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Abstract
In this paper, we study the fractional critical Schrodinger—Poisson system

(=AY u + rpu = ou + plu|?2u + |u|2§k’2u, in R3,
(—A)'¢p =u?, in IR3,

having prescribed mass

/ |u|2dx =a?,
R3

where s, ¢ € (0, 1) satisfy 25 + 2t > 3,9 € (2,2}),a > O and A, u > 0 parameters and
o € Ris an undetermined parameter. For this problem, under the L>-subcritical perturbation
wlul|? 2y, q € 2,2+ %S), we derive the existence of multiple normalized solutions by means
of the truncation technique, concentration-compactness principle and the genus theory. In
the L2—supercritical perturbation w|u |92y, ge R+ %, 2¥), we prove two different results
of normalized solutions when parameters A, i satisfy different assumptions, by applying
the constrained variational methods and the mountain pass theorem. Our results extend and
improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15-30, 2016); and of
Teng (J Differ EqQu261:3061-3106, 2016), since we are concerned with normalized solutions.
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1 Introduction

In the last decade, the following time-dependent fractional Schrodinger—Poisson system

O _ APV 4 rpW v R3
1871'_(_ ¢ _f(x7| |)7 X € ) (11)
(—=A)'¢ = |V|?, x e R3,

has attracted much attention, where ¥ : R x R3 — C, 5,1 € (0, 1), A € R. Itis well-known
that, the first equation in (1.1) was used by Laskin (see [17, 18]) to extend the Feynman path
integral, from Brownian-like to Lévy-like quantum mechanical paths. This class of fractional
Schrodinger equations with a repulsive nonlocal Coulombic potential can be approximated
by the Hartree—Fock equations to describe a quantum mechanical system of many particles;
see, for example, Cho et al. [7], Lieb and Loss [20], Longhi [21], Molica Bisci [26], Di Nezza
et al. [27] for more applied backgrounds on the fractional Laplacian.

When we look for standing wave solutions to (1.1), namely to solutions of the form
W(r, x) = (7 @Tu(x), ¢ (x)), a € R, then the function (u(x), ¢ (x)) solves the equation

(1.2)

(=AY u + rpu = au + f(x,u), xeR3,
(—A)'¢ =u?, x € R3.

Here (—A)* is a nonlocal operator defined by

u(x) —u(y) 3
3mdy’ XGR,SG(O,I),

(=A)u(x) = Cy PV. /
R

and P.V. stands for the Cauchy principal value on the integral, and Cj is a suitable normal-
ization constant.

We note that, when a € R is a fixed real number, there was a lot of attention in recent
years on the system (1.2) for the existence and multiplicity of ground state solutions, bound
state solutions and concentrating solutions, see for examples [34, 36, 37, 39] and references
therein. Especially, Zhang et al. [39] considered the existence and asymptotical behaviors of
positive solutions as A — 07, for the fractional Schrodinger—Poisson system

(—A)Yu + rpu = g(u), x € R3,
(=AY p = au?, x € R3,

where A > 0 and g may be subcritical or critical growth satisfying the Berestycki—Lions
conditions. In [31], Teng studied the existence of a nontrivial ground state solution for the
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nonlinear fractional Schrodinger—Poisson system with critical Sobolev exponent

(=AY u+ V@)u+ du = plul? 'y + Iulzf’zu, x € R3,
(—A)'§ =u?, x e B,

where 1 € R is a parameter, | < g < 2% —1, s,t € (0, 1) with 25 + 2 > 3. The potential
V satisfies some suitable hypotheses. By the monotonicity trick, concentration-compactness
principe and a global compactness Lemma, the author establishes the existence of ground
state solutions. Formally, system (1.1) with s = ¢ = 1 can be regarded as the following
classical Schrodinger—Poisson system

—Au+ rpu = f(x,u), in R3,
—A¢ =u?, in R3,

which appears in semiconductor theory [26] and also describes the interaction of a charged
particle with the electrostatic field in quantum mechanics. The literature on the Schrédinger—
Poisson system in presence of a pure power nonlinearity is very rich, we refer to [34, 36, 38]
and references therein.

Alternatively, from a physical point of view, it is interesting to find solutions of (1.2) with
prescribed L-norms, « appearing as Lagrange multiplier. Solutions of this type are often
referred to as normalized solutions. The occurrence of the L2-constraint renders several
methods developed to deal with variational problems without constraints useless, and the
L2-constraint induces a new critical exponent, the L?-critical exponent given by

4s

3

and the number g can keep the mass invariant by the law of conservation of mass. Precisely
for this reason, 2 + %“ is called L2-critical exponent or mass critical exponent, which is the
threshold exponent for many dynamical properties such as global existence, blow-up, stability
or instability of ground states. In particular, it strongly influences the geometrical structure of
the corresponding functional. Meanwhile, the appearance of the L?-constraint makes some
classical methods, used to prove the boundedness of any Palais—Smale sequence for the
unconstrained problem, difficult to implement. In [22], Li and Teng proved the existence of
normalized solutions to the following fractional Schrodinger—Poisson system:

q =2+

(=A)Yu+ou=2xru+ f), inR3,
(—0)'§p =u?, in R?, (1.3)

/ lul?dx = a2,
R3

where s € (0,1),25s +2t >3, € Rand f € CI(R, R) satisfies some general conditions
which contain the case f(u) ~ |ul9"2u with g € (2E2 2 4 45) U 2+ 4,2)), e,
the nonlinearity f is L2-mass subcritical or L?-mass supercritical growth, but is Sobolev
subcritical growth. In [37], Yang et al. showed the existence of infinitely many solutions
(u, 1) to (1.3) with subcritical nonlinearity )2y, by using the cohomological index
theory.

We note that, when s = ¢t = 1, problem (1.3), are related to the the following equation

—Au+ru—y(x|7 s ulPu = alu|?"%u, inR3,

1.4
flulzdx:cz, ueHl(R3). (1.4)
R3
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Recently, Jeanjean and Trung Le [15] studied the existence of normalized solutions for (1.4)
wheny > 0anda > 0, both in the Sobolev subcritical case p € (10/3, 6) and in the Sobolev
critical case p = 6, they showed that there exists a ¢; > 0 such that, for any ¢ € (0, ¢y),
Eq. (1.4) admits two solutions « and u which can be characterized respectively as a local
minima and as a mountain pass critical point of the associated energy functional restricted to
the norm constraint. While in the case y < 0,a > 0 and p = 6 the authors showed that (1.4)
does not admit positive solutions. Bellazzini et al. [4] proved that for ¢ > 0 sufficiently small,
there exists a critical point which minimizes with prescribed L?-norms. In [14], Jeanjean and
Luo studied the existence of minimizers for with L?-norm for (1.4), and they expressed a
threshold value of ¢ > 0 separating existence and nonexistence of minimizers. In [32], Wang
and Qian established the existence of ground state and infinitely many radial solutions to
(1.4) with a|u|P~?u replaced by a general subcritical nonlinearity af («), by constructing a
particular bounded Palais—Smale sequence when y < 0, a > 0.1In[23], Liand Zhang studied
the existence of positive normalized ground state solutions for a class of Schrodinger-Bopp-
Podolsky system. For more results on the existence and no-existence of normalized solutions
of Schrodinger—Poisson systems, we refer to [2, 3, 5, 6, 12, 14, 15, 24, 35, 37] and references
therein.

After the above bibliography review we have found only two papers [22, 37] considering
the normalized solutions for the fractional Schrodinger—Poisson system by the prescribed
mass approaches with the nonlinearity f(«), being Sobolev subcritical growth.

A natural question arises: How to obtain solutions to system (1.3) in presence of the
nonlinear term f(u) = wlul?2u + |u|2§ 2y, combining the Sobolev critical term with a
subcritical perturbation?

The main contribution of this paper is to give an affirmative answer to this question and
fill this gap. To be specific, in the present paper we aim to study the following fractional
Schrodinger—Poisson system

(=AY u + rpu = au + plul?2u + |u|2f’2u, in R3, (15)
(=A)'¢ =u?, in R?, '
having prescribed L2-norm
/ lul*dx = a2, (1.6)
R3

where s, t € (0, 1) satisfy 25 +2¢ > 3, ¢ € (2,2}) and ¢ € Ris an undetermined parameter,
., A > 0 are parameters. For this purpose, applying the reduction argument introduced in
[39], system (1.5) is equivalent to the following single equation

(=AY u + A u = au + plul?u + [u> 2u, x e R, (1.7)

where

()|’ rG -2
t _ .
¢u(x) = (¢ /%3 mdy, and Ct = m

We shall look for solutions to (1.5)—(1.6), as a critical point of the action functional

1 s 9 A y2a 1 *
I,(u) = = —A)Zuldx + = "u|?d ——/ id ——/ Zdx,
1 (u) 2/]1@3'( )2ul x+4/R3¢u|u| *= RBIul b R3|u| x

restricted on the set

Sg:{ueHx(I[@): / |u|2dx:a2},
R3
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with o being the Lagrange multipliers, Clearly, to each critical point u, € S, of I,]|s,,
corresponds a Lagrange multiplier « € R such that (u,, o) solves (1.7). In particular, if
U, € S, is a minimizer of problem

m(a) = inf I, (u),
uesS,

then there exists « € R as a Lagrange multiplier and then (u,, «) is a weak solution of
(1.7). As far as we know, there is no result about the existence of normalized solutions for
Schrodinger—Poisson system with a critical term in the current literature. For this aim, we
shall focus our attention on the existence, asymptotic and multiplicity of normalized solutions
for problem (1.5)—(1.6).

2 The main results

In this section we formulate the main results. We first deal with the existence of multiple
normalized ground state solutions in the L?-subcritical case: g € (2,2 + 4%). Secondly, we
are concerned with the existence and asymptotic behavior of positive normalized ground state
solutions of Schrédinger—Poisson system (1.7) in the L?-supercritical case: g € (2+ 4; ,29).
To state the main results, for 6, s = 3(g —2)/2qs, we introduce the following constants:

98q.s=2  3Q2¥—q)

D=2 %2 §n0iD. 2.1
3[(2§*2)*q(1*5q.x)]
D, :=D(s,0)"'s &> | (22)

where

—2)s

3 - 2t)kF,> ;2*+2: 3

F (2.3)

D(s,t) := <
and I'; is given in (3.3).
The first result is concerned with the multiplicity of normalized solutions for the L>-
subcritical perturbation, which can be formulated as

Theorem 2.1 Let u,A,a > 0, and g € (2,2 + %). Then, for a given k € N, there exists
B > 0 independent of k and i}, > 0 large, such that problem (1.5)~(1.6) possesses at least
k couples (uj, o) € H’ R xR of weak solutions for u > uj and

1
ae (o, (’3)"“3"‘“> (2.4)
m

2, aj <Oforall j=1,... k

with [ps lujl*dx = a

The second result of this paper is concerned with the existence and asymptotical behavior
of normalized solutions for the L2-supercritical perturbation when the parameters A, & > 0
are suitably small.

Theorem 2.2 Letg € (2 + 4 3 , 2%), assume that ., a > 0 satisfy the following inequality

(g=2)214252% —4)

qu,smax{a‘f“*%),a S22 }<min{D1,D2}, (2.5)
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where 8, 5 = 3(q — 2)/2qs. Then, there exists A* > 0 such that for 0 < A < A¥, problem
(1.5)—(1.6) possesses a positive normalized ground state solution uy € H*(R3) for some
a < 0.

Finally, we present an existence result of normalized solutions under the L?-supercritical
perturbation, when parameter ;& > 0 is large.

Theorem2.3 If 2 + % < q < 2}, there exists p* = p*(a) > 0 large, such that as
w > u*, problem (1.5)—(1.6) possesses a couple (ug, o) € H*(R3) x R of weak solutions
with [ps lug|?dx = a% a < 0.

Remark 2.1 (i) Theorems 2.1-2.3 improve and complement the main results in [31, 39] in
the sense that, we are concerned with the normalized solutions.

(i1) Our studies improve and fill in gaps of the main works of [22, 30, 37], since we consider
the existence of normalized solutions to (1.5)—(1.6) with Sobolev critical growth.

2.1 Remarks on the proofs

We give some comments on the proof for the main results above. Since the critical terms
|u |2~t “2uis Lz-supercritical, the functional /,, is always unbounded from below on S, and this
makes it difficulty to deal with existence of normalized solutions on the L?- constraint. One
of the main difficulties that one has to face in such context is the analysis of the convergence
of constrained Palais—Smale sequences: In fact, the critical growth term in the equation
makes the bounded (PS) sequences possibly not convergent; moreover, the Sobolev critical
term |u|% ~2u and nonlocal convolution term *¢!u, makes it more complicated to estimate
the critical value of mountain pass, and one has to consider how the interaction between the
nonlocal term and the nonlinear term, and the energy balance between these competing terms
needs to be controlled through moderate adjustments of parameter A > 0. Another difficulty
is that sequences of approximated Lagrange multipliers have to be controlled, since « is not
prescribed; and moreover, weak limits of Palais—Smale sequences could leave the constraint,
since the embeddings H* (R?) < L%(R3) and also H} (R3) — LZ(R?) are not compact.

To overcome these difficulties, we employ Jeanjean’s theory [13] by showing that the
mountain pass geometry of /,|g, allows to construct a Palais—Smale sequence of func-
tions satisfying the Pohozaev identity. This gives boundedness, which is the first step in
proving strong H*-convergence. As naturally expected, the presence of the Sobolev critical
term in (1.5) further complicates the study of the convergence of Palais—Smale sequences.
To overcome the loss of compactness caused by the critical growth, we shall employ the
concentration-compactness principle, mountain pass theorem and energy estimation to obtain
the existence of normalized ground states of (1.5), by showing that, suitably combining some
of the main ideas from [28, 29], compactness can be restored in the present setting.

Finally, let us sketch the ideas and methods used along this paper to obtain our main results.
For the L>-subcritical perturbation: ¢ € (2,2 + %), it is difficult to get the boundedness
of the (PS) sequence by the idea of [13]. To get over this difficulty, we use the truncation
technique; to restore the loss of compactness of the (PS) sequence caused by the critical
growth, we apply for the concentration-compactness principle; and to obtain the multiplicity
of normalized solutions of (1.5)—(1.6), we employ the genus theory. For the L2-supercritical
perturbation: ¢ € (2 + 43—5, 2¥), we use the Pohozaev manifold and mountain pass theorem
to prove the existence of positive ground state solutions for system (1.5)—(1.6) when p > 0
small. While if the parameter n > 0 is large, we employ a fiber map and the concentration-

@ Springer



Normalized solutions for a fractional Schrodinger—Poisson system... Page70f48 142

compactness principle to prove that the (PS) sequence is strongly convergent, to obtain a
normalized solution of (1.5)—(1.6).

2.2 Paper outline

This paper is organized as follows.

e Section 2 provides the main results, and Sect.3 presents some preliminary results that
will be used frequently in the sequel.

e Section4 presents the multiplicity of normalized ground state solutions for system (1.5)—
(1.6) whengq € (2,2 + 475), and finish the proof of Theorem 2.1.

e Section5 proves the existence of normalized positive ground state solutions for problem
(1.5)—(1.6) when g € (2 + ‘g ,2¥), and Theorem 2.2 is proved if , A > 0 are suitably
small.

e In Sect. 6 we give another existence result for problem (1.5)—(1.6) withg € 2+ %S, 2%,
when the parameter © > 0 is large, and finishes the proof of Theorem 2.3.

Notations. In the sequel of this paper, we denote by C, C; > 0 different positive constants
whose values may vary from line to line and are not essential to the problem. We denote
by L? = LP(R3) with 1 < p < oo the Lebesgue space with the standard norm lull, =

(Jg lulPdi) /7

3 Preliminary stuff

In this section, we first give the functional space setting, and sketch the fractional order
Sobolev spaces [27]. We recall that, for any s € (0, 1), the nature functions space associated
with (—A)* is H := H*(R3) which is a Hilbert space equipped with the inner product and
norm, respectively given by

(u, v) = fz((—A)%u(—A)%quuv)dx, lull? = (u, u).
R‘

The homogeneous fractional Sobolev space D*2(IR3) is defined by

_ 2
DS 2(R3) _ {M c L2 (R’;) // |M()C) “(y)| dx dy < +OO},

|3+2s

a completion of C§° (IR3) under the norm

Ju(x) — u(y)?
u|” = |lull%, —————=—dxdy,
e 2= llael Gy s, = / /R R el

where 2} = 6/(3 — 2s) is the critical exponent. From Proposition 3.4 and 3.6 in [27] we

have
_ 2
el = 1=y bl = [ O dxa

The best fractional Sobolev constant S is defined as

A)2ul3
oo up e

—_—. 3.1
ueDS2(R3),u#0 (f |u|2*dx)2*
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The work space H, d(R3) is defined by
H, (R3) = {u c H* (R3) : u is radially decreasing} .
Let H = H x R with the scalar product (-, )y + (-, -)r, and the corresponding norm

G = 1l + 1T
The following two inequalities play an important role in the proof of our main results.

Proposition 3.1 (Hardy-Littlewood—Sobolev inequality [20]) Letl,r > 1 and 0 < u < N
be such that % + % + % =2,f e L"(R) and h € L'(RN). Then there exists a constant
C(N, u,r,l) > 0 such that

’/RN /RN JOhW|x = yI™ dxdy| < C(N, p, r, DI flI- 1Al

We recall the fractional Gagliardo-Nirenberg inequality.

Lemma3.2 ([11]) Let 0 < s < 1, and p € (2,2%). Then there exists a constant C(p, s) =
Sp,s
§™77" > 0 such that

s Sp.s 1-6,.¢
lulh < Cp, (=D Tl 2P 277 vu e HY(RY), (3.2)
where §, s = 3(p —2)/2ps.

Lemma3.3 (Lemma 5.1 [9)) If u,—u in H?

a

t 2 2
/R? Gy, Updx — /]1;{3 ¢uu-dx,

d (R3), then

and
/ O uppdx — / dlupdx, Vo € HS, ,(RY).
R3 " R3
From Proposition 3.1, with [ = r = ﬁ, then Hardy—Littlewood—Sobolev inequality

implies that:
1
/ ¢ u’dx :/ wu’ ) uldx < Tyllull*y, . (3.3)
R3 R3 \ |x |32 k=)

It is easy to enumerate that

<2,if 2<q<gq;
qsq,x =2,if ¢ =q;
>2,if g <q <2},

where ¢ :=2 + %S is the L?-critical exponent.
Now, we introduce the Pohozaev mainfold associated to (1.7), which can be derived from

[31].

Proposition 3.4 Let u € H*(R3) be a weak solution of (1.7), then u satisfies the equality

32 2% +3 3 3 3 .
lul® + Af ¢;u2dx=—||u||§+—“f |u|qu+—/ | dx.
2 4 R3 2 q R3 2? R3
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Lemma3.5 Letu € H*(R?) be a weak solution of (1.7), then we can construct the following
Pohozaev manifold

Pu={ueS,:Pyu)=0},

where
, 32t {2 o
Py(u) =slull” + ——A pudx —sudy s lu|?dx — s lu|*sdx
4 R3 R3 R3

Proof From Proposition 3.4, we know that u satisfies the Phohzaev identity as follows

3 —2s 2t +3 3a 3
flull + A/ phutdx = —||ul3 + —“/ |u|?dx
2 4 R3 2 q Jr3

3 2%
— sdx. 34
+2§ - |u|™dx (3.4)
Moreover, since u is the weak solution of system (1.7), we have
llull® + A/ oLuldx = allul} + /L/ lul?dx + / |u| dx. (3.5)
R3 R3 R3
Combining with (3.4) and (3.5), we get
sull? + / ¢’u2dx—su8qY/ Iulqu—i-s/ lu|> dx,
which finishes the proof. O

Finally, we state the following well-known embedding result.

Lemma3.6 ([10]). Let N > 2. The embedding H d(RN) — LP(RN) is compact for any
2<p<2f

4 Proof of Theorem 2.1

In this section, we aim to show the multiplicity of normalized solutions to (1.5)—(1.6). To
begin with, we recall the definition of a genus. Let X be a Banach space and let A be a subset
of X. The set A is said to be symmetric if # € A implies that —u € A. We denote the set

¥ :={A C X\ {0} : Aisclosed and symmetric with respect to the origin}.

For A € X, define

0, if A=49,
y(A) = { inf{k e N:Janodd ¢ € C(A, Rk \ {OD},
00, if no such odd map,

andthat ¥y = {A € X : y(A) > k}.
In order to overcome the loss of compactness of the (PS) sequences, we need to apply for
the following concentration-compactness principle.

Lemma 4.1 ([40]) Let {u,,} be a bounded sequence in D*2(R?) converging weakly and a.e. to
some u € D*2(R3). We have that |(—A)2 u,|*—w and |uy, |2§—\§ in the sense of measures.
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Then, there exist some at most a countable set J, a family of points {z;}jej C R3, and
families of positive numbers {{;} jej and {w;} ey such that

o= |[(=N)2uf + ) w;s,;. .1
jeJ
¢=ul®+) g8, (42)
jelJ
and
Z
wj =S¢, (4.3)

where 8 is the Dirac-mass of mass I concentrated at zj € R3.
Lemma4.2 ([40)) Let {u,} C D52(R3) be a sequence in Lemma 4.1 and define that
R—00 p—o0 R—0o0 p—soo

Woo 1= lim limsup/ (=) 2uydx, oo = Jim hmsup/ )= dx.
[x|=R [x|>R

Then it follows that

2

W0 = So . 4.4)
limsup/ |(—A)%un|2dx:/ dw + wso (4.5)
n—oo JR3 R3
and
limsup/ |un|> dx =[ dt + oo (4.6)
n—o00 JR3 R3

Foru € S, 4, in view of Lemma 3.2, and the Sobolev inequality, one has that

1 s 92 A 2 M 1 2%
L) = 7/ I(=A)2u| dx+Z/R}¢;u a’x—E/R} |14|‘151)c—2—?/]RS |u|% dx

8y 1 % s o
= =8l — Lati = ¢, - a) il - s~ Fj—aytuy ¢
-2 q 2%

= g(I(=A)Zull),

where

1 | R e
g(r)=-r* - ﬁaq(lf‘gw)cq,srq‘s‘l's - —*S77r2s.
2 q %

Recalling that 2 < ¢ < 2 + 434, we get that ¢, s < 2, and there exists 8 > 0 such that,
if pa9=%.s) < B, the function g attains its positive local maximum. More precisely, there
exist two constants 0 < R; < Ry < +00, such that

g(r) >0, Vr € (R1, R2);  g(r) <0, Vr € (0, R) U (R, +00).
Let 7 : RT — [0, 1] be a nonincreasing and C* function satisfying

1, if r € [0, Ry],
)= { 0, if r € [Ra, +00).
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In the sequel, let us consider the truncated functional

1 s A
Iyc(u) = 7/ [(—A)2ul>dx + f/ ¢;u2dx — ﬁ/ |u|?dx
2 Jrs 4 Jr3 q Jr3

(=) ull2)

" |u|2jdx.
2s R3

For u € S, 4, again by Lemma 3.2, and the Sobolev inequality, it is easy to see that
1 ES IJ' — . EX 3, N
@) 27 (=) 2ully = Za?1 =00 Co (= 0) Ful™

t(|(=A)2ull) 2% oo
- ST/ uly
s

=F((=A) 2u),
where

~ 1 1% _5 . ) t(r) _ﬁ 5
g(r) = Erz — =a117%)C, p9Ps — T3 STk,

S

1
Then, by the definition of (), when a € (0, (g) 7(1-3.5)) "we have

g(r) <0, Vre(0,Ry); g(r) >0, Vr € (Ry,+00).

1
In what follows, we always assume that a € (0, (g)‘f (1-%.5)) Without loss of generality, in
the sequel, we may assume that

L2 ls% $ >0, Vrelo,R] (4.8)
—r°—=— res , Vr , .
20 T o = !

s

and
Ry < S%. (4.9)

Lemma 4.3 The functional 1, ; has the following characteristics:
(i) I € C'(HS,,(RY),R);
(ii) I,z is coercive and bounded from below on S, ,. Moreover, if 1, (u) < 0, then

I(=2)3ully < Ry and I - (u) = I (u);
(i) Iy ¢ls,, satisfies the (PS). condition for all ¢ < 0, provided that p > wi > 0 large.

Proof We can obtain conclusions (i) and (i7) by a standard argument. To prove item (iii),
let {u,} be a (PS), sequence of I, ; restricted to S, , with ¢ < 0. By (ii), we see that
||(—A)%un||2 < Ry for large n, and thus {u,} is a (P §). sequence of /s, , with ¢ < 0;i.e.,
I(u,) - ¢ < 0 and ””/Sra(””)” — 0 asn — oo. Then, {u,} is bounded in Hfad(JR3).
Therefore, up to a subsequehce, there exists u € Hfa d (R3) such that u,, —u in Hfa d (R3) and
u, — uin L? (R3)for2 < p < 2¥andu,(x) - u(x)ae. onR3. From?2 < q < 2+% < 2%
and Lemma 3.3, we infer to

lim |u”|‘1dx:/ lul?dx, / o u,%dx—)/ ¢,’4u2dx.
n—-o0 Jp3 R3 RS " R3
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Moreover, we have that u % 0. Indeed, assume by contradiction that, u = 0, then
lim, s 0o fR3 lun|9dx = 0. From (4.8) and the definition of /,, -, we infer that

0>c=1lim I, (u,) = lim I,(u,)
n—oo n—oo

1 s A
= lim f/ |(—A)7un|2dx+ f/ ¢,t4 u%dx
R3 4 R3 n

n—oo | 2

1 ¥
2t = o [
q Jr3 2% Jr3

. 1 s 2 1 2z s P
> lim _E”(_A)zun”z - 2?5 T(=A)2unlly" — ;/Rs |un|qu]

n—oo

S

7.
>— — lim lu,|?dx =0,
q n—>o° Jp3

which is absurd. On the other hand, setting the function ®(v) : H; , R >R by

1
Q@) = f/ lv|?dx,
2 ]R3

it follows that S, = @1 ({%}). Then, by Proposition 5.12 in [33], there exists «,, € R such
that

11}, (un) — 02 ® (up)ll = 0, as n — oc.
Hence, we have that
(=) + @ty — plitn|? 2t — | ™ ity = @ity + 0y (1) in H 5 ([RY), (4.10)

where H;fi (R3) is the dual space of H® (R3). Thus, we have for ¢ € H (R3), that

r rad

/ (—A) 2y (—A) T pdx + / O, unpdx — f lun |7 unpdx — f | | "2unpdx
R3 R3 R3 R3 (4 11)

= an/ tndx + 0, (1),
R3
and if we choose ¢ = u,, we get
||<—A)%un||§+x/ o, uldx _M/ 0, [9dx _/ [ dx
R3 R3 R3

=an/3u§dx+on(1). (4.12)
R

From (4.12), and the boundedness of {u,} in D*-2(R?), we can deduce that {c,} is bounded
in R. Then we can assume that, up to a subsequence, o, — « for some o € R. Then, by
(4.11), we can derive that u solves the following equation

(=AY u + pyu — plu|9™2u — lul®> " 2u = au. (4.13)

Indeed, for any ¢ € H,,(R?), it follows by u,—u in HS, ,(R?) and o, — «, that
/ (=A) Uy (—A) 2 pdx — / (=A)Iu(—A)2pdx; and a,,f ungdx — a/ ugdx.
R3 R3 R3 R3
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2
as n — o0. Since {|un|% 2u,} is bounded in LZT(R3), {|un|? 2u,} is bounded in

%
La=T(R3), and u, (x) — u(x) a.e. on R3, we obtain that

%

2 2
it | 2w =% 20 in LET(R?), and |u,|9 2up—[ul9"2u in LF-0 (R?),

and so,

/ |u,,|2j_2u,,<pdx—>/ |u|2§_2u(pdx and/ |un|q_2u,,<pdx—>/ |u|q_2u<pdx,
R3 R3 R3 R3

as n — 00. Recall from Lemma 3.3 that
/R} by, Unpdx — /M puugpdx, Yo € HS (R).

Thus, we have

/ (—A)%u(—A)%q)dx—i-/ ¢Lugodx—uf |u|q_2u<pdx—/ |u|2§_2u<pdx
R3 R3 R3 R3

4.14)
:a/ updx.
R3

Therefore, u solves equation (4.13).
In the sequel, by the concentration-compactness principle, we can prove that

/|un|2§‘dx—>/ lu|% dx. (4.15)
R3 R3

In fact, since ||(—A) 3 unl|l2 < Ry for n large enough, by Lemma 4.1, there exist two positive
measures, {, w € M(R3), such that

(=AY up P =, |ua> =2 in M(RY) (4.16)

. .2 .
as n — oo. Then, by Lemma 4.1, either u, — u in L; ;C(IR3) or there exists a (at most
countable) set of distinct points {x;}je; C R3 and positive numbers {¢;} e, such that

C=ul®+) g8y

jeJ

Moreover, there exist some at most a countable set J € N, a corresponding set of distinct
points {x;}jes C IR3, and two sets of positive numbers {¢;} ey and {w;} jes such that items
(4.1)-(4.3) holds. Now, assume that J 7~ (). We split the proof into three steps.

Step 1. We prove that w; = ¢;, where w;, and ¢; come from Lemma 4.1.

Define ¢ € C(‘)’O(]R3) as a cut-off function with ¢ € [0, 1], ¢ = 1 in By;2(0), ¢ = 0 in
R3\ B, (0). For any p > 0, define

X —xj L Jx —xj| < 3p.
X) = =
(p)o( ) (0( 0 ) {07 |X_Xj|2,0~
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By the boundedness of {u,} in H , (R3), we have that {@pun} is also bounded in A}, (R3).
Thus, one has that

on(1) = (I,Q(Mn), un‘/’p)

= /N (—A) 2t (= A) 2 (ungp)dx +A/R? bl Un@pdx

4.17)
—M/ un|?@pdx
R3
= [ g
R3
It is easy to check that
/ (=) 21y (—A) 2 (unpp)dx
R3
_// [ (x) — (D)t (x) — 0 () [t ()9 (x) —un(y)<pp(y)] dxd
e x— PP g
_ Jtn (x) = un (V)P0 () (4.18)
- / fR s W
// [un(x) — un(W]lpp(x) — wp(y)]un(X)
+
RS [x — yPF2
=T+ T,
where
[tn (x) — un ()0, (y)
T, = dxd
! //Rﬁ vy g
and
T, — // [tn (x) — un (W)[gp(x) — qop(y)]un(X)
2= R6 lx — y|3+2s
For Ty, by (4.16), we obtain
- 2
lim lim 7, = lim lim // un ) = tn NP V)
p—>0n=—00 p—~>0n=00 J Jgs v — |3t (4.19)
= lim ppdow = w({x;}) = w;.
p—0 JR3

From Holder’s inequality, we have

T = / [t0n (x) — un(P)]gp (x) — ¢p(Y)]un(X)dxdy

|x_y|3+23
19500 = 0 WPlunIP 1 () — 12 (1) 2 :
5(//]1@ ¥ — y[3i2s ) (//R v — y[3i2s ‘My)

100 ) — oo Pl P . \?
=¢ (f/n@ T dy) '

Analogously to the proof of Lemma 3.4 in [40], we obtain
_ 2 2
lim lim // lpp (x) | Pp " |un ()] dxdy = 0,
R6

p—0n—00 x — y|3+2s
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and

lim lim / (—A) 2y (—A) 2 (unpp)dx = 0({x}}) = 0.
R3

p—>0n—00

Again by (4.16), we have

lim lim lun| = @pdx = lim/ ppdt = C({x;) = ¢). (4.20)
R3 p—0 JR3

pHO n—o0o

By the definition of ¢, and the absolute continuity of the Lebesgue integral, one has that

lim lim lunl?p,dx = lim / lu|?ppdx = lim / lul?ppdx = 0. (4.21)
R? =0 JR3 P=>0J1x—x;l<p

p—0n—00 —0

Thus, by Proposition 3.1 and Lemma 3.6, we have

3421 3421
PR 12 6 5 6 6
U,pPodx < Up|3+t20dx U, Qp|3+t2dx
unn ﬂd c d nrp id
R " R3 R3
342t
) 12 _6_ 6
< Cllunllys |t | 557 |, | 52 dx (4.22)
R3

342t

12 6
<Ci lun| 32 @pdx
R3

Therefore,
3421
. . 13 2 . . %
gl_I;n()nll)n;o R3 ¢unun(p,0dx f ;L)n})nll?go Cl </l.@ |un| + (ppdx
342t
. 12 6
= lim C; </ |u|3+2z gapdx> (4.23)
p—0 R3
3421
12 6
= lim C, / lu|3+2 @,dx =0.
p=0 lv—x;l<p

Summing up, from (4.17)—(4.19) and (4.21), taking the limit as n — oo, and then the limit
as p — 0, we arrive at

wj = ;.

Step 2. We show that W, = {0, Where woo and (s are given in Lemma 4.2. Let ¢ €
C5°(R?) be a cut-off function with ¥ € [0, 1], ¥ = 0 in By,2(0), ¥ = 1 in R3\ B, (0). For
any R > 0, define

(X _ |0, x| < IR,
Ve = v (5) = { I x| = R,

Using again the boundedness of {u,,} and {u,¥r} in H; , (R3), we have
on (D)=L}, (un). un Vi)

= /R SIS SRS /R Dt VRdx—p /R unlTrdx g o

2
—/3 lun|™ Yrdx.
R
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It is easy to derive that

/ 3(—A)%un<—A)%<uan>dx
R.
_ // [ () = tin Wt VR ) = en DYRO]
]R(’

|x_ |3+25
ln (x) — un (N PYR ()
- / /m P
+// [un(x) — un (WI[YR(x) — 1ﬁR(y)]Mn(X)
RS lx — y3t2
=T34+ 14,
where
T _// lun (%) — un (V)| 1/fR(y) dxd
e =
and

Ty = // [ttn (x) — un W[V R(X) — wR(y)]ufl(X)dxd
RO

|x _y|3+2s

For T3, by (4.16) and Lemma 4.2, we infer to

_ 2
lim lim 75 = lim lim // 4 () = ttn (V)] wR(y)dxdy =w
R6

R—o00 n—>00 R—00n—>00 |X — y|3+2S

By virtue of Holder’s inequality, we get

T, — / [un(x) — un(WIYR(x) — WR(y)]un(X)dxdy

|x_ |3+2s
1
[Wr(x) — YR Iun(X)I2 |t (X) — un () 2
([ Y ) ([l esta)

VR (x) — YRV |Mn(x)|2 :
<C<//]R6 lx — y3+2s dxd ) '

Combining the above proof, we conclude that

o 1R (xX) — YR up (x)[?
lim lim //}Rﬁ = P dxdy

R—o0n—00

— _ _ 2 2
— lm lim // 1= ¥r()] = [1 = yrOII 1 (0] dxdy = 0.
RO

R—>00 n—>00 |x — y|3+2s

Hence,

lim lim // (=A) 2up(—A) 2 (upPR)dx = woo.
RO

R—o00on—>00

By Lemma 4.2, we have

lim lim |u | H/fRdx = {oo- (4.25)

R—>00 n—>00
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Analogous the proof of Lemma 3.3 in [40], we infer to

lim lim lup|? Y rdx = lim lu|?yrdx
R—oon—00 Jp3 R—o0 JR3

= lim lu|?yrdx = 0. (4.26)

R—o00 \x|>%R

Moreover, we can obtain

342t
. . . . 12 6
lim lim ¢flnuﬁ1/fRdx§ lim lim C; / ltey | 32 Yrdx
R—oon—00 Jp3 R— o0 n—00 R3
342t
. 12 g
= lim C; |u|3+2 Yrdx 4.27)
R— o0 R3
342t

= lim C; / || 5 W pdx —0.
R—o00 |2 R/2

Summing up, from (4.24)—(4.27), taking the limit as n — oo, and then the limit as R — oo,
we have

Woo = Coo-

Step 3. We claim that {; = 0 for any j € J and {, = 0.
Suppose by contradiction that, there exists jo € J such that ¢, > 0 or o > 0. Step 1,
Step 2, and Lemmas 4.1, 4.2 imply that

2 2
Cio < (S'wi) T = (ST T, (4.28)
and
2% 2%
Coo = (S o) T = (S71¢00) 7. (4.29)

3 3
Consequently, we get {j, > S or { > S . If the former case occurs, we have

2
2 . s 2 . 2% 2
Ry > lim [[(=A)Zu,|; > S lim (/ 7 Adx)
n—o0 n—00 R3
, (4.30)

2 2
* 2 2
> S lim (f |un|25(ppdx> - s(/ <ppd§> .
n—oQ R3 R3

Taking the limit p — 0 in the last inequality, we get
2 3 2 3
R} = S(j) % = S(S3)% = 87,

which contradicts (4.9). If the last case happens, we have
2
2 . s 2 . 9% 25
Ry > lim [[(=A)Zu,|; > S lim ltn|™s dx
n—oo n—oo R3

2
> S lim ( / |un|22‘1dex> @31)
R3

n—o0

2
. 2% %
> S lim lun|“sdx .
n—o0 |X‘2R
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Taking the limits n — oo and R — oo in (4.31), we infer to

2 3 2 3
R} = S(loo) ¥ = S(S¥)% = 8%,

which also contradicts (4.9). Therefore, {; = 0 for any j € J and {o = 0. As a result, by

Lemma 4.1, we obtain that u,, — u in le‘o‘*'c (R3); while by Lemma 4.2, we know that u,, — u
in L% (R%).

Now, we prove there exists 4] > 0 independently on n € N such that if © > uj, the
Lagrange multiplier « < 0 in (4.13). Indeed, note that {u,} C S, s and ||(—A)%un 2 < Ry,
as can be seen from the previous proof of this lemma, and (3.2)—(3.3) that, there exists Q1 > 0
independently on n, such that

s Sg.s 1=8,4
01 < / Junl?dx < C(g, )1 (=A)2un [ uy 50
R3 (4.32)
< Clg, )R] a1 =00,
and
r o2 4 342 5o 5 A=
. by, Updx < Ft”un”% ST, C(12/342t,5)3 [[(=A)2unlly Nuall,
;3= o4 4.33)
<T,CU2/3+2,8) 5 R a0 (
= 0>,
where Q> = Qs (s, t, Ry, a) > 0. We define the constant
A2t +4s —3
o QA A =302 (4.34)
2[6 —q(3 — 25101
By (4.32)-(4.34) we have
. . gr2t +4s = 3) [p3 ¢l uldx
u] > lim “
n—+oo | 2[6 — q(3 — 25)] [ lun|9dx
2
_ qr(2t+4s—3) Jg3 dLutdx 435)

T 26— g~ 29)] g luldx

Recall by (4.13) and its Pohozaev identity P, (u) = 0, we infer to

2t +4s — 3 3-25)—6
sallull? = Ao ¢ uldx + uu lu|?dx. (4.36)
2 4 Ry 2q R3

Now, if & > u}, we conclude from (4.35), that

gr(2t +4s —3) [ps ¢ utdx
2[6 — q(3 — 25)] [ps |ul9dx
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Thus, from (4.36), we infer to lim,—, + o0 &, = @ < 0. Hence, taking into account (4.12), we
derive

: 3 2 2 2
lim [n(—mmn 3+ [ ol - anunuz]

lim [u||un||3+ f |un|23‘dx+on(1)] 437)
n—o00o R3

plil [ Pidx =125+ [ gl — alu

Since o < 0 for u > ] large, we obtain by Fatou’s Lemma,

. s 2 2 2
i 100813 45 [ ol as = a3

(4.38)
> (=A)2ul3 + A / plu*dx + lim inf (—or[[un||3).
R3 n— 0o
and from (4.37)—(4.38), one has
— a||u||% > lim inf(—(x||u,,||%). (4.39)
n—00
But by Fatou’s Lemma, we see that
lim inf (—a|lu,|3) > —allull3. (4.40)
n—0o0
Combining (4.39) with (4.40) we get
. 2 2.
Jim (—alun|3) = —aul3;
that is,
: 2 2
Tim (g [3 = flul3.
Thus, by (4.37) we have
lim [[(=A)2unll} = (—A)2ul3.
n—o0
Theerfore, u,, — u in Hfad(]R3) and ||u|l2 = a. The proof is complete. O

For ¢ > 0, we introduce the set

Iu_i = {u € Hrsad(R3) N Sa L) < —8} C HS (RY).

rad

By the fact that /,, - (1) is continuous and even on Hfa d (R, I " ¢ is closed and symmetric.

Lemma 4.4 For any fixed k € N, there exists e := (k) > 0and i := (k) > 0 such that,
Jor0 < e < ek and > py, one has that y (I, %) > k.

The proof of Lemma 4.4 is similar to Lemma 3.2 in [1], so we omit it here.
In the sequel, we define the set

= {QcC H

a

d(R3) N Sy : Qis closed and symmetric, y (£2) > k} ,
and by Lemma 4.3-(ii), we know that

ck = inf sup [, ;(u) > —o0
€%k yeQ
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for all k € N. To prove Theorem 2.1, we introduce the critical value, we define
Ke:={ue H R NSy : 1, (u)=0,I-(u)=c}.
Then, we can derive the following conclusion:

Lemma4.5 Ifc =cp = cry1 = -+ = Crqe, thenone has y (K¢) > €+ 1. Especially, 1, - (u)
admits at least £ + 1 nontrivial critical points.

Proof For ¢ > 0, it is easy to check that [ " ° € X.For any fixed k € N, by Lemma 4.4, there
exists g := €(k) > 0 and uy := u(k) > O such that, if 0 < ¢ < g and u > g, we have
Y &) > k. Thus, 1,7 € =, and moreover,

ck < sup I, (u) = —¢& <O0.
uel;zgrk
Assume that 0 > ¢ = ¢x = cx41 = - - - = ck4¢. Then, by Lemma 4.3-(iii), 1, . (u) satisfies
the (P S).-condition at the level ¢ < 0. So, K is a compact set. By Theorem 2.1 in [1], or

Theorem 2.1 in [16], we know that the restricted functional I, .|s, possesses at least £ + 1
nontrivial critical points. O

Proof of Theorem 2.1 Let 1 > puj = max{u}, ui}. From Lemma 4.3-(ii), we see that the
critical points of 7, ; (#) found in Lemma 4.5 are the critical points of /,,, which completes
the proof. O

5 Proof of Theorem 2.2

From Lemma 3.5, we see that any critical point of /, s, belongs to 7P,. Consequently, the
properties of the manifold P, have relation to the mini-max structure of 1, |s,. Foru € S,
and t € R, we introduce the transformation (e.g. [29]):

O*u)(x) = eTu(e’x), xeR3, 9eR. (5.1)
It is easy to check that the dilations preserve the L?-norm such that Oxu € S,, by direct

calculation, one has

256 (3-21)0
A 3
1, 0) = L@y = ol + 2 [ glalax = L3 [ e
2 4 R3 q R3

| o (5.2)
— —63(%71)9/‘ u|> dx,
2% R3

S

Lemmab5.1 Letu € S,, then

1) ||(—A)%(9*u)||2 — Oand 1,,((0*u)) — 0as 0 — —oo;
(i) ||(—A)%(9*u)||2 — 400 and I,,((0*u)) — —oo as 6 — +o0.

Proof A direct computation shows that
/w |(=A)2 (Bxu)Pdx = e*? ng [(—=A)2ul?dx, (5.3)
and

[(=A)2 @)l — 0 as O — —oo.
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Notice that

256 (3-21)60
e Ae 3
L)) = S ju)? + 25— / phuldx — o3 f jul dx
2 4 R3 q R3

5.4
1 3¢5-2, 2%
-5 ! / |u|*sdx
2s R3
by g > 2, we infer to
1,((0*u)) - —oo0, as 6 — +oo.
Hence, item (i) follows. Using 2s 4 2¢ > 3, it is easy to obtain that @ > 3 — 2¢, and
conclusion (ii) holds. ]
Lemma5.2 There exist K = K, > 0 and @ > 0 such that for all 0 < a < @,
0 < sup I,(u) < mf I, (u), (5.5)

ueA,

where Ag i= {u € Sy ¢ [gs [(=A)2ulPdx < Ko}, Bai={u € Sy fps [(=A)2ulPdx =
2K, ).

Proof By Lemma 3.2, we have for any ¢ € (2, 2}), that

8q.s (144 s)
lulld < Clq, )I(=A)2ull 3" lu|d" (5.6)
By the Sobolev inequality (3.1), and (5.6), for u € S, ,, we have
I, ((Oxu)) — 1, (u)
1 2 1 2 A 2 A 2
= SI@w0|? = Slul® + fR Blown| @) Pdx — 5 /R o u’dx
1 * 1 *
- ﬁf |(9*u)|‘1dx+ﬁf |u|‘fdx——/ |<9*u>|2sdx+—/ )™ dx
q Jgr3 q Jr3 2;? R3 2;‘ R3
1 1 3-21 454213 "
> 5||<9m>||2—Enunz—AF,Kf lall, * ——f |(O%u)|9dx
q Jr3 (5.7)
1 o
— ? |(0*u)| sdx
4\+2t73 n 6-g(3—2s) ) ‘15%
En«)m)n || I — AT K, S - ;C(q,s)a 5 (l@*w)|?)
25 *
S nE
el (D]

s

Let ||u||®> < K, and choose 8 > 0 such that ||(6*u)||> = 2K,, here K, will be determined
later, set

214253 m

Ka 2s

) [ :
16AT;
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then we get

1, ((Oxu)) — 1, (u)

2%

1 32 4o 3 48 _6-q(3-25) 34=2 §—F o %

= EKa_)\.F[Kazx a4+2t _Ez EAUILE C(q,s)aqTKa el - 27Ka2
q S
6—g(3-2s)

1 1 n w; 2) 1 2(@s+21-3) % 34-2)
>-—K,— —K,— =2 C(g,s K S g
= 58a = Jgha (g, )<16AF,> ; ;

Si% Ykt (5.8)
DT 22Ky
S

7 2 (cz )C( 9 2@ -
:TK“_—s-qszxKay'Ka— —Ka Tk,

6 g (16AT ;) 26s+2=3) 2}‘57‘
> — K, > 0’
~16 ¢

where y; 1= 2F2=3M0=gO 2013 =242 =3 1 e pake
6—q(3=2s) Y2 2 ﬁ
[16AT;]2Gs+2=3) T EAE
Ko =min g | S50 —— )| 2
162~ % C(q,s) 2% 16

. o 4s(4s+2t—3)
with y» = D2 36— =25 1+ B =2 —3s s 121 =31 then, we deduce by (5.8) that (5.5)

holds. o

By Lemma 5.2, we can deduce the following

Corollary 5.1 Let K, d be given in Lemma 5.2, and u € Sy 4 with lul? < K,, then I,(u) >
0. Furthermore, we have

1
Lo := inf {Iu(u) Cue S ul? = EKa} > 0.

Proof As in the proof of Lemma 5.2, we have that

%

3(q=2) -

1 (u)>*IIM|| —*C(q a5 (II 1?) =

(II || )

if |u||?> < K, and the conclusion follows. o

Next, we study the characterizations of the mountain pass levels for I (u, 6) and I, (u).
Denote the closed set II‘Z ={ueS . I, <d},and S, , == Hfad(]RS) nS,.

Proposition 5.3 Under assumptions 2 + 4Y < g < 2%, define
;= inf max (Y (1)),
C/L(a) 7eft€[0,)ij ()
where

= {7 € C(0,1], S,.a x R) : 7(0) € (Aq, 0), ¥(1) € ()}, 0},
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and

= inf max [ 1)),
cula) )}er‘te[o,)i] w(y ()

where
Ty ={y € C(0.1]. Sr.0) : (0) € Ag. y(1) € IJ},
then we have
cu(a) =cula) > 0.

Proof Note that F x {0} C Fa, we see that ¢, (@) < c,(a). On the other hand, for ¥ (1) =
1), ;@) € Fa, we denote by y () = Y1 (1)x)2(t). Thus, y (¢) € Ty, and so

1y = 1, (7] V- = 1
max, (@) max. w1 (0)xya2 (1)) max w(y (@),
which implies that ¢, (a) > ¢, (a) > 0, using Corollary 5.1. O

Next, we show the existence of the (PS)L.u(a)—sequence for I(u,0)on S, , x R C H. It
is obtained by a standard argument using Ekeland’s variational principle and constructing
pseudo-gradient flow, see Proposition 2.2 [13].

Proposition 5.4 Let {h,} C T, satisfying that
1
I(h,(1)) <7, -,
max (hn (1)) < cp(a) + .

then there exists a sequence {(vy, 6,)} C Sr.q X R such that

(1) 1(vy,0) € [Cula) — n,cu(a)Jr ],
(i) minsepo,1) | (v, On) — (t)IIH < 7 ;and

(iii) [[(I]s, ,xR) (Un, Ol < ==, that is,

|<I (Vs On), Zhm—15ml <

[”Z”H,
forall

2 € Ty 0) 2 {(z1,22) € H: (vn, 21) 2 = O},

It follows from the above proposition, we can obtain a special (PS)c,()-sequence for
I,(u)onS, , C H'(RY).

Proposition 5.5 Under the assumption 2 + % < g < 2%, there exists a sequence {up} C Sy 4
such that

(1) I, (up) = cpla) asn — oo;
(2) Py(up) — 0asn — oo;
(3) uls, ) (un) > Oasn — oo, e, (I,;(Mn), 2)g-1xg — O, uniformly for all z satisfying

lzllg <1, where z €Ty, :=={z€ H: (uy,z);2 = 0}
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Proof By Proposition 5.3, ¢, (a) = c,(a). Hence, we can take {h, = ((h,)1,0)} € F,, SO as
to

1
I(h, (1)) <TC —.
tgfgﬁ} (n())_cu(a)Jrn

It follows from Proposition 5.4 that, there exists a sequence {(v,, 6,)} C Sr.4 X R such that
as n — 00, one has

I (vn, Op) — Cu(a)’ Op — 0; 5.9
(I|S,<,a><R)/(Un’ On) — 0. (5.10)

Setu, = Oyxv,. Then, I, (u,) = I(v,, 6,), and by (5.9), item (1) holds. To prove conclusion
(2), we utilize

3 -2\
091 (U, B) = 520 vy | + O 2D% ,6=208, / $u, v2dx
]R3

4
- 73M(q_2)e(37473)9n/‘ |vn|9dx
2q R3
3(2* 32 )
_y A2, f [Vn |2 S dx
22%
s —2H)A 3 2
=S||(—A)7Mn||2+ i / Pl M(‘I )/ lun|?dx
32* 2 X
o [ i
22%
= P,u.(”n)

which implies item (2) by (5.10). To show item (3), we set z,, € T,,. Then,

I )z =/ (un(x) — un(y))(z;(zx) _Z”(y))dxdy+k/ 6! nzndx
[x — y[3+2s RS

—u/ Jttn |92 tpzndx —/ ltn] > "2 upzndx
R3 R3
@s=3)6n f/ (n (%) = vp () (zn (e x) — zn(e’e"y))
=e 2 dy
RS |x — y[3+2s

3—4
+ eTle" /3 Pu, U (X) 2y (6_9”x)dx
R

3(g-3) _ _
e / a4 200 (1) 20 (e~ x)dx
]R3

%D 22 -0
—e [vn | " v (X)zn (e x)d x.
R3

Denote by 7, (x) = e’%szn (e~%x), then we get
<I;L(un)s Zn)H—l xH — (I/(vna 9}1)» (Zn7 0)>H—1><]]-]I-
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It is easy to check that
~ _3s —6,
(VnsZn) g2 = \ vp(x)e” 2z, (e " x)dx
]R.
0, 3s

= vy (e x)e? z,(x)dx
]R3

- / tn (1) 2 (0)dx = 0
R3

Therefore, we see that (Z,,, 0) € T(v",gn). On the other hand,
2 ~ 2 2 —256, 2 2
1@, Ol = 1Zullzy = llzallz + e llzall* < Clizall”,

where the last inequality follows by 6,, — 0. Consequently, we conclude item (3). O

Remark 5.1 From Propositions 5.4, 5.5, we know that u,, := 6,%v, C S, 4 is a (PS) sequence
for 1, with the level ¢, (a), that is

I,(uy) — cu(a) as n— +oo, (5.11)
and

(Iuls, ) (up) = 0 as n — +oo. (5.12)
Lemma 5.6 The (PS) sequence {u,} mentioned in Remark 5.1 is bounded in Hﬁad(ﬂ@).

Moreover, suppose that ¢, (a) < %Sﬁ, and h < A} for some 1} > 0, then lim,_, ;o 0y =
o < 0.

Proof From Remark 5.1 we see that 1, (u,,) is bounded. In fact, by P, (u,) — Oasn — oo,
we have

|(] + 201, (un) + P;A(”n)| < 3cu(a),

which implies that,

1+ 25 + 2t 1+2¢
e A)zun||2+A/ o, undx — 1 ( 5 +s5q,s>/z|un|qu

1+ 2t P
— sdx > =3 .
( 2? +S> ‘/Rz|un| X = Cu(a)

In view of the boundedness of 1, (u,), we have

(5.13)

; 2u
[(=A)2un||> + / ¢, uldx <6cu(a)+—/ |un|‘1dx+—f lun | dx(5.14)
By (5.13)—(5.14), we obtain

2s + 2t -2 2% -2 #
L/ 0! uﬁdx-l— u/ i) dx +g/ |un|2xdx
" q R3 2 R?

< 3cu(a)(2+2s + 2t).
Note that 25 + 27 > 3, > 2 + %, we have that ¢§,,, — 2 > 0, and so

/qﬁunu,%dx /Iunlqu and / un)® dx
R3 R3
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are all bounded. Thus, [[(—A)2u, |2 < R, for some Ry > 0 independently on n € N. Since

{u,} C Sr.q, we see that {u,} is bounded in H; %(]R3). Thus, passing to a subsequence, and

we may assume that u, —u forsomeu € H; ,(R’),andsou, — uin LP(R3),Vp € (2, 2%).
Now, we set the functional ® : H , (]R ) —> Ras

1
d(u) = f/ |ul*dx,
2 R3

then S, = ®~! (% ). As a result, it can be derived from Proposition 5.12 [33] that there is
a sequence {&,} C R such that

I (p) — o, ® (u,) — 0 in Hmd(R3) as n — oQ.
That is, we have
(=D u, + ¢1t4,,un - Mlun|q7 — |uy | un = aplty + 0,(1) in Hmd(R3) (5.15)
Similar to the proof of Lemma 4.3, we know that u solves the equation
(=AY u + ¢hu — plul?2u — |u|> 2u = au. (5.16)
Moreover, u # 0. In fact, argue by contradiction that u = 0. Then u,, — Oin L” (RS), Vpe
(2,2%),and by P, (u,) = 0,(1), (3.3), we have
on() = sl + 227 [ g il = ussy [ wattax—s [P
R3 R3
=s||un||2—s/ Jen % dx + 04 (1),
R3

We may assume that lim,—, 4~ ||un ||2 = lim,— 40 fR3 |un|2§dx =1 > 0. Thus, we have
Cu_(a) +o,(1) = 1 (un)
1
= E/ [(— A)Zunl dx + — / ¢unu,%dx

% 5.17
- = lup|?dx — — I7H X dx ( )
*
q JRr3 2s R3

1 1 K
= 519 - 2—?19 +o0,(1) = gb‘ +0,(1).

On the other hand, by the Sobolev inequality (3.1), we have ¥ > § 1?%. Then we have two
possible cases: (i) ¥ = 0; (ii) ¥ > S%.

If 9 = 0, then by (5.17) we get 1,,(u,) — 0, which contradicts to 1,,(u,) — ¢, (a) > 0.
Now if the second case ¢ > S% occurs, then by (5.17) we get 1, (u,) — %1‘} > %S%,

which contradicts to I, (,) — ¢,(a) < $S%. Hence, u # 0. Moreover, by (5.15) and
P, (un) = 0,(1), we have

2t +4s qg(3—2s)—6
sannunnz—xif ¢! uldx +7M/M|un|"dx+on(1>.

2q
(5.18)

Since {u,} C Sy 4 is bounded in H; , (R3), then by Lemma 3.6 and (5.18), we derive that
{or, } is bounded and lim,,—, 1« &, = @ € R. By a similar argument as in (4.32) and (4.33),
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for all n € N, we have

s 8.5 13845
T < / unldx < Cq. )1 (=) 2un |5 a1
R3 (5.19)
< Clg. )R]t 700,
and
P 4 3400 s 3-21 24453
/? Gy, updx < Ft”un”% <ICA2/3421,5)75 [(=A)Zuplly* lunlly *
R3 32
=S TRV 5.20
<T,CU2/3+2.8) 5 Ry a3 (5.20)
=1,
where T» = Qa(s, t, Ry, a) > 0. We define the positive constant
2[6 —qg(3 -2 T
S Chl [CR D) 111 521)
q2t +4s = 3T
Therefore, if A < A7, we get
A2t +4s —3)Tr < 2[6 —q(3 —25)]uTh.
Hence, by (5.19), (5.20) we see that
2t +4s —3 6—q(3-2
G A= / ¢! uldx < M[ lun|dx. (5.22)
4 RS " 2q R3
Taking the limit in (5.21) as n — 400, and applying Lemmas 3.3, 3.6, we obtain
2t +4s — 3 6 —qg(3 —2s
ikt By [RPYSE PSS Gl (Chul )] Ly (T (5.23)
4 R3 2q R3

Consequently, passing the limit in (5.18) as n — 400, and using (5.23) we deduce that

2t +4s — 3 3—25)—6
saa® = AL/ ¢l’4u2dx + uu/ lu|?dx < 0.
4 R3 2q R?

Thus, we have that o < 0, if A < k’f small. O

Lemma5.7 If2 + %s < q < 2%, and inequality (2.5) holds, then there A5 > 0, such that
cula) < %S% Sfor L < A% small.
Proof From [8], we know that S defined in (3.1) is attained in R3 by functions
C(S)ES—ZS
US (X) = 3-2s
€2+ x»H™=

for any ¢ > 0 and C(s) being normalized constant such that

3 2 2% -
I(=A)2Uc|l; = /3 |Ug|5dx = S%.
R

We define u, = ¢U,, and
—a—f €S, NH’,,RY),
lluell2
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where ¢(x) € C3°(B2(0)) is a radial cutoff function such that 0 < ¢(x) < I and ¢(x) = 1
on B (0). From Proposition 21 and Proposition 22 in [28], we have

/ (=A) 3, Pdx = S5 + 0(3%). (5.24)
R3
/RS ue|% dx = S5 + 0(&3). (5.25)

For any p > 1, by a direct computation [31], we obtain the following estimations:

0 (83(2771)2”2”)) L if p > 2
/M uelPdx = { O(e3|logel), it p= 535 (5.26)
0 (s (3_?)]7) , if p< ﬁ,

and especially,

Ce®, if 0<s <3
/ lug|’dx = { Ce¥|logel, if s = 3; (5.27)
R Ce3 %, if % <s<l1.
Define the function
2560 (3-21)0
e e 3(g-2)
WH(0) = 1, ((Oxv;)) = llvell> + A/ ¢! vidx — K™ Gf [ve|9dx
’ 2 4 R q R3

(5.28)

2*

A

1
— 762;&9/ e |5 dx,
R3

then it is easy to see that W}, (9) — 07 as 6 — —oo, and ¥}, (f) — —oc as § —
+00. Therefore, \I'f,i can obtain its global positive maximum at some 6, , > 0. A direct
computation yields that

() (©0)

3 -2t
= s5e2 v |I> + —e@—z”"xf ¢! vdx
4 R3 e

3 —2) 34-2 * *
_ =2 )eqTQ/ |ve |9dx —sezx‘?e/ |ve | % dx
R3 R3

2 (5.29)

32t
= sloxvell® + == /R D, 1050 Pdx

(g —2 .
— M/ |0*v5|qu—s/ |6xv, |2 dx
2q R3 R3
= P, (0%ve);

and
B—=202 ,_
(WE)"(0) = 2523 o | + =720 P vidx

3(g—2)
202 M2y
nqs 8(“@ 2 /

* o *
. lve|97dx — stzezx*g /3 lve|® dx.
R3 R
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Let 6, be the maximum point of wh . (0), then 6, is unique. In fact, combining with
(vl ) (0s,,) =0, and 3 — 21 — 2s <O,2 q8q,s < 0,2 —2% <0, we have
(UL (Be,p0)

, 3 —21)?
= 252 % || ||? + %6(3_2%”\ /Ra @), vzdx

3(11*2) * *
—uqszéﬁ,s e / el = 25260 [ o

R3
2012 + )2 ~ 2 02 ~ 2 ~ 2

=257 |\ue |- + / ¢;F cdx — s qéq,s fR} e |9dx — 2%s /]12{3 |ug|™s dx

3 -2t 3—2t—25) -~ ~
_ ! )(4 /‘¢iﬁdx+¢m%%d2—q%JL/ lie|9dx + s*[2 — 2]

RS ° R3

/|mﬂmx<a

R3

where u, =

Oc,u*ve, and the uniqueness of 6., follows. Using (\IJ{fS)’(QE’#) =
P, (B¢, u*ve) = 0 again, we have

33—
se Xseg,,, |U | : x _ Se2s9m”v ” +)\, (3 ZI)GgM ¢
R3 4

Mg =) ahy,, / jve el
2q

R3
2t
et ”%M/‘¢ vidx (5.30)
3-2t
2“’w(ﬂwsnzﬂ et f ¢vgv§dx>

, 32t
< e2395~“2max{sllvgllz,)niél B2 e /R . ([)f}gvgdx}.

In the sequel, we distinguish the following two possible cases.
Case 1. s||ve|* > )»—3]%6(3’2”25)0&“ ng ¢! v2dx

In this case, we have from (5.30) that

2
ve Ve dx

3—
se? 0o |y ||? + A ——

2|ve ||?
s&ﬁ%ﬁ/|%ﬁdx<éwwmmMF=:e@—M%u Alﬂ;, (5.31)
R3 ||U£||2*

and from (W), )'(6;.,) = 0, we have
o 2E=D)s0:

llve |1 + W= eCTHTIn s ¢y, vidx

S —2)s0, ”Us”q
— 4s % — g e 10T Z=
||U€||2;« ”ve”z}ﬂ ||U5||2*
qdq,5—2
2F=2
[[ve || 2vel? ) llvell
= T T Hoq.s 2% 2%
||U8||2§s ||U£||2';k ||U£||2§
‘ifsq,:*2
2%_-2 2 252 2§52 2% g
ey el 2uely " Muel®* ) e NG Mloee 5’
T o oy g2r  PPas o 2% Lo2E T g
a% 2””6”2:* as ||”£||2i ”ue”zi ass
s s s
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qdq.s—2 qdq,s—2

ey e E 2 s pdgs2 7 a0 |
B a% 2 |lug |13 Qe ) - ) e =
ell2; (e 12)90 30 (e l32) =2

(5.32)

Notice that, by (5.24)—(5.27), there exist positive constants Cy, C> and C3 depending on s
and ¢ such that

2 ties SNUTE N
(leel> 52 =€, G < (lueliz) =72 < % (5.33)
and
. C3e3 7075407100 = €3, if 0 < s < 3
||us||q q(yq\ 1) 3
i C3|Ine| o if s =173 (5.34)
el R e ST SO
Next, we show that
el 2
8(2‘?—2)393,,1 >C 82*2 7 (535)
under suitable conditions. To this aim, we distinguish the following three subcases.
Subcase (i). 0 < s < 3. In this case, it holds that
3—-2s
3 - — 4= sq(1 —6845) =0, (5.36)
and from (5.32)—(5.34) we have
252
d2E=Ds00 5 C”";”zz C1 = 8, sa?070s)2" G
ass~ Cy
q"q,s*z

and we see that inequality (5.35) holds only when ,uyq,saq(l_‘sq-ﬁ) < CiCy(Cy)~ 12 Hw2
Thus, we have to give a more precise estimate, let us come back to (5.32) and observe that
by well-known interpolation inequality, we have

2 42 2 i
el el (el > oy 2t
q8q5—2 — % 98,52 (”ué‘”z*)
* *
(lluell2) 2= 5‘”)(|Iusllz) B2 (lluell2)? %) (flue |I2) B2
(5.37)

Therefore, by (5.37) and (5.32) we have

(]5 s—2
2 -2
X Dsbeu > “”8”2 (||ua|| )

ox
5125_2””8”2i

2% —qﬁqs 9% q(1=8q.5)
(lug®) 52 — pudy, 2 S gl 3.9 (|lue |15 D OET L (538)
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From the estimations (5.24), (5.25), we see that the right hand side of (5.38) is positive
provided that

) 2§;qu.x
q8q,5 =2 B (”Mg” ) 2¥2

q(1— }’qs) 2* 2
18q.sa 2  a=3g)

(luellzf) %2

R 28 —qvq.s

= — 252

(Slv + 0(¢? 2S)) : 305 —g) s

— 2 (2*—2 S
= T = S%-2 + 0>e7™F).

(% +o0@y) 77

Therefore, if 0 < 5 < % and

q,s —2 3(2?*(])

,LLS aq(l 3q. 5)2 2 -2 < §25025-2) , (539)

we have

S22ty o Clluelly
T2

Subcase (ii). s = %. In this case, then we have 3 < g < 4, and

q(rq,s—1) q=2f
[Ing|™ 2 = |lng|#G-29 — (0 as ¢ — 0.
Consequently,
||Ms||3 _ q(vg.s—1)
f}ﬁz3<@f el 7 =oc(D).
8
Therefore, we get
272 252
. lluell5’ 2C Clluelly’
225 =25y, >C 3 22 Ci — Wy.s q10—= Vq\)z 2* 2 73 e (1) %
a% aZi—

Subcase (iii). % < s < 1. By the definition of 8, ; and a direct computation we infer to

3 2s B —=259)g(1 — yy.5)

3 _
2 1 2
EE Y I SRR C Al B S AL T
3—2s 4s 4s 3—2s '
325 (-25)q(-yq.s)
Thus, 83_?22 9= T 0 as € — 0, and so
q 2990 —s s
||Me||q < C83—%q_4(3 2)q£1 Vq.5) — 0.(1).

Q(I*Vq,s) -
[luee ”2
Therefore, we conclude that,
252 22552

u (& Cllu
(@i=200, 5 ¢ Melly” 82[[2 [Cl = nygsa® TN > (1)] %
ass

Case 2. s||vg||* < A¥e(3—2t—2s)9m Jrs @5, v2dx.
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In this case, we have from (5.30) that se2is0ep fR; Ivgl2 dx < e2s0en 322 6(3 2=25)0c. ),
Jr3 o) v v2dx, which implies that

ro2
S22, 3= 2 A [gs ¢y, vidx

(5.40)
2*
5 el

and from (\Ill’fg)’ (@s,;.) = 0 and (5.40), together with (3.2)-(3.3) and Holder inequality, we
induce that

6(22572)5'65,”

lve |12 L3 eO72=20ep), s @, vidx

— qu (qﬁq s—=2)50,, 11Vellg ”vg”q

2% 2%
loellyy 4 lve 15} lvell5:
(4dq,5 =2)s
$254+2t-3
llve 1* 320 fgspuvadx | T Jlvelld
2* qu,s 2S 2;; 2;5
”Usuz* ||U€||2§s ”Ua”Q;f
(g8g,5 =2)s
2 ATl \ S5 e
lel® s (32T S e I
jt 2% q,s 2%
e I3 28 ||vg||2§ Ivell5;
2 4l-1) (g8g,5—=2)s
—2)s -7 25 +2t-3
lol® <(3—2t)m> g el L i L TR P
jt 2% q.s \ —  A~. - 5% 2%
lve I3 2s e 152 llve l15;
(@dg,5—2)s
_ $25+21-3 q
e 12 Srladas s ! e I
25 +2t-3
37 — Mg D(s.Da 241 2%
||v£||2‘,; I E” ||Ua||2;s
252 s
ey e ) e

_ 5284213
2%_2 2}& /'Laq,SD(svt)a §
ass ||“a||2}f

@dq.5=2)s
2k —4(1-1) S25+2-3 %4
lue 15 T lluellg lluelly "
2—4(1— I
2400 g 0D lueliys @™
47(g8q.5 =25 =25 ~4(1-1))(g8g.5 =5 _ 4
2o —2%+q
B ”Mé‘”ZS ”u8”2 B pl,aq,SD(S,l‘)a $2F4+21-3 5
= B o (gdg,s—=2)s
a2 | e
: ellos
(gdg,s—2)s
Lot —40-DlF55 g
x||u€||2 ”uS”q
qE s—2
_ ||148||2 2(ugl®) 52
2k _
a2 =2 uc |5}
47(g8q,5 —2)s— (2% —4(1-1)) (g8¢.5 —2)s
X —ddg.s M(Sq sD(s, t)a -3 v
¥ ! ’
[(Ilu %) i Ao D

— 25 4+21—
(lusl2) 22 ””8”2* '
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(5.41)

gl
X |luell, lluellg

< 1, and

where 0 < 7 = 24=3

—=2)s
3 —-20)Al" \2* 53
D(s, 1) = (%) + .

By a direct computation, we have the following clearer expressions

2 — 41 — 1] (g84.s —2)s _ [Zf _a (] L2 +4s - 3)] (géq,s —2)s

§2F+2t -3 4s §2%F +2t -3
_ [0 3 -2t (q(Sq,S—2)s
T s §2F+2t—3
=qdq,5 — 2; (5.42)
(615q,s—2)s .
and
4t(gdy,s —2)s — (2% — 4(1—1))(q845—2)s _5
S2F + 20— 3 +4
s(gd, s —2)(4 — 2%
_ s(q q.s )( s)+q_2
§2%¥+2t -3
1
= —D($2F+2t—-3)—(2F -4 Sgs —2 .
S2§+2t_3[(q )(s2% + ) — (28 —Hs(gdys —2)] (5.44)
1 3(g —2)
= —D(E2F+ 2t =3) - QRF -4 | ——= -2
s2§+2t—3[(q AR )( 2 ’

(g -2 +25(2F —4)
T s t2u-3

> 0,

where the last inequality holds true since g € (2 + 43“ ,2¥),2s 4+ 2t > 3. Consequently, we

have
* 4s *
(@ —2)2t 4+ 2527 —4) > ?ZI + 2525 —4)

4t 24 12t — 18 — 8st
Y (A SR N Pl T oo
3 33— 29)

Substituting formulas (5.42)—(5.44) into (5.41), we infer to

q3q,s—2
2*—2
eGi—Ds0ey > e 13 e )

>
a% _2””8”2%

@=2242528 ) (5.45)
52*1115; s M(Sq,SD(Sa t)a $2F4+21-3 ”ué‘ ”3
(el S b2 q(1=85)
(luel?) 272 |lu ||q o llue Il
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Notice that, by (5.24)—(5.27), there exist positive constants C4, C5 and Cg depending on s
and ¢ such that

2q.572 1 480 s—2
(lus1?) 52 > Cy, G = < ||Ms|| T < Cs. (5.46)
and
3= g —sq(I=vgs) — 3.
lu ”q Cee q(y ) as) = Cg, if 0 <5 < I
ellg 20g5=D .
— i = ) Cellnel if §= %; (5.47)
luell, ™ ™ 32 _(3 29407 e 3
Cee”~ 2 1 2 , if 3 <s<1;
Next, we show that
luelly
eZTD0en > c;ziz_z (5.48)

for some positive constant C > 0. To obtain the estimation (5.48), as in Case 1, we have to
consider the three cases: (i) 0 < s < 3; (i) s = 2; and (iii) 3 <s < I.
When 0 < s < 2, it holds that

3_3—2s

q—sq(1—=464,5) =0, (5.49)
and from (5.45)—(5.47) we have

(g—=2)2t+2s(2§ —4) C6 ]

* Cllu ||
(25 2)568_“ € 2 C S D $2¥+21-3
e m u s, t)a 5
- 2$ = a3 ( ) C4C5

(q—2)2t+23(2‘}k—4)
and we see thatinequality (5.48) holds only when 18, s D(s, t)a s27+21-3 < C1C4Cs Cgl
Thus, we have to give a more precise estimate, let us come back to (5.45) and observe that
by well-known interpolation inequality, we have

2*—1]
llue Il (||ug||2*)2*-2(||u5||2)2*—2
qdq,5—2 6 g(1=8,4) = q8q,s—2 q8q.5—2
(luel?) -2 lleee [l 272 el ™ (el EEN(ABIL 5“)(||Me||2*) B
(5.50)
o ’1(1*5q.s)
(luell) =2
=

(luel?) -2
Therefore, by (5.45) and (5.50) we derive as

qE 52

2%—
s )
6(2:_2”0“‘ > ||14£||2X (”“a” )

a ‘72””[6”2;
'S
. a8y 7(5.51)

e et (|luclly;) %2
X | (llug || ) 572 —ubysD(s,)a  HHA- P

‘I‘Sq,s—z

(lugl?) 52
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We observe that the right hand side of (5.51) is positive provided that

(q—=2)2+2s(25—4) llute ”2
$254+21-3
udy s D(s,t)a &+ 5e 1005

) *_

(luelip) =72
3 *
S35 4+ 0(83—23) 3025 —2)—q(1-8¢,5)] a
= i =% 2052 +0(7).

(s% 4 0(53)) S

Therefore, if 0 < 5 < % and
(q—=2)21+25(2% —4) 3125 —2)—q(1=84,5)]
wdy sD(s, )a 2423 <S 327D , (5.52)

we see that (5.48) holds for some constant C > 0.
For the cases: s = %, and % < § < 1, we still have the following estimations as in Case

1,
q
u o 3=2s _ q(vg.s—1
” 5”('] §C383 2“] sq(1 yq‘S)|]n8| 5 :08(1);
”M ”(I(l_)’q.s)
el
and
Nuelld 32 B-2940-vg)
s S CETETT R oy (D),
”I/l ”q(l Vq,.\')
el

respectively. Moreover, we derive that

2%-2 ;
~2)s llue 115" @2242505 -4 g
6(2;F 2)s 6y, > C% C — pLSq’SD(s, Ha s2F+20-3 Z20.(1)
ass— C4
2%-2
Clle 13 .
a%-2 .

To sum up, condition (2.5) can ensure that (5.39), (5.52) occur, so as to guarantee (5.53)
hold.

In what follows we focus on an upper estimate of maxgcp lIJ,’,f (0). We split the argument
into two steps.

Step 1. We estimate for maxger \IJ,?S (0), where,

250 e2550
W0 (6) == —— vl - |ve | dx
ve T g F ¢ Jps © ’

s

It is easy to see that for every v, € S, , the function ‘1188 (0) has a unique critical point 6; o,
which is a strict maximum point and is given by

1
2 ¥
00 = (””““”) . (5.54)

fR3 |v6|2';kd-x

6> 0%
sup | —a — b=
0>0 \ 2 2%

Using the fact that

2%

Ky a 2§-2
3\ p¥x ’
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for any fixed a, b > 0. We can deduce by (5.24), (5.25), that

e e
2%¥-2 2%¥-2
s llvell® ' s e |1 '
W =3 —— ) =3[
Ve %dx)E w P dx)E
(-[]R3| s| ) . (f]R3| 8| ) (555)
3 73
S35 10} 3—2s s
- % SEAO0ET) - %S% + 0>,

2
(ST + 0(3) %

Step 2. We next estimate for maxgegr \IJ,le (t). Recall (3.3), (5.30) and Holder inequality,
we have

o2 =Ds0e

3-2 —2i— 5
_ 2max {[lvel?, 4252 eC2 2 [ g vidx}

—= 2%
||U£||2§f
2 4 3=2t ,(3—2t—2s)0 4 4(1-1)
2max {llue |, A 372229 o I3 o 13} (5.56)
. vl
ellox
252 3.2 _95_9g 4(1—1) 2% —4(1-1)
2 max {a2||u5||2||u6||2‘ e 2”95-urta4llug||2§ lluee Il

* 2*
a® Jlug 5

From the estimations (5.24)—(5.25) and (5.56), we see that the number 6, , can not go to
400, and there exists some * € R such that

Opp < 0%, forall e, u> 0. (5.57)
Hence, by virtue of (5.56), (5.57) and (3.3) we derive to

max W* (@
feR Ug( )
0 6(3_2098’“ . 2 e‘])’q.sses.u
= \IJ{)‘E (O, ) = \IJUE(QS’”) + f)”/ ¢v8v8dx — [Li/ |ve|9dx
R3 q R3

0 6(3_2008'“ P equ.sses,u
= supwv£(9)+7k/ ¢v€v€dx _Mi/‘ |U8|qu
feR 4 R? q R3

3+2¢

12 3 Cua?ves) [ 5 lugl9dx
< W) (B ) + Ch (/ |U5|mdx) - = Jw 'q(jl_y . (5.58)
R q luellg
4 = q(1=vg.5) q
i 3-2s ra a2 3 Cua €3 fR3|u8| dx
= gSZx + 0(8 )+ C ”M ”4 </3 |Ms|3+2tdx> — 7 PTEE=.)
ez R ||u5||2
(f 12 Ha
sl ¥ dx ) g
<Ish 4O op— e el
3 llue i3 flue )37

Next, we separate three cases:
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Case 1: 0 < s < 3. In this case, owing to 2t 4+ 85 < 9, we get p = 3+2t > 3—3723 it
following from (5.26)— (5 27) and (5.34) that,

(f | |%d 3-52)
s 3 R3 [Uel > x) ug|4dx
=S5 4+ C 177 + Coh : -G S| (jl S
3 llue 5 g 20770
s 3 g2i+4s=3 (5.59)
=-SH 4+ C1 B 4 A —— — C3
3 ! g4s
s 3
< =82,
3
if we choose A = &°.
Case2:s = 3 . Inthis case, we still have 2t 4+-8s = 2r+6 < 9,and also, p = % > %

q(}’qs 1) q(3—2s)
T 4s

Moreover, 2 + > 0, hence

1
+q(Vq,s )

2273 50, &3 2 (loge)> — 0, and |Ine|? T — 400,

when ¢ — 0. Consequently, if we choose A = €25 then we have

2o\
s 3 B (s |77 dx ) s Juel9dx
—ST 4+ C1e77F + Con - ~C3 S I
3 lluell3 lleelly ”

82t+4s—3 q()/q =1

=155 418 + Ch————— — CilIns] (5.60)
3 £%|log &|? :

s B w
355+ Tozo)? [C183 2 (loge)? + Cre¥ 2573 — C3)Ingt ]

< =87,

when e > 0 small enough.
Case 3: Z < s < 1. In this case, using the fact that 2t +2s > 3,q > 2 + , We can
obtain the inequality by a direct computation,
3-2s G =25)q(l —yy.s)
2 1 2
Thus, from (5.26)—(5.27) and (5.34), letting A = €9~ we derive that

342t

(fs el ) 4
R _e Jro luel9dx

3— < 3 —2s.

%SZ% +C157% 4+ Con

lle 113 lug 2770
)\82t+4s73 ¢ 12 3
N i > —,
g0—4s 342t 3—2s
S o3 325 20453 o F 12
=-8% +Cie + C A—, if - , (5.61)
3 gb—4s 342t 3-2s
)\82(3725‘) ¢ 12 3
— . > 1 <
g0—4s 342t 3—2s
B e R
< fo.
3

@ Springer



142 Page 38 0f 48 X.Heetal.

Since ve € S 4, from Lemma 5.1 we can take §; < 0 and 6> > O such that 61xv, € A,
and 7, (6r*v,) < 0, respectively. Then we can define a path

Ve 11 €0, 11— (1 =)0 +1t62)xv, € T'y.

To sum up, by the estimations (5.58)—(5.61), we can derive that
s 3
crula) < [max Lu (s, (1)) < max wi) < 35% (5.62)
for ¢ > 0 small enough, which is the desired result. |

Lemma5.8 Let{u,}bethe (PS)sequencein S, , atlevelc,(a), withc,(a) < %S%, assume
that u,—u, then, u # 0.

Proof Arguing by contradiction, we suppose that u = 0. N0t1c1ng that {u,} is bounded in

H, (R3), going to a subsequence, we may assume that [|[(—A) 3 Up ||2 — ¢ > 0. By Lemma
3.6, u, — 0in LP(R?),Vp € (2,2 ¥). From Proposition 5.5 and Lemmas 3.3, 3.6, we have
Py (u,) — 0 such that,

/ [ty Bdx = (= A)zu,,||2 + 7)\/ qbunundx — ubq,s /R? |1, |9dx
= (=A)2un |13 + 0n(1)
=L+ o0,(1),

2 3
as n — oo. Then, using Sobolev’s inequality, one has £ > S¢% , and so, either £ > S7s or

£ = 0. In the case ¢ > S%, from 1, (u,) — cy(a), Py(u,) — 0, we know

Cp.(a) +on(1)

1
= [u(un) = [/L(un) 2* P (un)
s s s2% 42t —
= g”(_A)zun”% FA—— 4y 2* / ¢un|un zdx - - |un|qu +0,(1)
S
=2+ 0,(D)

3
which means ¢, (a) = £¢, thatis ¢, (a) > %S , which contradicts the assumption ¢, (a) <

§st . In the case £ = 0, one has

I8l 0. [ x> o.
R3
and combining with
/ oL uldx — 0, / lun|9dx — 0,
R R3
we have, I,,(u,) — 0, which is absurd since ¢, (a) > 0. Therefore, u # 0. ]
Lemma5.9 Let{u,}bethe (PS) sequencein S 4 atlevel c,(a), withc,(a) < %SZ%, assume

that Py (u,) — 0 when n — oo, and . < A} small. Then one of the following alternatives
holds:
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(i) either going to a subsequence u,—u weakly in H d(R3) but not strongly, where
u # 0 is a solution to

(=D u + Al u = au + plul?u + u>"2u, in R, (5.63)
where a, — a < 0, and

I, (u) < cpla) — %S%;

(i) or passing to a subsequence u, — u strongly in H? , (R3), I,(u) =cyl(a) andu is a
solution of (1.5)—(1.6) for some o < 0.

Proof By Lemma 5.6, we have that {u,} C S, is a bounded (PS) sequence for /, in
md(R3) and so u,—u in H;, (R3) for some u. By the Lagrange multiplier principle,
there exists {o,} C R satlsfylng

|t arivdn —ay [ wngdr+r [ gl uodx—p [t ugds
B3 R R R (5.64)

- /R lun % "2uppdx = 0,(Dllgll,

forany ¢ € H? d(R3) Moreover, one has lim, . oy, = @ < 0. Letting n — o0 in (5.64),
we have

/(—A)%u(—A)%q;derx/ ¢ updx
R3 R3

—,u/ lul9 2 ugpdx —/ Iulzﬁfzutpdx—a/ updx =0,
R3 R3 R3

which implies that u# solves the equation
(=AY u + Au = au + pululu + [u>2u, in R (5.65)

and we have the Pohozdev identity P, (u) = 0.
Let v, = u, — u, then v,—01in H} , (RS) According to Brezis—Lieb lemma [33] and
Lemma 3.3, one has

I(=A)2unl3 = (=) 2ull3 + 1(=A)2v, 113 + 0, (1),
2% 2% 2%
||”n||2§s = ||”||2% + ||Un||2§« +on(1), (5.66)

and
/R3 ¢, undx = /R3 puudx + 0, (1), Nunlld = uld + llvall§ + 0n(1).  (5.67)
Then, from P, (u,) = 0,u, — uin L? (R3), one can derive that
H=)3ul + - A3+ 22 / pu’dx
:Maw/ Iulqu-i-/ |u|2sdx+/ lun|® dx + o, (1).
R3 R3 R3
By P, (u) = 0, we have

I(=A)2 v, 03 = /R [val % dx + 0, (1). (5.68)
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Passing to a subsequence, we may assume that

lim [[(—A)2v,]3 = lim / lon|5dx = € > 0. (5.69)
n—oo n—0o0 R3

2
Then, it follows from Sobolev’s inequality that £ > S£% , and so, either £ > Szis orf{ =0.
In the case £ > S%, from I, (u,) — cu(a), P (u,) — 0, we know

1 1 .
cula) = nlingo Iy (uy) = HILH;O {Iu(u) + §||Un||2 o A;@ |v,,|2fdx + On(l)}
s /R 5.70
s s s (5.70)
= L(u) + 55 = 1y (u) + 552“‘

which means that item (i) holds.

If £ = 0, then |lup — u|| = |lvnll = O, one has u, — u in D>2(R?), and so u, — u
in L% (R?). To prove that u, — u in H?,,(R3), it remains only to prove that u, — u in
L2(R3). Fix ¥ = u, — u as a test function in (5.64), and u,, — u as a test function of (5.65),
we deduce that

/ I(_A)%(un - u)|2dx _/ (apuy — ou)(u, —u)dx + )L/ (¢;”un - ¢L’,u)(un —u)dx
R3 R3 R3
= M/ (ltn |21 — [l 2u) (uy — w)dx (5.71)
]R3
+/ (un " 2un — |l %) — w)dx + 04 (1).
R3
Passing the limit in (5.71) as n — oo, we have

0= lim (apuy, —au)(u, —u)dx = lim a/ (U, — u)zdx,
n—oo R3 n—oo R3

and then u, — u in L%(R3). Therefore, item (ii) holds. o
Now, we are ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2 Let 1. < A* := min{A], A3}. By virtue of Lemmas 5.1-5.2, 5.6-5.7,
Propositions 5.3-5.5, there exists a bounded (P S)., )-sequence {un} C Sy 4, with ¢ (a) <

%S %, andu € H; , (R?) such that one of the alternatives of Lemma 5.9 holds. We assert

that (i) of Lemma 5.9 can not occur. Indeed, suppose by contradiction that, item (i) holds,
then u is a nontrivial solution of (5.63), and by Lemmas 5.9 and 5.7, we have

L) < cp(a) — %S% <o.
On the other hand, we have

1
L (u) = 1 () = 52 Puu)

A

2s +2t—3 8g5 —2 X
= LA/ d)iuzdx + Lu/ lu|?dx + i/ |u|2fdx
8 R3 2q R3 3 R3

>0,

which leads to a contradiction. Therefore, u,, — u stronglyin H} , (R3) with / w(u) =cyla),
and u is a solution of (1.5)—(1.6) for some a < 0. Moreover, u(x) > 0 in R3. In fact, we
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note that all the calculations above can be repeated word by word, replacing I, with the
functional

1
Ilj(u)ZZ/ [(=A)Zu2dx + = f¢>’u2dx ”/ luT|9dx
q Jr3

+2¢
5 ut Pz, (5.72)

Then u is the critical point of / lf restricted on the set Sy 4, it solves the equation
(=AY u + rd'u = au + pulut 9720 + [t 3 2u. in R, (5.73)

Using u~ = min{u, 0} as a test function in (5.73), in view of (a — b)(a™ —b™) > |la~ —
b’|2, Va, b € R, we conclude that

_ 2
(= AZ)M_HZ—// [~ (x) — u(y)l =) —uF

x_y|%+2s
< ||(—Af>u*||%+xf ol lu~Pdx —a/ lu™*dx
- / () = u (@) —u= ()
]R6

v — y[3Fe

+A/ ¢;|u—|2dx—a/ lu™|Pdx
R3 R3

=0.

Thus, u~ = 0 and u > 0,Vx € R3, is a solution of (5.73). By the regularity result [36]
we know that u € L°°(]R3) ncoe (]R3) for some o € (0, 1). Suppose u(xp) = 0 for some
xo € R3, then (—A)u(xp) = 0 and by the definition of (—A)*, we have [27]:

g/ u(xo +y) +uxo —y) —2uxo) , dy.
R3

(—=A)’u(xp) = — B |y|3+2s

Hence, [ps %Wdy = 0, which implies u = 0, a contradiction. Thus, u(x) >

0,Vx € R3. o

6 Proof of Theorem 2.3

In this section, we deal with the L2-supercritical case 2 + 4—5 < g < 2%, when parameter
3¢=2)

© > 0 large. In view of > 2, the truncated functlonal I, ¢ defined in Sect. 4 is still
unbounded from below on S, «» and the truncation technique can not be applied to study
problem (1.5)—(1.6).

To overcome this difficulty, as in Sect. 5 we introduce the transformation (e.g. [29]):

O*)(x) = e u’x), xcRV, 6eR, 6.1)

and the auxiliary functional
2s6

e Ae<3_2t)9 m
1w, 0) = (@) = ——llull® + ——— / pyutdx — =t / u|?dx
R3 q R3

2
1 3ei-2 X
— e ! 0 |u|23 dx
2s R3

(6.2)
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From Lemmas 5.1, 5.2, we have the the mountain pass level value ¢, (a) by
= inf I t 0,
cula) Inf, max, w(y (1) >
where
Fo={y € C(0. 11, S.0) : ¥(0) € Aq,y(1) € I0}.

In what follows, we set g(t) = wlt?72t + |u|2?_2u, for any + € R. From Propositions
5.4,5.5, we know that there exist a (PS)c,, )-sequence {u,} C S, 4 satisfying

I (uyn) — cp(a), ”Il;'Sr,u(un)” — 0 and Py (u,) — 0, as n — oo,
where

s 32 . 3
Py (up) =s [(=A)2u,|*dx + ——X ¢, udx +3 G(up)dx — = g(up)updx.
R3 4 R3 R3 2 Jr3
Similar to the Sect. 5, setting the functional W (v) : a d R >R given by
1 2
V)= | [v7dx,
2 R3
it follows that S, , = w-l ({%}), and by Proposition 5.12 in [33], there exists «, € R such
that
I}, (un) — ¥ (up)|| = 0, as n — oo.
That is, we have
(=A)’u, + )¥¢Lnun — 8up) = apun +o0,(1) in H,, d(Rg) (6.3)

Therefore, for any ¢ € Hrsa d(R3), one has
/ (—A)%un(—A)%wdx+A/ o, unpdx —/ g(uy)pdx
R3 R3 R3

= oy /% unpdx + o, (1). (6.4)
]R‘

In the sequel, we study the asymptotical behavior of the mountain pass level value ¢, (a)
as 0 — 00, and the properties of the (P S)c, (q)-sequence {u,} C Sy 4 asn — +o0.

Lemma 6.1 The limit lim,,_, 1 o ¢, (a) = 0 holds.

Proof Recall Lemmas 5.1, 5.2, we see that for fixed ug € Sy 4, there exists two constants
01, 6> satisfying 61 < 0 < 6> such that u; := 61*up € A and I,,(u) < 0. Then we can
define a path

no:t €[0,1] = (1 —1)0) + t0)*ug € I',.
Thus, we have

cy(a) < max [ t
(@) < max, w(mo (1))

25 ., 3= e
< max { —|lu u dx——r N ug|?dx
< mag | huol? + [ ol [ woras

= h(r).
g )
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Note that 2% > 25 > 3 — 2, we have that lim, g+ h(r) = 0%, lim,, 1o h(r) = —00,
and so, there exists a unique maximum point ro > 0 such that max,>o h(r) = h(rg) > 0.
Hence, we distinguish two cases: ro > 1 and 0 < rg < 1.

If ro > 1, we have by 2s + 2¢ > 3, that

max_ 1, (no(?)) < h(ro)

ref0,1]
?qfé
flluoll A/ b ugdx — *ro / lug|?dx
R3
<max{2max[f||uo|| / ¢u0u0dx’r25_ K L/ |uo|qu}
b —6
= Za(rmax)zs - Mi(rmax) 7
q
2a(3q — 6 — 4s) 8¢qsa RS
o 3g —6 ub(3q — 6) ’
where

4s
8¢gsa 3q—6=4s 1 5 A 5
Tmax = [m] , @ = max {EHMOH 7111.@ ¢;0”0dx , b= /l.@ luol9dx.

Therefore, for 2 + % < g < 2%, we have a positive constant c independent of p such that

~ __ 4
yula) < Cp 3% — 0, as pu— +oo.

If 0 <rg < 1, we infer to

2s 3 2t 39-6
L 0 20 — H,. 73 a4
max Li(no() < 2 Jluol* + ¢ oUodx "o luol*dx
€0, 4 q R3

3¢—6
< max {2max | —||u 2,7 L2 b 32 EVT/ uop|?dx
_rZO{ (ol 5 [ ot 2 [ ol

_ ub 36
= 2a(fmax)3 A1 ?(rmax) 2

_ 2a(3q + 4t — 12) [4qa(3 — 205 1
o 3g —6 ub(3q — 6) ’

where

- 4qa(3 —2t) %q+4r 2
T =|—— .
max ,ub(3q — 6)

Since 2 + 43—5 < ¢ < 2§, and 25 4 2t > 3, we can deduce that 3q 4- 4t — 12 > 0, then there
exists a positive constant Cy independent of p such that
_23-2)
cula) < Cip 312 — 0, as pu — +oo.
This completes the proof. O

Lemma 6.2 There exists a constant C = C(q, s) > 0 such that

n—o0o

limsup/ G(uy)dx < Ccpl(a),
R3
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lim sup/ gupupdx < Ccyla),
R3

n—oo

and

limsup/ ¢f¢ uﬁdx < Ccula), limsup/ |(—A)%un|2dx < Ccul(a).
R " n—oo JR3

n—oo
Proof Since I,,(u,) — c,(a) and Py, (u,) — 0 asn — oo, we have
3Cp.(a) + o0, (1) = SIu(un) + Pu(un)

342 s 3—t¢ 3
=2t S/ |(—A)7Mn|2dx+)»7/ L, undx — */ g(un)uydx
R3 2 R " 2 Jgrs3

2

3425 A . 2
= 2cy(a) — = ¢, uydx +2 G(uy)dx + 0,(1)
2 2 Jr3 " R3

3—1t (6.5)

3
+ AT s ¢f4"u%dx —3 /R3 g(up)uydx

= (3 + 25) I:CM(a) + /2 G(Mn)dx + On(l):l
R3

3 2t +2s —3
— 5/}; g(uy)uydx _}Lf/ﬂgs qb;nu%dx.

Hence,

2t +2s — 3
2scy(a) + o, (1) = )\f /3 ¢un”3:dx
R

3
+ = / gup)updx — (3 + 2s)/ G(uy)dx
2 Jr3 R3

3q

— G(uy)dx — (3 + ZS)/ G(uy)dx

2 Jrs R3

3g —2(3+2
— w/ G (uy)dx,
2 R3

which implies that

. 4s
lim sup \/R3 G(un)dx < mcu(a) < CCM(G) (66)

n—o0

and then

lim sup/ guy)updx < Ccy(a). 6.7)
R3

n—oo

Then, from (6.5)—(6.7), we have

342 s 31
limsup{g/ |(—A)fun|2dx+k—f ¢unu§dX}
n—00 2 R3 2 R3

(6.8)
= lim sup {3cu(a) + ; /3 g(up)uydx + 0,,(1)} < Ccy(a).
n—o00 R

Consequently, the proof is completed. O

Lemma 6.3 There exists ] := puij(a) > 0 such that u # O for all 1 > pj.

@ Springer



Normalized solutions for a fractional Schrodinger—Poisson system... Page450f48 142

Proof From Lemma 5.6, we know that {u,} is bounded in H?® d(R3) and by Lemma 3.6, up
to a subsequence, there exists u € H; , (R3) such that 1, —u weakly in H o S d R, u, > u
strongly in L' (R%), for ¢ € (2,2%), u, — u a.e. on R?. In view of 2 + 2 L <qg <2 and
Lemmas 3.3, 3.6, then .

lim |u,,|qu—/ lu9dx, hm/ o uzdx—/ o udx. (6.9)

n— oo

Suppose by contradiction that, u = 0. Then, by (6.9) and P, (u,) = 0,(1), we deduce as
3-—
R L e IR A S L N

= =) b - /RS a2 dx + 0, (1).
Without loss of generality, we may assume that

/ [(—=A)Zu,|*dx — ¢, and / lup|5dx — £,
R3 R3

2
as n — 00. By Sobolev’s inequality we get £ > S£% | and so, either £ > S% or € = 0.

Ife > S%, then from 1,,(u,) — c,(a), Py (u,) — 0, we have
cula) + o (1)

1
= I (up) = [/L(Mn) P (un)

s s s2*+2t q8

= SIS quunuidx— 2*“/%|un|qu+on<1>
S

= S+,

which implies that ¢, (@) = 5¢,and so, ¢, (a) > %S % , but this is impossible since by Lemma
6.1, there exists some u} := uj(a) > 0 such that ¢, (a) < %S% as (L > uj.

If ¢ = 0, then we have ||(—A)%un||% — 0, thus I,,(u,) — 0, which is absurd since
cu(a) > 0. Therefore, u # 0. ]

Lemma 6.4 {«,} is bounded in R, and lim sup,,_, o, |oy| < a%cﬂ (a) has the following esti-
mation:

1[. 2t+4s—-3 3—-25)—6
o = — )Li/ ¢,’4 uﬁdx—l—u,u/ lup|dx | + 0, (1).
a 4s R " 2gs R3

Moreover; there exists some p5 = w3(a) > 0 such that lim, 4o 0, = a < 0, if 4 > 13
large.

Proof By (6.3) and the fact that u, € S, 4, we have

/ [(— A)Zunlzdx—i-A/ ¢u”u%dx—/ g(u,,)u,,dx:an/ un|?dx + 0, (1)
R3 R3

= anaz + 0, (1).
It indicates that
1 s
= — [/ [(=A)2u,|?dx +/\/ ¢;n|un|2dx —/ g(un)undx] +0,(1).
R3 R3 R3

a
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By Lemma 5.6 we have the boundedness of {u,} in Hfad(R3), and so, {a,} is bounded

in R. By Lemma 6.2 we know that lim sup,,_, , |ots| < a%cﬂ (a). Moreover, together with
P, (u,) — 0asn — oo, we derive as

1 s 1
a =— [ / [(=A) 2w, Pdx + 1 / Bh, lun|Pdx — / 8(un)undx — *Pu(un)] +on(D)
a R3 R3 R3 N

1[.2t+4s—3 . 2 q(3—25)—6
=a7|:AT /1;3 by, undx + 2‘1751{/]1%3 lun|?dx | 4 0n(1).

By (6.9) and similar arguments to that of (4.32)-(4.35), we see that there exists uj :=
w3 (a) > 0, such that

o = lim «

n—o0
1 2t +4s —3 3—-25)—6
= lim — AL/ o u%dx—i— uu/ lun|?dx + 0, (1)
n—o0 q2 4s R " 2gs R3
1[.2t+4s -3 3—-25)—6
- A+7Sf ¢;u2dx+uﬂf lul?dx
a? 4s R3 2gs R3
<0, (6.10)
for u > pj large. m}

Subsequently, using the concentration-compactness principle, we derive the following
lemma, whose proof is similar to that of Lemma 4.3 in Sect. 5, we omit its details here.

Lemma 6.5 For ju > p* := max{uj, u3}, there holds [p3 lun| = dx — Jr3 lu® dx.
With the help of the above technical lemmas, we can prove Theorem 2.3 as follows.

Proof of Theorem 2.3 Let . > p* := max{uj, u3}. From Lemmas 5.1, 5.2, the functional
I, satisfies the Mountain pass geometry, from Propositions 5.4, 5.5, there exist a (P S)c, (a)-
sequence {u,} C S, 4 satisfying (6.3), (6.4), which is bounded in H , (R?), and there exists
u € HY,(R®) such that u,—u weakly in H? ,(R®), u, — u strongly in LP(R?), for

”
p € (2,2%). Moreover, by Lemmas 6.1-6.4, we have that o, — o < 0 as n — +o00. By

the weak convergence of u,—u in H?® , (R3), Eqgs. (6.3) and (6.4), we have that u solves the
equation

(=AY u + phu — plul?%u — |u|> 2u = au. 6.11)
Therefore, from (6.9)—(6.11) and Lemma 6.5, it follows that

I=A)2ul)3 +A/R3 $udx — allull; = ululg + /R | dx

= lim |:H||un”3 +/ ‘un|2?dxi|
n—oo R3

BT s 2 t 2 2

= lim [[(=A)2unll3 +)\/ Gy, Undx — otnllun 3]
n—oo R3

T s 2 2 t. 2

= lim [[(=A)2unll; — anllunlz] +l/ ¢ u-dx.
n—00 R3

Since « < 0, as in the proof of Lemma 4.3, we can derive as

: 5 2 52 : 2 2
i [[(~A)2uy 3 = (= A)3u)3 and  lim fuyl3 = lull3.
n—oo n—o0

Therefore, u, — uin H; d(]R3) and |lu||2 = a. This completes the proof. O

a
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