisson system by the prescribed mass approaches
with the nonlinearity f(u), being Sobolev subcritical growth.

A natural question arises: How to obtain solutions to system (1.3) in presence of the nonlinear
term f(u) = µ|u|q−2u+|u|2∗s−2u, combining the Sobolev critical term with a subcritical perturbation?

The main contribution of this paper is to give an affirmative answer to this question and fill this
gap. To be specific, in the present paper we aim to study the following fractional Schrödinger-Poisson
system

(1.5)

{
(−∆)su+ λϕu = αu+ µ|u|q−2u+ |u|2∗s−2u, in R3,

(−∆)tϕ = u2, in R3,
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having prescribed L2-norm

(1.6)

∫
R3

|u|2dx = a2,

where s, t ∈ (0, 1) satisfies 2s+2t > 3, q ∈ (2, 2∗s) and α ∈ R is an undetermined parameter, µ, λ > 0
are parameters. For this purpose, applying the reduction argument introduced in [39], system (1.5)
is equivalent to the following single equation

(1.7) (−∆)su+ λϕtuu = αu+ µ|u|q−2u+ |u|2∗s−2u, x ∈ R3,

where

ϕtu(x) = ct

∫
R3

|u(y)|2

|x− y|3−2t
dy, and ct :=

Γ(32 − 2t)

π322tΓ(t)
.

We shall look for solutions to (1.5)-(1.6), as a critical points of the action functional

Iµ(u) =
1

2

∫
R3

|(−∆)
s
2u|2dx+

λ

4

∫
R3

ϕtu|u|2dx− µ

q

∫
R3

|u|qdx− 1

2∗s

∫
R3

|u|2∗sdx,

restricted on the set

Sa =

{
u ∈ Hs(R3) :

∫
R3

|u|2dx = a2
}
,

with α being the Lagrange multipliers, Clearly, each critical point ua ∈ Sa of Iµ|Sa , corresponds a
Lagrange multiplier α ∈ R such that (ua, α) solves (1.7). In particular, if ua ∈ Sa is a minimizer of
problem

m(a) := inf
u∈Sa

Iµ(u),

then there exists α ∈ R as a Lagrange multiplier and then (ua, α) is a weak solution of (1.7). As far
as we know, there is no result about the existence of normalized solutions for Schrödinger-Poisson
system with a critical term in the current literature. For this aim, we shall focus our attention on
the existence, asymptotic and multiplicity of normalized solutions for problem (1.5)- (1.6).

2. The main results

In this section we formulate the main results. We first deal with the existence of multiple normal-
ized ground state solutions in the L2-subcritical case: q ∈ (2, 2+ 4s

3 ). Secondly, we are concerned with
the existence and asymptotic behavior of positive normalized ground state solutions of Schrödinger-
Poisson system (1.7) in the L2-supercritical case: q ∈ (2 + 4s

3 , 2
∗
s).

To state the main results, for δq,s = 3(q − 2)/2qs, we introduce the following constants:

(2.1) D1 := 2
− qδq,s−2

2∗s−2 S
3(2∗s−q)

2s(2∗s−2) ;

(2.2) D2 := D(s, t)−1S
3[(2∗s−2)−q(1−δq,s)]

2s(2∗s−2) ,

where

(2.3) D(s, t) :=

(
(3− 2t)λΓt

2s

) (qδq,s−2)s

s2∗s+2t−3

,

and Γt is given in (3.3).
The first result is concerned with the multiplicity of normalized solutions for the L2-subcritical

perturbation, which can be formulated as
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Theorem 2.1. Let µ, λ, a > 0, and q ∈ (2, 2 + 4s
3 ). Then, for a given k ∈ N, there exists β >

0 independent of k and µ∗k > 0 large, such that problem (1.5)-(1.6) possesses at least k couples
(uj , αj) ∈ Hs(R3)× R of weak solutions for µ > µ∗k and

(2.4) a ∈

(
0,

(
β

µ

) 1
q(1−δq,s)

)
with

∫
R3 |uj |2dx = a2, αj < 0 for all j = 1, · · · , k.

The second result of this paper is concerned with the existence and asymptotical behavior of
normalized solutions for the L2-supercritical perturbation when the parameters λ, µ > 0 are suitably
small.

Theorem 2.2. Let q ∈ (2 + 4s
3 , 2

∗
s), assume that µ, a > 0 satisfy the following inequality

(2.5) µδq,smax

{
aq(1−δq,s), a

(q−2)2t+2s(2∗s−4)

s2∗s+2t−3

}
< min{D1, D2},

where δq,s = 3(q − 2)/2qs. Then, there exists Λ∗ > 0 such that for 0 < λ < Λ∗, problem (1.5)-(1.6)
possesses a positive normalized ground state solution uα ∈ Hs(R3) for some α < 0.

Finally, we present an existence result of normalized solutions under the L2-supercritical pertur-
bation, when parameter µ > 0 is large.

Theorem 2.3. If 2 + 4s
3 < q < 2∗s, there exists µ∗ = µ∗(a) > 0 large, such that as µ > µ∗, problem

(1.5)-(1.6) possesses a couple (ua, α) ∈ Hs(R3)× R of weak solutions with
∫
R3 |ua|2dx = a2, α < 0.

Remark 2.1. (i) Theorems 2.1-2.3 improve and complement the main results in [31, 39] in the
sense that, we are concerned with the normalized solutions.

(ii) Our studies improve and fill in gaps of the main works of [22, 30, 37], since we consider the
existence of normalized solutions to (1.5)-(1.6) with Sobolev critical growth.

2.1. Remarks on the proofs. We give some comments on the proof for the main results above.
Since the critical terms |u|2∗s−2u is L2-supercritical, the functional Iµ is always unbounded from
below on Sa, and this makes it difficulty to deal with existence of normalized solutions on the
L2- constraint. One of the main difficulties that one has to face in such context is the analysis
of the convergence of constrained Palais-Smale sequences: In fact, the critical growth term in the
equation makes the bounded (PS) sequences possibly not convergent; moreover, the Sobolev critical
term |u|2∗s−2u and nonlocal convolution term λϕtuu, makes it more complicated to estimate the
critical value of mountain pass, and one has to consider how the interaction between the nonlocal
term and the nonlinear term, and the energy balance between these competing terms needs to
be controlled through moderate adjustments of parameter λ > 0. Another of difficulty is that
sequences of approximated Lagrange multipliers have to be controlled, since α is not prescribed; and
moreover, weak limits of Palais-Smale sequences could leave the constraint, since the embeddings
Hs(R3) ↪→ L2(R3) and also Hs

rad(R3) ↪→ L2(R3) are not compact.
To overcome these difficulties, we employ Jeanjean’s theory [13] by showing that the mountain pass

geometry of Iµ|Sa allows to construct a Palais-Smale sequence of functions satisfying the Pohozaev
identity. This gives boundedness, which is the first step in proving strong Hs-convergence. As
naturally expected, the presence of the Sobolev critical term in (1.5) further complicates the study
of the convergence of Palais-Smale sequences. To overcome the loss of compactness caused by the
critical growth, we shall employ the concentration-compactness principle, mountain pass theorem
and energy estimation to obtain the existence of normalized ground states of (1.5), by showing that,
suitably combining some of the main ideas from [28,29], compactness can be restored in the present
setting.
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Finally, let us sketch the ideas and methods used along this paper to obtain our main results.
For the L2-subcritical perturbation: q ∈ (2, 2 + 4s

3 ), it is difficult to get the boundedness of the
(PS) sequence by the idea of [13]. To get over this difficulty, we use the truncation technique; to
restore the loss of compactness of the (PS) sequence caused by the critical growth, we apply for
the concentration-compactness principle; and to obtain the multiplicity of normalized solutions of
(1.5)-(1.6), we employ the genus theory. For the L2-supercritical perturbation: q ∈ (2 + 4s

3 , 2
∗
s), we

use the Pohozaev manifold and mountain pass theorem to prove the existence of positive ground
state solutions for system (1.5)-(1.6) when µ > 0 small. While if the parameter µ > 0 is large, we
employ a fiber map and the concentration-compactness principle to prove that the (PS) sequence is
strongly convergent, to obtain a normalized solution of (1.5)-(1.6).

2.2. Paper outline. This paper is organized as follows.
• Section 2 provides the main results, and Section 3 presents some preliminary results that will be
used frequently in the sequel.
• Section 4 presents the multiplicity of normalized ground state solutions for system (1.5)-(1.6) when
q ∈ (2, 2 + 4s

3 ), and finish the proof of Theorem 2.1.
• Section 5 proves the existence of normalized positive ground state solutions for problem (1.5)-(1.6)
when q ∈ (2 + 4s

3 , 2
∗
s), and Theorem 2.2 is proved if µ, λ > 0 are suitably small.

• In Section 6 we give another existence result for problem (1.5)-(1.6) with q ∈ (2 + 4s
3 , 2

∗
s), when

the parameter µ > 0 is large, and finishes the proof of Theorem 2.3.

Notations. In the sequel of this paper, we denote by C,Ci > 0 different positive constants whose
values may vary from line to line and are not essential to the problem. We denote by Lp = Lp(R3)

with 1 < p ≤ ∞ the Lebesgue space with the standard norm ∥u∥p =
(∫

R3 |u|pdx
)1/p

.

3. Preliminary stuff

In this section, we first give the functional space setting, and sketch the fractional order Sobolev
spaces [27]. We recall that, for any s ∈ (0, 1), the nature functions space associated with (−∆)s is
H := Hs(R3) which is a Hilbert space equipped with the inner product and norm, respectively given
by

⟨u, v⟩ :=
∫
R3

((−∆)
s
2u(−∆)

s
2 v + uv)dx, ∥u∥2H = ⟨u, u⟩ .

The homogeneous fractional Sobolev space Ds,2(R3) is defined by

Ds,2(R3) =

{
u ∈ L2∗s (R3) :

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy < +∞

}
,

a completion of C∞
0 (R3) under the norm

∥u∥2 := ∥u∥2Ds,2(R3) =

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy,

where 2∗s = 6/(3− 2s) is the critical exponent. From Proposition 3.4 and 3.6 in [27] we have

∥u∥2 = ∥(−∆)
s
2u∥22 =

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy.

The best fractional Sobolev constant S is defined as

(3.1) S = inf
u∈Ds,2(R3),u̸=0

∥(−∆)
s
2u∥22

(
∫
R3 |u|2∗sdx)

2
2∗s

.
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The work space Hs
rad(R3) is defined by

Hs
rad(R3) :=

{
u ∈ Hs(R3) : u is radially decreasing

}
.

Let H = H × R with the scalar product ⟨·, ·⟩H + ⟨·, ·⟩R, and the corresponding norm ∥(·, ·)∥2H =
∥·, ·∥2H + |·, ·|2R.

The following two inequalities play an important role in the proof of our main results.

Proposition 3.1. (Hardy-Littlewood-Sobolev inequality [20]) Let l, r > 1 and 0 < µ < N be such
that 1

r +
1
l +

µ
N = 2, f ∈ Lr(RN ) and h ∈ Ll(RN ). Then there exists a constant C(N,µ, r, l) > 0 such

that ∣∣∣∣∫
RN

∫
RN

f(x)h(y)|x− y|−µdxdy

∣∣∣∣ ≤ C(N,µ, r, l)∥f∥r∥h∥l.

We recall the fractional Gagliardo-Nirenberg inequality.

Lemma 3.2. ( [11]) Let 0 < s < 1, and p ∈ (2, 2∗s). Then there exists a constant C(p, s) = S− δp,s
2 > 0

such that

(3.2) ∥u∥pp ≤ C(p, s)∥(−∆)
s
2u∥pδp,s2 ∥u∥p(1−δp,s)

2 , ∀u ∈ Hs(R3),

where δp,s = 3(p− 2)/2ps.

Lemma 3.3. (Lemma 5.1 [9]) If un ⇀ u in Hs
rad(R3), then∫

R3

ϕtun
u2ndx→

∫
R3

ϕuu
2dx,

and ∫
R3

ϕtun
unφdx→

∫
R3

ϕtuuφdx, ∀φ ∈ Hs
rad(R3).

From Proposition 3.1, with l = r = 6
3+2t , then Hardy-Littlewood-Sobolev inequality implies that:

(3.3)

∫
R3

ϕtuu
2dx =

∫
R3

(
1

|x|3−2t
∗ u2

)
u2dx ≤ Γt∥u∥4 12

3+2t

.

It is easy to enumerate that

qδq,s

 < 2, if 2 < q < q̄;
= 2, if q = q̄;
> 2, if q̄ < q < 2∗s,

where q̄ := 2 + 4s
3 is the L2-critical exponent.

Now, we introduce the Pohozaev mainfold associated to (1.7), which can be derived from [31].

Proposition 3.4. Let u ∈ Hs(R3)∩L∞(R3) be a weak solution of (1.7), then u satisfies the equality

3− 2s

2
∥u∥2 + 2t+ 3

4
λ

∫
R3

ϕtuu
2dx =

3α

2
∥u∥22 +

3µ

q

∫
R3

|u|qdx+
3

2∗s

∫
R3

|u|2∗sdx.

Lemma 3.5. Let u ∈ Hs(R3) be a weak solution of (1.7), then we can construct the following
Pohozaev manifold

Pa = {u ∈ Sa : Pµ(u) = 0},
where

Pµ(u) = s∥u∥2 + 3− 2t

4
λ

∫
R3

ϕtuu
2dx− sµδq,s

∫
R3

|u|qdx− s

∫
R3

|u|2∗sdx.
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Proof. From Proposition 3.4, we know that u satisfies the Phohzaev identity as follows

(3.4)
3− 2s

2
∥u∥2 + 2t+ 3

4
λ

∫
R3

ϕtuu
2dx =

3α

2
∥u∥22 +

3µ

q

∫
R3

|u|qdx+
3

2∗s

∫
R3

|u|2∗sdx.

Moreover, since u is the weak solution of system (1.7), we have

(3.5) ∥u∥2 + λ

∫
R3

ϕtuu
2dx = α∥u∥22 + µ

∫
R3

|u|qdx+

∫
R3

|u|2∗sdx.

Combining with (3.4) and (3.5), we get

s∥u∥2 + 3− 2t

4
λ

∫
R3

ϕtuu
2dx = sµδq,s

∫
R3

|u|qdx+ s

∫
R3

|u|2∗sdx,

which finishes the proof. □

Finally, we state the following well-known embedding result.

Lemma 3.6. ( [10]). Let N ≥ 2. The embedding Hs
rad(RN ) ↪→ Lp(RN ) is compact for any 2 < p <

2∗s.

4. Proof of Theorem 2.1

In this section, we aim to show the multiplicity of normalized solutions to (1.5)-(1.6). To begin
with, we recall the definition of a genus. Let X be a Banach space and let A be a subset of X. The
set A is said to be symmetric if u ∈ A implies that −u ∈ A. We denote the set

Σ := {A ⊂ X \ {0} : A is closed and symmetric with respect to the origin}.

For A ∈ Σ, define

γ(A) =


0, if A = ∅,

inf{k ∈ N : ∃ an odd φ ∈ C(A,Rk \ {0})},
+∞, if no such odd map,

and that Σk = {A ∈ Σ : γ(A) ≥ k}.
In order to overcome the loss of compactness of the (PS) sequences, we need to apply for the

following concentration-compactness principle.

Lemma 4.1. ( [40]) Let {un} be a bounded sequence in Ds,2(R3) converging weakly and a.e. to

some u ∈ Ds,2(R3). We have that |(−∆)
s
2un|2 ⇀ ω and |un|2

∗
s ⇀ ζ in the sense of measures. Then,

there exist some at most a countable set J , a family of points {zj}j∈J ⊂ R3, and families of positive
numbers {ζj}j∈J and {ωj}j∈J such that

(4.1) ω ≥ |(−∆)
s
2u|2 +

∑
j∈J

ωjδzj ,

(4.2) ζ = |u|2∗s +
∑
j∈J

ζjδzj

and

(4.3) ωj ≥ Sζ
2
2∗s
j ,

where δzj is the Dirac-mass of mass 1 concentrated at zj ∈ R3.
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Lemma 4.2. ( [40]) Let {un} ⊂ Ds,2(R3) be a sequence in Lemma 4.1 and define that

ω∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

|(−∆)
s
2un|2dx, ζ∞ := lim

R→∞
lim sup
n→∞

∫
|x|≥R

|un|2
∗
sdx.

Then it follows that

(4.4) ω∞ ≥ Sζ
2
2∗s∞ ,

(4.5) lim sup
n→∞

∫
R3

|(−∆)
s
2un|2dx =

∫
R3

dω + ω∞

and

(4.6) lim sup
n→∞

∫
R3

|un|2
∗
sdx =

∫
R3

dζ + ζ∞.

For u ∈ Sr,a, in view of Lemma 3.2, and the Sobolev inequality, one has that

Iµ(u) =
1

2

∫
R3

|(−∆)
s
2u|2dx+

λ

4

∫
R3

ϕtuu
2dx− µ

q

∫
R3

|u|qdx− 1

2∗s

∫
R3

|u|2∗sdx

≥1

2
∥(−∆)

s
2u∥22 −

µ

q
aq(1−δq,s)Cq,s∥(−∆)

s
2u∥qδq,s2 − 1

2∗s
S− 2∗s

2 ∥(−∆)
s
2u∥2

∗
s

2

:=g(∥(−∆)
s
2u∥2),

(4.7)

where

g(r) =
1

2
r2 − µ

q
aq(1−δq,s)Cq,sr

qδq,s − 1

2∗s
S− 2∗s

2 r2
∗
s .

Recalling that 2 < q < 2+ 4s
3 , we get that qδq,s < 2, and there exists β > 0 such that, if µaq(1−δq,s) ≤

β, the function g attains its positive local maximum. More precisely, there exist two constants
0 < R1 < R2 < +∞, such that

g(r) > 0, ∀r ∈ (R1, R2); g(r) < 0, ∀r ∈ (0, R1) ∪ (R2,+∞).

Let τ : R+ → [0, 1] be a nonincreasing and C∞ function satisfying

τ(r) =

{
1, if r ∈ [0, R1],

0, if r ∈ [R2,+∞).

In the sequel, let us consider the truncated functional

Iµ,τ (u) =
1

2

∫
R3

|(−∆)
s
2u|2dx+

λ

4

∫
R3

ϕtuu
2dx− µ

q

∫
R3

|u|qdx− τ(∥(−∆)
s
2u∥2)

2∗s

∫
R3

|u|2∗sdx.

For u ∈ Sr,a, again by Lemma 3.2, and the Sobolev inequality, it is easy to see that

Iµ,τ (u) ≥
1

2
∥(−∆)

s
2u∥22 −

µ

q
aq(1−δq,s)Cq,s∥(−∆)

s
2u∥qδq,s2 − τ(∥(−∆)

s
2u∥2)

2∗s
S− 2∗s

2 ∥(−∆)
s
2u∥2

∗
s

2

:=g̃(∥(−∆)
s
2u∥2),

where

g̃(r) =
1

2
r2 − µ

q
aq(1−δq,s)Cq,sr

qδq,s − τ(r)

2∗s
S− 2∗s

2 r2
∗
s .

Then, by the definition of τ(·), when a ∈ (0, (βµ)
1

q(1−δq,s) ), we have

g̃(r) < 0, ∀r ∈ (0, R1); g̃(r) > 0, ∀r ∈ (R1,+∞).
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In what follows, we always assume that a ∈ (0, (βµ)
1

q(1−δq,s) ). Without loss of generality, in the sequel,

we may assume that

(4.8)
1

2
r2 − 1

2∗s
S− 2∗s

2 r2
∗
s ≥ 0, ∀ r ∈ [0, R1]

and

(4.9) R1 < S
3
4s .

Lemma 4.3. The functional Iµ,τ has the following characteristics:

(i) Iµ,τ ∈ C1
(
Hs

rad(R3),R
)
;

(ii) Iµ,τ is coercive and bounded from below on Sr,a. Moreover, if Iµ,τ (u) ≤ 0, then ∥(−∆)
s
2u∥2 ≤

R1 and Iµ,τ (u) = I(u);
(iii) Iµ,τ |Sr,a satisfies the (PS)c condition for all c < 0, provided that µ > µ∗1 > 0 large.

Proof. We can obtain conclusions (i) and (ii) by a standard argument. To prove item (iii), let {un}
be a (PS)c sequence of Iµ,τ restricted to Sr,a with c < 0. By (ii), we see that ∥(−∆)

s
2un∥2 ≤ R1

for large n, and thus {un} is a (PS)c sequence of I|Sr,a with c < 0; i.e., I(un) → c < 0 and

∥I|′Sr,a
(un)∥ → 0 as n → ∞. Then, {un} is bounded in Hs

rad(R3). Therefore, up to a subsequence,

there exists u ∈ Hs
rad(R3) such that un ⇀ u in Hs

rad(R3) and un → u in Lp(R3) for 2 < p < 2∗s and

un(x) → u(x) a.e. on R3. From 2 < q < 2 + 4s
3 < 2∗s and Lemma 3.3, we infer to

lim
n→∞

∫
R3

|un|qdx =

∫
R3

|u|qdx,
∫
R3

ϕtun
u2ndx→

∫
R3

ϕtuu
2dx.

Moreover, we have that u ̸≡ 0. Indeed, assume by contradiction that, u ≡ 0, then limn→∞
∫
R3 |un|qdx =

0. From (4.8) and the definition of Iµ,τ , we infer that

0 > c = lim
n→∞

Iµ,τ (un) = lim
n→∞

Iµ(un)

= lim
n→∞

[
1

2

∫
R3

|(−∆)
s
2un|2dx+

λ

4

∫
R3

ϕtun
u2ndx− µ

q

∫
R3

|un|qdx− 1

2∗s

∫
R3

|un|2
∗
sdx

]
≥ lim

n→∞

[
1

2
∥(−∆)

s
2un∥22 −

1

2∗s
S− 2∗s

2 ∥(−∆)
s
2un∥2

∗
s

2 − µ

q

∫
R3

|un|qdx
]

≥− µ

q
lim
n→∞

∫
R3

|un|qdx = 0,

which is absurd. On the other hand, setting the function Θ(v) : Hs
rad(R3) → R by

Θ(v) =
1

2

∫
R3

|v|2dx,

it follows that Sa = Θ−1({a2

2 }). Then, by Proposition 5.12 in [33], there exists αn ∈ R such that

∥I ′µ(un)− αnΘ
′(un)∥ → 0, as n→ ∞.

Hence, we have that

(4.10) (−∆)sun + ϕtun
un − µ|un|q−2un − |un|2

∗
s−2un = αnun + on(1) in H−s

rad(R
3),

where H−s
rad(R

3) is the dual space of Hs
rad(R3). Thus, we have for φ ∈ Hs

rad(R3), that∫
R3

(−∆)
s
2un(−∆)

s
2φdx+

∫
R3

ϕtun
unφdx− µ

∫
R3

|un|q−2unφdx−
∫
R3

|un|2
∗
s−2unφdx

= αn

∫
R3

unφdx+ on(1),

(4.11)
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and if we choose φ = un, we get

(4.12) ∥(−∆)
s
2un∥22 + λ

∫
R3

ϕtun
u2ndx− µ

∫
R3

|un|qdx−
∫
R3

|un|2
∗
sdx = αn

∫
R3

u2ndx+ on(1).

From (4.12), and the boundedness of {un} in Ds,2(R3), we can deduce that {αn} is bounded in R.
Then we can assume that, up to a subsequence, αn → α for some α ∈ R. Then, by (4.11), we can
derive that u solves the following equation

(4.13) (−∆)su+ ϕuu− µ|u|q−2u− |u|2∗s−2u = αu.

Indeed, for any φ ∈ Hs
rad(R3), it follows by un ⇀ u in Hs

rad(R3) and αn → α, that∫
R3

(−∆)
s
2un(−∆)

s
2φdx→

∫
R3

(−∆)
s
2u(−∆)

s
2φdx; and αn

∫
R3

unφdx→ α

∫
R3

uφdx.

as n → ∞. Since {|un|2
∗
s−2un} is bounded in L

2∗s
2∗s−1 (R3), {|un|q−2un} is bounded in L

2∗s
q−1 (R3), and

un(x) → u(x) a.e. on R3, we obtain that

|un|2
∗
s−2un ⇀ |u|2∗s−2u in L

2∗s
2∗s−1 (R3), and |un|q−2un ⇀ |u|q−2u in L

2∗s
2∗s−q+1 (R3),

and so, ∫
R3

|un|2
∗
s−2unφdx→

∫
R3

|u|2∗s−2uφdx and

∫
R3

|un|q−2unφdx→
∫
R3

|u|q−2uφdx,

as n→ ∞. Recall from Lemma 3.3 that∫
R3

ϕtun
unφdx→

∫
R3

ϕuuφdx, ∀φ ∈ Hs
rad(R3).

Thus, we have∫
R3

(−∆)
s
2u(−∆)

s
2φdx+

∫
R3

ϕtuuφdx− µ

∫
R3

|u|q−2uφdx−
∫
R3

|u|2∗s−2uφdx

= α

∫
R3

uφdx.

(4.14)

Therefore, u solves equation (4.13).
In the sequel, by the concentration-compactness principle, we can prove that

(4.15)

∫
R3

|un|2
∗
sdx→

∫
R3

|u|2∗sdx.

In fact, since ∥(−∆)
s
2un∥2 ≤ R1 for n large enough, by Lemma 4.1, there exist two positive measures,

ζ, ω ∈ M(R3), such that

(4.16) |(−∆)
s
2un|2 ⇀ ω, |un|2

∗
s ⇀ ζ in M(R3)

as n → ∞. Then, by Lemma 4.1, either un → u in L
2∗s
loc(R

3) or there exists a (at most countable)
set of distinct points {xj}j∈J ⊂ R3 and positive numbers {ζj}j∈J such that

ζ = |u|2∗s +
∑
j∈J

ζjδxj .

Moreover, there exist some at most a countable set J ⊆ N, a corresponding set of distinct points
{xj}j∈J ⊂ R3, and two sets of positive numbers {ζj}j∈J and {ωj}j∈J such that items (4.1)-(4.3)
holds. Now, assume that J ̸= ∅. We split the proof into three steps.

Step 1. We prove that ωj = ζj , where ωj , and ζj come from Lemma 4.1.
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Define φ ∈ C∞
0 (R3) as a cut-off function with φ ∈ [0, 1], φ ≡ 1 in B1/2(0), φ ≡ 0 in R3 \ B1(0).

For any ρ > 0, define

φρ(x) := φ

(
x− xj
ρ

)
=

{
1, |x− xj | ≤ 1

2ρ,

0, |x− xj | ≥ ρ.

By the boundedness of {un} in Hs
rad(R3), we have that {φρun} is also bounded in Hs

rad(R3). Thus,
one has that

on(1) =⟨I ′µ(un), unφρ⟩

=

∫
R3

(−∆)
s
2un(−∆)

s
2 (unφρ)dx+ λ

∫
R3

ϕtun
unφρdx− µ

∫
R3

|un|qφρdx

−
∫
R3

|un|2
∗
sφρdx.

(4.17)

It is easy to check that∫
R3

(−∆)
s
2un(−∆)

s
2 (unφρ)dx

=

∫∫
R6

[un(x)− un(y)]|un(x)− un(y)|2[un(x)φρ(x)− un(y)φρ(y)]

|x− y|3+2s
dxdy

=

∫∫
R6

|un(x)− un(y)|2φρ(y)

|x− y|3+2s
dxdy +

∫∫
R6

[un(x)− un(y)][φρ(x)− φρ(y)]un(x)

|x− y|3+2s
dxdy

:= T1 + T2,

(4.18)

where

T1 =

∫∫
R6

|un(x)− un(y)|2φρ(y)

|x− y|3+2s
dxdy

and

T2 =

∫∫
R6

[un(x)− un(y)][φρ(x)− φρ(y)]un(x)

|x− y|3+2s
dxdy.

For T1, by (4.16), we obtain

lim
ρ→0

lim
n→∞

T1 = lim
ρ→0

lim
n→∞

∫∫
R6

|un(x)− un(y)|2φρ(y)

|x− y|3+2s
dxdy

= lim
ρ→0

∫
R3

φρdω = ω({xj}) = ωj .

(4.19)

From Hölder’s inequality, we have

T2 =

∫∫
R6

[un(x)− un(y)][φρ(x)− φρ(y)]un(x)

|x− y|3+2s
dxdy

≤
(∫∫

R6

|φρ(x)− φρ(y)|2|un(x)|2

|x− y|3+2s
dxdy

) 1
2
(∫∫

R6

|un(x)− un(y)|2

|x− y|3+2s
dxdy

) 1
2

≤C
(∫∫

R6

|φρ(x)− φρ(y)|2|un(x)|2

|x− y|3+2s
dxdy

) 1
2

.

Analogously to the proof of Lemma 3.4 in [40], we obtain

lim
ρ→0

lim
n→∞

∫∫
R6

|φρ(x)− φρ(y)|2|un(x)|2

|x− y|3+2s
dxdy = 0,

and

lim
ρ→0

lim
n→∞

∫
R3

(−∆)
s
2un(−∆)

s
2 (unφρ)dx = ω({xj}) = ωj .
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Again by (4.16), we have

(4.20) lim
ρ→0

lim
n→∞

∫
R3

|un|2
∗
sφρdx = lim

ρ→0

∫
R3

φρdζ = ζ({xj}) = ζj .

By the definition of φρ, and the absolute continuity of the Lebesgue integral, one has that

(4.21) lim
ρ→0

lim
n→∞

∫
R3

|un|qφρdx = lim
ρ→0

∫
R3

|u|qφρdx = lim
ρ→0

∫
|x−xj |≤ρ

|u|qφρdx = 0.

Thus, by Proposition 3.1 and Lemma 3.6, we have

∫
R3

ϕtun
u2nφρdx ≤ C

(∫
R3

|un|
12

3+2tdx

) 3+2t
6
(∫

R3

|u2nφρ|
6

3+2tdx

) 3+2t
6

≤ C∥un∥2H
(∫

R3

|un|
12

3+2t |φρ|
6

3+2tdx

) 3+2t
6

≤ C1

(∫
R3

|un|
12

3+2tφρdx

) 3+2t
6

.

(4.22)

Therefore,

lim
ρ→0

lim
n→∞

∫
R3

ϕtun
u2nφρdx ≤ lim

ρ→0
lim
n→∞

C1

(∫
R3

|un|
12

3+2tφρdx

) 3+2t
6

= lim
ρ→0

C1

(∫
R3

|u|
12

3+2tφρdx

) 3+2t
6

= lim
ρ→0

C1

(∫
|x−xj |≤ρ

|u|
12

3+2tφρdx

) 3+2t
6

= 0.

(4.23)

Summing up, from (4.17)-(4.19) and (4.21), taking the limit as n→ ∞, and then the limit as ρ→ 0,
we arrive at

ωj = ζj .

Step 2. We show that ω∞ = ζ∞, where ω∞ and ζ∞ are given in Lemma 4.2. Let ψ ∈ C∞
0 (R3) be

a cut-off function with ψ ∈ [0, 1], ψ ≡ 0 in B1/2(0), ψ ≡ 1 in R3 \B1(0). For any R > 0, define

ψR(x) := ψ
( x
R

)
=

{
0, |x| ≤ 1

2R,

1, |x| ≥ R.

Using again the boundedness of {un} and {unψR} in Hs
rad(R3), we have

on(1) =⟨I ′µ(un), unψR⟩

=

∫
R3

(−∆)
s
2un(−∆)

s
2 (unψR)dx+ λ

∫
R3

ϕtun
u2nψRdx− µ

∫
R3

|un|qψRdx

−
∫
R3

|un|2
∗
sψRdx.

(4.24)
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It is easy to derive that∫
R3

(−∆)
s
2un(−∆)

s
2 (unψR)dx

=

∫∫
R6

[un(x)− un(y)][un(x)ψR(x)− un(y)ψR(y)]

|x− y|3+2s
dxdy

=

∫∫
R6

|un(x)− un(y)|2ψR(y)

|x− y|3+2s
dxdy +

∫∫
R6

[un(x)− un(y)][ψR(x)− ψR(y)]un(x)

|x− y|3+2s
dxdy

:= T3 + T4,

where

T3 =

∫∫
R6

|un(x)− un(y)|2ψR(y)

|x− y|3+2s
dxdy

and

T4 =

∫∫
R6

[un(x)− un(y)][ψR(x)− ψR(y)]un(x)

|x− y|3+2s
dxdy.

For T3, by (4.16) and Lemma 4.2, we infer to

lim
R→∞

lim
n→∞

T3 = lim
R→∞

lim
n→∞

∫∫
R6

|un(x)− un(y)|2ψR(y)

|x− y|3+2s
dxdy = ω∞.

By virtue of Hölder’s inequality, we get

T4 =

∫∫
R6

[un(x)− un(y)][ψR(x)− ψR(y)]un(x)

|x− y|3+2s
dxdy

≤
(∫∫

R6

|ψR(x)− ψR(y)|2|un(x)|2

|x− y|3+2s
dxdy

) 1
2
(∫∫

R6

|un(x)− un(y)|2

|x− y|3+2s
dxdy

) 1
2

≤C
(∫∫

R6

|ψR(x)− ψR(y)|2|un(x)|2

|x− y|3+2s
dxdy

) 1
2

.

Combining the above proof, we conclude that

lim
R→∞

lim
n→∞

∫∫
R6

|ψR(x)− ψR(y)|2|un(x)|2

|x− y|3+2s
dxdy

= lim
R→∞

lim
n→∞

∫∫
R6

|[1− ψR(x)]− [1− ψR(y)]|2|un(x)|2

|x− y|3+2s
dxdy = 0.

Hence,

lim
R→∞

lim
n→∞

∫∫
R6

(−∆)
s
2un(−∆)

s
2 (unψR)dx = ω∞.

By Lemma 4.2, we have

(4.25) lim
R→∞

lim
n→∞

∫
R3

|un|2
∗
sψRdx = ζ∞.

Analogous the proof of Lemma 3.3 in [40], we infer to

(4.26) lim
R→∞

lim
n→∞

∫
R3

|un|qψRdx = lim
R→∞

∫
R3

|u|qψRdx = lim
R→∞

∫
|x|> 1

2
R
|u|qψRdx = 0.



NORMALIZED SOLUTIONS FOR A FRACTIONAL SCHRÖDINGER-POISSON SYSTEM 15

Moreover, we can obtain

lim
R→∞

lim
n→∞

∫
R3

ϕtun
u2nψRdx ≤ lim

R→∞
lim
n→∞

C1

(∫
R3

|un|
12

3+2tψRdx

) 3+2t
6

= lim
R→∞

C1

(∫
R3

|u|
12

3+2tψRdx

) 3+2t
6

= lim
R→∞

C1

(∫
|x|≥R/2

|u|
12

3+2tψRdx

) 3+2t
6

= 0.

(4.27)

Summing up, from (4.24)-(4.27), taking the limit as n→ ∞, and then the limit as R→ ∞, we have

ω∞ = ζ∞.

Step 3. We claim that ζj = 0 for any j ∈ J and ζ∞ = 0.
Suppose by contradiction that, there exists j0 ∈ J such that ζj0 > 0 or ζ∞ > 0. Step 1, Step 2,

and Lemmas 4.1, 4.2 imply that

(4.28) ζj0 ≤ (S−1ωj0)
2∗s
2 = (S−1ζj0)

2∗s
2 ,

and

(4.29) ζ∞ = (S−1ω∞)
2∗s
2 = (S−1ζ∞)

2∗s
2 .

Consequently, we get ζj0 ≥ S
3
2s or ζ∞ ≥ S

3
2s . If the former case occurs, we have

R2
1 ≥ lim

n→∞
∥(−∆)

s
2un∥22 ≥ S lim

n→∞

(∫
R3

|un|2
∗
sdx

) 2
2∗s

≥ S lim
n→∞

(∫
R3

|un|2
∗
sφρdx

) 2
2∗s

= S

(∫
R3

φρdζ

) 2
2∗s
.

(4.30)

Taking the limit ρ→ 0 in the last inequality, we get

R2
1 ≥ S(ζj0)

2
2∗s ≥ S(S

3
2s )

2
2∗s = S

3
2s ,

which contradicts (4.9). If the last case happens, we have

R2
1 ≥ lim

n→∞
∥(−∆)

s
2un∥22 ≥ S lim

n→∞

(∫
R3

|un|2
∗
sdx

) 2
2∗s

≥ S lim
n→∞

(∫
R3

|un|2
∗
sψRdx

) 2
2∗s

≥ S lim
n→∞

(∫
|x|≥R

|un|2
∗
sdx

) 2
2∗s

.

(4.31)

Taking the limits n→ ∞ and R→ ∞ in (4.31), we infer to

R2
1 ≥ S(ζ∞)

2
2∗s ≥ S(S

3
2s )

2
2∗s = S

3
2s ,

which also contradicts (4.9). Therefore, ζj = 0 for any j ∈ J and ζ∞ = 0. As a result, by Lemma

4.1, we obtain that un → u in L
2∗s
loc(R

3); while by Lemma 4.2, we know that un → u in L2∗s (R3).
Now, we prove there exists µ∗1 > 0 independently on n ∈ N such that if µ > µ∗1, the Lagrange

multiplier α < 0 in (4.13). Indeed, note that {un} ⊂ Sr,s and ∥(−∆)
s
2un∥2 ≤ R1, as can be seen
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from the previous proof of this lemma, and (3.2)-(3.3) that, there exists Q1 > 0 independently on
n, such that

Q1 ≤
∫
R3

|un|qdx ≤ C(q, s)∥(−∆)
s
2un∥

qδq,s
2 ∥un∥

q(1−δq,s)
2

≤ C(q, s)R
qδq,s
1 aq(1−δq,s),

(4.32)

and ∫
R3

ϕtun
u2ndx ≤ Γt∥un∥4 12

3+2t

≤ ΓtC (12/3 + 2t, s)
3+2t

3 ∥(−∆)
s
2un∥

3−2t
s

2 ∥un∥
2t+4s−3

s
2

≤ ΓtC (12/3 + 2t, s)
3+2t

3 R
3−2t

s
1 a

2t+4s−3
s

:= Q2,

(4.33)

where Q2 = Q2(s, t, R1, a) > 0. We define the constant

(4.34) µ∗1 :=
qλ(2t+ 4s− 3)Q2

2[6− q(3− 2s)]Q1
.

By (4.32)-(4.34) we have

(4.35) µ∗1 > lim
n→+∞

{
qλ(2t+ 4s− 3)

∫
R3 ϕ

t
un
u2ndx

2[6− q(3− 2s)]
∫
R3 |un|qdx

}
=
qλ(2t+ 4s− 3)

∫
R3 ϕ

t
uu

2dx

2[6− q(3− 2s)]
∫
R3 |u|qdx

> 0.

Recall by (4.13) and its Pohozaev identity Pµ(u) = 0, we infer to

(4.36) sα∥u∥22 = λ
2t+ 4s− 3

4

∫
R3

ϕtuu
2dx+

q(3− 2s)− 6

2q
µ

∫
R3

|u|qdx.

Now, if µ > µ∗1, we conclude from (4.35), that

µ >
qλ(2t+ 4s− 3)

∫
R3 ϕ

t
uu

2dx

2[6− q(3− 2s)]
∫
R3 |u|qdx

.

Thus, from (4.36), we infer to limn→+∞ αn = α < 0. Hence, taking into account (4.12), we derive

lim
n→∞

[
∥(−∆)

s
2un∥22 + λ

∫
R3

ϕtun
u2ndx− α∥un∥22

]
= lim

n→∞

[
µ∥un∥qq +

∫
R3

|un|2
∗
sdx+ on(1)

]
= µ∥u∥qq +

∫
R3

|u|2∗sdx = ∥(−∆)
s
2u∥22 + λ

∫
R3

ϕuu
2dx− α∥u∥22.

(4.37)

Since α < 0 for µ > µ∗1 large, we obtain by Fatou’s Lemma,

lim
n→∞

[
∥(−∆)

s
2un∥22 + λ

∫
R3

ϕtun
u2ndx− α∥un∥22

]
≥ ∥(−∆)

s
2u∥22 + λ

∫
R3

ϕtuu
2dx+ lim inf

n→∞
(−α∥un∥22),

(4.38)

and from (4.37)-(4.38), one has

(4.39) −α∥u∥22 ≥ lim inf
n→∞

(−α∥un∥22).

But by Fatou’s Lemma, we see that

(4.40) lim inf
n→∞

(−α∥un∥22) ≥ −α∥u∥22.
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Combining (4.39) with (4.40) we get

lim
n→∞

(
−α∥un∥22

)
= −α∥u∥22;

that is,

lim
n→∞

∥un∥22 = ∥u∥22.

Thus, by (4.37) we have

lim
n→∞

∥(−∆)
s
2un∥22 = ∥(−∆)

s
2u∥22.

Theerfore, un → u in Hs
rad(R3) and ∥u∥2 = a. The proof is complete. □

For ε > 0, we introduce the set

I−ε
µ,τ =

{
u ∈ Hs

rad(R3) ∩ Sa : Iµ,τ (u) ≤ −ε
}
⊂ Hs

rad(R3).

By the fact that Iµ,τ (u) is continuous and even on Hs
rad(R3), I−ε

µ,τ is closed and symmetric.

Lemma 4.4. For any fixed k ∈ N , there exists εk := ε(k) > 0 and µk := µ(k) > 0 such that, for
0 < ε ≤ εk and µ ≥ µk, one has that γ(I−ε

µ,τ ) ≥ k.

The proof of Lemma 4.4 is similar to Lemma 3.2 in [1], so we omit it here.
In the sequel, we define the set

Σk :=
{
Ω ⊂ Hs

rad(R3) ∩ Sa : Ω is closed and symmetric, γ(Ω) ≥ k
}
,

and by Lemma 4.3-(ii), we know that

ck := inf
Ω∈Σk

sup
u∈Ω

Iµ,τ (u) > −∞

for all k ∈ N. To prove Theorem 2.1, we introduce the critical value, we define

Kc := {u ∈ Hs
rad(R3) ∩ Sa : I ′µ,τ (u) = 0, Iµ,τ (u) = c}.

Then, we can derive the following conclusion:

Lemma 4.5. If c = ck = ck+1 = · · · = ck+ℓ, then one has γ(Kc) ≥ ℓ+ 1. Especially, Iµ,τ (u) admits
at least ℓ+ 1 nontrivial critical points.

Proof. For ε > 0, it is easy to check that I−ε
µ,τ ∈ Σ. For any fixed k ∈ N, by Lemma 4.4, there exists

εk := ε(k) > 0 and µk := µ(k) > 0 such that, if 0 < ε ≤ εk and µ ≥ µk, we have γ(I−εk
µ,τ ) ≥ k. Thus,

I−εk
µ,τ ∈ Σk, and moreover,

ck ≤ sup
u∈I−εk

µ,τ

Iµ,τ (u) = −εk < 0.

Assume that 0 > c = ck = ck+1 = · · · = ck+ℓ. Then, by Lemma 4.3-(iii), Iµ,τ (u) satisfies the
(PS)c-condition at the level c < 0. So, Kc is a compact set. By Theorem 2.1 in [1], or Theorem
2.1 in [16], we know that the restricted functional Iµ,τ |Sa possesses at least ℓ + 1 nontrivial critical
points. □

Proof of Theorem 2.1. Let µ ≥ µ∗k = max{µ∗1, µk}. From Lemma 4.3-(ii), we see that the critical
points of Iµ,τ (u) found in Lemma 4.5 are the critical points of Iµ, which completes the proof. □



18 X. HE, Y. MENG, AND M. SQUASSINA

5. Proof of Theorem 2.2

From Lemma 3.5, we see that any critical point of Iµ|Sa belongs to Pa. Consequently, the prop-
erties of the manifold Pa have relation to the mini-max structure of Iµ|Sa . For u ∈ Sa and t ∈ R,
we introduce the transformation (e.g. [29]):

(5.1) (θ ⋆ u)(x) := e
3θ
2 u(eθx), x ∈ R3, θ ∈ R.

It is easy to check that the dilations preserve the L2-norm such that θ⋆u ∈ Sa, by direct calculation,
one has

I(u, θ) = Iµ((θ ⋆ u)) =
e2sθ

2
∥u∥2 + λe(3−2t)θ

4

∫
R3

ϕtuu
2dx− µ

q
e(

3q
2
−3)θ

∫
R3

|u|qdx

− 1

2∗s
e3(

2∗s
2
−1)θ

∫
R3

|u|2∗sdx,
(5.2)

Lemma 5.1. Let u ∈ Sa, then

(i) ∥(−∆)
s
2 (θ ⋆ u)∥2 → 0 and Iµ((θ ⋆ u)) → 0 as θ → −∞;

(ii) ∥(−∆)
s
2 (θ ⋆ u)∥2 → +∞ and Iµ((θ ⋆ u)) → −∞ as θ → +∞.

Proof. A direct computation shows that

(5.3)

∫
R3

|(−∆)
s
2 (θ ⋆ u)|2dx = e2sθ

∫
R3

|(−∆)
s
2u|2dx,

and

∥(−∆)
s
2 (θ ⋆ u)∥2 → 0 as θ → −∞.

Notice that

Iµ((θ ⋆ u)) =
e2sθ

2
∥u∥2 + λe(3−2t)θ

4

∫
R3

ϕtuu
2dx− µ

q
e(

3q
2
−3)θ

∫
R3

|u|qdx

− 1

2∗s
e

3(2∗s−2)

2
θ

∫
R3

|u|2∗sdx,
(5.4)

by q > 2, we infer to

Iµ((θ ⋆ u)) → −∞, as θ → +∞.

Hence, item (i) follows. Using 2s+ 2t > 3, it is easy to obtain that 3(2∗s−2)
2 > 3− 2t, and conclusion

(ii) holds. □

Lemma 5.2. There exist K = Ka > 0 and ã > 0 such that for all 0 < a < ã,

(5.5) 0 < sup
u∈Aa

Iµ(u) < inf
u∈Ba

Iµ(u),

where Aa := {u ∈ Sr,a :
∫
R3 |(−∆)

s
2u|2dx ≤ Ka}, Ba := {u ∈ Sr,a :

∫
R3 |(−∆)

s
2u|2dx = 2Ka}.

Proof. By Lemma 3.2, we have for any q ∈ (2, 2∗s), that

(5.6) ∥u∥qq ≤ C(q, s)∥(−∆)
s
2u∥qδq,s2 ∥u∥q(1−δq,s)

2 .
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By the Sobolev inequality (3.1), and (5.6), for u ∈ Sr,a, we have

Iµ((θ ⋆ u))− Iµ(u)

=
1

2
∥(θ ⋆ u)∥2 − 1

2
∥u∥2 + λ

4

∫
R3

ϕt(θ⋆u)|(θ ⋆ u)|
2dx− λ

4

∫
R3

ϕtuu
2dx

− µ

q

∫
R3

|(θ ⋆ u)|qdx+
µ

q

∫
R3

|u|qdx− 1

2∗s

∫
R3

|(θ ⋆ u)|2∗sdx+
1

2∗s

∫
R3

|u|2∗sdx

≥ 1

2
∥(θ ⋆ u)∥2 − 1

2
∥u∥2 − λΓtK

3−2t
2s

a ∥u∥
4s+2t−3

s
2 − µ

q

∫
R3

|(θ ⋆ u)|qdx− 1

2∗s

∫
R3

|(θ ⋆ u)|2∗sdx

≥ 1

2
∥(θ ⋆ u)∥2 − 1

2
∥u∥2 − λΓtK

3−2t
2s

a a
4s+2t−3

s − µ

q
C(q, s)a

6−q(3−2s)
2s

(
∥(θ ⋆ u)∥2

) qδq,s
2

− S− 2∗s
2

2∗s

(
∥(θ ⋆ u)∥2

) 2∗s
2 .

(5.7)

Let ∥u∥2 ≤ Ka and choose θ > 0 such that ∥(θ ⋆ u)∥2 = 2Ka, here Ka will be determined later, set

ã =

K 2t+2s−3
2s

a

16λΓt

 s
4s+2t−3

,

then we get

Iµ((θ ⋆ u))− Iµ(u)

≥ 1

2
Ka − λΓtK

3−2t
2s

a ã
4s+2t−3

s − µ

q
2

qδq,s
2 C(q, s)ã

6−q(3−2s)
2s K

3(q−2)
4s

a − S− 2∗s
2

2∗s
2

2∗s
2 K

2∗s
2

a

≥ 1

2
Ka −

1

16
Ka −

µ

q
2

3(q−2)
4s C(q, s)

(
1

16λΓt

) 6−q(3−2s)
2(4s+2t−3)

K
[6−q(3−2s)][2t+2s−3]

4s(4s+2t−3)
a K

3(q−2)
4s

a

− S− 2∗s
2

2∗s
2

2∗s
2 K

2∗s
2

a

=
7

16
Ka −

µ2
3(q−2)

4s C(q, s)

q(16λΓt)
6−q(3−2s)
2(4s+2t−3)

Kγ1
a Ka −

2
2∗s
2

2∗sS
2∗s
2

K
2∗s−2

2
a Ka

≥ 5

16
Ka > 0,

(5.8)

where γ1 :=
[2t+2s−3][6−q(3−2s)]+[3(q−2)−4s][4s+2t−3]

4s(4s+2t−3) . If we take

Ka = min


 q[16λΓt]

6−q(3−2s)
2(4s+2t−3)

16µ2
3(q−2)

4s C(q, s)

γ2

,

2∗sS
2∗s
2

2
2∗s
2 16

 2
2∗s−2


with γ2 :=

4s(4s+2t−3)
[2t+2s−3][6−q(3−2s)]+[3(q−2)−4s][4s+2t−3] , then, we deduce by (5.8) that (5.5) holds. □

By Lemma 5.2, we can deduce the following
Corollary 5.1. Let Ka, ã be given in Lemma 5.2, and u ∈ Sr,a with ∥u∥2 ≤ Ka, then Iµ(u) > 0.
Furthermore, we have

L0 := inf

{
Iµ(u) : u ∈ Sr,a, ∥u∥2 =

1

2
Ka

}
> 0.
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Proof. As in the proof of Lemma 5.2, we have that

Iµ(u) ≥
1

2
∥u∥2 − µ

q
C(q, s)a

6−q(3−2s)
2s

(
∥u∥2

) 3(q−2)
4s − S− 2∗s

2

2∗s

(
∥u∥2

) 2∗s
2 > 0,

if ∥u∥2 ≤ Ka, and the conclusion follows. □

Next, we study the characterizations of the mountain pass levels for I(u, θ) and Iµ(u). Denote the

closed set Idµ := {u ∈ Sr,a : Iµ(u) ≤ d}, and Sr,a := Hs
r (R3) ∩ Sa.

Proposition 5.3. Under assumptions 2 + 4s
3 < q < 2∗s, define

c̃µ(a) := inf
γ̃∈Γ̃

max
t∈[0,1]

I(γ̃(t)),

where
Γ̃a = {γ̃ ∈ C([0, 1], Sr,a × R) : γ̃(0) ∈ (Aa, 0), γ̃(1) ∈ (I0µ, 0)},

and
cµ(a) := inf

γ∈Γ
max
t∈[0,1]

Iµ(γ(t)),

where
Γa = {γ ∈ C([0, 1], Sr,a) : γ(0) ∈ Aa, γ(1) ∈ I0µ},

then we have
c̃µ(a) = cµ(a) > 0.

Proof. Note that Γa × {0} ⊂ Γ̃a, we see that c̃µ(a) ≤ cµ(a). On the other hand, for γ̃(t) =

(γ̃1(t), γ̃2(t)) ∈ Γ̃a, we denote by γ(t) = γ̃1(t) ⋆ γ̃2(t). Thus, γ(t) ∈ Γa, and so

max
t∈[0,1]

I(γ̃(t)) = max
t∈[0,1]

Iµ(γ̃1(t) ⋆ γ̃2(t)) = max
t∈[0,1]

Iµ(γ(t)),

which implies that c̃µ(a) ≥ cµ(a) > 0, using Corollary 5.1. □

Next, we show the existence of the (PS)cµ(a)-sequence for I(u, θ) on Sr,a ×R ⊂ H. It is obtained
by a standard argument using Ekeland’s variational principle and constructing pseudo-gradient flow,
see Proposition 2.2 [13].

Proposition 5.4. Let {hn} ⊂ Γ̃a satisfying that

max
t∈[0,1]

I(hn(t)) ≤ c̃µ(a) +
1

n
,

then there exists a sequence {(vn, θn)} ⊂ Sr,a × R such that

(i) I(vn, θn) ∈ [c̃µ(a)− 1
n , c̃µ(a) +

1
n ],

(ii) mint∈[0,1] ∥(vn, θn)− hn(t)∥H ≤ 1√
n
; and

(iii) ∥(I|Sr,a×R)
′(vn, θn)∥ ≤ 2√

n
, that is,

|⟨I ′(vn, θn), z⟩H−1×H| ≤
2√
n
∥z∥H,

for all

z ∈ T̃(vn,θn) ≜ {(z1, z2) ∈ H : ⟨vn, z1⟩L2 = 0}.

It follows from the above proposition, we can obtain a special (PS)cµ(a)-sequence for Iµ(u) on

Sr,a ⊂ Hs(R3).

Proposition 5.5. Under the assumption 2 + 4s
3 < q < 2∗s, there exists a sequence {un} ⊂ Sr,a such

that
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(1) Iµ(un) → cµ(a) as n→ ∞;
(2) Pµ(un) → 0 as n→ ∞;
(3) (Iµ|Sr,a)

′(un) → 0 as n→ ∞, i.e., ⟨I ′µ(un), z⟩H−1×H → 0, uniformly for all z satisfying

∥z∥H ≤ 1, where z ∈ Tun := {z ∈ H : ⟨un, z⟩L2 = 0}

Proof. By Proposition 5.3, c̃µ(a) = cµ(a). Hence, we can take {hn = ((hn)1, 0)} ∈ Γ̃a so as to

max
t∈[0,1]

I(hn(t)) ≤ c̃µ(a) +
1

n
.

It follows from Proposition 5.4 that, there exists a sequence {(vn, θn)} ⊂ Sr,a × R such that as
n→ ∞, one has

(5.9) I(vn, θn) → cµ(a), θn → 0;

(5.10) (I|Sr,a×R)
′(vn, θn) → 0.

Set un = θn ⋆ vn. Then, Iµ(un) = I(vn, θn), and by (5.9), item (1) holds. To prove conclusion (2),
we utilize

∂θI(vn, θn) = se2sθn∥vn∥2 +
(3− 2t)λ

4
e(3−2t)θn

∫
R3

ϕvnv
2
ndx− 3µ(q − 2)

2q
e(

3q
2
−3)θn

∫
R3

|vn|qdx

− 3(2∗s − 2)

22∗s
e

3(2∗s−2)

2
θn

∫
R3

|vn|2
∗
sdx

= s∥(−∆)
s
2un∥2 +

(3− 2t)λ

4

∫
R3

ϕtun
u2ndx− 3µ(q − 2)

2q

∫
R3

|un|qdx

− 3(2∗s − 2)

22∗s

∫
R3

|un|2
∗
sdx

= Pµ(un)

which implies item (2) by (5.10). To show item (3), we set zn ∈ Tun . Then,

I ′µ(un)zn =

∫∫
R6

(un(x)− un(y))(zn(x)− zn(y))

|x− y|3+2s
dxdy + λ

∫
R3

ϕtun
unzndx

− µ

∫
R3

|un|q−2unzndx−
∫
R3

|un|2
∗
s−2unzndx

= e
(4s−3)θn

2

∫∫
R6

(vn(x)− vn(y))(zn(e
−θnx)− zn(e

−θny))

|x− y|3+2s
dxdy

+ e
3−4t

2
θn

∫
R3

ϕvnvn(x)zn(e
−θnx)dx− µe

3(q−3)
2

θn

∫
R3

|vn|q−2vn(x)zn(e
−θnx)dx

− e
3(2∗s−3)

2
θn

∫
R3

|vn|2
∗
s−2vn(x)zn(e

−θnx)dx.

Denote by z̃n(x) = e−
3s
2 zn(e

−θnx), then we get

⟨I ′µ(un), zn⟩H−1×H = ⟨I ′(vn, θn), (z̃n, 0)⟩H−1×H.
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It is easy to check that

⟨vn, z̃n⟩L2 =

∫
R3

vn(x)e
− 3s

2 zn(e
−θnx)dx

=

∫
R3

vn(e
θnx)e

3s
2 zn(x)dx

=

∫
R3

un(x)zn(x)dx = 0

Therefore, we see that (z̃n, 0) ∈ T̃(vn,θn). On the other hand,

∥(z̃n, 0)∥2H = ∥z̃n∥2H = ∥zn∥22 + e−2sθn∥zn∥2 ≤ C∥zn∥2,
where the last inequality follows by θn → 0. Consequently, we conclude item (3). □

Remark 5.1 From Propositions 5.4,5.5, we know that un := θn ⋆ vn ⊂ Sr,a is a (PS) sequence for
Iµ with the level cµ(a), that is

(5.11) Iµ(un) → cµ(a) as n→ +∞,

and

(5.12) (Iµ|Sr,a)
′(un) → 0 as n→ +∞.

Lemma 5.6. The (PS) sequence {un} mentioned in Remark 5.1 is bounded in Hs
rad(R3). Moreover,

suppose that cµ(a) <
s
3S

3
2s , and λ < λ∗1 for some λ∗1 > 0, then limn→+∞ αn = α < 0.

Proof. From Remark 5.1 we see that Iµ(un) is bounded. In fact, by Pµ(un) → 0 as n→ ∞, we have

|(1 + 2t)Iµ(un) + Pµ(un)| ≤ 3cµ(a),

which implies that,

1 + 2s+ 2t

2
∥(−∆)

s
2un∥22 + λ

∫
R3

ϕtun
u2ndx− µ

(
1 + 2t

2
+ sδq,s

)∫
R3

|un|qdx

−
(
1 + 2t

2∗s
+ s

)∫
R3

|un|2
∗
sdx ≥ −3cµ(a).

(5.13)

In view of the boundedness of Iµ(un), we have

(5.14) ∥(−∆)
s
2un∥2 +

λ

2

∫
R3

ϕtun
u2ndx ≤ 6cµ(a) +

2µ

q

∫
R3

|un|qdx+
2

2∗s

∫
R3

|un|2
∗
sdx.

By (5.13)-(5.14), we obtain

2s+ 2t− 3

4

∫
R3

ϕtun
u2ndx+ µ

(δq,s − 2)s

q

∫
R3

|un|qdx+
(2∗s − 2)s

2∗s

∫
R3

|un|2
∗
sdx ≤ 3cµ(a)(2 + 2s+ 2t).

Note that 2s+ 2t > 3, q > 2 + 4s
3 , we have that qδq,s − 2 > 0, and so∫

R3

ϕtun
u2ndx,

∫
R3

|un|qdx and

∫
R3

|un|2
∗
sdx

are all bounded. Thus, ∥(−∆)
s
2un∥2 ≤ R2 for some R2 > 0 independently on n ∈ N. Since

{un} ⊂ Sr,a, we see that {un} is bounded in Hs
rad(R3). Thus, passing to a subsequence, and we may

assume that un ⇀ u for some u ∈ Hs
rad(R3), and so un → u in Lp(R3),∀p ∈ (2, 2∗s).

Now, we set the functional Φ : Hs
rad(R3) → R as

Φ(u) =
1

2

∫
R3

|u|2dx,
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then Sr,a = Φ−1
(
a2

2

)
. As a result, it can be derived from Proposition 5.12 [33] that there is a

sequence {αn} ⊂ R such that

I ′µ(un)− αnΦ
′(un) → 0 in H−s

rad(R
3) as n→ ∞.

That is, we have

(5.15) (−∆)sun + ϕtun
un − µ|un|q−2un − |un|2

∗
s−2un = αnun + on(1) in H−s

rad(R
3),

Similar to the proof of Lemma 4.3, we know that u solves the equation

(5.16) (−∆)su+ ϕtuu− µ|u|q−2u− |u|2∗s−2u = αu.

Moreover, u ̸≡ 0. In fact, argue by contradiction that u ≡ 0. Then un → 0 in Lp(R3), ∀ p ∈ (2, 2∗s),
and by Pµ(un) = on(1), (3.3), we have

on(1) = s∥un∥2 + λ
3− 2t

4

∫
R3

ϕtun
u2ndx− µsδq,s

∫
R3

|un|qdx− s

∫
R3

|un|2
∗
sdx

= s∥un∥2 − s

∫
R3

|un|2
∗
sdx+ on(1).

We may assume that limn→+∞ ∥un∥2 = limn→+∞
∫
R3 |un|2

∗
sdx = ϑ ≥ 0. Thus, we have

cµ(a) + on(1) = Iµ(un)

=
1

2

∫
R3

|(−∆)
s
2un|2dx+

λ

4

∫
R3

ϕtun
u2ndx− µ

q

∫
R3

|un|qdx− 1

2∗s

∫
R3

|un|2
∗
sdx

=
1

2
ϑ− 1

2∗s
ϑ+ on(1) =

s

3
ϑ+ on(1).

(5.17)

On the other hand, by the Sobolev inequality (3.1), we have ϑ ≥ Sϑ
2
2∗s . Then we have two possible

cases: (i) ϑ = 0; (ii) ϑ ≥ S
3
2s .

If ϑ = 0, then by (5.17) we get Iµ(un) → 0, which contradicts to Iµ(un) → cµ(a) > 0. Now if

the second case ϑ ≥ S
3
2s occurs, then by (5.17) we get Iµ(un) → s

3ϑ ≥ s
3S

3
2s , which contradicts to

Iµ(un) → cµ(a) <
s
3S

3
2s . Hence, u ̸≡ 0. Moreover, by (5.15) and Pµ(un) = on(1), we have

(5.18) sαn∥un∥22 = λ
2t+ 4s− 3

4

∫
R3

ϕtun
u2ndx+

q(3− 2s)− 6

2q
µ

∫
R3

|un|qdx+ on(1).

Since {un} ⊂ Sr,a is bounded in Hs
rad(R3), then by Lemma 3.6 and (5.18), we derive that {αn} is

bounded and limn→+∞ αn = α ∈ R. By a similar argument as in (4.32) and (4.33), for all n ∈ N,
we have

T1 ≤
∫
R3

|un|qdx ≤ C(q, s)∥(−∆)
s
2un∥

qδq,s
2 ∥un∥

q(1−δq,s)
2

≤ C(q, s)R
qδq,s
2 aq(1−δq,s),

(5.19)

and ∫
R3

ϕtun
u2ndx ≤ Γt∥un∥4 12

3+2t

≤ ΓtC (12/3 + 2t, s)
3+2t

3 ∥(−∆)
s
2un∥

3−2t
s

2 ∥un∥
2t+4s−3

s
2

≤ ΓtC (12/3 + 2t, s)
3+2t

3 R
3−2t

s
2 a

2t+4s−3
s

:= T2,

(5.20)

where T2 = Q2(s, t, R2, a) > 0. We define the positive constant

(5.21) λ∗1 :=
2[6− q(3− 2s)]µT1
q(2t+ 4s− 3)T2

.
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Therefore, if λ < λ∗1, we get

λq(2t+ 4s− 3)T2 < 2[6− q(3− 2s)]µT1.

Hence, by (5.19),(5.20) we see that

(5.22) λ
2t+ 4s− 3

4

∫
R3

ϕtun
u2ndx <

[6− q(3− 2s)]µ

2q

∫
R3

|un|qdx.

Taking the limit in (5.21) as n→ +∞, and applying Lemmas 3.3,3.6, we obtain

(5.23) λ
2t+ 4s− 3

4

∫
R3

ϕtuu
2dx <

[6− q(3− 2s)]µ

2q

∫
R3

|u|qdx.

Consequently, passing the limit in (5.18) as n→ +∞, and using (5.23) we deduce that

sαa2 = λ
2t+ 4s− 3

4

∫
R3

ϕtuu
2dx+

q(3− 2s)− 6

2q
µ

∫
R3

|u|qdx < 0.

Thus, we have that α < 0, if λ < λ∗1 small. □

Lemma 5.7. If 2+ 4s
3 < q < 2∗s, and inequality (2.5) holds, then there λ∗2 > 0, such that cµ(a) <

s
3S

3
2s

for λ < λ∗2 small.

Proof. From [8], we know that S defined in (3.1) is attained in R3 by functions

Uε(x) =
C(s)ε3−2s

(ε2 + |x|2)
3−2s

2

for any ε > 0 and C(s) being normalized constant such that

∥(−∆)
s
2Uε∥22 =

∫
R3

|Uε|2
∗
sdx = S

3
2s .

We define uε = φUε, and

vε = a
uε

∥uε∥2
∈ Sa ∩Hs

rad(R3),

where φ(x) ∈ C∞
0 (B2(0)) is a radial cutoff function such that 0 ≤ φ(x) ≤ 1 and φ(x) ≡ 1 on B1(0).

From Proposition 21 and Proposition 22 in [28], we have

(5.24)

∫
R3

|(−∆)
s
2uε|2dx = S

3
2s +O(ε3−2s).

(5.25)

∫
R3

|uε|2
∗
sdx = S

3
2s +O(ε3).

For any p > 1, by a direct computation [31], we obtain the following estimations:

(5.26)

∫
R3

|uε|pdx =


O(ε

3(2−p)+2sp
2 ), if p > 3

3−2s ;

O(ε
3
2 | log ε|), if p = 3

3−2s ;

O(ε
(3−2s)p

2 ), if p < 3
3−2s ,

and especially,

∫
R3

|uε|2dx =


Cε2s, if 0 < s < 3

4 ;

Cε2s| log ε|, if s = 3
4 ;

Cε3−2s, if 3
4 < s < 1.

(5.27)
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Define the function

Ψµ
vε(θ) := Iµ((θ ⋆ vε)) =

e2sθ

2
∥vε∥2 +

e(3−2t)θ

4
λ

∫
R3

ϕtvεv
2
εdx− µ

q
e

3(q−2)
2

θ

∫
R3

|vε|qdx

− 1

2∗s
e2

∗
ssθ

∫
R3

|vε|2
∗
sdx,

(5.28)

then it is easy to see that Ψµ
vε(θ) → 0+ as θ → −∞, and Ψµ

vε(θ) → −∞ as θ → +∞. Therefore, Ψµ
vε

can obtain its global positive maximum at some θε,µ > 0. A direct computation yields that

(Ψµ
vε)

′(θ)

= se2sθ∥vε∥2 +
3− 2t

4
e(3−2t)θλ

∫
R3

ϕtvεv
2
εdx

− 3µ(q − 2)

2q
e

3(q−2)
2

θ

∫
R3

|vε|qdx− se2
∗
ssθ

∫
R3

|vε|2
∗
sdx

= s∥θ ⋆ vε∥2 +
3− 2t

4
λ

∫
R3

ϕtθ⋆vε |θ ⋆ vε|
2dx− 3µ(q − 2)

2q

∫
R3

|θ ⋆ vε|qdx− s

∫
R3

|θ ⋆ vε|2
∗
sdx

= Pµ(θ ⋆ vε);

(5.29)

and

(Ψµ
vε)

′′(θ) = 2s2e2sθ∥vε∥2 +
(3− 2t)2

4
e(3−2t)θλ

∫
R3

ϕtvεv
2
εdx

− µqs2δ2q,se
3(q−2)

2
θ

∫
R3

|vε|qdx− 2∗ss
2e2

∗
ssθ

∫
R3

|vε|2
∗
sdx.

Let θε,µ be the maximum point of Ψµ
vε(θ), then θε,µ is unique. In fact, combining with (Ψµ

vε)
′(θε,µ) =

0, and 3− 2t− 2s < 0, 2− qδq,s < 0, 2− 2∗s < 0, we have

(Ψµ
vε)

′′(θε,µ)

= 2s2e2sθε,µ∥vε∥2 +
(3− 2t)2

4
e(3−2t)θε,µλ

∫
R3

ϕtvεv
2
εdx

− µqs2δ2q,se
3(q−2)

2
θε,µ

∫
R3

|vε|qdx− 2∗ss
2e2

∗
ssθε,µ

∫
R3

|vε|2
∗
sdx

= 2s2∥ũε∥2 +
(3− 2t)2

4
λ

∫
R3

ϕtũε
ũ2εdx− µs2qδ2q,s

∫
R3

|ũε|qdx− 2∗ss
2

∫
R3

|ũε|2
∗
sdx

=
(3− 2t)(3− 2t− 2s)

4
λ

∫
R3

ϕtũε
ũ2εdx+ µs2δq,s[2− qδq,s]

∫
R3

|ũε|qdx+ s2[2− 2∗s]

∫
R3

|ũε|2
∗
sdx < 0,

where ũε = θε,µ ⋆ vε, and the uniqueness of θε,µ follows. Using (Ψµ
vε)

′(θε,µ) = Pµ(θε,µ ⋆ vε) = 0 again,
we have

se2
∗
ssθε,µ

∫
R3

|vε|2
∗
sdx = se2sθε,µ∥vε∥2 + λ

3− 2t

4
e(3−2t)θε,µ

∫
R3

ϕtvεv
2
εdx

− 3µ(q − 2)

2q
e

3(q−2)
2

θε,µ

∫
R3

|vε|qdx

≤ se2sθε,µ∥vε∥2 + λ
3− 2t

4
e(3−2t)θε,µ

∫
R3

ϕtvεv
2
εdx

= e2sθε,µ
(
s∥vε∥2 + λ

3− 2t

4
e(3−2t−2s)θε,µ

∫
R3

ϕtvεv
2
εdx

)
≤ e2sθε,µ2max

{
s∥vε∥2, λ

3− 2t

4
e(3−2t−2s)θε,µ

∫
R3

ϕtvεv
2
εdx

}
.

(5.30)
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In the sequel, we distinguish the following two possible cases.

Case 1. s∥vε∥2 > λ3−2t
4 e(3−2t−2s)θε,µ

∫
R3 ϕ

t
vεv

2
εdx.

In this case, we have from (5.30) that

(5.31) se2
∗
ssθε,µ

∫
R3

|vε|2
∗
sdx < e2sθε,µ2s∥vε∥2 =⇒ e(2

∗
s−2)sθε,µ ≤ 2∥vε∥2

∥vε∥2
∗
s

2∗s

,

and from (Ψµ
vε)

′(θε,µ) = 0, we have

e(2
∗
s−2)sθε,µ

=
∥vε∥2

∥vε∥2
∗
s

2∗s

+ λ
3− 2t

4s

e(3−2t−2s)θε,µ
∫
R3 ϕ

t
vεv

2
εdx

∥vε∥2
∗
s

2∗s

− µδq,se
(qδq,s−2)sθε,µ ∥vε∥qq

∥vε∥2
∗
s

2∗s

≥ ∥vε∥2

∥vε∥2
∗
s

2∗s

− µδq,s

(
2∥vε∥2

∥vε∥2
∗
s

2∗s

) qδq,s−2

2∗s−2 ∥vε∥qq
∥vε∥2

∗
s

2∗s

=
∥uε∥2

∗
s−2

2 ∥uε∥2

a2∗s−2∥uε∥2
∗
s

2∗s

− µδq,s

(
2∥uε∥2

∗
s−2

2

a2∗s−2

∥uε∥2

∥uε∥2
∗
s

2∗s

) qδq,s−2

2∗s−2 ∥uε∥qq
∥uε∥2

∗
s

2∗s

∥uε∥2
∗
s−q

2

a2∗s−q

(5.32)

=
∥uε∥2

∗
s−2

2 (∥uε∥2)
qδq,s−2

2∗s−2

a2∗s−2∥uε∥2
∗
s

2∗s

(∥uε∥2) 2∗s−qδq,s
2∗s−2 − µδq,s2

qδq,s−2

2∗s−2 aq(1−δq,s)∥uε∥qq

(∥uε∥2)q(1−δq,s)(∥uε∥2
∗
s

2∗s
)
qδq,s−2

2∗s−2

 .
Notice that, by (5.24)-(5.27), there exist positive constants C1, C2 and C3 depending on s and q such
that

(5.33) (∥uε∥2)
2∗s−qδq,s

2∗s−2 ≥ C1, C2 ≤ (∥uε∥2
∗
s

2∗s
)
qδq,s−2

2∗s−2 ≤ 1

C2
.

and

(5.34)
∥uε∥qq

∥uε∥
q(1−γq,s)
2

=


C3ε

3− 3−2s
2

q−sq(1−γq,s) = C3, if 0 < s < 3
4 ;

C3| ln ε|
q(γq,s−1)

2 , if s = 3
4 ;

C3ε
3− 3−2s

2
q− (3−2s)q(1−γq,s)

2 , if 3
4 < s < 1;

Next, we show that

(5.35) e(2
∗
s−2)sθε,µ ≥ C

∥uε∥2
∗
s−2

2

a2∗s−2
,

under suitable conditions. To this aim, we distinguish the following three subcases.
Subcase (i). 0 < s < 3

4 . In this case, it holds that

(5.36) 3− 3− 2s

2
q − sq(1− δq,s) = 0,

and from (5.32)-(5.34) we have

e(2
∗
s−2)sθε,µ ≥ C∥uε∥2

∗
s−2

2

a2∗s−2

[
C1 − µδq,sa

q(1−γq,s)2
qδq,s−2

2∗s−2
C3

C2

]
,

and we see that inequality (5.35) holds only when µγq,sa
q(1−δq,s) < C1C2(C3)

−12
− qδq,s−2

2∗s−2 . Thus, we
have to give a more precise estimate, let us come back to (5.32) and observe that by well-known
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interpolation inequality, we have

(5.37)
∥uε∥qq

(∥uε∥2)q(1−δq,s)(∥uε∥2
∗
s

2∗s
)
qδq,s−2

2∗s−2

≤
(∥uε∥2

∗
s

2∗s
)

q−2
2∗s−2 (∥uε∥22)

2∗s−q

2∗s−2

(∥uε∥2)q(1−δq,s)(∥uε∥2
∗
s

2∗s
)
qδq,s−2

2∗s−2

= (∥uε∥2
∗
s

2∗s
)
q(1−δq,s)

2∗s−2 .

Therefore, by (5.37) and (5.32) we have
(5.38)

e(2
∗
s−2)sθε,µ ≥ ∥uε∥2

∗
s−2

2 (∥uε∥2)
qδq,s−2

2∗s−2

a2∗s−2∥uε∥2
∗
s

2∗s

[
(∥uε∥2)

2∗s−qδq,s
2∗s−2 − µδq,s2

qδq,s−2

2∗s−2 aq(1−δq,s)(∥uε∥2
∗
s

2∗s
)
q(1−δq,s)

2∗s−2

]
.

From the estimations (5.24),(5.25), we see that the right hand side of (5.38) is positive provided
that

µδq,sa
q(1−γq,s)2

qδq,s−2

2∗s−2 <

(
∥uε∥2

) 2∗s−qγq,s
2∗s−2

(∥uε∥2
∗
s

2∗s
)
q(1−δq,s)

2∗s−2

=

(
S

3
2s +O(ε3−2s)

) 2∗s−qγq,s
2∗s−2

(
S

3
2s +O(ε3)

) q(1−δq,s)

2∗s−2

= S
3(2∗s−q)

2s(2∗s−2) +O(ε3−2s).

Therefore, if 0 < s < 3
4 and

(5.39) µδq,sa
q(1−δq,s)2

qδq,s−2

2∗s−2 < S
3(2∗s−q)

2s(2∗s−2) ,

we have

e(2
∗
s−2)sθṽε ≥ C∥uε∥2

∗
s−2

2

a2∗s−2
.

Subcase (ii). s = 3
4 . In this case, then we have 3 < q < 4, and

| ln ε|
q(γq,s−1)

2 = | ln ε|
q−2∗s

4s(3−2s) → 0 as ε→ 0.

Consequently,
∥uε∥qq

∥uε∥
q(1−γq,s)
2

≤ C3ε
3− 3−2s

2
q−sq(1−γq,s)| ln ε|

q(γq,s−1)

2 = oε(1).

Therefore, we get

e(2
∗
s−2)sθvε ≥ C

∥uε∥2
∗
s−2

2

a2∗s−2

[
C1 − µγq,sa

q(1−γq,s)2
qδq,s−2

2∗s−2
C3

C2
oε(1)

]
≥ C∥uε∥2

∗
s−2

2

a2∗s−2
.

Subcase (iii). 3
4 < s < 1. By the definition of δq,s and a direct computation we infer to

3− 3− 2s

2
q − (3− 2s)q(1− γq,s)

2

= (3− 2s)

[
3

3− 2s
− q − 3(q − 2)

4s

]
=

3− 4s

4s

[
q − 6

3− 2s

]
(3− 2s) > 0.

Thus, ε3−
3−2s

2
q− (3−2s)q(1−γq,s)

2 → 0 as ε→ 0, and so

∥uε∥qq
∥uε∥

q(1−γq,s)
2

≤ Cε3−
3−2s

2
q− (3−2s)q(1−γq,s)

2 = oε(1).
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Therefore, we conclude that,

e(2
∗
s−2)sθvε ≥ C

∥uε∥2
∗
s−2

2

a2∗s−2

[
C1 − µγq,sa

q(1−γq,s)C3

C2
oε(1)

]
≥ C∥uε∥

22∗α,s−2

2

a2∗s−2
.

Case 2. s∥vε∥2 ≤ λ3−2t
4 e(3−2t−2s)θε,µ

∫
R3 ϕ

t
vεv

2
εdx.

In this case, we have from (5.30) that se2
∗
ssθε,µ

∫
R3 |vε|2

∗
sdx < e2sθε,µ 3−2t

2 e(3−2t−2s)θε,µλ
∫
R3 ϕ

t
vεv

2
εdx,

which implies that

(5.40) e(s2
∗
s+2t−3)θε,µ ≤ 3− 2t

2s

λ
∫
R3 ϕ

t
vεv

2
εdx

∥vε∥2
∗
s

2∗s

,

and from (Ψµ
vε)

′(θε,µ) = 0 and (5.40), together with (3.2)-(3.3) and Hölder inequality, we induce that

e(2
∗
s−2)sθε,µ

=
∥vε∥2

∥vε∥2
∗
s

2∗s

+
3− 2t

4s

e(3−2t−2s)θε,µλ
∫
R3 ϕ

t
vεv

2
εdx

∥vε∥2
∗
s

2∗s

− µδq,se
(qδq,s−2)sθε,µ ∥vε∥qq

∥vε∥2
∗
s

2∗s

≥ ∥vε∥2

∥vε∥2
∗
s

2∗s

− µδq,s

(
3− 2t

2s

λ
∫
R3 ϕvεv

2
εdx

∥vε∥2
∗
s

2∗s

) (qδq,s−2)s

s2∗s+2t−3 ∥vε∥qq
∥vε∥2

∗
s

2∗s

≥ ∥vε∥2

∥vε∥2
∗
s

2∗s

− µδq,s

3− 2t

2s

λΓt∥vε∥4 12
3+2t

∥vε∥2
∗
s

2∗s


(qδq,s−2)s

s2∗s+2t−3

∥vε∥qq
∥vε∥2

∗
s

2∗s

≥ ∥vε∥2

∥vε∥2
∗
s

2∗s

− µδq,s

(
(3− 2t)λΓt

2s

) (qδq,s−2)s

s2∗s+2t−3

∥vε∥4τ2 ∥vε∥4(1−τ)
2∗s

∥vε∥2
∗
s

2∗s


(qδq,s−2)s

s2∗s+2t−3

∥vε∥qq
∥vε∥2

∗
s

2∗s

=
∥vε∥2

∥vε∥2
∗
s

2∗s

− µδq,sD(s, t)a
4τ(qδq,s−2)s

s2∗s+2t−3

 1

∥vε∥2
∗
s−4(1−τ)

2∗s


(qδq,s−2)s

s2∗s+2t−3

∥vε∥qq
∥vε∥2

∗
s

2∗s

=
∥uε∥2

∗
s−2

2 ∥uε∥2

a2∗s−2∥uε∥2
∗
s

2∗s

− µδq,sD(s, t)a
4τ(qδq,s−2)s

s2∗s+2t−3

×

 ∥uε∥2
∗
s−4(1−τ)

2

a2∗s−4(1−τ)∥uε∥2
∗
s−4(1−τ)

2∗s


(qδq,s−2)s

s2∗s+2t−3

∥uε∥qq
∥uε∥2

∗
s

2∗s

∥uε∥2
∗
s−q

2

a2∗s−q

=
∥uε∥2

∗
s−2

2 ∥uε∥2

a2∗s−2∥uε∥2
∗
s

2∗s

− µδq,sD(s, t)a
4τ(qδq,s−2)s−(2∗s−4(1−τ))(qδq,s−2)s

s2∗s+2t−3
−2∗s+q

∥uε∥
2∗s+[2∗s−4(1−τ)]

(qδq,s−2)s

s2∗s+2t−3

2∗s

× ∥uε∥
2∗s−q+[2∗s−4(1−τ)]

(qδq,s−2)s

s2∗s+2t−3

2 ∥uε∥qq

=
∥uε∥2

∗
s−2

2 (∥uε∥2)
qδq,s−2

2∗s−2

a2∗s−2∥uε∥2
∗
s

2∗s

(5.41)
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×
[
(∥uε∥2)

2∗s−qδq,s
2∗s−2 − µδq,sD(s, t)a

4τ(qδq,s−2)s−(2∗s−4(1−τ))(qδq,s−2)s

s2∗s+2t−3
+q−2

(∥uε∥2)
qδq,s−2

2∗s−2 ∥uε∥
[2∗s−4(1−τ)]

(qδq,s−2)s

s2∗s+2t−3

2∗s

× ∥uε∥
2−q+[2∗s−4(1−τ)]

(qδq,s−2)s

s2∗s+2t−3

2 ∥uε∥qq
]
,

where 0 < τ = 2t+4s−3
4s < 1, and

D(s, t) =

(
(3− 2t)λΓt

2s

) (qδq,s−2)s

s2∗s+2t−3

.

By a direct computation, we have the following clearer expressions

[2∗s − 4(1− τ)]
(qδq,s − 2)s

s2∗s + 2t− 3
=

[
2∗s − 4

(
1− 2t+ 4s− 3

4s

)]
(qδq,s − 2)s

s2∗s + 2t− 3

=

[
2∗s −

3− 2t

s

]
(qδq,s − 2)s

s2∗s + 2t− 3
= qδq,s − 2;

(5.42)

(5.43) 2− q + [2∗s − 4(1− τ)]
(qδq,s − 2)s

s2∗s + 2t− 3
= 2− q + qδq,s − 2 = (δq,s − 1)q;

and

4τ(qδq,s − 2)s− (2∗s − 4(1− τ))(qδq,s − 2)s

s2∗s + 2t− 3
+ q − 2

=
s(qδq,s − 2)(4− 2∗s)

s2∗s + 2t− 3
+ q − 2

=
1

s2∗s + 2t− 3
[(q − 2)(s2∗s + 2t− 3)− (2∗s − 4)s(qδq,s − 2)]

=
1

s2∗s + 2t− 3

[
(q − 2)(s2∗s + 2t− 3)− (2∗s − 4)

(
3(q − 2)

2
− 2s

)]
=

(q − 2)2t+ 2s(2∗s − 4)

s2∗s + 2t− 3
> 0,

(5.44)

where the last inequality holds true since q ∈ (2 + 4s
3 , 2

∗
s), 2s+ 2t > 3. Consequently, we have

(q − 2)2t+ 2s(2∗s − 4) >
4s

3
2t+ 2s(2∗s − 4)

= 2s

(
4t

3
+ 2∗s − 4

)
= 2s

24s+ 12t− 18− 8st

3(3− 2s)
> 0.

Substituting formulas (5.42)-(5.44) into (5.41), we infer to

e(2
∗
s−2)sθε,µ ≥ ∥uε∥2

∗
s−2

2 (∥uε∥2)
qδq,s−2

2∗s−2

a2∗s−2∥uε∥2
∗
s

2∗s

×
[
(∥uε∥2)

2∗s−qδq,s
2∗s−2 − µδq,sD(s, t)a

(q−2)2t+2s(2∗s−4)

s2∗s+2t−3

(∥uε∥2)
qδq,s−2

2∗s−2 ∥uε∥
qδq,s−2
2∗s

× ∥uε∥qq
∥uε∥

q(1−δq,s)
2

]
.

(5.45)

Notice that, by (5.24)-(5.27), there exist positive constants C4, C5 and C6 depending on s and q such
that

(5.46) (∥uε∥2)
qδq,s−2

2∗s−2 ≥ C4,
1

C5
≤ ∥uε∥

qδq,s−2
2∗s

≤ C5.
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and

(5.47)
∥uε∥qq

∥uε∥
q(1−γq,s)
2

=


C6ε

3− 3−2s
2

q−sq(1−γq,s) = C6, if 0 < s < 3
4 ;

C6| ln ε|
q(γq,s−1)

2 , if s = 3
4 ;

C6ε
3− 3−2s

2
q− (3−2s)q(1−γq,s)

2 , if 3
4 < s < 1;

Next, we show that

(5.48) e(2
∗
s−2)sθε,µ ≥ C

∥uε∥2
∗
s−2

2

a2∗s−2
,

for some positive constant C > 0. To obtain the estimation (5.48), as in Case 1, we have to consider
the three cases: (i) 0 < s < 3

4 ; (ii) s =
3
4 ; and (iii) 3

4 < s < 1.

When 0 < s < 3
4 , it holds that

(5.49) 3− 3− 2s

2
q − sq(1− δq,s) = 0,

and from (5.45)-(5.47) we have

e(2
∗
s−2)sθε,µ ≥ C∥uε∥2

∗
s−2

2

a2∗s−2

[
C1 − µδq,sD(s, t)a

(q−2)2t+2s(2∗s−4)

s2∗s+2t−3
C6

C4C5

]
,

and we see that inequality (5.48) holds only when µδq,sD(s, t)a
(q−2)2t+2s(2∗s−4)

s2∗s+2t−3 < C1C4C5C
−1
6 . Thus,

we have to give a more precise estimate, let us come back to (5.45) and observe that by well-known
interpolation inequality, we have

∥uε∥qq

(∥uε∥2)
qδq,s−2

2∗s−2 ∥uε∥
qδq,s−2
2∗s

∥uε∥
q(1−δq,s)
2

≤
(∥uε∥2

∗
s

2∗s
)

q−2
2∗s−2 (∥uε∥22)

2∗s−q

2∗s−2

(∥uε∥2)
qδq,s−2

2∗s−2 (∥uε∥2)q(1−δq,s)(∥uε∥2
∗
s

2∗s
)
qδq,s−2

2∗s−2

=
(∥uε∥2

∗
s

2∗s
)
q(1−δq,s)

2∗s−2

(∥uε∥2)
qδq,s−2

2∗s−2

.

(5.50)

Therefore, by (5.45) and (5.50) we derive as

e(2
∗
s−2)sθε,µ ≥ ∥uε∥2

∗
s−2

2 (∥uε∥2)
qδq,s−2

2∗s−2

a2∗s−2∥uε∥2
∗
s

2∗s

×

(∥uε∥2) 2∗s−qδq,s
2∗s−2 − µδq,sD(s, t)a

(q−2)2t+2s(2∗s−4)

s2∗s+2t−3
(∥uε∥2

∗
s

2∗s
)
q(1−δq,s)

2∗s−2

(∥uε∥2)
qδq,s−2

2∗s−2

 .
(5.51)

We observe that the right hand side of (5.51) is positive provided that

µδq,sD(s, t)a
(q−2)2t+2s(2∗s−4)

s2∗s+2t−3 <
∥uε∥2

(∥uε∥2
∗
s

2∗s
)
q(1−δq,s)

2∗s−2

=
S

3
2s +O(ε3−2s)(

S
3
2s +O(ε3)

) q(1−δq,s)

2∗s−2

= S
3[(2∗s−2)−q(1−δq,s)]

2s(2∗s−2) +O(ε3−2s).
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Therefore, if 0 < s < 3
4 and

(5.52) µδq,sD(s, t)a
(q−2)2t+2s(2∗s−4)

s2∗s+2t−3 < S
3[(2∗s−2)−q(1−δq,s)]

2s(2∗s−2) ,

we see that (5.48) holds for some constant C > 0.
For the cases: s = 3

4 , and
3
4 < s < 1, we still have the following estimations as in Case 1,

∥uε∥qq
∥uε∥

q(1−γq,s)
2

≤ C3ε
3− 3−2s

2
q−sq(1−γq,s)| ln ε|

q(γq,s−1)

2 = oε(1);

and

∥uε∥qq
∥uε∥

q(1−γq,s)
2

≤ Cε3−
3−2s

2
q− (3−2s)q(1−γq,s)

2 = oε(1),

respectively. Moreover, we derive that

(5.53) e(2
∗
s−2)sθṽε ≥ C

∥uε∥2
∗
s−2

2

a2∗s−2

[
C1 − µδq,sD(s, t)a

(q−2)2t+2s(2∗s−4)

s2∗s+2t−3
C5

C4
oε(1)

]
≥ C∥uε∥2

∗
s−2

2

a2∗s−2
.

To sum up, condition (2.5) can ensure that (5.39), (5.52) occur, so as to guarantee (5.53) hold.
In what follows we focus on an upper estimate of maxθ∈RΨµ

vε(θ). We split the argument into two
steps.

Step 1. We estimate for maxθ∈RΨ0
vε(θ), where,

Ψ0
vε(θ) :=

e2sθ

2
∥vε∥2 −

e2
∗
ssθ

2∗s

∫
R3

|vε|2
∗
sdx.

It is easy to see that for every vε ∈ Sr,a the function Ψ0
vε(θ) has a unique critical point θε,0, which

is a strict maximum point and is given by

(5.54) esθε,0 =

(
∥vε∥2∫

R3 |vε|2∗sdx

) 1
2∗s−2

.

Using the fact that

sup
θ≥0

(
θ2

2
a− θ2

∗
s

2∗s
b

)
=
s

3

( a

b2/2∗s

) 2∗s
2∗s−2

,

for any fixed a, b > 0. We can deduce by (5.24), (5.25), that

Ψ0
vε(θε,0) =

s

3

 ∥vε∥2

(
∫
R3 |vε|2∗sdx)

2
2∗s


2∗s

2∗s−2

=
s

3

 ∥uε∥2

(
∫
R3 |uε|2∗sdx)

2
2∗s


2∗s

2∗s−2

=
s

3

(
S

3
2s +O(ε3−2s)

(S
3
2s +O(ε3))

2
2∗s

) 2∗s
2∗s−2

=
s

3
S

3
2s +O(ε3−2s).

(5.55)
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Step 2. We next estimate for maxθ∈RΨµ
vε(t). Recall (3.3), (5.30) and Hölder inequality, we have

e(2
∗
s−2)sθε,µ

≤
2max

{
∥vε∥2, λ3−2t

4s e(3−2t−2s)θε,µ
∫
R3 ϕ

t
vεv

2
εdx
}

∥vε∥2
∗
s

2∗s

≤
2max

{
∥vε∥2, λ3−2t

4s e(3−2t−2s)θε,µΓt∥vε∥4τ2 ∥vε∥4(1−τ)
2∗s

}
∥vε∥2

∗
s

2∗s

=
2max

{
a2∥uε∥2∥uε∥2

∗
s−2

2 , λ3−2t
4s e(3−2t−2s)θε,µΓta

4∥uε∥4(1−τ)
2∗s

∥uε∥2
∗
s−4(1−τ)

2

}
a2∗s∥uε∥2

∗
s

2∗s

.

(5.56)

From the estimations (5.24)-(5.25) and (5.56), we see that the number θε,µ can not go to +∞, and
there exists some θ∗ ∈ R such that

(5.57) θε,µ ≤ θ∗, for all ε, µ > 0.

Hence, by virtue of (5.56), (5.57) and (3.3) we derive to

max
θ∈R

Ψµ
vε(θ)

= Ψµ
vε(θε,µ) = Ψ0

vε(θε,µ) +
e(3−2t)θε,µ

4
λ

∫
R3

ϕtvεv
2
εdx− µ

eqγq,ssθε,µ

q

∫
R3

|vε|qdx

≤ sup
θ∈R

Ψ0
vε(θ) +

e(3−2t)θε,µ

4
λ

∫
R3

ϕtvεv
2
εdx− µ

eqγq,ssθε,µ

q

∫
R3

|vε|qdx

≤ Ψ0
vε(θvε,0) + Cλ

(∫
R3

|vε|
12

3+2tdx

) 3+2t
3

− Cµaq(1−γq,s)

q

∫
R3 |uε|qdx

∥uε∥
q(1−γq,s)
2

≤ s

3
S

3
2s +O(ε3−2s) + C

λa4

∥uε∥42

(∫
R3

|uε|
12

3+2tdx

) 3+2t
3

− Cµaq(1−γq,s)

q

∫
R3 |uε|qdx

∥uε∥
q(1−γq,s)
2

≤ s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε|

12
3+2tdx

) 3+2t
3

∥uε∥42
− C3

∫
R3 |uε|qdx

∥uε∥
q(1−γq,s)
2

.

(5.58)

Next, we separate three cases:
Case 1: 0 < s < 3

4 . In this case, owing to 2t+ 8s < 9, we get p = 12
3+2t >

3
3−2s , it following from

(5.26)-(5.27) and (5.34) that,

s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε|

12
3+2tdx

) 3+2t
3

∥uε∥42
− C3

∫
R3 |uε|qdx

∥uε∥
q(1−γq,s)
2

=
s

3
S

3
2s + C1ε

3−2s + C2λ
ε2t+4s−3

ε4s
− C3

<
s

3
S

3
2s ,

(5.59)

if we choose λ = εs.
Case 2: s = 3

4 . In this case, we still have 2t + 8s = 2t + 6 < 9, and also, p = 12
3+2t >

3
3−2s .

Moreover, 2 +
q(γq,s−1)

2 = q(3−2s)
4s > 0, hence

ε2t+2s−3 → 0, ε3−2s(log ε)2 → 0, and | ln ε|2+
q(γq,s−1)

2 → +∞,
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when ε→ 0+. Consequently, if we choose λ = ε2s, then we have

s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε|

12
3+2tdx

) 3+2t
3

∥uε∥42
− C3

∫
R3 |uε|qdx

∥uε∥
q(1−γq,s)
2

=
s

3
S

3
2s + C1ε

3−2s + C2λ
ε2t+4s−3

ε4s| log ε|2
− C3| ln ε|

q(γq,s−1)

2

=
s

3
S

3
2s +

1

(log ε)2

[
C1ε

3−2s(log ε)2 + C2ε
2t+2s−3 − C3| ln ε|2+

q(γq,s−1)

2

]
<
s

3
S

3
2s ,

(5.60)

when ε > 0 small enough.
Case 3: 3

4 < s < 1. In this case, using the fact that 2t + 2s > 3, q > 2 + 4s
3 , we can obtain the

inequality by a direct computation,

3− 3− 2s

2
q − (3− 2s)q(1− γq,s)

2
< 3− 2s.

Thus, from (5.26)-(5.27) and (5.34), letting λ = ε6−4s we derive that

s

3
S

3
2s + C1ε

3−2s + C2λ

(∫
R3 |uε|

12
3+2tdx

) 3+2t
3

∥uε∥42
− C3

∫
R3 |uε|qdx

∥uε∥
q(1−γq,s)
2

=
s

3
S

3
2s + C1ε

3−2s + C2



λ
ε2t+4s−3

ε6−4s
, if

12

3 + 2t
>

3

3− 2s
,

λ
ε2t+4s−3| ln ε|

3+2t
3

ε6−4s
, if

12

3 + 2t
=

3

3− 2s
,

λ
ε2(3−2s)

ε6−4s
, if

12

3 + 2t
<

3

3− 2s

− C3ε
3− 3−2s

2
q− (3−2s)q(1−γq,s)

2
−(3−2s)

<
s

3
S

3
2s .

(5.61)

Since vε ∈ Sr,a, from Lemma 5.1 we can take θ1 < 0 and θ2 > 0 such that θ1 ⋆ vε ∈ Aa and
Iµ(θ2 ⋆ vε) < 0, respectively. Then we can define a path

γvε : t ∈ [0, 1] 7→ ((1− t)θ1 + tθ2) ⋆ vε ∈ Γa.

To sum up, by the estimations (5.58)-(5.61), we can derive that

(5.62) cr,µ(a) ≤ max
t∈[0,1]

Iµ(γvε(t)) ≤ max
θ∈R

Ψµ
vε(θ) <

s

3
S

3
2s ,

for ε > 0 small enough, which is the desired result. □

Lemma 5.8. Let {un} be the (PS) sequence in Sr,a at level cµ(a), with cµ(a) <
s
3S

3
2s , assume that

un ⇀ u, then, u ̸≡ 0.

Proof. Arguing by contradiction, we suppose that u ≡ 0. Noticing that {un} is bounded in Hs
rad(R3),

going to a subsequence, we may assume that ∥(−∆)
s
2un∥22 → ℓ ≥ 0. By Lemma 3.6, un → 0 in
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Lp(R3),∀p ∈ (2, 2∗s). From Proposition 5.5 and Lemmas 3.3,3.6, we have Pµ(un) → 0 such that,∫
R3

|un|2
∗
sdx = ∥(−∆)

s
2un∥22 +

3− 2t

4s
λ

∫
R3

ϕtun
u2ndx− µδq,s

∫
R3

|un|qdx

= ∥(−∆)
s
2un∥22 + on(1)

= ℓ+ on(1),

as n → ∞. Then, using Sobolev’s inequality, one has ℓ ≥ Sℓ
2
2∗s , and so, either ℓ ≥ S

3
2s or ℓ = 0. In

the case ℓ ≥ S
3
2s , from Iµ(un) → cµ(a), Pµ(un) → 0, we know

cµ(a) + on(1)

= Iµ(un) = Iµ(un)−
1

s2∗s
Pµ(un)

=
s

3
∥(−∆)

s
2un∥22 + λ

s2∗s + 2t− 3

4s2∗s

∫
R3

ϕtun
|un|2dx− µ

2∗s − q

q2∗s

∫
R3

|un|qdx+ on(1)

=
s

3
ℓ+ on(1)

which means cµ(a) =
s
3ℓ, that is cµ(a) ≥

s
3S

3
2s , which contradicts the assumption cµ(a) <

s
3S

3
2s . In

the case ℓ = 0, one has

∥(−∆)
s
2un∥22 → 0,

∫
R3

|un|2
∗
sdx→ 0,

and combining with ∫
R3

ϕtun
u2ndx→ 0,

∫
R3

|un|qdx→ 0,

we have, Iµ(un) → 0, which is absurd since cµ(a) > 0. Therefore, u ̸≡ 0. □

Lemma 5.9. Let {un} be the (PS) sequence in Sr,a at level cµ(a), with cµ(a) <
s
3S

3
2s , assume that

Pµ(un) → 0 when n→ ∞, and λ < λ∗1 small. Then one of the following alternatives holds:
(i) either going to a subsequence un ⇀ u weakly in Hs

rad(R3), but not strongly, where u ̸≡ 0 is a
solution to

(5.63) (−∆)su+ λϕtuu = αu+ µ|u|q−2u+ |u|2∗s−2u, in R3,

where αn → α < 0, and

Iµ(u) < cµ(a)−
s

3
S

3
2s ;

(ii) or passing to a subsequence un → u strongly in Hs
rad(R3), Iµ(u) = cµ(a) and u is a solution

of (1.5)-(1.6) for some α < 0.

Proof. By Lemma 5.6, we have that {un} ⊂ Sr,a is a bounded (PS) sequence for Iµ in Hs
rad(R3),

and so un ⇀ u in Hs
rad(R3) for some u. By the Lagrange multiplier principle, there exists {αn} ⊂ R

satisfying ∫
R3

(−∆)
s
2un(−∆)

s
2φdx− αn

∫
R3

unφdx+ λ

∫
R3

ϕtun
uφdx− µ

∫
R3

|un|q−2unφdx

−
∫
R3

|un|2
∗
s−2unφdx = on(1)∥φ∥,

(5.64)

for any φ ∈ Hs
rad(R3). Moreover, one has limn→∞ αn = α < 0. Letting n→ ∞ in (5.64), we have∫

R3

(−∆)
s
2u(−∆)

s
2φdx+ λ

∫
R3

ϕtuuφdx− µ

∫
R3

|u|q−2uφdx−
∫
R3

|u|2∗s−2uφdx− α

∫
R3

uφdx = 0,



NORMALIZED SOLUTIONS FOR A FRACTIONAL SCHRÖDINGER-POISSON SYSTEM 35

which implies that u solves the equation

(5.65) (−∆)su+ λϕtuu = αu+ µ|u|q−2u+ |u|2∗s−2u, in R3,

and we have the Pohozăev identity Pµ(u) = 0.
Let vn = un − u, then vn ⇀ 0 in Hs

rad(R3). According to Brezis-Lieb lemma [33] and Lemma 3.3,
one has

(5.66) ∥(−∆)
s
2un∥22 = ∥(−∆)

s
2u∥22 + ∥(−∆)

s
2 vn∥22 + on(1), ∥un∥2

∗
s

2∗s
= ∥u∥2

∗
s

2∗s
+ ∥vn∥2

∗
s

2∗s
+ on(1),

and

(5.67)

∫
R3

ϕtun
u2ndx =

∫
R3

ϕuu
2dx+ on(1), ∥un∥qq = ∥u∥qq + ∥vn∥qq + on(1).

Then, from Pµ(un) → 0, un → u in Lp(R3), one can derive that

∥(−∆)
s
2u∥22 + ∥(−∆)

s
2 vn∥22 +

3− 2t

4s
λ

∫
R3

ϕtuu
2dx

= µδq,s

∫
R3

|u|qdx+

∫
R3

|u|2∗sdx+

∫
R3

|vn|2
∗
sdx+ on(1).

By Pµ(u) = 0, we have

(5.68) ∥(−∆)
s
2 vn∥22 =

∫
R3

|vn|2
∗
sdx+ on(1).

Passing to a subsequence, we may assume that

(5.69) lim
n→∞

∥(−∆)
s
2 vn∥22 = lim

n→∞

∫
R3

|vn|2
∗
sdx = ℓ ≥ 0.

Then, it follows from Sobolev’s inequality that ℓ ≥ Sℓ
2
2∗s , and so, either ℓ ≥ S

3
2s or ℓ = 0. In the case

ℓ ≥ S
3
2s , from Iµ(un) → cµ(a), Pµ(un) → 0, we know

cµ(a) = lim
n→∞

Iµ(un) = lim
n→∞

{
Iµ(u) +

1

2
∥vn∥2 −

1

2∗s

∫
R3

|vn|2
∗
sdx+ on(1)

}
= Iµ(u) +

s

3
ℓ ≥ Iµ(u) +

s

3
S

3
2s

(5.70)

which means that item (i) holds.
If ℓ = 0, then ∥un − u∥ = ∥vn∥ → 0, one has un → u in Ds,2(R3), and so un → u in L2∗s (R3). To

prove that un → u in Hs
rad(R3), it remains only to prove that un → u in L2(R3). Fix ψ = un − u as

a test function in (5.64), and un − u as a test function of (5.65), we deduce that

∫
R3

|(−∆)
s
2 (un − u)|2dx−

∫
R3

(αnun − αu)(un − u)dx+ λ

∫
R3

(ϕtun
un − ϕtuu)(un − u)dx

= µ

∫
R3

(|un|q−2un − |u|q−2u)(un − u)dx+

∫
R3

(|un|2
∗
s−2un − |u|2∗s−2u)(un − u)dx+ on(1).

(5.71)

Passing the limit in (5.71) as n→ ∞, we have

0 = lim
n→∞

∫
R3

(αnun − αu)(un − u)dx = lim
n→∞

α

∫
R3

(un − u)2dx,

and then un → u in L2(R3). Therefore, item (ii) holds. □
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Now, we are ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Let λ < Λ∗ := min{λ∗1, λ∗2}. By virtue of Lemmas 5.1-5.2,5.6-5.7, Propositions

5.3-5.5, there exists a bounded (PS)cµ(a)-sequence {un} ⊂ Sr,a, with cµ(a) <
s
3S

3
2s , and u ∈ Hs

rad(R3)
such that one of the alternatives of Lemma 5.9 holds. We assert that (i) of Lemma 5.9 can not occur.
Indeed, suppose by contradiction that, item (i) holds, then u is a nontrivial solution of (5.63), and
by Lemma 5.9 and Lemma 5.7, we have

Iµ(u) < cµ(a)−
s

3
S

3
2s < 0.

On the other hand, we have

Iµ(u) = Iµ(u)−
1

2s
Pµ(u)

=
2s+ 2t− 3

8
λ

∫
R3

ϕtuu
2dx+

qδq,s − 2

2q
µ

∫
R3

|u|qdx+
s

3

∫
R3

|u|2∗sdx

≥ 0,

which leads to a contradiction. Therefore, un → u strongly in Hs
rad(R3) with Iµ(u) = cµ(a), and u

is a solution of (1.5)-(1.6) for some α < 0. Moreover, u(x) > 0 in R3. In fact, we note that all the
calculations above can be repeated word by word, replacing Iµ with the functional

(5.72) I+µ (u) =
1

2

∫
R3

|(−∆)
s
2u|2dx+

λ

4

∫
R3

ϕtuu
2dx− µ

q

∫
R3

|u+|qdx− 1

2∗s

∫
R3

|u+|2∗sdx.

Then u is the critical point of I+µ restricted on the set Sr,a, it solves the equation

(5.73) (−∆)su+ λϕtuu = αu+ µ|u+|q−2u+ |u+|2∗s−2u. in R3,

Using u− = min{u, 0} as a test function in (5.73), in view of (a− b)(a−− b−) ≥ |a−− b−|2, ∀a, b ∈ R,
we conclude that

∥(−∆
s
2 )u−∥22 =

∫∫
R6

|u−(x)− u(y)|2

|x− y|3+2s
dxdy

≤ ∥(−∆
s
2 )u−∥22 + λ

∫
R3

ϕtu|u−|2dx− α

∫
R3

|u−|2dx

≤
∫∫

R6

(u(x)− u(y))((u−(x)− u−(y))

|x− y|3+2s
dxdy + λ

∫
R3

ϕtu|u−|2dx− α

∫
R3

|u−|2dx

= 0.

Thus, u− = 0 and u ≥ 0, ∀x ∈ R3, is a solution of (5.73). By the regularity result [36] we know
that u ∈ L∞(R3) ∩ C0,α(R3) for some α ∈ (0, 1). Suppose u(x0) = 0 for some x0 ∈ R3, then
(−∆)su(x0) = 0 and by the definition of (−∆)s, we have [27]:

(−∆)su(x0) = −Cs

2

∫
R3

u(x0 + y) + u(x0 − y)− 2u(x0)

|y|3+2s
dy.

Hence,
∫
R3

u(x0+y)+u(x0−y)
|y|3+2s dy = 0, which implies u ≡ 0, a contradiction. Thus, u(x) > 0,∀x ∈ R3. □

6. Proof of Theorem 2.3

In this section, we deal with the L2-supercritical case 2 + 4s
3 < q < 2∗s, when parameter µ > 0

large. In view of 3(q−2)
2s > 2, the truncated functional Iµ,τ defined in Section 4 is still unbounded

from below on Sr,a, and the truncation technique can not be applied to study problem (1.5)-(1.6).
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To overcome this difficulty, as in Section 5 we introduce the transformation (e.g. [29]):

(6.1) (θ ⋆ u)(x) := e
3θ
2 u(eθx), x ∈ RN , θ ∈ R,

and the auxiliary functional

I(u, θ) = Iµ((θ ⋆ u)) =
e2sθ

2
∥u∥2 + λe(3−2t)θ

4

∫
R3

ϕtuu
2dx− µ

q
eqδq,ssθ

∫
R3

|u|qdx

− 1

2∗s
e

3(2∗s−2)

2
θ

∫
R3

|u|2∗sdx.
(6.2)

From Lemmas 5.1, 5.2, we have the the mountain pass level value cµ(a) by

cµ(a) := inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) > 0,

where
Γa = {γ ∈ C([0, 1], Sr,a) : γ(0) ∈ Aa, γ(1) ∈ I0µ}.

In what follows, we set g(t) = µ|t|q−2t + |u|2∗s−2u, for any t ∈ R. From Propositions 5.4,5.5, we
know that there exist a (PS)cµ(a)-sequence {un} ⊂ Sr,a satisfying

Iµ(un) → cµ(a), ∥I ′µ|Sr,a(un)∥ → 0 and Pµ(un) → 0, as n→ ∞,

where

Pµ(un) =s

∫
R3

|(−∆)
s
2un|2dx+

3− 2t

4
λ

∫
R3

ϕtuu
2dx+ 3

∫
R3

G(un)dx− 3

2

∫
R3

g(un)undx.

Similar to the Section 5, setting the functional Ψ(v) : Hs
rad(R3) → R given by

Ψ(v) =
1

2

∫
R3

|v|2dx,

it follows that Sr,a = Ψ−1({a2

2 }), and by Proposition 5.12 in [33], there exists αn ∈ R such that

∥I ′µ(un)− αnΨ
′(un)∥ → 0, as n→ ∞.

That is, we have

(6.3) (−∆)sun + λϕtun
un − g(un) = αnun + on(1) in H−s

rad(R
3).

Therefore, for any φ ∈ Hs
rad(R3) , one has

(6.4)

∫
R3

(−∆)
s
2un(−∆)

s
2φdx+ λ

∫
R3

ϕtun
unφdx−

∫
R3

g(un)φdx = αn

∫
R3

unφdx+ on(1).

In the sequel, we study the asymptotical behavior of the mountain pass level value cµ(a) as
µ→ +∞, and the properties of the (PS)cµ(a)-sequence {un} ⊂ Sr,a as n→ +∞.

Lemma 6.1. The limit limµ→+∞ cµ(a) = 0 holds.

Proof. Recall Lemmas 5.1, 5.2, we see that for fixed u0 ∈ Sr,a, there exists two constants θ1, θ2
satisfying θ1 < 0 < θ2 such that u1 := θ1 ⋆ u0 ∈ A and Iµ(u2) < 0. Then we can define a path

η0 : τ ∈ [0, 1] → ((1− τ)θ1 + τθ2) ⋆ u0 ∈ Γa.

Thus, we have

cµ(a) ≤ max
t∈[0,1]

Iµ(η0(t))

≤ max
r≥0

{
r2s

2
∥u0∥2 +

r3−2t

4
λ

∫
R3

ϕtu0
u20dx− µ

q
r

3q−6
2

∫
R3

|u0|qdx
}

:= max
r≥0

h(r).
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Note that 3q−6
2 > 2s > 3− 2t, we have that limr→0+ h(r) = 0+, limr→+∞ h(r) = −∞, and so, there

exists a unique maximum point r0 > 0 such that maxr≥0 h(r) = h(r0) > 0. Hence, we distinguish
two cases: r0 ≥ 1 and 0 ≤ r0 < 1.

If r0 ≥ 1, we have by 2s+ 2t > 3, that

max
t∈[0,1]

Iµ(η0(t)) ≤ h(r0)

≤ r2s0
2
∥u0∥2 +

r2s0
4
λ

∫
R3

ϕtu0
u20dx− µ

q
r

3q−6
2

0

∫
R3

|u0|qdx

≤ max
r≥0

{
2max

{
1

2
∥u0∥2,

λ

4

∫
R3

ϕtu0
u20dx

}
r2s − µ

q
r

3q−6
2

∫
R3

|u0|qdx
}

= 2a(rmax)
2s − µb

q
(rmax)

3q−6
2

=
2a(3q − 6− 4s)

3q − 6

[
8qsa

µb(3q − 6)

] 4s
3q−6−4s

,

where

rmax =

[
8qsa

µb(3q − 6)

] 4s
3q−6−4s

, a = max

{
1

2
∥u0∥2,

λ

4

∫
R3

ϕtu0
u20dx

}
, b =

∫
R3

|u0|qdx.

Therefore, for 2 + 4s
3 < q < 2∗s, we have a positive constant C̃ independent of µ such that

γµ(a) ≤ C̃µ
− 4s

3q−6−4s → 0, as µ→ +∞.

If 0 ≤ r0 < 1, we infer to

max
t∈[0,1]

Iµ(η0(t)) ≤
r2s0
2
∥u0∥2 +

r3−2t
0

4

∫
R3

ϕtu0
u20dx− µ

q
r

3q−6
2

0

∫
R3

|u0|qdx

≤ max
r≥0

{
2max

{
1

2
∥u0∥2,

1

4

∫
R3

ϕtu0
u20dx

}
r3−2t − µ

q
r

3q−6
2

∫
R3

|u0|qdx
}

= 2a(r̃max)
3−2t − µb

q
(r̃max)

3q−6
2

=
2a(3q + 4t− 12)

3q − 6

[
4qa(3− 2t)

µb(3q − 6)

] 2(3−2t)
3q+4t−12

,

where

r̃max =

[
4qa(3− 2t)

µb(3q − 6)

] 2
3q+4t−12

.

Since 2 + 4s
3 < q < 2∗s, and 2s + 2t > 3, we can deduce that 3q + 4t − 12 > 0, then there exists a

positive constant C1 independent of µ such that

cµ(a) ≤ C1µ
− 2(3−2t)

3q+4t−12 → 0, as µ→ +∞.

This completes the proof. □

Lemma 6.2. There exists a constant C = C(q, s) > 0 such that

lim sup
n→∞

∫
R3

G(un)dx ≤ Ccµ(a),

lim sup
n→∞

∫
R3

g(un)undx ≤ Ccµ(a),
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and

lim sup
n→∞

∫
R3

ϕtun
u2ndx ≤ Ccµ(a), lim sup

n→∞

∫
R3

|(−∆)
s
2un|2dx ≤ Ccµ(a).

Proof. Since Iµ(un) → cµ(a) and Pµ(un) → 0 as n→ ∞, we have

3cµ(a) + on(1) = 3Iµ(un) + Pµ(un)

=
3 + 2s

2

∫
R3

|(−∆)
s
2un|2dx+ λ

3− t

2

∫
R3

ϕtun
u2ndx− 3

2

∫
R3

g(un)undx

=
3 + 2s

2

(
2cµ(a)−

λ

2

∫
R3

ϕtun
u2ndx+ 2

∫
R3

G(un)dx+ on(1)

)
+ λ

3− t

2

∫
R3

ϕtun
u2ndx− 3

2

∫
R3

g(un)undx

= (3 + 2s)

[
cµ(a) +

∫
R3

G(un)dx+ on(1)

]
− 3

2

∫
R3

g(un)undx− λ
2t+ 2s− 3

4

∫
R3

ϕtun
u2ndx.

(6.5)

Hence,

2scµ(a) + on(1) = λ
2t+ 2s− 3

4

∫
R3

ϕunu
2
ndx+

3

2

∫
R3

g(un)undx− (3 + 2s)

∫
R3

G(un)dx

≥ 3q

2

∫
R3

G(un)dx− (3 + 2s)

∫
R3

G(un)dx

=
3q − 2(3 + 2s)

2

∫
R3

G(un)dx,

which implies that

(6.6) lim sup
n→∞

∫
R3

G(un)dx ≤ 4s

3q − 2(3 + 2s)
cµ(a) ≤ Ccµ(a)

and then

(6.7) lim sup
n→∞

∫
R3

g(un)undx ≤ Ccµ(a).

Then, from (6.5)-(6.7), we have

lim sup
n→∞

{
3 + 2s

2

∫
R3

|(−∆)
s
2un|2dx+ λ

3− t

2

∫
R3

ϕunu
2
ndx

}
= lim sup

n→∞

{
3cµ(a) +

3

2

∫
R3

g(un)undx+ on(1)

}
≤ Ccµ(a).

(6.8)

Consequently, the proof is completed. □

Lemma 6.3. There exists µ∗1 := µ∗1(a) > 0 such that u ̸≡ 0 for all µ ≥ µ∗1.

Proof. From Lemma 5.6, we know that {un} is bounded in Hs
rad(R3), and by Lemma 3.6, up to a

subsequence, there exists u ∈ Hs
rad(R3) such that un ⇀ u weakly in Hs

rad(R3), un → u strongly in

Lt(R3), for t ∈ (2, 2∗s), un → u a.e. on R3. In view of 2 + 4s
3 < q < 2∗s, and Lemmas 3.3, 3.6, then

(6.9) lim
n→∞

∫
R3

|un|qdx =

∫
R3

|u|qdx, lim
n→∞

∫
R3

ϕtun
u2ndx =

∫
R3

ϕtuu
2dx.
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Suppose by contradiction that, u ≡ 0. Then, by (6.9) and Pµ(un) = on(1), we deduce as

on(1) = ∥(−∆)
s
2un∥22 +

3− 2t

4s
λ

∫
R3

ϕtun
u2ndx− µδq,s

∫
R3

|un|qdx−
∫
R3

|un|2
∗
sdx

= ∥(−∆)
s
2un∥22 −

∫
R3

|un|2
∗
sdx+ on(1).

Without loss of generality, we may assume that∫
R3

|(−∆)
s
2un|2dx→ ℓ, and

∫
R3

|un|2
∗
sdx→ ℓ,

as n→ ∞. By Sobolev’s inequality we get ℓ ≥ Sℓ
2
2∗s , and so, either ℓ ≥ S

3
2s or ℓ = 0.

If ℓ ≥ S
3
2s , then from Iµ(un) → cµ(a), Pµ(un) → 0, we have

cµ(a) + on(1)

= Iµ(un) = Iµ(un)−
1

s2∗s
Pµ(un)

=
s

3
∥(−∆)

s
2un∥22 + λ

s2∗s + 2t− 3

4s2∗s

∫
R3

ϕtun
u2ndx− µ

2∗s − qδq,s
q2∗s

∫
R3

|un|qdx+ on(1)

=
s

3
ℓ+ on(1),

which implies that cµ(a) = s
3ℓ, and so, cµ(a) ≥ s

3S
3
2s , but this is impossible since by Lemma 6.1,

there exists some µ∗1 := µ∗1(a) > 0 such that cµ(a) <
s
3S

3
2s as µ > µ∗1.

If ℓ = 0, then we have ∥(−∆)
s
2un∥22 → 0, thus Iµ(un) → 0, which is absurd since cµ(a) > 0.

Therefore, u ̸≡ 0. □

Lemma 6.4. {αn} is bounded in R, and lim supn→∞ |αn| ≤ C
a2
cµ(a) has the following estimation:

αn =
1

a2

[
λ
2t+ 4s− 3

4s

∫
R3

ϕtun
u2ndx+

q(3− 2s)− 6

2qs
µ

∫
R3

|un|qdx
]
+ on(1).

Moreover, there exists some µ∗2 := µ∗2(a) > 0 such that limn→+∞ αn = α < 0, if µ > µ∗2 large.

Proof. By (6.3) and the fact that un ∈ Sr,a, we have∫
R3

|(−∆)
s
2un|2dx+ λ

∫
R3

ϕtun
u2ndx−

∫
R3

g(un)undx = αn

∫
R3

|un|2dx+ on(1)

= αna
2 + on(1).

It indicates that

αn =
1

a2

[∫
R3

|(−∆)
s
2un|2dx+ λ

∫
R3

ϕtun
|un|2dx−

∫
R3

g(un)undx

]
+ on(1).

By Lemma 5.6 we have the boundedness of {un} in Hs
rad(R3), and so, {αn} is bounded in R. By

Lemma 6.2 we know that lim supn→∞ |αn| ≤ C
a2
cµ(a). Moreover, together with Pµ(un) → 0 as

n→ ∞, we derive as

αn =
1

a2

[∫
R3

|(−∆)
s
2un|2dx+ λ

∫
R3

ϕtun
|un|2dx−

∫
R3

g(un)undx− 1

s
Pµ(un)

]
+ on(1)

=
1

a2

[
λ
2t+ 4s− 3

4s

∫
R3

ϕtun
u2ndx+

q(3− 2s)− 6

2qs
µ

∫
R3

|un|qdx
]
+ on(1).
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By (6.9) and similar arguments to that of (4.32)-(4.35), we see that there exists µ∗2 := µ∗2(a) > 0,
such that

α = lim
n→∞

αn

= lim
n→∞

1

a2

{
λ
2t+ 4s− 3

4s

∫
R3

ϕtun
u2ndx+

q(3− 2s)− 6

2qs
µ

∫
R3

|un|qdx+ on(1)

}
=

1

a2

[
λ
2t+ 4s− 3

4s

∫
R3

ϕtuu
2dx+

q(3− 2s)− 6

2qs
µ

∫
R3

|u|qdx
]

< 0,

(6.10)

for µ > µ∗2 large. □

Subsequently, using the concentration-compactness principle, we derive the following lemma,
whose proof is similar to that of Lemma 4.3 in Section 5, we omit its details here.

Lemma 6.5. For µ > µ∗ := max{µ∗1, µ∗2}, there holds
∫
R3 |un|2

∗
sdx→

∫
R3 |u|2

∗
sdx.

With the help of the above technical lemmas, we can prove Theorem2.3 as follows.

Proof of Theorem 2.3. Let µ > µ∗ := max{µ∗1, µ∗2}. From Lemmas 5.1, 5.2, the functional Iµ satisfies
the Mountain pass geometry, from Propositions 5.4,5.5, there exist a (PS)cµ(a)-sequence {un} ⊂ Sr,a
satisfying (6.3), (6.4), which is bounded inHs

rad(R3), and there exists u ∈ Hs
rad(R3) such that un ⇀ u

weakly in Hs
rad(R3), un → u strongly in Lp(R3), for p ∈ (2, 2∗s). Moreover, by Lemmas 6.1-6.4, we

have that αn → α < 0 as n → +∞. By the weak convergence of un ⇀ u in Hs
rad(R3), (6.3) and

(6.4), we have that u solves the equation

(6.11) (−∆)su+ ϕtuu− µ|u|q−2u− |u|2∗s−2u = αu.

Therefore, from (6.9)-(6.11) and Lemma 6.5, it follows that

∥(−∆)
s
2u∥22 + λ

∫
R3

ϕtuu
2dx− α∥u∥22 = µ∥u∥qq +

∫
R3

|u|2∗sdx

= lim
n→∞

[
µ∥un∥qq +

∫
R3

|un|2
∗
sdx

]
= lim

n→∞
[∥(−∆)

s
2un∥22 + λ

∫
R3

ϕtun
u2ndx− αn∥un∥22]

= lim
n→∞

[∥(−∆)
s
2un∥22 − αn∥un∥22] + λ

∫
R3

ϕtuu
2dx.

Since α < 0, as in the proof of Lemma 4.3, we can derive as

lim
n→∞

∥(−∆)
s
2un∥22 = ∥(−∆)

s
2u∥22 and lim

n→∞
∥un∥22 = ∥u∥22.

Therefore, un → u in Hs
rad(R3) and ∥u∥2 = a. This completes the proof. □
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