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We obtain nontrivial solutions of a critical fractional p-Laplacian equation in the 
whole space and with possibly vanishing potentials. In addition to the usual difficulty 
of the lack of compactness associated with problems involving critical Sobolev 
exponents, the problem is further complicated by the absence of a direct sum 
decomposition suitable for applying classical linking arguments. We overcome this 
difficulty using a generalized linking construction based on the Z2-cohomological 
index.
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1. Introduction and main results

For p ∈ (1, ∞), s ∈ (0, 1), and N > sp, the fractional p-Laplacian is the nonlinear nonlocal operator 
defined on smooth functions by

(−Δ)sp u(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|u(x) − u(y)|p−2 (u(x) − u(y))
|x− y|N+sp

dy, x ∈ R
N . (1.1)

This definition is consistent, up to a normalization constant depending on N and s, with the usual definition 
of the linear fractional Laplacian (−Δ)s when p = 2. Some motivations that have led to the study of these 
kind of operators can be found in Caffarelli [7].
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The operator (−Δ)sp leads naturally to the quasilinear problem

{ (−Δ)sp u = f(x, u) in Ω
u = 0 in R

N \ Ω,

where Ω is a domain in RN . There is currently a rapidly growing literature on this problem when Ω is 
bounded with Lipschitz boundary. In particular, fractional p-eigenvalue problems have been studied in [15,
19,23,28], regularity theory in [6,12,18], existence theory in the subcritical case in [17], and the critical case 
in [27].

The corresponding problem in the whole space was recently considered in Lehrer et al. [22] and Torres 
[36]. In [36], the equation

(−Δ)sp u + V (x) |u|p−2 u = f(x, u), x ∈ R
N (1.2)

was studied when the potential V ∈ C(RN ) satisfies

inf
x∈RN

V (x) > 0, μ
({

x ∈ R
N : V (x) ≤ M

})
< +∞ ∀M > 0,

where μ denotes the Lebesgue measure in RN , and a nontrivial solution was obtained when the nonlinearity 
f is p-superlinear and subcritical.

Equation (1.2) reduces to the well-known fractional Schrödinger equation

(−Δ)s u + V (x)u = f(x, u) (1.3)

when p = 2. This equation, introduced by Laskin [20,21], is an important model in fractional quantum 
mechanics and comes from an expansion of the Feynman path integral from Brownian-like to Lévy-like 
quantum mechanical paths. When s = 1, the Lévy dynamics becomes the Brownian dynamics and equation 
(1.3) reduces to the classical Schrödinger equation. The fractional Schrödinger equation has been widely 
investigated during the last decade and positive solutions have been obtained under various assumptions on 
V and f (see, e.g., [9,10,14,31–33,35,38] and the references therein).

In the present paper we investigate existence of nontrivial solutions of the equation

(−Δ)sp u + V (x) |u|p−2 u = λK(x) |u|p−2 u + μL(x) |u|q−2 u + |u|p∗
s−2 u, x ∈ R

N , (1.4)

where p∗s = Np/(N − sp) is the fractional critical Sobolev exponent, q ∈ (p, p∗s), V, K, L are positive 
continuous functions, and λ ∈ R, μ > 0 are parameters. The semi-linear local case p = 2, s = 1 of this 
problem has been extensively studied in the literature, where the main feature is to impose conditions on V , 
K and L to gain some compactness (see, e.g., [1–5,16,24]). In the quasilinear case p �= 2, in addition to the 
usual difficulty of the lack of compactness, this problem is further complicated by the absence of a direct 
sum decomposition suitable for applying the classical linking theorem of Rabinowitz [30]. We will overcome 
this difficulty by using a generalized linking theorem based on the Z2-cohomological index.

We shall assume that V , K and L are positive continuous functions on RN satisfying:

(H1) K and L are bounded;
(H2) we have:

lim
|x|→∞

K(x)
V (x) = 0, lim

|x|→∞

L(x)
V (x)[Np−(N−sp)q]/sp2 = 0.
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Notice that these conditions allow possibly different behavior of the potentials at infinity. If the potential 
V is bounded, then K and L need to be vanishing at infinity, while if V is unbounded, then K and L may 
converge to a constant. Denoting by

[u]s,p =

⎛⎝ ∫
R2N

|u(x) − u(y)|p
|x− y|N+sp

dxdy

⎞⎠1/p

the Gagliardo seminorm of a measurable function u : RN → R and setting

|u|p,V =

⎛⎝ ∫
RN

V (x) |u|p dx

⎞⎠1/p

,

we work in the reflexive Banach space

X =
{
u ∈ Lp∗

s (RN ) : [u]s,p < ∞, |u|p,V < ∞
}

with the norm given by

‖u‖p = [u]ps,p + |u|pp,V .

Let also

Lp
K(RN ) =

⎧⎨⎩u :
∫
RN

K(x) |u|p dx < ∞

⎫⎬⎭ , Lq
L(RN ) =

⎧⎨⎩u :
∫
RN

L(x) |u|q dx < ∞

⎫⎬⎭
be the weighted Lebesgue spaces, normed by

|u|p,K =

⎛⎝ ∫
RN

K(x) |u|p dx

⎞⎠1/p

, |u|q,L =

⎛⎝ ∫
RN

L(x) |u|q dx

⎞⎠1/q

,

respectively. We have the following compactness result.

Proposition 1.1. If (H1) and (H2) hold, then X is compactly embedded in Lp
K(RN ) ∩ Lq

L(RN ).

A weak solution of equation (1.4) is a function u ∈ X satisfying∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))
|x− y|N+sp

dxdy +
∫
RN

V (x) |u|p−2 uv dx

=
∫
RN

(
λK(x) |u|p−2 u + μL(x) |u|q−2 u + |u|p∗

s−2 u
)
v dx ∀v ∈ X.

Weak solutions coincide with critical points of the C1-functional

Φ(u) = 1
p
‖u‖p −

∫ (
λ

p
K(x) |u|p + μ

q
L(x) |u|q + 1

p∗s
|u|p∗

s

)
dx, u ∈ X.
RN
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Recall that Φ satisfies the Palais–Smale compactness condition at the level c ∈ R, or (PS)c for short, if 
every sequence (uj) ⊂ X such that Φ(uj) → c and Φ′(uj) → 0, called a (PS)c sequence, has a convergent 
subsequence. Let

SV = inf
u∈X\{0}

‖u‖p

|u|pp∗
s

> 0, (1.5)

where | ·|p∗
s

is the standard norm in Lp∗
s (RN ). Our existence results will be based on the following proposition.

Proposition 1.2. Assume that

c <
s

N
S
N/sp
V , c �= 0.

Then any (PS)c sequence has a subsequence converging weakly to a nontrivial solution of (1.4).

Let

Ss,p = inf
u∈Lp∗s (RN )\{0}, [u]s,p<∞

[u]ps,p
|u|pp∗

s

be the best constant in the fractional Sobolev inequality. Since V is positive, SV ≥ Ss,p. Equality holds 
if V ∈ LN/sp(RN ). To see this, let ϕ be a minimizer for Ss,p and let yj ∈ R

N with |yj | → ∞. Then 
uj := ϕ(· − yj) ∈ X by the Hölder inequality and |uj |p,V → 0 as easily seen by approximating V and ϕ by 
functions with compact supports. Since [·]s,p and | · |p∗

s
are translation invariant, then

‖uj‖p

|uj |pp∗
s

=
[ϕ]ps,p + |uj |pp,V

|ϕ|pp∗
s

→ Ss,p.

Moreover, in this case, the infimum in (1.5) is not attained. For if u0 is a minimizer for SV , then SV =
‖u0‖p /|u0|pp∗

s
> [u0]ps,p/|u0|pp∗

s
≥ Ss,p, a contradiction. It is expected that the minimizers ϕ of Ss,p decay at 

infinity as ϕ(x) ∼ |x|−(N−sp)/(p−1) (this occurs for s = 1, see [34]) so that, for

α0 =
{

1 if N > sp2

N
p′(N−sp) if sp < N ≤ sp2,

the conclusion SV = Ss,p is expected to hold by assuming that V ∈ Lα′(RN ) for some α > α0.
Since X is compactly embedded in Lp

K(RN ) by Proposition 1.1,

λ1 = inf
u∈X\{0}

‖u‖p

|u|pp,K
> 0 (1.6)

is the first eigenvalue of the eigenvalue problem

(−Δ)sp u + V (x) |u|p−2 u = λK(x) |u|p−2 u, u ∈ X. (1.7)

First we obtain a positive solution of equation (1.4) when λ < λ1.

Theorem 1.3. Assume (H1) and (H2). If λ < λ1, then there exists μ∗(λ) > 0 such that equation (1.4) has a 
positive solution for all μ ≥ μ∗(λ).
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Let u±(x) = max {±u(x), 0} be the positive and negative parts of u, respectively, and set

Φ+(u) = 1
p
‖u‖p −

∫
RN

(
λ

p
K(x) (u+)p + μ

q
L(x) (u+)q + 1

p∗s
(u+)p

∗
s

)
dx, u ∈ X.

If u is a critical point of Φ+, then recalling the elementary inequality

|a− − b−|p ≤ |a− b|p−2(a− b)(b− − a−), ∀a, b ∈ R,

we obtain

0 = Φ+′(u) (−u−) =
∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(y) − u−(x))
|x− y|N+sp

dxdy

+
∫
RN

V (x)|u−|pdx ≥ ‖u−‖p

and hence u− = 0, so u = u+ ≥ 0 is a critical point of Φ and therefore a nonnegative solution of equation 
(1.4). Moreover, if it was u(x0) = 0 for some x0 ∈ R

N , then (1.4) and (1.1) give

lim
ε↘0

∫
RN\Bε(x0)

u(y)p−1

|x0 − y|N+sp
dy = 0,

so u = 0. Thus, nontrivial critical points of Φ+ are positive solutions of (1.4). The proof of Theorem 1.3 will 
be based on constructing a minimax level of mountain pass type for Φ+ below the threshold level given in 
Proposition 1.2.

Next we obtain a (possibly nodal) nontrivial solution of equation (1.4) when λ ≥ λ1.

Theorem 1.4. Assume (H1) and (H2). If λ ≥ λ1, then there exists μ∗(λ) > 0 such that equation (1.4) has a 
nontrivial solution for all μ ≥ μ∗(λ).

This extension of Theorem 1.3 is nontrivial. Indeed, the functional Φ does not have the mountain pass 
geometry when λ ≥ λ1 since the origin is no longer a local minimizer, and a linking type argument is needed. 
However, the classical linking theorem cannot be used since the nonlinear eigenvalue problem (1.7) does not 
have linear eigenspaces.

2. Tools from critical point theory

We will use a general construction based on sublevel sets as in Perera and Szulkin [29] (see also Perera et 
al. [26, Proposition 3.23]). Moreover, the standard sequence of eigenvalues of (1.7) based on the genus does 
not give enough information about the structure of the sublevel sets to carry out this linking construction. 
Therefore we will use a different sequence of eigenvalues as in Perera [25] that is based on a cohomological 
index.

The Z2-cohomological index of Fadell and Rabinowitz [13] is defined as follows. Let W be a Banach 
space and let A denote the class of symmetric subsets of W \ {0}. For A ∈ A, let A = A/Z2 be the 
quotient space of A with each u and −u identified, let f : A → RP∞ be the classifying map of A, and let 
f∗ : H∗(RP∞) → H∗(A) be the induced homomorphism of the Alexander–Spanier cohomology rings. The 
cohomological index of A is defined by
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i(A) =
{

sup
{
m ≥ 1 : f∗(ωm−1) �= 0

}
, A �= ∅

0, A = ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z2[ω]. For example, the classifying 
map of the unit sphere Sm−1 in Rm, m ≥ 1 is the inclusion RPm−1 ⊂ RP∞, which induces isomorphisms 
on Hq for q ≤ m − 1, so i(Sm−1) = m. The following proposition summarizes the basic properties of this 
index.

Proposition 2.1. (See Fadell and Rabinowitz [13].) The index i : A → N ∪{0,∞} has the following properties:

(i1) Definiteness: i(A) = 0 if and only if A = ∅;
(i2) Monotonicity: If there is an odd continuous map from A to B (in particular, if A ⊂ B), then i(A) ≤

i(B). Thus, equality holds when the map is an odd homeomorphism;
(i3) Dimension: i(A) ≤ dimW ;
(i4) Continuity: If A is closed, then there is a closed neighborhood N ∈ A of A such that i(N) = i(A). 

When A is compact, N may be chosen to be a δ-neighborhood Nδ(A) = {u ∈ W : dist(u,A) ≤ δ};
(i5) Subadditivity: If A and B are closed, then i(A ∪B) ≤ i(A) + i(B);
(i6) Stability: If SA is the suspension of A �= ∅, obtained as the quotient space of A × [−1, 1] with A × {1}

and A × {−1} collapsed to different points, then i(SA) = i(A) + 1;
(i7) Piercing property: If A, A0 and A1 are closed, and ϕ : A × [0, 1] → A0 ∪ A1 is a continuous map 

such that ϕ(−u, t) = −ϕ(u, t) for all (u, t) ∈ A × [0, 1], ϕ(A × [0, 1]) is closed, ϕ(A × {0}) ⊂ A0 and 
ϕ(A × {1}) ⊂ A1, then i(ϕ(A × [0, 1]) ∩A0 ∩A1) ≥ i(A);

(i8) Neighborhood of zero: If U is a bounded closed symmetric neighborhood of 0, then i(∂U) = dimW .

Eigenvalues of problem (1.7) coincide with critical values of the functional

Ψ(u) =

⎛⎝ ∫
RN

K(x) |u|p dx

⎞⎠−1

on the unit sphere S = {u ∈ X : ‖u‖ = 1}, and we can define an increasing and unbounded sequence of 
eigenvalues via a suitable minimax scheme. The standard scheme based on the genus does not give the index 
information necessary to prove Theorem 1.4, so we will use a different scheme based on a cohomological 
index as in Perera [25]. First we note that the general theory developed in Perera et al. [26] applies to this 
problem. Indeed, the odd (p −1)-homogeneous operator Ap ∈ C(X, X∗), where X∗ is the dual of X, defined 
by

Ap(u) v =
∫

R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))
|x− y|N+sp

dxdy

+
∫
RN

V (x) |u|p−2 uv dx, u, v ∈ X (2.1)

that is associated with the left-hand side of equation (1.7) is the Fréchet derivative of the C1-functional 
X → R, u �→ ‖u‖p/p and satisfies for all u, v ∈ X,

Ap(u)u = ‖u‖p (2.2)

and
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|Ap(u) v| ≤
∫

R2N

|u(x) − u(y)|p−1 |v(x) − v(y)|
|x− y|N+sp

dxdy +
∫
RN

V (x) |u|p−1 |v| dx

≤ [u]p−1
s,p [v]s,p + |u|p−1

p,V |v|p,V ≤ ‖u‖p−1 ‖v‖ (2.3)

by the Hölder inequalities for integrals and sums. Moreover, since X is uniformly convex, it follows from 
(2.2) and (2.3) that Ap is of type (S), i.e., every sequence (uj) ⊂ X such that

uj ⇀ u, Ap(uj) (uj − u) → 0

has a subsequence that converges strongly to u (cf. [26, Proposition 1.3]). Hence the operator Ap satisfies 
the structural assumptions of [26, Chapter 1]. On the other hand, the odd (p − 1)-homogeneous operator 
Bp ∈ C(X, X∗) defined by

Bp(u) v =
∫
RN

K(x) |u|p−2 uv dx, u, v ∈ X

that appears in the right-hand side of (1.7) is the Fréchet derivative of the C1-functional X → R, u �→
|u|pp,K/p and satisfies Bp(u) u = |u|pp,K for all u ∈ X. Moreover, since X is compactly embedded in Lp

K(RN )
by Proposition 1.1, Bp is compact. Hence Bp satisfies the assumptions of [26, Chapter 4]. Let F denote the 
class of symmetric subsets of S and set

λk := inf
M∈F, i(M)≥k

sup
u∈M

Ψ(u), k ∈ N.

By [26, Theorem 4.6], λk ↗ +∞ is a sequence of eigenvalues of problem (1.7) and

λk < λk+1 =⇒ i(Ψλk) = i(S \ Ψλk+1) = k, (2.4)

where Ψλk = {u ∈ S : Ψ(u) ≤ λk} and Ψλk+1 = {u ∈ S : Ψ(u) ≥ λk+1}.
The proof of Theorem 1.4 will make essential use of (2.4) and will be based on the following abstract 

critical point theorem.

Theorem 2.2. Let X be a Banach space and let S = {u ∈ X : ‖u‖ = 1} be the unit sphere in X. Let Φ be a 
C1-functional on X and let A0, B0 be disjoint nonempty closed symmetric subsets of S such that

i(A0) = i(S \B0) < ∞. (2.5)

Assume that there exist R > r > 0 and v ∈ S \A0 such that

sup Φ(A) ≤ inf Φ(B), sup Φ(D) < ∞,

where

A = {tu : u ∈ A0, 0 ≤ t ≤ R} ∪ {Rπ((1 − t)u + tv) : u ∈ A0, 0 ≤ t ≤ 1} ,
B = {ru : u ∈ B0} ,
D = {tu : u ∈ A, ‖u‖ = R, 0 ≤ t ≤ 1} ,

and π : X \ {0} → S, u �→ u/ ‖u‖ is the radial projection onto S. Let

Γ = {γ ∈ C(D,X) : γ(D) is closed and γ| = idA}
A
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and set

c := inf
γ∈Γ

sup
u∈γ(D)

Φ(u).

Then inf Φ(B) ≤ c ≤ sup Φ(D) and Φ has a (PS)c sequence.

Theorem 2.2, which does not require a direct sum decomposition, generalizes the linking theorem of 
Rabinowitz [30] and is proved in Candito et al. [8] (see also Yang and Perera [37]). The linking construction in 
its proof was also used in Perera and Szulkin [29] to obtain nontrivial solutions of p-Laplacian problems with 
nonlinearities that interact with the spectrum. A similar construction based on the notion of cohomological 
linking was given in Degiovanni and Lancelotti [11]. See also Perera et al. [26, Proposition 3.23].

3. Preliminaries

In this preliminary section we prove Propositions 1.1 and 1.2.

Proof of Proposition 1.1. Let (uj) be a bounded sequence in X. Then, a renamed subsequence converges 
weakly and a.e. to some u ∈ X. By virtue of assumption (H2), given ε > 0, there exists rε > 0 such that

K(x) ≤ ε V (x), L(x) ≤ ε V (x)[Np−(N−sp)q]/sp2
, for all x ∈ Brε(0)c.

The first inequality gives ∫
Brε (0)c

K(x) |uj |p dx ≤ ε

∫
RN

V (x) |uj |p dx = εO(1),

∫
Brε (0)c

K(x) |u|p dx ≤ ε

∫
RN

V (x) |u|p dx. (3.1)

Combining the second inequality with the Young’s inequality gives

L(x) |t|q ≤ ε
(
V (x) |t|p + |t|p∗

s
)
, for all x ∈ Brε(0)c and t ∈ R,

so that ∫
Brε (0)c

L(x) |uj |q dx ≤ ε

∫
RN

(
V (x) |uj |p + |uj |p

∗
s

)
dx = εO(1),

∫
Brε (0)c

L(x) |u|q dx ≤ ε

∫
RN

(
V (x) |u|p + |u|p∗

s

)
dx. (3.2)

Since X is compactly embedded in Lp(Brε(0)) ∩ Lq(Brε(0)) and K and L are bounded, uj → u in 
Lp
K(Brε(0)) ∩ Lq

L(Brε(0)) for a further subsequence. Then it follows from (3.1) and (3.2) that uj → u

in Lp
K(RN ) ∩ Lq

L(RN ), since they are uniformly convex spaces. �
Proof of Proposition 1.2. Let (uj) be a (PS)c sequence. First we show that (uj) is bounded in X. We have

Φ(uj) = 1
p
‖uj‖p −

∫ (
λ

p
K(x) |uj |p + μ

q
L(x) |uj |q + 1

p∗s
|uj |p

∗
s

)
dx = c + o(1) (3.3)
RN
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and

Φ′(uj) v =
∫

R2N

|uj(x) − uj(y)|p−2 (uj(x) − uj(y)) (v(x) − v(y))
|x− y|N+sp

dxdy

+
∫
RN

V (x) |uj |p−2 uj v dx−
∫
RN

(
λK(x) |uj |p−2 uj + μL(x) |uj |q−2 uj + |uj |p

∗
s−2 uj

)
v dx

= o(‖v‖) ∀v ∈ X, (3.4)

in particular,

Φ′(uj)uj = ‖uj‖p −
∫
RN

(
λK(x) |uj |p + μL(x) |uj |q + |uj |p

∗
s

)
dx = o(‖uj‖). (3.5)

By (3.3) and (3.5),

μ

(
1
p
− 1

q

) ∫
RN

L(x) |uj |q dx +
(

1
p
− 1

p∗s

) ∫
RN

|uj |p
∗
s dx = o(‖uj‖) + O(1),

which gives

∫
RN

L(x) |uj |q dx ≤ o(‖uj‖) + O(1),
∫
RN

|uj |p
∗
s dx ≤ o(‖uj‖) + O(1) (3.6)

since μ > 0 and p < q < p∗s. By (H2), there exists r > 0 such that λK(x) ≤ V (x)/2 for all x ∈ Br(0)c and 
hence ∫

Br(0)c

λK(x) |uj |p dx ≤ 1
2

∫
RN

V (x) |uj |p dx ≤ 1
2 ‖uj‖p , (3.7)

and by the Hölder inequality,

∫
Br(0)

λK(x) |uj |p dx ≤ |λ||K|∞ vol (Br(0))sp/N
⎛⎝∫
RN

|uj |p
∗
s dx

⎞⎠p/p∗
s

, (3.8)

where | ·|∞ is the norm in L∞(RN ). Since p > 1, it follows from (3.5)–(3.8) that (uj) is bounded. So a renamed 
subsequence of (uj) converges to some u weakly in X, strongly in Lp

K(RN ) ∩ Lq
L(RN ) by Proposition 1.1, 

and a.e. in RN . The sequence |uj(x) − uj(y)|p−2 (uj(x) − uj(y))/|x − y|(N+sp)/p′ is bounded in Lp′(R2N )
and it converges to |u(x) − u(y)|p−2 (u(x) − u(y))/|x − y|(N+sp)/p′ almost everywhere in R2N . Moreover, 
(v(x) − v(y))/|x − y|(N+sp)/p ∈ Lp(R2N ), so the first integral in formula (3.4) converges to

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))
|x− y|N+sp

dxdy

for a subsequence. Similarly,
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∫
RN

V (x) |uj |p−2 uj v dx →
∫
RN

V (x) |u|p−2 uv dx,

∫
RN

K(x) |uj |p−2 uj v dx →
∫
RN

K(x) |u|p−2 uv dx,

∫
RN

L(x) |uj |q−2 uj v dx →
∫
RN

L(x) |u|q−2 uv dx,

∫
RN

|uj |p
∗
s−2 uj v dx →

∫
RN

|u|p∗
s−2 uv dx

for a further subsequence. So passing to the limit in (3.4) shows that u is a weak solution of equation (1.4). 
Suppose now that u = 0. Since (uj) is bounded in X and it converges to 0 in Lp

K(RN ) ∩Lq
L(RN ), (3.5) and 

(1.5) give

o(1) = ‖uj‖p −
∫
RN

|uj |p
∗
s dx ≥ ‖uj‖p

(
1 − ‖uj‖p

∗
s−p

S
p∗
s/p

V

)
.

If ‖uj‖ → 0, then Φ(uj) → 0, contradicting c �= 0, so this implies

‖uj‖p ≥ S
N/sp
V + o(1)

for a further subsequence. Then (3.3) and (3.5) give

c =
(

1
p
− 1

p∗s

)
‖uj‖p + o(1) ≥ s

N
S
N/sp
V + o(1),

contradicting c <
s

N
S
N/sp
V . This concludes the proof. �

4. Proofs

In this section we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Fix u0 > 0 in X such that |u0|p∗
s

= 1. Since p < q < p∗s,

Φ+(tu0) = tp

p
‖u0‖p −

λ tp

p
|u0|pp,K − μ tq

q
|u0|qq,L − tp

∗
s

p∗s
→ −∞

as t → +∞. Take t0 > 0 so large that Φ+(t0u0) ≤ 0, let

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = t0u0}

be the class of paths joining 0 and t0u0, and set

c := inf
γ∈Γ

max
u∈γ([0,1])

Φ+(u).

By Proposition 1.1, we learn that

T = inf
u∈X\{0}

‖u‖p

|u|p > 0. (4.1)

q,L
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By formulas (1.6), (4.1), and (1.5), we obtain

Φ+(u) ≥ 1
p

(
1 − λ+

λ1

)
‖u‖p − μ

q
T−q/p ‖u‖q − 1

p∗s
S
−p∗

s/p
V ‖u‖p

∗
s ∀u ∈ X,

where λ+ = max {λ, 0}. Since λ+ < λ1 and p∗s > q > p, it follows from this that 0 is a strict local minimizer 
of Φ+, so c > 0. Thus, Φ+ has a (PS)c sequence (uj) by the Mountain Pass Theorem. Since γ(s) = st0u0 is 
a path in Γ,

c ≤ max
s∈[0,1]

Φ+(st0u0) ≤ max
t≥0

Φ+(tu0) ≤ max
t≥0

[
tp

p

(
‖u0‖p − λ|u0|pp,K

)
− μ tq

q
|u0|qq,L

]

=
(

1
p
− 1

q

) (
‖u0‖p − λ|u0|pp,K

)q/(q−p)

(
μ|u0|qq,L

)p/(q−p) <
s

N
S
N/sp
V

if μ > 0 is sufficiently large. An argument similar to that in the proof of Proposition 1.2 now shows that a 
subsequence of (uj) converges weakly to a positive solution of equation (1.4). �

Turning to the proof of Theorem 1.4, since λ ≥ λ1, λk ≤ λ < λk+1 for some k ≥ 1. By (2.4), i(Ψλk) =
i(S \ Ψλk+1) = k. First, we construct a compact symmetric subset A0 of Ψλk with the same index. As we 
have already noted, the operator Ap defined in (2.1) satisfies the structural assumptions of [26, Chapter 1].

Lemma 4.1. The operator Ap is strictly monotone, i.e.,

(Ap(u) −Ap(v)) (u− v) > 0

for all u �= v in X.

Proof. It is easily seen from (2.3) that Ap(u) v ≤ ‖u‖p−1 ‖v‖ for all u, v ∈ X and the equality holds if and 
only if αu = βv a.e. in RN for some α, β ≥ 0, not both zero, so the conclusion follows from [26, Lemma 
6.3]. �
Lemma 4.2. For each w ∈ Lp

K(RN ), the equation

(−Δ)sp u + V (x) |u|p−2 u = K(x) |w|p−2 w, x ∈ R
N (4.2)

admits a unique weak solution u ∈ X. Furthermore, the mapping J : Lp
K(RN ) → X, w �→ u is continuous.

Proof. The existence follows from a standard minimization argument since X is continuously embedded in 
Lp
K(RN ) by Proposition 1.1, and the uniqueness is immediate from the strict monotonicity of the operator 

Ap. Let wj → w in Lp
K(RN ) and let uj = J(wj), so

Ap(uj) v =
∫
RN

K(x) |wj |p−2 wj v dx ∀v ∈ X. (4.3)

Testing with v = uj gives

‖uj‖p =
∫

K(x) |wj |p−2 wj uj dx ≤ |wj |p−1
p,K |uj |p,K
RN
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by the Hölder inequality, which together with the continuity of the embedding X ↪→ Lp
K(RN ) shows that 

(uj) is bounded in X. So a renamed subsequence of (uj) converges to some u weakly in X, strongly in 
Lp
K(RN ), and a.e. in RN . As in the proof of Proposition 1.2,

Ap(uj) v → Ap(u) v,
∫
RN

K(x) |wj |p−2 wj v dx →
∫
RN

K(x) |w|p−2 wv dx,

along a subsequence. So passing to the limit in (4.3) shows that u is a weak solution of equation (4.2) and 
hence u = J(w). Testing (4.3) with uj − u gives

Ap(uj) (uj − u) =
∫
RN

K(x) |wj |p−2 wj (uj − u) dx ≤ |wj |p−1
p,K |uj − u|p,K → 0,

so uj → u for a further subsequence since Ap is of type (S). �
Proposition 4.3. If λk < λk+1, then Ψλk has a compact symmetric subset A0 with i(A0) = k.

Proof. Let

πp,K(u) = u

|u|p,K
, u ∈ X \ {0} ,

be the radial projection onto Sp,K =
{
u ∈ X : |u|p,K = 1

}
, and let

A = πp,K(Ψλk) =
{
w ∈ Sp,K : ‖w‖p ≤ λk

}
.

Then i(A) = i(Ψλk) = k by (i2) of Proposition 2.1 and (2.4). For w ∈ A, let u = J(w), where J is the map 
defined in Lemma 4.2, so

Ap(u) v =
∫
RN

K(x) |w|p−2 wv dx, ∀v ∈ X.

Testing with v = u, w and using the Hölder inequality gives

‖u‖p ≤ |w|p−1
p,K |u|p,K = |u|p,K , 1 = Ap(u)w ≤ ‖u‖p−1 ‖w‖ ,

so

‖πp,K(u)‖ =
‖u‖
|u|p,K

≤ ‖w‖

and hence πp,K(u) ∈ A. Let J̃ = πp,K ◦ J and let Ã = J̃(A) ⊂ A. Since the embedding X ↪→ Lp
K(RN ) is 

compact by Proposition 1.1 and J̃ is an odd continuous map from Lp
K(RN ) to X, then Ã is a compact set 

and i(Ã) = i(A) = k. Let

π(u) = u

‖u‖ , u ∈ X \ {0} (4.4)

be the radial projection onto S and let A0 = π(Ã). Therefore A0 ⊂ Ψλk is compact and i(A0) = i(Ã) = k. �
We are now ready to prove Theorem 1.4.
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Proof of Theorem 1.4. We apply Theorem 2.2. Since λ ≥ λ1, λk ≤ λ < λk+1 for some k ≥ 1. Then Ψλk has 
a compact symmetric subset A0 with

i(A0) = k

by Proposition 4.3. We take B0 = Ψλk+1 , so that

i(S \B0) = k

by (2.4). So (2.5) holds. For u ∈ S and t ≥ 0,

Φ(tu) = tp

p

(
1 − λ

Ψ(u)

)
− μ tq

q
|u|qq,L − tp

∗
s

p∗s
|u|p

∗
s

p∗
s
. (4.5)

Pick any v ∈ S \A0. Since A0 is compact, so is the set

X0 = {π((1 − t)u + tv) : u ∈ A0, 0 ≤ t ≤ 1} ,

where π is as in (4.4), and hence

α = sup
u∈X0

(
1 − λ

Ψ(u)

)
< ∞, β = inf

u∈X0
|u|qq,L > 0.

For u ∈ A0, (4.5) gives

Φ(tu) ≤ − tp

p

(
λ

λk
− 1

)
≤ 0 (4.6)

since λ ≥ λk. For u ∈ X0, (4.5) gives

Φ(tu) ≤ α tp

p
− μβ tq

q
≤

(
1
p
− 1

q

)
(α+)q/(q−p)

(μβ)p/(q−p) , (4.7)

where α+ = max {α, 0}. Fix μ > 0 so large that the last expression is less than (s/N)SN/sp
V , take positive 

R ≥ (q α+/p μβ)1/(q−p), and let A and D be as in Theorem 2.2. Then it follows from (4.6) and (4.7) that

sup Φ(A) ≤ 0, sup Φ(D) < s

N
S
N/sp
V .

Finally for u ∈ B0, (4.5) gives

Φ(tu) ≥ tp

p

(
1 − λ

λk+1

)
− μ tq

q
T−q/p − tp

∗
s

p∗s
S
−p∗

s/p
V ,

where T is as in (4.1). Since λ < λk+1 and p∗s > q > p, it follows from this that if 0 < r < R is sufficiently 
small and B is as in Theorem 2.2, then

inf Φ(B) > 0.

Thus, 0 < c < (s/N)SN/sp
V and Φ has a (PS)c sequence by Theorem 2.2, a subsequence of which converges 

weakly to a nontrivial solution of equation (1.4) by Proposition 1.2. �
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