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Abstract. We obtain asymptotic estimates for the eigenvalues of the p(x)-Laplacian de-
fined consistently with a homogeneous notion of first eigenvalue recently introduced in the
literature.

1. Introduction

Let � be a bounded domain in R
n, n ≥ 1 and let p ∈ C(�, (1,∞)). The purpose

of this paper is to study the asymptotic behavior of the eigenvalues of the problem

− div

(∣∣∣∣ ∇u

K (u)

∣∣∣∣
p(x)−2 ∇u

K (u)

)
= λ S(u)

∣∣∣∣ u

k(u)

∣∣∣∣
p(x)−2 u

k(u)
, u ∈ W 1,p(x)

0 (�),

(1.1)

where

K (u) = ‖∇u‖p(x) , k(u) = ‖u‖p(x) , S(u) =

∫
�

∣∣∣∣∇u(x)

K (u)

∣∣∣∣
p(x)

dx

∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)

dx

.

The equation in (1.1) was derived by Franzina and Lindqvist in [5] as the Euler–
Lagrange equation arising from minimizing the Rayleigh quotient K (u)/k(u) over
W 1,p(x)

0 (�)\ {0}. It was shown there that the first eigenvalue λ1 > 0 and has an
associated eigenfunction ϕ1 > 0.
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We recall that the variable exponent Lebesgue space L p(x)(�) consists of all
measurable functions u on � with the Luxemburg norm

‖u‖p(x) := inf

⎧⎨
⎩ν > 0 :

∫
�

∣∣∣∣u(x)

ν

∣∣∣∣
p(x) dx

p(x)
≤ 1

⎫⎬
⎭ < ∞.

The Sobolev space W 1,p(x)(�) consists of functions u ∈ L p(x)(�) with a distribu-
tional gradient ∇u ∈ L p(x)(�), and the norm in this space is ‖u‖p(x) + ‖∇u‖p(x).

The space W 1,p(x)
0 (�) is the completion of C∞

0 (�) with respect to the norm above,
and has the equivalent norm ‖∇u‖p(x). We refer the reader to Diening et al. [2] for
details on these spaces.

It was shown in [5] that

(
K ′(u), v

) =

∫
�

∣∣∣∣∇u(x)

K (u)

∣∣∣∣
p(x)−2 ∇u(x)

K (u)
· ∇v(x) dx

∫
�

∣∣∣∣∇u(x)

K (u)

∣∣∣∣
p(x)

dx

, u, v ∈ W 1,p(x)
0 (�)

and

(
k′(u), v

) =

∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)−2 u(x)

k(u)
v(x) dx

∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)

dx

, u, v ∈ W 1,p(x)
0 (�),

so the eigenvalues and eigenfunctions of (1.1) on the manifold

M = {
u ∈ W 1,p(x)

0 (�) : k(u) = 1
}

coincide with the critical values and critical points of K̃ := K |M. In the next section
we will show that K̃ satisfies the (PS) condition, so we can define an increasing
and unbounded sequence of eigenvalues of (1.1) by a minimax scheme. Although
the standard scheme uses Krasnoselskii’s genus, we prefer to use a cohomological
index as shown in [12] by the first author since this gives additional Morse theoretic
information that is often useful in applications.

Let us recall the definition of the Z2-cohomological index of Fadell and Ra-
binowitz [3]. Let F denote the class of symmetric subsets of M. For M ∈ F ,
let M = M/Z2 be the quotient space of M with each u and −u identified, let
f : M → RP∞ be the classifying map of M , and let f ∗ : H∗(RP∞) → H∗(M)

be the induced homomorphism of the Alexander-Spanier cohomology rings. Then
the cohomological index of M is defined by

i(M) =
{

sup
{
m ≥ 1 : f ∗(ωm−1) �= 0

}
, M �= ∅

0, M = ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z2[ω].
For example, the classifying map of the unit sphere Sm−1 in R

m, m ≥ 1 is the
inclusion RPm−1 ⊂ RP∞, which induces isomorphisms on Hq for q ≤ m − 1, so
i(Sm−1) = m.
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Set

λ j := inf
M∈F

i(M)≥ j

sup
u∈M

K̃ (u), j ≥ 1. (1.2)

Then
(
λ j

)
is a sequence of eigenvalues of (1.1) and λ j ↗ ∞. Moreover,

λ j < λ ≤ λ j+1 �⇒ i(K̃ λ) = j,

where K̃ λ = {
u ∈ M : K̃ (u) < λ

}
, so

i(K̃ λ) = #
{

j : λ j < λ
} ∀λ ∈ R (1.3)

(see Propositions 3.52 and 3.53 of Perera et al.[13]). Our main result is the following.

Theorem 1.1 If 1 < p− ≤ p(x) ≤ p+ < ∞ for all x ∈ � and

σ := n

(
1

p− − 1

p+

)
< 1, τ :=

(
1

p− − 1

p+

)
|�| < 1,

then there are constants C1, C2 > 0 depending only on n and p± such that

C1 |�| (λ/κ)n/(1+σ) ≤ #
{

j : λ j < λ
} ≤ C2 |�| (κ λ)n/(1−σ) for λ > 0 large,

where |�| is the Lebesgue measure of � and κ = (1 + τ)1/p−
/(1 − τ)1/p+

.

This result is a contribution towards understanding the spectrum of the p(x)-
Laplacian, which many researchers have recently found to be somewhat puzzling.
For example, it is currently unknown if the first eigenvalue is simple, or if a given
positive eigenfunction is automatically a first eigenfunction. Affirmative answers
were given to both of these questions for the usual eigenvalue problem for the
p-Laplacian,

− div
(
|∇u|p−2 ∇u

)
= λ |u|p−2 u, u ∈ W 1,p

0 (�), (1.4)

where p > 1 is a constant, in Lindqvist [8,9] (see also [10]). It should be noted
that, in the case when p is constant, (1.1) reduces, not to the problem (1.4), which
is homogeneous of degree p − 1, but rather to the nonlocal problem

− div

(
|∇u|p−2 ∇u

‖∇u‖p−1
p

)
= λ

|u|p−2 u

‖u‖p−1
p

, u ∈ W 1,p
0 (�)

that has been normalized to be homogeneous of degree 0. The estimate

C1 |�| λn ≤ #
{

j : λ j < λ
} ≤ C2 |�| λn for λ > 0 large

that Theorem 1.1 gives for the eigenvalues of this problem should be compared
with the estimate

C1 |�| λn/p ≤ #
{

j : λ j < λ
} ≤ C2 |�| λn/p for λ > 0 large



538 K. Perera, M. Squassina

obtained by Friedlander in [6] for (1.4) (see also García Azorero and Peral Alonso
[7]). Caliari and Squassina [1] have recently developed a numerical method to
compute the first eigenpair of the problem (1.1) and investigate the symmetry
breaking phenomena with respect to the constant case.

In the course of proving Theorem 1.1, we will also establish the same asymptotic
estimates for the eigenvalues of the problem

− div

(∣∣∣∣ ∇u

L(u)

∣∣∣∣
p(x)−2 ∇u

L(u)

)
= μ T (u)

∣∣∣∣ u

l(u)

∣∣∣∣
p(x)−2 u

l(u)
, u ∈ W 1,p(x)(�),

(1.5)

where

L(u) = ‖∇u‖p(x) , l(u) = ‖u‖p(x) , T (u) =

∫
�

∣∣∣∣∇u(x)

L(u)

∣∣∣∣
p(x)

dx

∫
�

∣∣∣∣u(x)

l(u)

∣∣∣∣
p(x)

dx

(which coincide with K , k, and S, respectively, on W 1,p(x)
0 (�)). The eigenvalues

and eigenfunctions of this problem on

N = {
u ∈ W 1,p(x)(�) : l(u) = 1

}
coincide with the critical values and critical points of L̃ := L|N . Let G denote the
class of symmetric subsets of N and set

μ j := inf
N∈G

i(N )≥ j

sup
u∈N

L̃(u), j ≥ 1.

Then
(
μ j

)
is a sequence of eigenvalues of (1.5), μ j ↗ ∞, and

i(L̃μ) = #
{

j : μ j < μ
} ∀μ ∈ R,

where L̃μ = {
u ∈ N : L̃(u) < μ

}
. Since W 1,p(x)(�) ⊃ W 1,p(x)

0 (�) and
l|

W 1,p(x)
0 (�)

= k, we have N ⊃ M, and L̃|M = K̃ , so μ j ≤ λ j for all j . We

will see that, under the hypotheses of Theorem 1.1,

C1 |�| (μ/κ)n/(1+σ) ≤ #
{

j : μ j < μ
} ≤ C2 |�| (κ μ)n/(1−σ) for μ > 0 large.

Finally, for the sake of completeness, let us also mention that a different notion
of first eigenvalue for the p(x)-Laplacian, that does not make use of the Luxemburg
norm, has been considered in the past literature, namely,

λ∗
1 = inf

u∈W 1,p(x)
0 (�)\{0}

∫
�

|∇u|p(x) dx∫
�

|u|p(x) dx
.
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In this framework, λ ∈ R and u ∈ W 1,p(x)
0 (�)\ {0} are an eigenvalue and an

eigenfunction of the p(x)-Laplacian, respectively, if∫
�

|∇u|p(x)−2 ∇u · ∇v dx = λ

∫
�

|u|p(x)−2 uv dx ∀v ∈ W 1,p(x)
0 (�)

(this should be compared with (1.1)). Let 
 denote the set of all eigenvalues of
this problem. If the function p(x) is a constant p > 1, then it is well-known that
this problem admits an increasing sequence of eigenvalues, sup 
 = +∞, and
inf 
 = λ1,p > 0, the first eigenvalue of the p-Laplacian (see Lindqvist [8–10]).
For general p(x), 
 is a nonempty infinite set, sup 
 = +∞, and inf 
 = λ∗

1 (see
Fan et al. [4]). In contrast to the situation when minimizing the Rayleigh quotient
with respect to the Luxemburg norm, one often has λ∗

1 = 0, and λ∗
1 > 0 only under

special conditions. In [4], the authors provide sufficient conditions for λ∗
1 to be zero

or positive. In particular, if p(x) has a strict local minimum (or maximum) in �,
then λ∗

1 = 0. If n > 1 and there is a vector � �= 0 in R
n such that for every x ∈ �,

the map t �→ p(x + t�) is monotone on
{
t : x + t� ∈ �

}
, then λ∗

1 > 0. Finally, if
n = 1, then λ∗

1 > 0 if and only if the function p(x) is monotone.

2. Compactness

In this section we will show that K̃ satisfies the (PS) condition. Here and in the
next section we will make use of the well-known Young’s inequality

ab ≤
(

1 − 1

p

)
a p/(p−1) + 1

p
bp ∀a, b ≥ 0, p > 1. (2.1)

Lemma 2.1 For u �= 0 in L p(x)(�) and all v ∈ L p(x)(�),∣∣(k′(u), v
)∣∣ ≤ ‖v‖p(x) . (2.2)

Proof. Equality holds in (2.2) if v = 0, so suppose v �= 0. We have

∣∣(k′(u), v
)∣∣ ≤

∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)−1

|v(x)| dx

∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)

dx

. (2.3)

Taking a = |u(x)/k(u)|p(x)−1, b = |v(x)/k(v)|, p = p(x) in (2.1) and integrat-
ing over � gives∫

�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)−1 ∣∣∣∣v(x)

k(v)

∣∣∣∣ dx ≤
∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x)

dx −
∫
�

∣∣∣∣u(x)

k(u)

∣∣∣∣
p(x) dx

p(x)

+
∫
�

∣∣∣∣v(x)

k(v)

∣∣∣∣
p(x) dx

p(x)
.

The last two integrals are both equal to 1, so this shows that the right-hand side of
(2.3) is less than or equal to k(v) = ‖v‖p(x). ��
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Lemma 2.2 K ′ is a mapping of type (S+), i.e., if u j ⇀ u in W 1,p(x)
0 (�) and

lim
j→∞

(
K ′(u j ), u j − u

) ≤ 0,

then u j → u in W 1,p(x)
0 (�).

Proof. Since

(
K ′(u j ), u j

) = K (u j ) = ∥∥∇u j
∥∥

p(x)

and

(
K ′(u j ), u

) = (
k′(∇u j ),∇u

) ≤ ‖∇u‖p(x)

by Lemma 2.1,

lim
j→∞

∥∥∇u j
∥∥

p(x)
≤ lim

j→∞
(
K ′(u j ), u j − u

) + ‖∇u‖p(x)

≤ ‖∇u‖p(x) ≤ lim
j→∞

∥∥∇u j
∥∥

p(x)
,

so that
∥∥∇u j

∥∥
p(x)

→ ‖∇u‖p(x). The conclusion follows since W 1,p(x)
0 (�) is uni-

formly convex. ��

Lemma 2.3 For all c ∈ R, K̃ satisfies the (PS)c condition, i.e., every sequence(
u j

) ⊂ M such that K̃ (u j ) → c and K̃ ′(u j ) → 0 has a convergent subsequence.

Proof. We have

K (u j ) → c, K ′(u j ) − c j k′(u j ) → 0 (2.4)

for some sequence
(
c j

) ⊂ R. Since
(
K ′(u j ), u j

) = K (u j ) and
(
k′(u j ), u j

) =
k(u j ) = 1, c j → c. Since

(
u j

)
is bounded in W 1,p(x)

0 (�), for a renamed subse-

quence and some u ∈ W 1,p(x)
0 (�), u j ⇀ u in W 1,p(x)

0 (�) and u j → u in L p(x)(�).
By Lemma 2.1,

∣∣(k′(u j ), u j − u
)∣∣ ≤ ∥∥u j − u

∥∥
p(x)

→ 0,

so the second limit in (2.4) now gives
(
K ′(u j ), u j − u

) → 0 as j → ∞. Then we

conclude that u j → u strongly in W 1,p(x)
0 (�), in light of Lemma 2.2. ��
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3. Proof of Theorem 1.1

Let σ , τ , and κ be as in Theorem 1.1.

Lemma 3.1 We have

‖u‖p−

(1 + τ)1/p− ≤ ‖u‖p(x) ≤ ‖u‖p+

(1 − τ)1/p+ ∀u ∈ L p+
(�), (3.1)

and hence

1

κ

‖∇u‖p−

‖u‖p+
≤ ‖∇u‖p(x)

‖u‖p(x)

≤ κ
‖∇u‖p+

‖u‖p−
∀u ∈ W 1,p+

(�)\ {0} .

Proof. Equality holds throughout (3.1) if u = 0, so suppose u �= 0. Taking a =
1, b = |u(x)/ ‖u‖p(x) |p−

, p = p(x)/p− in (2.1), dividing by p−, and integrating
over � gives

1

‖u‖p−
p(x)

∫
�

|u(x)|p− dx

p− ≤
∫
�

(
1

p− − 1

p(x)

)
dx +

∫
�

∣∣∣∣ u(x)

‖u‖p(x)

∣∣∣∣
p(x) dx

p(x)
.

The first integral is equal to ‖u‖p−
p− and the last integral is equal to 1, so this gives

the first inequality in (3.1). Now taking a = 1, b = |u(x)/ ‖u‖p(x) |p(x), p =
p+/p(x) in (2.1), dividing by p(x), and integrating over � gives∫

�

∣∣∣∣ u(x)

‖u‖p(x)

∣∣∣∣
p(x) dx

p(x)
≤

∫
�

(
1

p(x)
− 1

p+

)
dx + 1

‖u‖p+
p(x)

∫
�

|u(x)|p+ dx

p+ .

The first integral is equal to 1 and the last integral is equal to ‖u‖p+
p+ , so this gives

the second inequality in (3.1). ��
Recall that the genus and the cogenus of M ∈ F are defined by

γ (M) = inf
{
m ≥ 1 : ∃ an odd continuous map g : M → Sm−1}

and

γ̃ (M) = sup
{
m̃ ≥ 1 : ∃ an odd continuous map g̃ : Sm̃−1 → M

}
,

respectively. If there are odd continuous maps Sm̃−1 → M → Sm−1, then m̃ ≤
i(M) ≤ m by the monotonicity of the index, so γ̃ (M) ≤ i(M) ≤ γ (M). Since
K̃ λ ⊂ L̃λ, this gives

γ̃ (K̃ λ) ≤ i(K̃ λ) ≤ i(L̃λ) ≤ γ (L̃λ) ∀λ ∈ R. (3.2)

Set

K̂ (u) := ‖∇u‖p+ , u ∈ M̂ := {
u ∈ W 1,p+

0 (�) : ‖u‖p− = 1
}

and

L̂(u) := ‖∇u‖p− , u ∈ N̂ := {
u ∈ W 1,p+

(�) : ‖u‖p+ = 1
}
,

and let K̂ λ = {
u ∈ M̂ : K̂ (u) < λ

}
and L̂μ = {

u ∈ N̂ : L̂(u) < μ
}
.
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Lemma 3.2 We have

γ̃ (K̂ λ/κ) ≤ γ̃ (K̃ λ), γ (L̃λ) ≤ γ (L̂κ λ) ∀λ ∈ R.

Proof. Lemma 3.1 gives the odd continuous maps

K̂ λ/κ → K̃ λ, u �→ u

‖u‖p(x)

, L̃λ ∩ W 1,p+
(�) → L̂κ λ, u �→ u

‖u‖p+
,

and the inclusion L̃λ ∩ W 1,p+
(�) ⊂ L̃λ is a homotopy equivalence by Palais [11,

Theorem 17] since W 1,p+
(�) is a dense linear subspace of W 1,p(x)(�), so the

conclusion follows. ��
Lemma 3.3 Let 0 < δ < 1, consider the homothety � → δ �, x �→ δx =: y,
and write u(x) = v(y). Then

‖∇v‖p+

‖v‖p−
=δ−σ−1 ‖∇u‖p+

‖u‖p−
,

‖∇v‖p−

‖v‖p+
=δσ−1 ‖∇u‖p−

‖u‖p+
∀u ∈W 1,p+

(�)\ {0} .

Proof. Straightforward. ��
Lemma 3.4 If �1 and �2 are disjoint subdomains of � such that �1 ∪ �2 = �,
then

γ̃ (K̂ λ
�1

) + γ̃ (K̂ λ
�2

) ≤ γ̃ (K̂ λ
�), γ (L̂λ

�) ≤ γ (L̂λ′
�1

) + γ (L̂λ′
�2

) ∀λ < λ′,

where the subscripts indicate the corresponding domains.

Proof. Since K̂ λ
� contains K̂ λ

�1
and K̂ λ

�2
, if γ̃ (K̂ λ

�1
) or γ̃ (K̂ λ

�2
) is infinite, then so

is γ̃ (K̂ λ
�) and hence the first inequality holds. So let m̃i := γ̃ (K̂ λ

�i
) < ∞ and let

g̃i : Sm̃i −1 → K̂ λ
�i

be an odd continuous map for i = 1, 2. Write y ∈ Sm̃1+m̃2−1

as y = (y1, y2) ∈ R
m̃1 ⊕ R

m̃2 , set |y2| = t , and let

g̃(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g̃1(y1), t = 0
(1 − t) g̃1(y1/

√
1 − t2) + t g̃2(y2/t)∥∥∥(1 − t) g̃1(y1/

√
1 − t2) + t g̃2(y2/t)

∥∥∥
p−

, 0 < t < 1

g̃2(y2), t = 1.

Clearly, g̃(y) ∈ K̂ λ
� for t = 0, 1. For 0 < t < 1,

K̂�(g̃(y)) < λ

[
(1 − t)p+ + t p+]1/p+

[
(1 − t)p− + t p−]1/p− ≤ λ

since p �→ [(1− t)p + t p]1/p on (1,∞) is nonincreasing. So g̃ : Sm̃1+m̃2−1 → K̂ λ
�

is an odd continuous map and hence γ̃ (K̂ λ
�) ≥ m̃1 + m̃2.

Since the second inequality holds if γ (L̂λ′
�1

) or γ (L̂λ′
�2

) is infinite, let mi :=
γ (L̂λ′

�i
) < ∞ and let gi : L̂λ′

�i
→ Smi −1 be an odd continuous map for i = 1, 2. For

u ∈ L̂λ
�, let ui = u|�i , ρi = ‖ui‖p+ , and ũi = ui/ρi if ρi �= 0. Fix λ′′ ∈ (λ, λ′)
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such that (λ/λ′′)p+ ≥ 1/2, take smooth cutoff functions η, ζ : [0,∞) → [0, 1]
such that η = 0 near zero, η = 1 on [[1 − (λ/λ′′)p+]1/p+

,∞), ζ = 1 on [0, λ′′]
and ζ = 0 on [λ′,∞), and let

g(u) =
(
η(ρ1) ζ(L̂�1 (̃u1)) g1(̃u1), η(ρ2) ζ(L̂�2 (̃u2)) g2(̃u2)

)
√

η(ρ1)2 ζ(L̂�1 (̃u1))2 + η(ρ2)2 ζ(L̂�2 (̃u2))2
, (3.3)

with the understanding that η(ρi ) ζ(L̂�i (̃ui )) gi (̃ui ) = 0 if ρi = 0. We claim that
the denominator is greater than or equal to 1. The claim is clearly true if u1 = 0 or

u2 = 0, so suppose u1 �= 0 and u2 �= 0. Since ρ
p+
1 + ρ

p+
2 = ‖u‖p+

p+ = 1, either

ρ1 ≥ 1/21/p+
or ρ2 ≥ 1/21/p+

, and since 1/21/p+ ≥ [1 − (λ/λ′′)p+]1/p+
, then

either η(ρ1) = 1 or η(ρ2) = 1. Moreover, if L̂�i (̃ui ) ≥ λ for i = 1, 2, then

1 = ρ
p+
1 + ρ

p+
2 ≤ ρ

p−
1 + ρ

p−
2 ≤

‖∇u1‖p−
p− + ‖∇u2‖p−

p−

λp− =
‖∇u‖p−

p−

λp− < 1,

a contradiction, so either ζ(L̂�1 (̃u1)) = 1 or ζ(L̂�2 (̃u2)) = 1. Consequently, we
are done if η(ρ1) = 1 and η(ρ2) = 1, so assume that one of them, say η(ρ2), is
less than 1. Then η(ρ1) = 1. Moreover, ρ2 < [1 − (λ/λ′′)p+]1/p+

and hence

L̂�1 (̃u1) = ‖∇u1‖p−

ρ1
≤ ‖∇u‖p−

(1 − ρ
p+
2 )1/p+ < λ′′,

so ζ(L̂�1 (̃u1)) = 1. Thus, the denominator in (3.3) is greater than or equal to
η(ρ1) ζ(L̂�1 (̃u1)) = 1. So g : L̂λ

� → Sm1+m2−1 is an odd continuous map and
hence γ (L̂λ

�) ≤ m1 + m2. ��
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Continuously extend p to the whole space, with the same
bounds p− and p+, using the Tietze extension theorem. Let Q be the unit cube in
R

n , fix λ0 > max
{

inf K̂ Q, inf L̂ Q
}
, and set

r = γ̃ (K̂ λ0
Q ), s = γ (L̂λ0

Q ).

Then for λ′ > λ > λ0 and any two cubes Qaλ and Qbλ′ of sides aλ = (λ0/λ)1/(1+σ)

and bλ′ = (λ0/λ
′)1/(1−σ), respectively, Lemma 3.3 gives the odd homeomorphisms

K̂ λ0
Q → K̂ λ

Qaλ
, u �→ v

‖v‖p−
, L̂λ0

Q → L̂λ′
Qb

λ′ , u �→ v

‖v‖p+
,

so

γ̃ (K̂ λ
Qaλ

) = r, γ (L̂λ′
Qb

λ′ ) = s.

Now it follows from Lemma 3.4 that if Qa is a cube of side a > 0, then

r

[
a

aλ

]n

≤ γ̃ (K̂ λ
Qa

), γ (L̂λ
Qa

) ≤ s

([
a

bλ′

]
+ 1

)n

,
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where [·] denotes the integer part. Thus, there are constants C1, C2 > 0, independent
of a, λ, and λ′, such that

C1 anλn/(1+σ) ≤ γ̃ (K̂ λ
Qa

), γ (L̂λ
Qa

) ≤ C2 an(λ′)n/(1−σ), λ<λ′ large. (3.4)

Let ε > 0 and let �ε,�
ε be unions of cubes with pairwise disjoint interiors such

that �ε ⊂ � ⊂ �ε and |�ε\�ε| < ε. Then

C1 |�ε| λn/(1+σ) ≤ γ̃ (K̂ λ
�ε

) ≤ γ̃ (K̂ λ), γ (L̂λ) ≤ γ (L̂λ
�ε ) ≤ C2 |�ε| (λ′)n/(1−σ)

by (3.4) and Lemma 3.4. Letting ε ↘ 0, λ′ ↘ λ, and combining with (1.3), (3.2),
and Lemma 3.2 yields the conclusion. ��
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with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer,
Heidelberg (2011)

[3] Fadell, E.R., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group
actions with an application to bifurcation questions for Hamiltonian systems. Invent.
Math. 45(2), 139–174 (1978)

[4] Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of p(x)-Laplacian Dirichlet problem. J.
Math. Anal. Appl. 302(2), 306–317 (2005)

[5] Franzina, G., Lindqvist, P.: An eigenvalue problem with variable exponents. Nonlinear
Anal. 85, 1–16 (2013)

[6] Friedlander, L.: Asymptotic behavior of the eigenvalues of the p-Laplacian. Commun.
Partial Differ. Equ. 14(8-9), 1059–1069 (1989)

[7] García Azorero, Jesús., Peral Alonso, Ireneo.: Comportement asymptotique des valeurs
propres du p-Laplacien. C.R. Acad. Sci. Paris Sér. I Math. 307(2), 75–78 (1988)

[8] Lindqvist, P: On the equation div (|∇u|p−2∇u) + λ|u|p−2u = 0. Proc. Am. Math.
Soc. 109(1), 157–164 (1990)

[9] Lindqvist, P.: Addendum: on the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0. (Proc.
Am. Math. Soc. 109(1), 157–164 (1990); MR 90h:35088). Proc. Am. Math. Soc.
116(2), 583–584 (1992)

[10] Lindqvist, P.: A nonlinear eigenvalue problem. In: Topics in Mathematical Analysis,
vol. 3 of Ser. Anal. Appl. Comput., pp. 175–203. World Sci. Publ., Hackensack (2008)

[11] Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–
16 (1966)

[12] Perera, K.: Nontrivial critical groups in p-Laplacian problems via the Yang in-
dex. Topol. Methods Nonlinear Anal. 21(2), 301–309 (2003)

[13] Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of p-Laplacian type
operators, volume 161 of Mathematical Surveys and Monographs. American Mathe-
matical Society, Providence (2010)


	Asymptotic behavior of the eigenvalues of the p(x)-Laplacian
	Abstract.
	1 Introduction
	2 Compactness
	3 Proof of Theorem 1.1
	References


