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Abstract. We investigate partial symmetry of solutions to semi-linear and
quasi-linear elliptic problems with convex nonlinearities, in domains that are

either axially symmetric or radially symmetric. The semi-linear problems are

studied in a framework where the associated functional is of class C1 but not
of class C2.

1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 2. The goals
of this paper are twofold. On the one hand, we extend some symmetry results in
axially symmetric domains developed in [8, 9] for the semi-linear elliptic equation
with a convex nonlinearity {

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1)

to a framework where the energy functional naturally associated with (1) is of class
C1 but not of class C2, that is to say when f is continuous but not differentiable
in the second argument. We give sufficient conditions for symmetry in terms of the
local minimality of zero for certain related functionals (see the precise statements in
Proposition 1 and Corollary 1). In addition, we shall provide a further application
to constrained minimization problems with convex nonlinearities in Theorem 2.4.
In the framework of Morse theory, problems with the same level of regularity were
investigated in [1] exploiting suitable tools of nonsmooth analysis. As pointed out
in [1], the extension to the nondifferentiable case is worthwhile for certain problems
in mathematical ecology where one has to deal with jumping type nonlinearities. It
is well-known that, under stronger assumptions on Ω and a monotonicity condition
on the mapping |x| 7→ f(|x|, s), symmetry results can be achieved by the celebrated
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moving plane method (see, e.g., [11, 5]). Other partial symmetry results in the
framework of symmetrization and polarization theory were obtained in [2, 12].

On the other hand, assuming now that f is smooth enough and it grows at
infinity sufficiently fast, we obtain some symmetry results for the quasi-linear elliptic
problem −div(a(u)Du) +

a′(u)

2
|Du|2 = f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

where a : R→ R is smooth, positive and bounded away from zero. To this aim, we
use a suitable change of variable procedure, namely, we transform the quasi-linear
problem into an associated semi-linear problem −∆v = h(x, v), whose nonlinearity
h depends both on a and f . By investigating the convexity or strict convexity prop-
erties of the mapping s 7→ h(x, s), we can then apply the symmetry results obtained
in [8, 9] for the semi-linear case, and finally return to symmetry properties for the
original problem (see Theorems 3.2, 3.3, 3.4 and 3.5 for the precise statements). A
similar method has been employed in a recent paper of the second author jointly
with F. Gladiali [7], that deals with boundary blow-up solutions. These kinds of
quasi-linear problems have been studied since 1995 in the framework of non-smooth
critical point theory, being formally associated with (merely) continuous or lower
semi-continuous functionals J : H1

0 (Ω) → R ∪ {+∞}. Some recent applications
involving (2) have arisen in the study of the so called quasi-linear Schrödinger e-
quation (see [3] and the references therein). Some other applications can be traced
back to differential geometry on manifolds with a general metric depending upon
the solution itself. We refer the interested reader to the monograph [13] by the
second author and to the references therein for further details.

2. Symmetry for semi-linear problems. Let Ω be a bounded domain in RN , N ≥
2, that contains the origin and is symmetric with respect to the hyperplane

T =
{
x = (x1, . . . , xN ) ∈ RN : x1 = 0

}
,

and let u0 ∈ C2(Ω) ∩ C(Ω) be a classical solution of the problem{
−∆u = f(x, u) in Ω

u = 0 on ∂Ω,
(3)

where f is a Carathéodory function on Ω × R that is even in x1. In this section
we study the symmetry properties of u0 with respect to x1 when f is convex in the
second variable.

We assume that f satisfies the growth condition

|f(x, t)| ≤ C
(
|t|r−1 + 1

)
for a.a. x ∈ Ω and all t ∈ R, (4)

where C > 0, r > 1, and r < 2N/(N − 2) if N ≥ 3. Then u0 is a critical point of
the C1-functional

Φ(u) =

∫
Ω

1

2
|∇u|2 − F (x, u), u ∈ H1

0 (Ω), (5)

where F (x, t) =
∫ t

0
f(x, s) ds. So u = 0 is a critical point of

Ψ(u) = Φ(u+ u0)− Φ(u0)

=

∫
Ω

1

2
|∇u|2 + f(x, u0)u− F (x, u+ u0) + F (x, u0),
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where we have used the fact that u0 solves (3) to write
∫

Ω
∇u0 ·∇u =

∫
Ω
f(x, u0)u.

Set

Ω± =
{
x ∈ Ω : x1 ≷ 0

}
, Ψ± = Ψ|H1

0 (Ω±) ,

and note that u = 0 is also a critical point of Ψ±. We will prove that u0 is even in
x1 under assumptions that involve the convexity of f in t and the type of critical
point that Ψ± or Ψ has at u = 0.

Let x̃ := (−x1, x2, . . . , xN ) be the reflection of x on T and let

u±(x) := u0(x̃)− u0(x), x ∈ Ω±.

Since u+(x) = −u−(x̃), if u± ≥ 0, then u+ = 0 and hence u0(x̃) = u0(x). Let
u−± = max {−u±, 0} be the negative parts of u±. We assume

(C1) for a.a. x ∈ Ω± such that u−±(x) 6= 0, f(x, ·) is convex on [u0(x̃), u0(x)].

In particular, if u0 ≥ 0 (resp. ≤ 0), it suffices to assume that f(x, ·) is convex on
[0,maxu0] (resp. [minu0, 0]) for a.a. x ∈ Ω.

Proposition 1. Assume (4) and (C1). If u = 0 is a strict local minimizer of Ψ±,
then u0 is even in x1. If we have strict convexity in (C1), then it suffices to assume
that u = 0 is a local minimizer of Ψ±.

This proposition is immediate from the lemma below, which implies that u−± = 0.

Lemma 2.1. If (4) and (C1) hold, then

d

dt
Ψ±(−tu−±) =

∫
Ω±

[
f(x, (1− t)u0(x) + tu0(x̃))

− (1− t) f(x, u0(x))− tf(x, u0(x̃))
]
u−±(x) ≤ 0 ∀t ∈ [0, 1].

If we have strict convexity in (C1) and u−± 6= 0, then the strict inequality holds for
t ∈ (0, 1).

Proof. Since u0 solves (3), u± solve{
−∆u = f(x, u+ u0)− f(x, u0) in Ω±

u = 0 on ∂Ω±,
(6)

and testing with u−± and using u±(x) + u0(x) = u0(x̃) gives∫
Ω±

|∇u−±|2 =

∫
Ω±

[
f(x, u0(x))− f(x, u0(x̃))

]
u−±(x).

Substitute into

d

dt
Ψ±(−tu−±) =

∫
Ω±

t |∇u−±|2 − f(x, u0)u−± + f(x, u0 − tu−±)u−±

and note that f(x, u0 − tu−±)u−± = f(x, (1− t)u0(x) + tu0(x̃))u−±(x).

Now we assume that for each M > 0, there is a constant CM > 0 such that

|f(x, s)− f(x, t)| ≤ CM |s− t| for a.a. x ∈ Ω and all s, t ∈ [−M,M ], (7)

and strengthen (C1) to

(C2) for a.a. x ∈ Ω± such that u−±(x) 6= 0, f(x, ·) is convex on [u0(x̃), 2u0(x) −
u0(x̃)].
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Proposition 2. Assume (4), (7), (C2), and that u0 has a critical point on T ∩ Ω.
If u0 is not even in x1, then

Ψ(su−+ + tu−−) ≤ 0 ∀(s, t) ∈ [−1, 1]× [−1, 1].

If we have strict convexity in (C1), then the strict inequality holds for (s, t) ∈
(−1, 1)× (−1, 1) \ {(0, 0)}.

Lemma 2.2. If (4) and (7) hold, then u0 is even in x1 in the following cases:

(i) u+ ≥ 0 in Ω+ and ∂u0/∂x1 ≥ 0 somewhere on T ∩ Ω,
(ii) u− ≥ 0 in Ω− and ∂u0/∂x1 ≤ 0 somewhere on T ∩ Ω.

Proof. (i) We will show that u+ vanishes in Ω+. Suppose u+ > 0 somewhere. Since
u+ solves (6), then u+ > 0 in Ω+ by the strong maximum principle and hence
∂u+/∂x1 > 0 on T ∩ Ω by the Hopf lemma (it is here that we use (7)). This
is a contradiction since ∂u+/∂x1 = −2 ∂u0/∂x1 on T ∩ Ω. Proof in case (ii) is
similar.

Lemma 2.3. If (4) and (C2) hold, then Ψ±(tu−±) ≤ Ψ±(−tu−±) for all t ∈ [0, 1].

Proof. We have

d

dt

[
Ψ±(tu−±)−Ψ±(−tu−±)

]
=

∫
Ω±

[
2f(x, u0)− f(x, u0 − tu−±)

− f(x, u0 + tu−±)
]
u−± ≤ 0 ∀t ∈ [0, 1]

since for a.a. x ∈ Ω± such that u−±(x) 6= 0, u0(x) − tu−±(x) ∈ [u0(x̃), u0(x)] and

u0(x) + tu−±(x) ∈ [u0(x), 2u0(x)− u0(x̃)] for t ∈ [0, 1].

Proof of Proposition 2. Since ∂u0/∂x1 = 0 at a critical point of u0 on T ∩Ω, u−± 6= 0
by Lemma 2.2. By Lemmas 2.3 and 2.1,

Ψ±(tu−±) ≤ Ψ±(−tu−±) ≤ 0 ∀t ∈ [0, 1]. (8)

Extending u−± to functions in H1
0 (Ω) by setting them equal to zero outside Ω±, then

Ψ(su−+ + tu−−) = Ψ+(su−+) + Ψ−(tu−−) ≤ 0 ∀(s, t) ∈ [−1, 1]× [−1, 1] (9)

since u−± have disjoint supports. If we have strict convexity in (C1), then the second
inequality in (8) is strict for t ∈ (0, 1) and hence the inequality in (9) is strict for
(s, t) ∈ (−1, 1)× (−1, 1) \ {(0, 0)}.

We now specialize to the case where Ω is either a ball or an annulus centered
at the origin O of RN , and f(·, t) is radial for all t ∈ R. If u0 6= 0, then it has a
critical point at some P ∈ Ω, and we may apply Proposition 2 to any hyperplane
containing O and P to get the following

Corollary 1. Assume (4), (7), and that f(|x|, ·) is convex for a.a. x ∈ Ω. If
P 6= O and u0 is not axially symmetric with respect to OP , or if P = O and
u0 is not radially symmetric, then there is a 2-dimensional subspace V ⊂ H1

0 (Ω)
containing sign-definite functions such that u0 is a local maximizer of Φ|u0+V . If

f(|x|, ·) is strictly convex for a.a. x ∈ Ω, then u0 is a strict local maximizer of
Φ|u0+V . If u0 ≥ 0, the convexity assumptions are needed only on [0,∞).
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As an application of Corollary 1, consider the problem of minimizing the func-
tional Φ defined in (5) on the closed set

M =

{
u ∈ H1

0 (Ω) :

∫
Ω

G(x, u) = 1

}
,

where G(x, t) =
∫ t

0
g(x, s) ds for some Carathéodory function g on Ω×R satisfying

(4) and (7) with g in place of f , such that g(·, t) is radial for all t ∈ R. Let
u0 ∈ C2(Ω) ∩ C(Ω) be a minimizer, and assume that g(·, u0(·)) 6= 0. Then there is
a neighborhood of u0 in M that is a C1-submanifold of H1

0 (Ω) of codimension 1,
and u0 solves {

−∆u = f(|x|, u) + λ g(|x|, u) in Ω

u = 0 on ∂Ω,

for some λ ∈ R by the Lagrange-multiplier rule.

Theorem 2.4. Under the above hypotheses, assume that f(|x|, ·) + λ g(|x|, ·) is
strictly convex for a.a. x ∈ Ω and g(·, u0(·)) is either positive a.e. or negative a.e.
Then u0 is axially symmetric. If u0 ≥ 0, the convexity assumption is needed only
on [0,∞).

Proof. Suppose u0 is not axially symmetric, and set

Φ̃(u) =

∫
Ω

1

2
|∇u|2 − F (x, u)− λG(x, u), u ∈ H1

0 (Ω).

Then there is a 2-dimensional subspace V ⊂ H1
0 (Ω) containing sign-definite func-

tions such that u0 is a strict local maximizer of Φ̃|u0+V by Corollary 1. For u ∈M,

Φ̃(u) = Φ(u)− λ ≥ Φ(u0)− λ = Φ̃(u0)

since u0 minimizes Φ|M. Thus, to obtain a contradiction, it suffices to show that
every neighborhood of u0 in u0 + V intersects M at a point different from u0. The
tangent space to M at u0 consists of vectors u such that∫

Ω

g(x, u0)u = 0,

which then have to change sign since g(·, u0(·)) is either positive a.e. or negative
a.e. Since V contains sign-definite functions, it follows that V is not tangent to M
at u0. The desired conclusion then follows since dimV > codimM.

For example, consider the eigenvalue problem{
−∆u = λ g(|x|, u) in Ω

u = 0 on ∂Ω,

where g(|x|, ·) is strictly convex for a.a. x ∈ Ω. If
∫

Ω
g(x, u0)u0 ≥ 0, we have

λ ≥ 0 and then Theorem 2.4 applies. The existence of at least one minimizer with
foliated Schwarz symmetry can by obtained (without any convexity requirements)
by applying the symmetric constrained version of Ekeland’s variational principle
proved by the second author in [14, Section 2.4].



3018 K. PERERA AND M. SQUASSINA

3. Symmetry for quasi-linear problems. In this section we shall consider the
quasi-linear elliptic problem (2) described in the introduction. In order to give
a precise characterization of the symmetry of the solutions to (2) in symmetric
domains, we shall convert the (quasi-linear) problem into a corresponding semi-
linear problem through a change of variable procedure involving the globally defined
Cauchy problem

g′ =
1√
a ◦ g , g(0) = 0. (10)

Assuming that a is bounded away from zero from below, (10) admits a unique
globally defined strictly increasing solution g ∈ Cm+1(R) provided that a ∈ Cm(R),
for m ∈ N. Furthermore, g is odd whenever a is an even function. A simple direct
computation shows that u is a C2 smooth solution to (2) if and only if v = g−1(u)
is a C2 smooth solution to the semi-linear problem{

−∆v = h(x, v) in Ω,

v = 0 on ∂Ω,
(11)

where we have set h(x, s) := f(x, g(s))a−1/2(g(s)) for x ∈ Ω and s ∈ R. Formally,
problem (2) is associated with the non-smooth functional J defined by setting

J(u) :=
1

2

∫
Ω

a(u)|Du|2 −
∫

Ω

F (x, u) (12)

while (11) is associated with the smoother functional I : H1
0 (Ω)→ R defined by

I(v) :=
1

2

∫
Ω

|Dv|2 −
∫

Ω

K(x, v)

where K(x, s) := F (x, g(s)) for all x ∈ Ω and s ∈ R. When F (x, u) ∈ L1(Ω) for a
given u ∈ H1

0 (Ω), then one can associate to (2) the lower semi-continuous functional
J : H1

0 (Ω) → R ∪ {+∞} which operates as in (12) when a(u)|Du|2 ∈ L1(Ω) while
it is +∞ in the opposite case. For a bounded J : H1

0 (Ω)→ R is continuous. It can
be shown [6, Proposition 2.3] that, assuming for k > 1

lim
|s|→+∞

a(s)

|s|k <∞, lim
|s|→+∞

|f(x, s)|
|s|p <∞, 1 < p <

(k + 1)N + 2

N − 2
(13)

uniformly with respect to x, for every ε > 0, there exists Cε > 0 such that

|h(x, s)| ≤ Cε + ε|s|(N+2)/(N−2), for all x ∈ Ω and all s ∈ R,

which implies that I ∈ C1(H1
0 (Ω)). If, furthermore, s 7→ h(x, s) is C1, under (13)

and similar one for a′ and f ′, arguing as in [6, Proposition 2.3], it follows that for
any ε > 0, there exists Cε > 0 such that

|h′(x, s)| ≤ Cε + ε|s|4/(N−2), for all x ∈ Ω and all s ∈ R.

In turn, for v ∈ H1
0 (Ω),

I ′′(v)(ϕ,ψ) =

∫
Ω

Dϕ ·Dψ −
∫

Ω

h′(x, v)ϕψ, ∀ϕ,ψ ∈ H1
0 (Ω)

is well defined. If, in addition, u is a C2(Ω) ∩ C(Ω) solution to (2), then (ϕ,ψ) 7→∫
Ω
Dϕ ·Dψ −

∫
Ω
h′(x, v)ϕψ is well defined without assuming growth conditions on

h′, since x 7→ h′(x, v(x)) is a continuous function on Ω, v being a solution to (11)
with v ∈ C2(Ω) ∩ C(Ω).
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After the above connection between problems (2) and (11) is established, of
course one could provide some symmetry results in symmetric domains by using
the results that we have obtained in Section 2. On the other hand, we prefer to add
stronger regularity assumptions and provide more concrete statements, by applying
directly the results of [8, 9] by investigating the convexity properties of the maps
s 7→ h(x, s) and s 7→ h′(x, s).

In order to state the main results of this section, the following definition is in
order.

Definition 3.1. For a (smooth) solution u to the quasi-linear problem (2), we put

m(u, J) := m(g−1(u), I),

and we say that m(u, J) is the Morse index of u with respect to J.

For a smooth solution u to (2), the number m(g−1(u), I) appearing in Defini-
tion 3.1 is defined, in a classical way, as the supremum of the dimensions of the linear
subspaces V of H1

0 (Ω) such that the quadratic form ϕ 7→
∫

Ω
|Dϕ|2−

∫
Ω
h′(x, v)ϕ2 is

negative definite on V , where v := g−1(u). Defining m(u, J) directly in a reasonable
way seems difficult due to the lack of regularity of J .

We are now ready to state our results. First, we have the following

Theorem 3.2. Let Ω be a domain in RN , N ≥ 2, which contains the origin and
is symmetric with respect the hyperplane {x1 = 0} and convex in the x1-direction.
Let a(s) = 1 + |s|k with k > 1 and let ψ : RN → R+ be continuous, even in the x1-
variable and increasing in the x1-variable in {x ∈ Ω : x1 < 0}. Then, if p > k + 1,
any (smooth) solution u to the problem

−div(a(u)Du) +
a′(u)

2
|Du|2 = ψ(x)up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(14)

is symmetric with respect to x1, that is u(−x1, x2, . . . , xN ) = u(x1, x2, . . . , xN ).

Secondly, we formulate the following result in radial domains.

Theorem 3.3. Let Ω be a ball or an annulus in RN , N ≥ 2, a(s) = 1 + |s|k with
k > 1, p > k + 1 and ψ : R → R+ continuous. Consider a (smooth) index-one
solution u to the problem

−div(a(u)Du) +
a′(u)

2
|Du|2 = ψ(|x|)up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(15)

Let P ∈ Ω be a maximum point of u and denote by rp the axis passing through the
origin and P . Then the following facts hold:

1. u is axially symmetric with respect to rp;
2. if Ω is a ball and P is the origin, then u is radially symmetric;
3. if u is not radially symmetric, it is never symmetric with respect to any (N−1)-

dimensional hyperplane passing through the origin and not passing through the
axis rp;

4. if u is not radially symmetric, all its critical points belong to the symmetry
axis rp.
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In radial domains, we also have the following partial symmetry results. We recall
that a function u is said to be foliated Schwarz symmetric if there exists a unit vector
ξ ∈ RN and a function η : R+ × R → R such that u(x) = η(|x|, x · ξ) and η(r, ·) is
nondecreasing, for all r ≥ 0.

Theorem 3.4. Let Ω be a ball or an annulus in RN , N ≥ 2, a(s) = 1 + |s|k with
k > 1 and let ψ : R→ R+ be a continuous function. Then there exists pk > 2 such
that for every p ≥ pk, any (smooth) solution u to−div(a(u)Du) +

a′(u)

2
|Du|2 = ψ(|x|)|u|p−1u in Ω,

u = 0 on ∂Ω,
(16)

with Morse index m(u, J) ≤ N is foliated Schwarz symmetric. Furthermore, if ψ is
constant, then the nodal set of any sign changing solution u of problem (16) with
Morse index m(u, J) ≤ N intersects the boundary ∂Ω.

Remark 1. Other types of nonlinearities a and f could be considered for which
the assertions of the previous theorems hold, such as exponential and logarithmic
type nonlinearities. The general idea is that the source f should grow faster than
the quasi-linear diffusion a as s→∞.

For a given u : Ω→ R, we denote by nod(u) ∈ N∪{∞} the number of connected
components of Ω \ {u−1(0)}. We can now state the last result of this section.
It implies, in particular, that when the problem is autonomous, index-one radial
solutions have at most one nodal domain.

Theorem 3.5. Let Ω be a ball or an annulus in RN , N ≥ 2, a(s) = 1 + |s|k with

k > 1, k
2 < p < (k+1)N+2

N−2 and let u be any radial solution to−div(a(u)Du) +
a′(u)

2
|Du|2 = |u|p−1u in Ω,

u = 0 on ∂Ω.
(17)

Then nod(u) ≤ 1 + m(u,J)
N+1 .

3.1. Some convexity results. Assume now that, for each fixed x ∈ Ω, the func-
tions s 7→ a(s) and s 7→ f(x, s) are twice differentiable. Observe that, by direct
computation, we obtain

h′(x, s) =
2f ′(x, g(s))a(g(s))− f(x, g(s))a′(g(s))

2a2(g(s))
, (18)

for every s ∈ R. Furthermore, there holds

h′′(x, s) =
1

2
a−7/2(g(s))

{
2f ′′(x, g(s))a2(g(s))− 3f ′(x, g(s))a′(g(s))a(g(s))

− f(x, g(s))a′′(g(s))a(g(s)) + 2f(x, g(s))(a′(g(s)))2
}
, (19)

for every s ∈ R.

Proposition 3. Assume that p > k + 1, k ≥ 2, ψ : RN → R+ is a continuous
function, and

f(x, s) =

{
ψ(x)sp if s ≥ 0,

0 if s < 0,
a(s) = 1 + |s|k, s ∈ R. (20)
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Then the map s 7→ h(x, s) is convex on R and strictly convex on (0,+∞) for all
x ∈ Ω.

Proof. Assume that k ≥ 2 and p > k + 1. In particular, the functions a and f(x, ·)
are of class C2 on R. Therefore, taking into account formula (19), we need to prove
that, for all s ∈ R,

2f ′′(x, s)a2(s)− 3f ′(x, s)a′(s)a(s)− f(x, s)a′′(s)a(s) + 2f(x, s)(a′(s))2 ≥ 0.

Hence, on account of (20), this inequality is fulfilled on R−, and on R+ it reads as

2p(p−1)sp−2(1+sk)2−3pksp+k−2(1+sk)−k(k−1)sp+k−2(1+sk)+2k2sp+2k−2 ≥ 0.

This can be rearranged as

Γ1s
p+2k−2 + Γ2s

p+k−2 + Γ3s
p−2 ≥ 0, for all s ≥ 0,

where we have set

Γ1 = 2p2 − (2 + 3k)p+ k2 + k, Γ2 = 4p2 − (4 + 3k)p− k(k− 1), Γ3 = 2p(p− 1).

Then, by assumption, Γ1 = (p− k − 1)(2p− k) > 0 and

Γ2 = (p− k − 1)
[
4p+

k(p− k + 1)

p− k − 1

]
> 0,

concluding the proof.

Remark 2. In the case p < k + 1, in general the map h fails to be convex. For
instance, if p = k = 3, Figure 1 shows the plot of h′′ becoming negative inside the
range [0, 2].
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h
′′ (
s)

s

h′′(s)

Figure 1. The figure shows that the second order derivative of h be-
comes negative in the case p = k = 3 and hence the convexity fails
outside the range p > k + 1.

Observe now that, when a and f(x, ·) are of class C3, from (19) we get

h′′′(x, s) =
1

4
a−5(g(s))

[
2Θ′(x, g(s))a(g(s))− 7a′(g(s))Θ(x, g(s))

]
, (21)
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where, for x ∈ Ω and s ∈ R, we have set

Θ(x, s) :=2f ′′(x, s)a2(s)− 3f ′(x, s)a′(s)a(s)

− f(x, s)a′′(s)a(s) + 2f(x, s)(a′(s))2,

and, after some computations,

Θ′(x, s) =2f ′′′(x, s)a2(s) + 4a(s)a′(s)f ′′(x, s)

− 3f ′′(x, s)a′(s)a(s)− 3f ′(x, s)a′′(s)a(s)

− 3f ′(x, s)(a′(s))2 − f ′(x, s)a′′(s)a(s)

− f(x, s)a′′′(s)a(s)− f(x, s)a′′(s)a′(s)

+ 2f ′(x, s)(a′(s))2 + 4f(x, s)a′(s)a′′(s).

Finally we can state the following convexity criterion for h′.

Proposition 4. Let f and a be as in (20) with k > 1. Then the map s 7→ h′(x, s)
is strictly convex on (0,+∞) for all p > 2 sufficiently large, depending upon the
value of k.

Proof. Notice first that the functions a(·) and f(x, ·) can be differentiated three
times (and more) on the positive real line (0,+∞). On account of formula (21), we
need to prove that

2Θ′(x, s)a(s)− 7a′(s)Θ(x, s) > 0, for all s > 0.

Observe now that this means

4f ′′′(x, s)a3(s) + 8a2(s)a′(s)f ′′(x, s)− 6f ′′(x, s)a′(s)a2(s)− 6f ′(x, s)a′′(s)a2(s)

− 6f ′(x, s)(a′(s))2a(s)− 2f ′(x, s)a′′(s)a2(s)− 2f(x, s)a′′′(s)a2(s)

− 2f(x, s)a′′(s)a′(s)a(s) + 4f ′(x, s)a(s)(a′(s))2 + 8f(x, s)a′(s)a′′(s)a(s)

− 14f ′′(x, s)a2(s)a′(s) + 21f ′(x, s)(a′(s))2a(s)

+ 7f(x, s)a′′(s)a′(s)a(s)− 14f(x, s)(a′(s))3 > 0, for all s > 0,

equivalently, since ψ(x) ≥ 0,

4p(p− 1)(p− 2)sp−3a3(s) + 8p(p− 1)ksp+k−3a2(s)− 6p(p− 1)ksp+k−3a2(s)

− 6pk(k − 1)sp+k−3a2(s)− 6pk2sp+2k−3a(s)− 2pk(k − 1)sp+k−3a2(s)

− 2k(k − 1)(k − 2)sp+k−3a2(s)− 2k2(k − 1)sp+2k−3a(s)

+ 4pk2sp+2k−3a(s) + 8k2(k − 1)sp+2k−3a(s)− 14kp(p− 1)sp+k−3a2(s)

+ 21pk2sp+2k−3a(s) + 7k2(k − 1)sp+2k−3a(s)− 14k3sp+3k−3 > 0, for all s > 0,

that is

4p(p− 1)(p− 2)a3(s) + 8p(p− 1)kska2(s)− 6p(p− 1)kska2(s)

− 6pk(k − 1)ska2(s)− 6pk2s2ka(s)− 2pk(k − 1)ska2(s)

− 2k(k − 1)(k − 2)ska2(s)− 2k2(k − 1)s2ka(s)

+ 4pk2s2ka(s) + 8k2(k − 1)s2ka(s)− 14kp(p− 1)ska2(s) + 21pk2s2ka(s)

+ 7k2(k − 1)s2ka(s)− 14k3s3k > 0, for all s > 0,

that is

Π1(p)a3(s) + Π2(p)ska2(s) + Π3(p)s2ka(s) + Π4(p)s3k > 0, for s > 0,
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where

Π1(p) := 4p(p− 1)(p− 2),

Π2(p) := −12kp(p− 1)− 8pk(k − 1)− 2k(k − 1)(k − 2),

Π3(p) := k2(19p+ 13k − 13),

Π4(p) := −14k3.

In turn this is fulfilled, for k > 1, provided that Qp(s) > 0 for s > 0, where

Qp(s) := (Π1(p) + Π2(p) + Π3(p) + Π4(p)) · s3k + (3Π1(p) + 2Π2(p) + Π3(p)) · s2k

+ (3Π1(p) + Π2(p)) · sk + Π1(p).

Taking into account that Π1(p) = O(p3) and Πj(p) = o(p3) as p → ∞ for all
j = 2, . . . , 6, in turn there exists pk > 2 such that for every p ≥ pk it holds

Π1(p) + Π2(p) + Π3(p) + Π4(p) > 0,

3Π1(p) + 2Π2(p) + Π3(p) > 0, (22)

3Π1(p) + Π2(p) > 0.

Then Qp(s) > 0 for all s > 0, yielding the positivity of h′′′(s) for s > 0 and, hence,
the strict convexity of h′ on [0,+∞). This concludes the proof.

Concerning the usual power nonlinearity f(x, s) = ψ(x)|s|p−1s, we have the
following

Corollary 2. Let p > max{2, k + 1}, f(x, s) = ψ(x)|s|p−1s for all s ∈ R, where
ψ : RN → R+ is continuous, and let a(s) = 1 + |s|k with k > 1. Then s 7→ h′(x, s)
is strictly convex on R for every x ∈ Ω for any p > 2 sufficiently large, depending
on the value of k.

Proof. The assertion follows from Proposition 4 after observing that, since f is odd
and a is even (and hence g is odd), the function h is odd and, in turn, h′ is even with
h′(0) = 0. Hence h′ is strictly convex both on (−∞, 0) and on (0,+∞) and hence
on R since h′ is increasing on (0,+∞) as p > k + 1 in light of Proposition 3.

Remark 3. Explicit conditions on the magnitude of p with respect to k that guar-
antees the validity of the assertion of Proposition 4 can either obtained by solv-
ing directly the inequalities in (22) or searching for the absolute minimum point
s] > 0 of Qp on (0,+∞) which satisfy the quadratic equation for the unknown
Ξ = Ξ(p, k) := sk] > 0

3(Π1(p) + Π2(p) + Π3(p) + Π4(p))Ξ2 + (6Π1(p) + 4Π2(p) + 2Π3(p))Ξ

+(3Π1(p) + Π2(p)) = 0,

and finally imposing Qp(s]) > 0. In the semi-linear (corresponing to the case where
a is a constant), it follows that h(x, s) = ψ(x)|s|p−1s so that the requirement p > 2
is necessary for s 7→ h′(x, s) to be strictly convex on R. Figures 2 and 3 show how
h′′′ is pushed from negative to positive values provided that the value of p is large
enough in terms of k (k = 2 and p = 3.2, 4, 5, 7 respectively). For instance, if the
dimension N is equal to 3, the values of p such that h′′′ > 0 are below the threshold
3k+ 5 = ((k+ 1)N + 2)/(N − 2) appearing in (13) for the growth of f which makes
the problem (11) subcritical and, thus, nice for the existence theory via variational
methods.
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Figure 2. The figure shows the plot of h′′′ in the case p = 3.2 (left) and
p = 4 (right) for k = 2.
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Figure 3. The figure shows the plot of h′′′ in the case p = 5 (left) and
p = 7 (right) for k = 2.

3.2. Proofs of Theorems 3.2, 3.3 and 3.4. We are now ready to prove the
previously stated symmetry results for the quasi-linear problem.

3.2.1. Proof of Theorem 3.2. Given a (smooth) solution u to (14), setting v =
g−1(u), it follows that v is a smooth solution to −∆v = h(x, v). Of course, for every
s ∈ R, the function h(·, s) is continuous, even in the x1-variable and increasing in
the x1-variable in {x ∈ Ω : x1 < 0}. Now, in light of Proposition 3, it follows
that the map s 7→ h(x, s) is strictly convex on (0,+∞) for all x ∈ Ω. Hence,
by combining [8, Propositions 1.1 and 2.1], it follows that v is symmetric with
respect to x1. Therefore this yields u(−x1, x2, . . . , xN ) = g(v(−x1, x2, . . . , xN )) =
g(v(x1, x2, . . . , xN )) = u(x1, x2, . . . , xN ), concluding the proof.

3.2.2. Proof of Theorem 3.3. Let u be a positive (smooth) index one solution to
problem (14). Hence, v = g−1(u) is a (smooth) solution to −∆v = h(x, v). By
virtue of Definition 3.1, it follows that v has index 1. Observe that Dju(x) =
g′(v(x))Djv(x) and D2

iju(x) = g′′(v(x))Div(x)Djv(x) + g′(v(x))D2
ijv(x) for all x ∈

Ω and any i, j = 1, . . . , N . Since g′ > 0, x0 is a critical point of v if and only if



SYMMETRY RESULTS FOR ELLIPTIC EQUATIONS 3025

x0 is a critical point of u, in which case Hu(x0) = g′(v(x0))Hv(x0), where Hz(y)
denotes the Hessian matrix of z at y. In fact, P is a maximum point for v also,
since v(ξ) = g−1(u(ξ)) ≤ g−1(u(P )) = v(P ) for all ξ ∈ Ω, g−1 being strictly
increasing. On account of Proposition 3, the proofs of assertions (1)-(3) follow as in
the proof of Theorem 3.2 by applying [8, Theorem 3.1 (i), (ii) and (iii)]. Concerning
assertion (4), assume that u is not radially symmetric. Hence, v = g−1(u) is a
nonradial (smooth) solution to −∆v = h(x, v). Whence, by [8, Theorem 3.1(4)], all
its critical points belong to the symmetry axis rp, that is to say Djv(ξ) = 0 implies
ξ ∈ rP . Since Dju(ξ) = g′(v(ξ))Djv(ξ) for all j and g′ > 0, Dju(ξ) = 0 implies
Djv(ξ) = 0. Hence ξ ∈ rP and the proof is complete.

3.2.3. Proof of Theorem 3.4. Let u be any (smooth) solution to (16) with Morse
index m(u, J) ≤ N . Therefore, setting v = g−1(u), by Definition 3.1, v is a smooth
solution to −∆v = h(|x|, v) with Morse index m(v, I) ≤ N . In light of Corollary 2,
the function s 7→ h(|x|, s) has a (strictly) convex derivative on R provided that p is
sufficiently large, depending on k. Then, by virtue of [9, Theorem 1.1], it follows
that v is foliated Schwarz symmetric, namely, there exists a unit vector ξ ∈ RN

such that v(x) = η(|x|, ξ · x) for some function η : R+ × R → R such that η(r, ·)
is nondecreasing for any r ≥ 0. Then u = (g ◦ η)(|x|, ξ · x) and Ds(g ◦ η)(|x|, s) =
g′(η(|x|, s))Dsη(|x|, s) ≥ 0 since g′ > 0 on R. This concludes the proof of the first
assertion. The second assertion follows by arguing analogously using [9, Theorem
1.2].

3.2.4. Proof of Theorem 3.5. Let u be any (smooth) radial solution to problem (17).
Then, setting v = g−1(u), it follows that v is a (smooth) radial solution to −∆v =
h(v). It is readily seen that h satisfies the requirement (f1)-(f4) (see the proof of
[7, Proposition 2.3]) needed to apply [1, Theorem 2.2]. In particular, for p > k+ 1,
the map s 7→ h(s)/|s| is increasing on R− and on R+. Therefore by [1, Theorem

2.2] it follows that nod(v) ≤ 1 + m(v,I)
N+1 . Recalling that m(u, J) = m(v, I) and

nod(u) = nod(v) (since g vanishes only at s = 0), the conclusion follows.
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